4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "qemu/osdep.h"
20 #include "qapi/error.h"
24 #include "qemu/cutils.h"
26 #include "exec/exec-all.h"
28 #include "hw/qdev-core.h"
29 #if !defined(CONFIG_USER_ONLY)
30 #include "hw/boards.h"
31 #include "hw/xen/xen.h"
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "qemu/error-report.h"
38 #if defined(CONFIG_USER_ONLY)
40 #else /* !CONFIG_USER_ONLY */
42 #include "exec/memory.h"
43 #include "exec/ioport.h"
44 #include "sysemu/dma.h"
45 #include "exec/address-spaces.h"
46 #include "sysemu/xen-mapcache.h"
49 #include "exec/cpu-all.h"
50 #include "qemu/rcu_queue.h"
51 #include "qemu/main-loop.h"
52 #include "translate-all.h"
53 #include "sysemu/replay.h"
55 #include "exec/memory-internal.h"
56 #include "exec/ram_addr.h"
59 #include "migration/vmstate.h"
61 #include "qemu/range.h"
63 #include "qemu/mmap-alloc.h"
66 //#define DEBUG_SUBPAGE
68 #if !defined(CONFIG_USER_ONLY)
69 /* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
70 * are protected by the ramlist lock.
72 RAMList ram_list
= { .blocks
= QLIST_HEAD_INITIALIZER(ram_list
.blocks
) };
74 static MemoryRegion
*system_memory
;
75 static MemoryRegion
*system_io
;
77 AddressSpace address_space_io
;
78 AddressSpace address_space_memory
;
80 MemoryRegion io_mem_rom
, io_mem_notdirty
;
81 static MemoryRegion io_mem_unassigned
;
83 /* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
84 #define RAM_PREALLOC (1 << 0)
86 /* RAM is mmap-ed with MAP_SHARED */
87 #define RAM_SHARED (1 << 1)
89 /* Only a portion of RAM (used_length) is actually used, and migrated.
90 * This used_length size can change across reboots.
92 #define RAM_RESIZEABLE (1 << 2)
96 #ifdef TARGET_PAGE_BITS_VARY
98 bool target_page_bits_decided
;
101 struct CPUTailQ cpus
= QTAILQ_HEAD_INITIALIZER(cpus
);
102 /* current CPU in the current thread. It is only valid inside
104 __thread CPUState
*current_cpu
;
105 /* 0 = Do not count executed instructions.
106 1 = Precise instruction counting.
107 2 = Adaptive rate instruction counting. */
110 bool set_preferred_target_page_bits(int bits
)
112 /* The target page size is the lowest common denominator for all
113 * the CPUs in the system, so we can only make it smaller, never
114 * larger. And we can't make it smaller once we've committed to
117 #ifdef TARGET_PAGE_BITS_VARY
118 assert(bits
>= TARGET_PAGE_BITS_MIN
);
119 if (target_page_bits
== 0 || target_page_bits
> bits
) {
120 if (target_page_bits_decided
) {
123 target_page_bits
= bits
;
129 #if !defined(CONFIG_USER_ONLY)
131 static void finalize_target_page_bits(void)
133 #ifdef TARGET_PAGE_BITS_VARY
134 if (target_page_bits
== 0) {
135 target_page_bits
= TARGET_PAGE_BITS_MIN
;
137 target_page_bits_decided
= true;
141 typedef struct PhysPageEntry PhysPageEntry
;
143 struct PhysPageEntry
{
144 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
146 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
150 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
152 /* Size of the L2 (and L3, etc) page tables. */
153 #define ADDR_SPACE_BITS 64
156 #define P_L2_SIZE (1 << P_L2_BITS)
158 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
160 typedef PhysPageEntry Node
[P_L2_SIZE
];
162 typedef struct PhysPageMap
{
165 unsigned sections_nb
;
166 unsigned sections_nb_alloc
;
168 unsigned nodes_nb_alloc
;
170 MemoryRegionSection
*sections
;
173 struct AddressSpaceDispatch
{
176 MemoryRegionSection
*mru_section
;
177 /* This is a multi-level map on the physical address space.
178 * The bottom level has pointers to MemoryRegionSections.
180 PhysPageEntry phys_map
;
185 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
186 typedef struct subpage_t
{
190 uint16_t sub_section
[];
193 #define PHYS_SECTION_UNASSIGNED 0
194 #define PHYS_SECTION_NOTDIRTY 1
195 #define PHYS_SECTION_ROM 2
196 #define PHYS_SECTION_WATCH 3
198 static void io_mem_init(void);
199 static void memory_map_init(void);
200 static void tcg_commit(MemoryListener
*listener
);
202 static MemoryRegion io_mem_watch
;
205 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
206 * @cpu: the CPU whose AddressSpace this is
207 * @as: the AddressSpace itself
208 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
209 * @tcg_as_listener: listener for tracking changes to the AddressSpace
211 struct CPUAddressSpace
{
214 struct AddressSpaceDispatch
*memory_dispatch
;
215 MemoryListener tcg_as_listener
;
220 #if !defined(CONFIG_USER_ONLY)
222 static void phys_map_node_reserve(PhysPageMap
*map
, unsigned nodes
)
224 static unsigned alloc_hint
= 16;
225 if (map
->nodes_nb
+ nodes
> map
->nodes_nb_alloc
) {
226 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, alloc_hint
);
227 map
->nodes_nb_alloc
= MAX(map
->nodes_nb_alloc
, map
->nodes_nb
+ nodes
);
228 map
->nodes
= g_renew(Node
, map
->nodes
, map
->nodes_nb_alloc
);
229 alloc_hint
= map
->nodes_nb_alloc
;
233 static uint32_t phys_map_node_alloc(PhysPageMap
*map
, bool leaf
)
240 ret
= map
->nodes_nb
++;
242 assert(ret
!= PHYS_MAP_NODE_NIL
);
243 assert(ret
!= map
->nodes_nb_alloc
);
245 e
.skip
= leaf
? 0 : 1;
246 e
.ptr
= leaf
? PHYS_SECTION_UNASSIGNED
: PHYS_MAP_NODE_NIL
;
247 for (i
= 0; i
< P_L2_SIZE
; ++i
) {
248 memcpy(&p
[i
], &e
, sizeof(e
));
253 static void phys_page_set_level(PhysPageMap
*map
, PhysPageEntry
*lp
,
254 hwaddr
*index
, hwaddr
*nb
, uint16_t leaf
,
258 hwaddr step
= (hwaddr
)1 << (level
* P_L2_BITS
);
260 if (lp
->skip
&& lp
->ptr
== PHYS_MAP_NODE_NIL
) {
261 lp
->ptr
= phys_map_node_alloc(map
, level
== 0);
263 p
= map
->nodes
[lp
->ptr
];
264 lp
= &p
[(*index
>> (level
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
266 while (*nb
&& lp
< &p
[P_L2_SIZE
]) {
267 if ((*index
& (step
- 1)) == 0 && *nb
>= step
) {
273 phys_page_set_level(map
, lp
, index
, nb
, leaf
, level
- 1);
279 static void phys_page_set(AddressSpaceDispatch
*d
,
280 hwaddr index
, hwaddr nb
,
283 /* Wildly overreserve - it doesn't matter much. */
284 phys_map_node_reserve(&d
->map
, 3 * P_L2_LEVELS
);
286 phys_page_set_level(&d
->map
, &d
->phys_map
, &index
, &nb
, leaf
, P_L2_LEVELS
- 1);
289 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
290 * and update our entry so we can skip it and go directly to the destination.
292 static void phys_page_compact(PhysPageEntry
*lp
, Node
*nodes
)
294 unsigned valid_ptr
= P_L2_SIZE
;
299 if (lp
->ptr
== PHYS_MAP_NODE_NIL
) {
304 for (i
= 0; i
< P_L2_SIZE
; i
++) {
305 if (p
[i
].ptr
== PHYS_MAP_NODE_NIL
) {
312 phys_page_compact(&p
[i
], nodes
);
316 /* We can only compress if there's only one child. */
321 assert(valid_ptr
< P_L2_SIZE
);
323 /* Don't compress if it won't fit in the # of bits we have. */
324 if (lp
->skip
+ p
[valid_ptr
].skip
>= (1 << 3)) {
328 lp
->ptr
= p
[valid_ptr
].ptr
;
329 if (!p
[valid_ptr
].skip
) {
330 /* If our only child is a leaf, make this a leaf. */
331 /* By design, we should have made this node a leaf to begin with so we
332 * should never reach here.
333 * But since it's so simple to handle this, let's do it just in case we
338 lp
->skip
+= p
[valid_ptr
].skip
;
342 static void phys_page_compact_all(AddressSpaceDispatch
*d
, int nodes_nb
)
344 if (d
->phys_map
.skip
) {
345 phys_page_compact(&d
->phys_map
, d
->map
.nodes
);
349 static inline bool section_covers_addr(const MemoryRegionSection
*section
,
352 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
353 * the section must cover the entire address space.
355 return int128_gethi(section
->size
) ||
356 range_covers_byte(section
->offset_within_address_space
,
357 int128_getlo(section
->size
), addr
);
360 static MemoryRegionSection
*phys_page_find(PhysPageEntry lp
, hwaddr addr
,
361 Node
*nodes
, MemoryRegionSection
*sections
)
364 hwaddr index
= addr
>> TARGET_PAGE_BITS
;
367 for (i
= P_L2_LEVELS
; lp
.skip
&& (i
-= lp
.skip
) >= 0;) {
368 if (lp
.ptr
== PHYS_MAP_NODE_NIL
) {
369 return §ions
[PHYS_SECTION_UNASSIGNED
];
372 lp
= p
[(index
>> (i
* P_L2_BITS
)) & (P_L2_SIZE
- 1)];
375 if (section_covers_addr(§ions
[lp
.ptr
], addr
)) {
376 return §ions
[lp
.ptr
];
378 return §ions
[PHYS_SECTION_UNASSIGNED
];
382 bool memory_region_is_unassigned(MemoryRegion
*mr
)
384 return mr
!= &io_mem_rom
&& mr
!= &io_mem_notdirty
&& !mr
->rom_device
385 && mr
!= &io_mem_watch
;
388 /* Called from RCU critical section */
389 static MemoryRegionSection
*address_space_lookup_region(AddressSpaceDispatch
*d
,
391 bool resolve_subpage
)
393 MemoryRegionSection
*section
= atomic_read(&d
->mru_section
);
397 if (section
&& section
!= &d
->map
.sections
[PHYS_SECTION_UNASSIGNED
] &&
398 section_covers_addr(section
, addr
)) {
401 section
= phys_page_find(d
->phys_map
, addr
, d
->map
.nodes
,
405 if (resolve_subpage
&& section
->mr
->subpage
) {
406 subpage
= container_of(section
->mr
, subpage_t
, iomem
);
407 section
= &d
->map
.sections
[subpage
->sub_section
[SUBPAGE_IDX(addr
)]];
410 atomic_set(&d
->mru_section
, section
);
415 /* Called from RCU critical section */
416 static MemoryRegionSection
*
417 address_space_translate_internal(AddressSpaceDispatch
*d
, hwaddr addr
, hwaddr
*xlat
,
418 hwaddr
*plen
, bool resolve_subpage
)
420 MemoryRegionSection
*section
;
424 section
= address_space_lookup_region(d
, addr
, resolve_subpage
);
425 /* Compute offset within MemoryRegionSection */
426 addr
-= section
->offset_within_address_space
;
428 /* Compute offset within MemoryRegion */
429 *xlat
= addr
+ section
->offset_within_region
;
433 /* MMIO registers can be expected to perform full-width accesses based only
434 * on their address, without considering adjacent registers that could
435 * decode to completely different MemoryRegions. When such registers
436 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
437 * regions overlap wildly. For this reason we cannot clamp the accesses
440 * If the length is small (as is the case for address_space_ldl/stl),
441 * everything works fine. If the incoming length is large, however,
442 * the caller really has to do the clamping through memory_access_size.
444 if (memory_region_is_ram(mr
)) {
445 diff
= int128_sub(section
->size
, int128_make64(addr
));
446 *plen
= int128_get64(int128_min(diff
, int128_make64(*plen
)));
451 /* Called from RCU critical section */
452 MemoryRegion
*address_space_translate(AddressSpace
*as
, hwaddr addr
,
453 hwaddr
*xlat
, hwaddr
*plen
,
457 MemoryRegionSection
*section
;
461 AddressSpaceDispatch
*d
= atomic_rcu_read(&as
->dispatch
);
462 section
= address_space_translate_internal(d
, addr
, &addr
, plen
, true);
465 if (!mr
->iommu_ops
) {
469 iotlb
= mr
->iommu_ops
->translate(mr
, addr
, is_write
);
470 addr
= ((iotlb
.translated_addr
& ~iotlb
.addr_mask
)
471 | (addr
& iotlb
.addr_mask
));
472 *plen
= MIN(*plen
, (addr
| iotlb
.addr_mask
) - addr
+ 1);
473 if (!(iotlb
.perm
& (1 << is_write
))) {
474 mr
= &io_mem_unassigned
;
478 as
= iotlb
.target_as
;
481 if (xen_enabled() && memory_access_is_direct(mr
, is_write
)) {
482 hwaddr page
= ((addr
& TARGET_PAGE_MASK
) + TARGET_PAGE_SIZE
) - addr
;
483 *plen
= MIN(page
, *plen
);
490 /* Called from RCU critical section */
491 MemoryRegionSection
*
492 address_space_translate_for_iotlb(CPUState
*cpu
, int asidx
, hwaddr addr
,
493 hwaddr
*xlat
, hwaddr
*plen
)
495 MemoryRegionSection
*section
;
496 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpu
->cpu_ases
[asidx
].memory_dispatch
);
498 section
= address_space_translate_internal(d
, addr
, xlat
, plen
, false);
500 assert(!section
->mr
->iommu_ops
);
505 #if !defined(CONFIG_USER_ONLY)
507 static int cpu_common_post_load(void *opaque
, int version_id
)
509 CPUState
*cpu
= opaque
;
511 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
512 version_id is increased. */
513 cpu
->interrupt_request
&= ~0x01;
519 static int cpu_common_pre_load(void *opaque
)
521 CPUState
*cpu
= opaque
;
523 cpu
->exception_index
= -1;
528 static bool cpu_common_exception_index_needed(void *opaque
)
530 CPUState
*cpu
= opaque
;
532 return tcg_enabled() && cpu
->exception_index
!= -1;
535 static const VMStateDescription vmstate_cpu_common_exception_index
= {
536 .name
= "cpu_common/exception_index",
538 .minimum_version_id
= 1,
539 .needed
= cpu_common_exception_index_needed
,
540 .fields
= (VMStateField
[]) {
541 VMSTATE_INT32(exception_index
, CPUState
),
542 VMSTATE_END_OF_LIST()
546 static bool cpu_common_crash_occurred_needed(void *opaque
)
548 CPUState
*cpu
= opaque
;
550 return cpu
->crash_occurred
;
553 static const VMStateDescription vmstate_cpu_common_crash_occurred
= {
554 .name
= "cpu_common/crash_occurred",
556 .minimum_version_id
= 1,
557 .needed
= cpu_common_crash_occurred_needed
,
558 .fields
= (VMStateField
[]) {
559 VMSTATE_BOOL(crash_occurred
, CPUState
),
560 VMSTATE_END_OF_LIST()
564 const VMStateDescription vmstate_cpu_common
= {
565 .name
= "cpu_common",
567 .minimum_version_id
= 1,
568 .pre_load
= cpu_common_pre_load
,
569 .post_load
= cpu_common_post_load
,
570 .fields
= (VMStateField
[]) {
571 VMSTATE_UINT32(halted
, CPUState
),
572 VMSTATE_UINT32(interrupt_request
, CPUState
),
573 VMSTATE_END_OF_LIST()
575 .subsections
= (const VMStateDescription
*[]) {
576 &vmstate_cpu_common_exception_index
,
577 &vmstate_cpu_common_crash_occurred
,
584 CPUState
*qemu_get_cpu(int index
)
589 if (cpu
->cpu_index
== index
) {
597 #if !defined(CONFIG_USER_ONLY)
598 void cpu_address_space_init(CPUState
*cpu
, AddressSpace
*as
, int asidx
)
600 CPUAddressSpace
*newas
;
602 /* Target code should have set num_ases before calling us */
603 assert(asidx
< cpu
->num_ases
);
606 /* address space 0 gets the convenience alias */
610 /* KVM cannot currently support multiple address spaces. */
611 assert(asidx
== 0 || !kvm_enabled());
613 if (!cpu
->cpu_ases
) {
614 cpu
->cpu_ases
= g_new0(CPUAddressSpace
, cpu
->num_ases
);
617 newas
= &cpu
->cpu_ases
[asidx
];
621 newas
->tcg_as_listener
.commit
= tcg_commit
;
622 memory_listener_register(&newas
->tcg_as_listener
, as
);
626 AddressSpace
*cpu_get_address_space(CPUState
*cpu
, int asidx
)
628 /* Return the AddressSpace corresponding to the specified index */
629 return cpu
->cpu_ases
[asidx
].as
;
633 void cpu_exec_unrealizefn(CPUState
*cpu
)
635 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
637 cpu_list_remove(cpu
);
639 if (cc
->vmsd
!= NULL
) {
640 vmstate_unregister(NULL
, cc
->vmsd
, cpu
);
642 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
643 vmstate_unregister(NULL
, &vmstate_cpu_common
, cpu
);
647 void cpu_exec_initfn(CPUState
*cpu
)
652 #ifndef CONFIG_USER_ONLY
653 cpu
->thread_id
= qemu_get_thread_id();
655 /* This is a softmmu CPU object, so create a property for it
656 * so users can wire up its memory. (This can't go in qom/cpu.c
657 * because that file is compiled only once for both user-mode
658 * and system builds.) The default if no link is set up is to use
659 * the system address space.
661 object_property_add_link(OBJECT(cpu
), "memory", TYPE_MEMORY_REGION
,
662 (Object
**)&cpu
->memory
,
663 qdev_prop_allow_set_link_before_realize
,
664 OBJ_PROP_LINK_UNREF_ON_RELEASE
,
666 cpu
->memory
= system_memory
;
667 object_ref(OBJECT(cpu
->memory
));
671 void cpu_exec_realizefn(CPUState
*cpu
, Error
**errp
)
673 CPUClass
*cc ATTRIBUTE_UNUSED
= CPU_GET_CLASS(cpu
);
677 #ifndef CONFIG_USER_ONLY
678 if (qdev_get_vmsd(DEVICE(cpu
)) == NULL
) {
679 vmstate_register(NULL
, cpu
->cpu_index
, &vmstate_cpu_common
, cpu
);
681 if (cc
->vmsd
!= NULL
) {
682 vmstate_register(NULL
, cpu
->cpu_index
, cc
->vmsd
, cpu
);
687 #if defined(CONFIG_USER_ONLY)
688 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
692 tb_invalidate_phys_page_range(pc
, pc
+ 1, 0);
697 static void breakpoint_invalidate(CPUState
*cpu
, target_ulong pc
)
700 hwaddr phys
= cpu_get_phys_page_attrs_debug(cpu
, pc
, &attrs
);
701 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
703 /* Locks grabbed by tb_invalidate_phys_addr */
704 tb_invalidate_phys_addr(cpu
->cpu_ases
[asidx
].as
,
705 phys
| (pc
& ~TARGET_PAGE_MASK
));
710 #if defined(CONFIG_USER_ONLY)
711 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
716 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
722 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
726 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
727 int flags
, CPUWatchpoint
**watchpoint
)
732 /* Add a watchpoint. */
733 int cpu_watchpoint_insert(CPUState
*cpu
, vaddr addr
, vaddr len
,
734 int flags
, CPUWatchpoint
**watchpoint
)
738 /* forbid ranges which are empty or run off the end of the address space */
739 if (len
== 0 || (addr
+ len
- 1) < addr
) {
740 error_report("tried to set invalid watchpoint at %"
741 VADDR_PRIx
", len=%" VADDR_PRIu
, addr
, len
);
744 wp
= g_malloc(sizeof(*wp
));
750 /* keep all GDB-injected watchpoints in front */
751 if (flags
& BP_GDB
) {
752 QTAILQ_INSERT_HEAD(&cpu
->watchpoints
, wp
, entry
);
754 QTAILQ_INSERT_TAIL(&cpu
->watchpoints
, wp
, entry
);
757 tlb_flush_page(cpu
, addr
);
764 /* Remove a specific watchpoint. */
765 int cpu_watchpoint_remove(CPUState
*cpu
, vaddr addr
, vaddr len
,
770 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
771 if (addr
== wp
->vaddr
&& len
== wp
->len
772 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
773 cpu_watchpoint_remove_by_ref(cpu
, wp
);
780 /* Remove a specific watchpoint by reference. */
781 void cpu_watchpoint_remove_by_ref(CPUState
*cpu
, CPUWatchpoint
*watchpoint
)
783 QTAILQ_REMOVE(&cpu
->watchpoints
, watchpoint
, entry
);
785 tlb_flush_page(cpu
, watchpoint
->vaddr
);
790 /* Remove all matching watchpoints. */
791 void cpu_watchpoint_remove_all(CPUState
*cpu
, int mask
)
793 CPUWatchpoint
*wp
, *next
;
795 QTAILQ_FOREACH_SAFE(wp
, &cpu
->watchpoints
, entry
, next
) {
796 if (wp
->flags
& mask
) {
797 cpu_watchpoint_remove_by_ref(cpu
, wp
);
802 /* Return true if this watchpoint address matches the specified
803 * access (ie the address range covered by the watchpoint overlaps
804 * partially or completely with the address range covered by the
807 static inline bool cpu_watchpoint_address_matches(CPUWatchpoint
*wp
,
811 /* We know the lengths are non-zero, but a little caution is
812 * required to avoid errors in the case where the range ends
813 * exactly at the top of the address space and so addr + len
814 * wraps round to zero.
816 vaddr wpend
= wp
->vaddr
+ wp
->len
- 1;
817 vaddr addrend
= addr
+ len
- 1;
819 return !(addr
> wpend
|| wp
->vaddr
> addrend
);
824 /* Add a breakpoint. */
825 int cpu_breakpoint_insert(CPUState
*cpu
, vaddr pc
, int flags
,
826 CPUBreakpoint
**breakpoint
)
830 bp
= g_malloc(sizeof(*bp
));
835 /* keep all GDB-injected breakpoints in front */
836 if (flags
& BP_GDB
) {
837 QTAILQ_INSERT_HEAD(&cpu
->breakpoints
, bp
, entry
);
839 QTAILQ_INSERT_TAIL(&cpu
->breakpoints
, bp
, entry
);
842 breakpoint_invalidate(cpu
, pc
);
850 /* Remove a specific breakpoint. */
851 int cpu_breakpoint_remove(CPUState
*cpu
, vaddr pc
, int flags
)
855 QTAILQ_FOREACH(bp
, &cpu
->breakpoints
, entry
) {
856 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
857 cpu_breakpoint_remove_by_ref(cpu
, bp
);
864 /* Remove a specific breakpoint by reference. */
865 void cpu_breakpoint_remove_by_ref(CPUState
*cpu
, CPUBreakpoint
*breakpoint
)
867 QTAILQ_REMOVE(&cpu
->breakpoints
, breakpoint
, entry
);
869 breakpoint_invalidate(cpu
, breakpoint
->pc
);
874 /* Remove all matching breakpoints. */
875 void cpu_breakpoint_remove_all(CPUState
*cpu
, int mask
)
877 CPUBreakpoint
*bp
, *next
;
879 QTAILQ_FOREACH_SAFE(bp
, &cpu
->breakpoints
, entry
, next
) {
880 if (bp
->flags
& mask
) {
881 cpu_breakpoint_remove_by_ref(cpu
, bp
);
886 /* enable or disable single step mode. EXCP_DEBUG is returned by the
887 CPU loop after each instruction */
888 void cpu_single_step(CPUState
*cpu
, int enabled
)
890 if (cpu
->singlestep_enabled
!= enabled
) {
891 cpu
->singlestep_enabled
= enabled
;
893 kvm_update_guest_debug(cpu
, 0);
895 /* must flush all the translated code to avoid inconsistencies */
896 /* XXX: only flush what is necessary */
902 void cpu_abort(CPUState
*cpu
, const char *fmt
, ...)
909 fprintf(stderr
, "qemu: fatal: ");
910 vfprintf(stderr
, fmt
, ap
);
911 fprintf(stderr
, "\n");
912 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
913 if (qemu_log_separate()) {
915 qemu_log("qemu: fatal: ");
916 qemu_log_vprintf(fmt
, ap2
);
918 log_cpu_state(cpu
, CPU_DUMP_FPU
| CPU_DUMP_CCOP
);
926 #if defined(CONFIG_USER_ONLY)
928 struct sigaction act
;
929 sigfillset(&act
.sa_mask
);
930 act
.sa_handler
= SIG_DFL
;
931 sigaction(SIGABRT
, &act
, NULL
);
937 #if !defined(CONFIG_USER_ONLY)
938 /* Called from RCU critical section */
939 static RAMBlock
*qemu_get_ram_block(ram_addr_t addr
)
943 block
= atomic_rcu_read(&ram_list
.mru_block
);
944 if (block
&& addr
- block
->offset
< block
->max_length
) {
947 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
948 if (addr
- block
->offset
< block
->max_length
) {
953 fprintf(stderr
, "Bad ram offset %" PRIx64
"\n", (uint64_t)addr
);
957 /* It is safe to write mru_block outside the iothread lock. This
962 * xxx removed from list
966 * call_rcu(reclaim_ramblock, xxx);
969 * atomic_rcu_set is not needed here. The block was already published
970 * when it was placed into the list. Here we're just making an extra
971 * copy of the pointer.
973 ram_list
.mru_block
= block
;
977 static void tlb_reset_dirty_range_all(ram_addr_t start
, ram_addr_t length
)
984 end
= TARGET_PAGE_ALIGN(start
+ length
);
985 start
&= TARGET_PAGE_MASK
;
988 block
= qemu_get_ram_block(start
);
989 assert(block
== qemu_get_ram_block(end
- 1));
990 start1
= (uintptr_t)ramblock_ptr(block
, start
- block
->offset
);
992 tlb_reset_dirty(cpu
, start1
, length
);
997 /* Note: start and end must be within the same ram block. */
998 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start
,
1002 DirtyMemoryBlocks
*blocks
;
1003 unsigned long end
, page
;
1010 end
= TARGET_PAGE_ALIGN(start
+ length
) >> TARGET_PAGE_BITS
;
1011 page
= start
>> TARGET_PAGE_BITS
;
1015 blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[client
]);
1017 while (page
< end
) {
1018 unsigned long idx
= page
/ DIRTY_MEMORY_BLOCK_SIZE
;
1019 unsigned long offset
= page
% DIRTY_MEMORY_BLOCK_SIZE
;
1020 unsigned long num
= MIN(end
- page
, DIRTY_MEMORY_BLOCK_SIZE
- offset
);
1022 dirty
|= bitmap_test_and_clear_atomic(blocks
->blocks
[idx
],
1029 if (dirty
&& tcg_enabled()) {
1030 tlb_reset_dirty_range_all(start
, length
);
1036 /* Called from RCU critical section */
1037 hwaddr
memory_region_section_get_iotlb(CPUState
*cpu
,
1038 MemoryRegionSection
*section
,
1040 hwaddr paddr
, hwaddr xlat
,
1042 target_ulong
*address
)
1047 if (memory_region_is_ram(section
->mr
)) {
1049 iotlb
= memory_region_get_ram_addr(section
->mr
) + xlat
;
1050 if (!section
->readonly
) {
1051 iotlb
|= PHYS_SECTION_NOTDIRTY
;
1053 iotlb
|= PHYS_SECTION_ROM
;
1056 AddressSpaceDispatch
*d
;
1058 d
= atomic_rcu_read(§ion
->address_space
->dispatch
);
1059 iotlb
= section
- d
->map
.sections
;
1063 /* Make accesses to pages with watchpoints go via the
1064 watchpoint trap routines. */
1065 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
1066 if (cpu_watchpoint_address_matches(wp
, vaddr
, TARGET_PAGE_SIZE
)) {
1067 /* Avoid trapping reads of pages with a write breakpoint. */
1068 if ((prot
& PAGE_WRITE
) || (wp
->flags
& BP_MEM_READ
)) {
1069 iotlb
= PHYS_SECTION_WATCH
+ paddr
;
1070 *address
|= TLB_MMIO
;
1078 #endif /* defined(CONFIG_USER_ONLY) */
1080 #if !defined(CONFIG_USER_ONLY)
1082 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
1084 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
);
1086 static void *(*phys_mem_alloc
)(size_t size
, uint64_t *align
) =
1087 qemu_anon_ram_alloc
;
1090 * Set a custom physical guest memory alloator.
1091 * Accelerators with unusual needs may need this. Hopefully, we can
1092 * get rid of it eventually.
1094 void phys_mem_set_alloc(void *(*alloc
)(size_t, uint64_t *align
))
1096 phys_mem_alloc
= alloc
;
1099 static uint16_t phys_section_add(PhysPageMap
*map
,
1100 MemoryRegionSection
*section
)
1102 /* The physical section number is ORed with a page-aligned
1103 * pointer to produce the iotlb entries. Thus it should
1104 * never overflow into the page-aligned value.
1106 assert(map
->sections_nb
< TARGET_PAGE_SIZE
);
1108 if (map
->sections_nb
== map
->sections_nb_alloc
) {
1109 map
->sections_nb_alloc
= MAX(map
->sections_nb_alloc
* 2, 16);
1110 map
->sections
= g_renew(MemoryRegionSection
, map
->sections
,
1111 map
->sections_nb_alloc
);
1113 map
->sections
[map
->sections_nb
] = *section
;
1114 memory_region_ref(section
->mr
);
1115 return map
->sections_nb
++;
1118 static void phys_section_destroy(MemoryRegion
*mr
)
1120 bool have_sub_page
= mr
->subpage
;
1122 memory_region_unref(mr
);
1124 if (have_sub_page
) {
1125 subpage_t
*subpage
= container_of(mr
, subpage_t
, iomem
);
1126 object_unref(OBJECT(&subpage
->iomem
));
1131 static void phys_sections_free(PhysPageMap
*map
)
1133 while (map
->sections_nb
> 0) {
1134 MemoryRegionSection
*section
= &map
->sections
[--map
->sections_nb
];
1135 phys_section_destroy(section
->mr
);
1137 g_free(map
->sections
);
1141 static void register_subpage(AddressSpaceDispatch
*d
, MemoryRegionSection
*section
)
1144 hwaddr base
= section
->offset_within_address_space
1146 MemoryRegionSection
*existing
= phys_page_find(d
->phys_map
, base
,
1147 d
->map
.nodes
, d
->map
.sections
);
1148 MemoryRegionSection subsection
= {
1149 .offset_within_address_space
= base
,
1150 .size
= int128_make64(TARGET_PAGE_SIZE
),
1154 assert(existing
->mr
->subpage
|| existing
->mr
== &io_mem_unassigned
);
1156 if (!(existing
->mr
->subpage
)) {
1157 subpage
= subpage_init(d
->as
, base
);
1158 subsection
.address_space
= d
->as
;
1159 subsection
.mr
= &subpage
->iomem
;
1160 phys_page_set(d
, base
>> TARGET_PAGE_BITS
, 1,
1161 phys_section_add(&d
->map
, &subsection
));
1163 subpage
= container_of(existing
->mr
, subpage_t
, iomem
);
1165 start
= section
->offset_within_address_space
& ~TARGET_PAGE_MASK
;
1166 end
= start
+ int128_get64(section
->size
) - 1;
1167 subpage_register(subpage
, start
, end
,
1168 phys_section_add(&d
->map
, section
));
1172 static void register_multipage(AddressSpaceDispatch
*d
,
1173 MemoryRegionSection
*section
)
1175 hwaddr start_addr
= section
->offset_within_address_space
;
1176 uint16_t section_index
= phys_section_add(&d
->map
, section
);
1177 uint64_t num_pages
= int128_get64(int128_rshift(section
->size
,
1181 phys_page_set(d
, start_addr
>> TARGET_PAGE_BITS
, num_pages
, section_index
);
1184 static void mem_add(MemoryListener
*listener
, MemoryRegionSection
*section
)
1186 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
1187 AddressSpaceDispatch
*d
= as
->next_dispatch
;
1188 MemoryRegionSection now
= *section
, remain
= *section
;
1189 Int128 page_size
= int128_make64(TARGET_PAGE_SIZE
);
1191 if (now
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1192 uint64_t left
= TARGET_PAGE_ALIGN(now
.offset_within_address_space
)
1193 - now
.offset_within_address_space
;
1195 now
.size
= int128_min(int128_make64(left
), now
.size
);
1196 register_subpage(d
, &now
);
1198 now
.size
= int128_zero();
1200 while (int128_ne(remain
.size
, now
.size
)) {
1201 remain
.size
= int128_sub(remain
.size
, now
.size
);
1202 remain
.offset_within_address_space
+= int128_get64(now
.size
);
1203 remain
.offset_within_region
+= int128_get64(now
.size
);
1205 if (int128_lt(remain
.size
, page_size
)) {
1206 register_subpage(d
, &now
);
1207 } else if (remain
.offset_within_address_space
& ~TARGET_PAGE_MASK
) {
1208 now
.size
= page_size
;
1209 register_subpage(d
, &now
);
1211 now
.size
= int128_and(now
.size
, int128_neg(page_size
));
1212 register_multipage(d
, &now
);
1217 void qemu_flush_coalesced_mmio_buffer(void)
1220 kvm_flush_coalesced_mmio_buffer();
1223 void qemu_mutex_lock_ramlist(void)
1225 qemu_mutex_lock(&ram_list
.mutex
);
1228 void qemu_mutex_unlock_ramlist(void)
1230 qemu_mutex_unlock(&ram_list
.mutex
);
1234 static int64_t get_file_size(int fd
)
1236 int64_t size
= lseek(fd
, 0, SEEK_END
);
1243 static void *file_ram_alloc(RAMBlock
*block
,
1248 bool unlink_on_error
= false;
1250 char *sanitized_name
;
1252 void *area
= MAP_FAILED
;
1256 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1258 "host lacks kvm mmu notifiers, -mem-path unsupported");
1263 fd
= open(path
, O_RDWR
);
1265 /* @path names an existing file, use it */
1268 if (errno
== ENOENT
) {
1269 /* @path names a file that doesn't exist, create it */
1270 fd
= open(path
, O_RDWR
| O_CREAT
| O_EXCL
, 0644);
1272 unlink_on_error
= true;
1275 } else if (errno
== EISDIR
) {
1276 /* @path names a directory, create a file there */
1277 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1278 sanitized_name
= g_strdup(memory_region_name(block
->mr
));
1279 for (c
= sanitized_name
; *c
!= '\0'; c
++) {
1285 filename
= g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path
,
1287 g_free(sanitized_name
);
1289 fd
= mkstemp(filename
);
1297 if (errno
!= EEXIST
&& errno
!= EINTR
) {
1298 error_setg_errno(errp
, errno
,
1299 "can't open backing store %s for guest RAM",
1304 * Try again on EINTR and EEXIST. The latter happens when
1305 * something else creates the file between our two open().
1309 block
->page_size
= qemu_fd_getpagesize(fd
);
1310 block
->mr
->align
= block
->page_size
;
1311 #if defined(__s390x__)
1312 if (kvm_enabled()) {
1313 block
->mr
->align
= MAX(block
->mr
->align
, QEMU_VMALLOC_ALIGN
);
1317 file_size
= get_file_size(fd
);
1319 if (memory
< block
->page_size
) {
1320 error_setg(errp
, "memory size 0x" RAM_ADDR_FMT
" must be equal to "
1321 "or larger than page size 0x%zx",
1322 memory
, block
->page_size
);
1326 if (file_size
> 0 && file_size
< memory
) {
1327 error_setg(errp
, "backing store %s size 0x%" PRIx64
1328 " does not match 'size' option 0x" RAM_ADDR_FMT
,
1329 path
, file_size
, memory
);
1333 memory
= ROUND_UP(memory
, block
->page_size
);
1336 * ftruncate is not supported by hugetlbfs in older
1337 * hosts, so don't bother bailing out on errors.
1338 * If anything goes wrong with it under other filesystems,
1341 * Do not truncate the non-empty backend file to avoid corrupting
1342 * the existing data in the file. Disabling shrinking is not
1343 * enough. For example, the current vNVDIMM implementation stores
1344 * the guest NVDIMM labels at the end of the backend file. If the
1345 * backend file is later extended, QEMU will not be able to find
1346 * those labels. Therefore, extending the non-empty backend file
1347 * is disabled as well.
1349 if (!file_size
&& ftruncate(fd
, memory
)) {
1350 perror("ftruncate");
1353 area
= qemu_ram_mmap(fd
, memory
, block
->mr
->align
,
1354 block
->flags
& RAM_SHARED
);
1355 if (area
== MAP_FAILED
) {
1356 error_setg_errno(errp
, errno
,
1357 "unable to map backing store for guest RAM");
1362 os_mem_prealloc(fd
, area
, memory
, errp
);
1363 if (errp
&& *errp
) {
1372 if (area
!= MAP_FAILED
) {
1373 qemu_ram_munmap(area
, memory
);
1375 if (unlink_on_error
) {
1385 /* Called with the ramlist lock held. */
1386 static ram_addr_t
find_ram_offset(ram_addr_t size
)
1388 RAMBlock
*block
, *next_block
;
1389 ram_addr_t offset
= RAM_ADDR_MAX
, mingap
= RAM_ADDR_MAX
;
1391 assert(size
!= 0); /* it would hand out same offset multiple times */
1393 if (QLIST_EMPTY_RCU(&ram_list
.blocks
)) {
1397 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1398 ram_addr_t end
, next
= RAM_ADDR_MAX
;
1400 end
= block
->offset
+ block
->max_length
;
1402 QLIST_FOREACH_RCU(next_block
, &ram_list
.blocks
, next
) {
1403 if (next_block
->offset
>= end
) {
1404 next
= MIN(next
, next_block
->offset
);
1407 if (next
- end
>= size
&& next
- end
< mingap
) {
1409 mingap
= next
- end
;
1413 if (offset
== RAM_ADDR_MAX
) {
1414 fprintf(stderr
, "Failed to find gap of requested size: %" PRIu64
"\n",
1422 ram_addr_t
last_ram_offset(void)
1425 ram_addr_t last
= 0;
1428 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1429 last
= MAX(last
, block
->offset
+ block
->max_length
);
1435 static void qemu_ram_setup_dump(void *addr
, ram_addr_t size
)
1439 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1440 if (!machine_dump_guest_core(current_machine
)) {
1441 ret
= qemu_madvise(addr
, size
, QEMU_MADV_DONTDUMP
);
1443 perror("qemu_madvise");
1444 fprintf(stderr
, "madvise doesn't support MADV_DONTDUMP, "
1445 "but dump_guest_core=off specified\n");
1450 const char *qemu_ram_get_idstr(RAMBlock
*rb
)
1455 /* Called with iothread lock held. */
1456 void qemu_ram_set_idstr(RAMBlock
*new_block
, const char *name
, DeviceState
*dev
)
1461 assert(!new_block
->idstr
[0]);
1464 char *id
= qdev_get_dev_path(dev
);
1466 snprintf(new_block
->idstr
, sizeof(new_block
->idstr
), "%s/", id
);
1470 pstrcat(new_block
->idstr
, sizeof(new_block
->idstr
), name
);
1473 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1474 if (block
!= new_block
&&
1475 !strcmp(block
->idstr
, new_block
->idstr
)) {
1476 fprintf(stderr
, "RAMBlock \"%s\" already registered, abort!\n",
1484 /* Called with iothread lock held. */
1485 void qemu_ram_unset_idstr(RAMBlock
*block
)
1487 /* FIXME: arch_init.c assumes that this is not called throughout
1488 * migration. Ignore the problem since hot-unplug during migration
1489 * does not work anyway.
1492 memset(block
->idstr
, 0, sizeof(block
->idstr
));
1496 size_t qemu_ram_pagesize(RAMBlock
*rb
)
1498 return rb
->page_size
;
1501 static int memory_try_enable_merging(void *addr
, size_t len
)
1503 if (!machine_mem_merge(current_machine
)) {
1504 /* disabled by the user */
1508 return qemu_madvise(addr
, len
, QEMU_MADV_MERGEABLE
);
1511 /* Only legal before guest might have detected the memory size: e.g. on
1512 * incoming migration, or right after reset.
1514 * As memory core doesn't know how is memory accessed, it is up to
1515 * resize callback to update device state and/or add assertions to detect
1516 * misuse, if necessary.
1518 int qemu_ram_resize(RAMBlock
*block
, ram_addr_t newsize
, Error
**errp
)
1522 newsize
= HOST_PAGE_ALIGN(newsize
);
1524 if (block
->used_length
== newsize
) {
1528 if (!(block
->flags
& RAM_RESIZEABLE
)) {
1529 error_setg_errno(errp
, EINVAL
,
1530 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1531 " in != 0x" RAM_ADDR_FMT
, block
->idstr
,
1532 newsize
, block
->used_length
);
1536 if (block
->max_length
< newsize
) {
1537 error_setg_errno(errp
, EINVAL
,
1538 "Length too large: %s: 0x" RAM_ADDR_FMT
1539 " > 0x" RAM_ADDR_FMT
, block
->idstr
,
1540 newsize
, block
->max_length
);
1544 cpu_physical_memory_clear_dirty_range(block
->offset
, block
->used_length
);
1545 block
->used_length
= newsize
;
1546 cpu_physical_memory_set_dirty_range(block
->offset
, block
->used_length
,
1548 memory_region_set_size(block
->mr
, newsize
);
1549 if (block
->resized
) {
1550 block
->resized(block
->idstr
, newsize
, block
->host
);
1555 /* Called with ram_list.mutex held */
1556 static void dirty_memory_extend(ram_addr_t old_ram_size
,
1557 ram_addr_t new_ram_size
)
1559 ram_addr_t old_num_blocks
= DIV_ROUND_UP(old_ram_size
,
1560 DIRTY_MEMORY_BLOCK_SIZE
);
1561 ram_addr_t new_num_blocks
= DIV_ROUND_UP(new_ram_size
,
1562 DIRTY_MEMORY_BLOCK_SIZE
);
1565 /* Only need to extend if block count increased */
1566 if (new_num_blocks
<= old_num_blocks
) {
1570 for (i
= 0; i
< DIRTY_MEMORY_NUM
; i
++) {
1571 DirtyMemoryBlocks
*old_blocks
;
1572 DirtyMemoryBlocks
*new_blocks
;
1575 old_blocks
= atomic_rcu_read(&ram_list
.dirty_memory
[i
]);
1576 new_blocks
= g_malloc(sizeof(*new_blocks
) +
1577 sizeof(new_blocks
->blocks
[0]) * new_num_blocks
);
1579 if (old_num_blocks
) {
1580 memcpy(new_blocks
->blocks
, old_blocks
->blocks
,
1581 old_num_blocks
* sizeof(old_blocks
->blocks
[0]));
1584 for (j
= old_num_blocks
; j
< new_num_blocks
; j
++) {
1585 new_blocks
->blocks
[j
] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE
);
1588 atomic_rcu_set(&ram_list
.dirty_memory
[i
], new_blocks
);
1591 g_free_rcu(old_blocks
, rcu
);
1596 static void ram_block_add(RAMBlock
*new_block
, Error
**errp
)
1599 RAMBlock
*last_block
= NULL
;
1600 ram_addr_t old_ram_size
, new_ram_size
;
1603 old_ram_size
= last_ram_offset() >> TARGET_PAGE_BITS
;
1605 qemu_mutex_lock_ramlist();
1606 new_block
->offset
= find_ram_offset(new_block
->max_length
);
1608 if (!new_block
->host
) {
1609 if (xen_enabled()) {
1610 xen_ram_alloc(new_block
->offset
, new_block
->max_length
,
1611 new_block
->mr
, &err
);
1613 error_propagate(errp
, err
);
1614 qemu_mutex_unlock_ramlist();
1618 new_block
->host
= phys_mem_alloc(new_block
->max_length
,
1619 &new_block
->mr
->align
);
1620 if (!new_block
->host
) {
1621 error_setg_errno(errp
, errno
,
1622 "cannot set up guest memory '%s'",
1623 memory_region_name(new_block
->mr
));
1624 qemu_mutex_unlock_ramlist();
1627 memory_try_enable_merging(new_block
->host
, new_block
->max_length
);
1631 new_ram_size
= MAX(old_ram_size
,
1632 (new_block
->offset
+ new_block
->max_length
) >> TARGET_PAGE_BITS
);
1633 if (new_ram_size
> old_ram_size
) {
1634 migration_bitmap_extend(old_ram_size
, new_ram_size
);
1635 dirty_memory_extend(old_ram_size
, new_ram_size
);
1637 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1638 * QLIST (which has an RCU-friendly variant) does not have insertion at
1639 * tail, so save the last element in last_block.
1641 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1643 if (block
->max_length
< new_block
->max_length
) {
1648 QLIST_INSERT_BEFORE_RCU(block
, new_block
, next
);
1649 } else if (last_block
) {
1650 QLIST_INSERT_AFTER_RCU(last_block
, new_block
, next
);
1651 } else { /* list is empty */
1652 QLIST_INSERT_HEAD_RCU(&ram_list
.blocks
, new_block
, next
);
1654 ram_list
.mru_block
= NULL
;
1656 /* Write list before version */
1659 qemu_mutex_unlock_ramlist();
1661 cpu_physical_memory_set_dirty_range(new_block
->offset
,
1662 new_block
->used_length
,
1665 if (new_block
->host
) {
1666 qemu_ram_setup_dump(new_block
->host
, new_block
->max_length
);
1667 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_HUGEPAGE
);
1668 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
1669 qemu_madvise(new_block
->host
, new_block
->max_length
, QEMU_MADV_DONTFORK
);
1674 RAMBlock
*qemu_ram_alloc_from_file(ram_addr_t size
, MemoryRegion
*mr
,
1675 bool share
, const char *mem_path
,
1678 RAMBlock
*new_block
;
1679 Error
*local_err
= NULL
;
1681 if (xen_enabled()) {
1682 error_setg(errp
, "-mem-path not supported with Xen");
1686 if (phys_mem_alloc
!= qemu_anon_ram_alloc
) {
1688 * file_ram_alloc() needs to allocate just like
1689 * phys_mem_alloc, but we haven't bothered to provide
1693 "-mem-path not supported with this accelerator");
1697 size
= HOST_PAGE_ALIGN(size
);
1698 new_block
= g_malloc0(sizeof(*new_block
));
1700 new_block
->used_length
= size
;
1701 new_block
->max_length
= size
;
1702 new_block
->flags
= share
? RAM_SHARED
: 0;
1703 new_block
->host
= file_ram_alloc(new_block
, size
,
1705 if (!new_block
->host
) {
1710 ram_block_add(new_block
, &local_err
);
1713 error_propagate(errp
, local_err
);
1721 RAMBlock
*qemu_ram_alloc_internal(ram_addr_t size
, ram_addr_t max_size
,
1722 void (*resized
)(const char*,
1725 void *host
, bool resizeable
,
1726 MemoryRegion
*mr
, Error
**errp
)
1728 RAMBlock
*new_block
;
1729 Error
*local_err
= NULL
;
1731 size
= HOST_PAGE_ALIGN(size
);
1732 max_size
= HOST_PAGE_ALIGN(max_size
);
1733 new_block
= g_malloc0(sizeof(*new_block
));
1735 new_block
->resized
= resized
;
1736 new_block
->used_length
= size
;
1737 new_block
->max_length
= max_size
;
1738 assert(max_size
>= size
);
1740 new_block
->page_size
= getpagesize();
1741 new_block
->host
= host
;
1743 new_block
->flags
|= RAM_PREALLOC
;
1746 new_block
->flags
|= RAM_RESIZEABLE
;
1748 ram_block_add(new_block
, &local_err
);
1751 error_propagate(errp
, local_err
);
1757 RAMBlock
*qemu_ram_alloc_from_ptr(ram_addr_t size
, void *host
,
1758 MemoryRegion
*mr
, Error
**errp
)
1760 return qemu_ram_alloc_internal(size
, size
, NULL
, host
, false, mr
, errp
);
1763 RAMBlock
*qemu_ram_alloc(ram_addr_t size
, MemoryRegion
*mr
, Error
**errp
)
1765 return qemu_ram_alloc_internal(size
, size
, NULL
, NULL
, false, mr
, errp
);
1768 RAMBlock
*qemu_ram_alloc_resizeable(ram_addr_t size
, ram_addr_t maxsz
,
1769 void (*resized
)(const char*,
1772 MemoryRegion
*mr
, Error
**errp
)
1774 return qemu_ram_alloc_internal(size
, maxsz
, resized
, NULL
, true, mr
, errp
);
1777 static void reclaim_ramblock(RAMBlock
*block
)
1779 if (block
->flags
& RAM_PREALLOC
) {
1781 } else if (xen_enabled()) {
1782 xen_invalidate_map_cache_entry(block
->host
);
1784 } else if (block
->fd
>= 0) {
1785 qemu_ram_munmap(block
->host
, block
->max_length
);
1789 qemu_anon_ram_free(block
->host
, block
->max_length
);
1794 void qemu_ram_free(RAMBlock
*block
)
1800 qemu_mutex_lock_ramlist();
1801 QLIST_REMOVE_RCU(block
, next
);
1802 ram_list
.mru_block
= NULL
;
1803 /* Write list before version */
1806 call_rcu(block
, reclaim_ramblock
, rcu
);
1807 qemu_mutex_unlock_ramlist();
1811 void qemu_ram_remap(ram_addr_t addr
, ram_addr_t length
)
1818 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1819 offset
= addr
- block
->offset
;
1820 if (offset
< block
->max_length
) {
1821 vaddr
= ramblock_ptr(block
, offset
);
1822 if (block
->flags
& RAM_PREALLOC
) {
1824 } else if (xen_enabled()) {
1828 if (block
->fd
>= 0) {
1829 flags
|= (block
->flags
& RAM_SHARED
?
1830 MAP_SHARED
: MAP_PRIVATE
);
1831 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1832 flags
, block
->fd
, offset
);
1835 * Remap needs to match alloc. Accelerators that
1836 * set phys_mem_alloc never remap. If they did,
1837 * we'd need a remap hook here.
1839 assert(phys_mem_alloc
== qemu_anon_ram_alloc
);
1841 flags
|= MAP_PRIVATE
| MAP_ANONYMOUS
;
1842 area
= mmap(vaddr
, length
, PROT_READ
| PROT_WRITE
,
1845 if (area
!= vaddr
) {
1846 fprintf(stderr
, "Could not remap addr: "
1847 RAM_ADDR_FMT
"@" RAM_ADDR_FMT
"\n",
1851 memory_try_enable_merging(vaddr
, length
);
1852 qemu_ram_setup_dump(vaddr
, length
);
1857 #endif /* !_WIN32 */
1859 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1860 * This should not be used for general purpose DMA. Use address_space_map
1861 * or address_space_rw instead. For local memory (e.g. video ram) that the
1862 * device owns, use memory_region_get_ram_ptr.
1864 * Called within RCU critical section.
1866 void *qemu_map_ram_ptr(RAMBlock
*ram_block
, ram_addr_t addr
)
1868 RAMBlock
*block
= ram_block
;
1870 if (block
== NULL
) {
1871 block
= qemu_get_ram_block(addr
);
1872 addr
-= block
->offset
;
1875 if (xen_enabled() && block
->host
== NULL
) {
1876 /* We need to check if the requested address is in the RAM
1877 * because we don't want to map the entire memory in QEMU.
1878 * In that case just map until the end of the page.
1880 if (block
->offset
== 0) {
1881 return xen_map_cache(addr
, 0, 0);
1884 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1);
1886 return ramblock_ptr(block
, addr
);
1889 /* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
1890 * but takes a size argument.
1892 * Called within RCU critical section.
1894 static void *qemu_ram_ptr_length(RAMBlock
*ram_block
, ram_addr_t addr
,
1897 RAMBlock
*block
= ram_block
;
1902 if (block
== NULL
) {
1903 block
= qemu_get_ram_block(addr
);
1904 addr
-= block
->offset
;
1906 *size
= MIN(*size
, block
->max_length
- addr
);
1908 if (xen_enabled() && block
->host
== NULL
) {
1909 /* We need to check if the requested address is in the RAM
1910 * because we don't want to map the entire memory in QEMU.
1911 * In that case just map the requested area.
1913 if (block
->offset
== 0) {
1914 return xen_map_cache(addr
, *size
, 1);
1917 block
->host
= xen_map_cache(block
->offset
, block
->max_length
, 1);
1920 return ramblock_ptr(block
, addr
);
1924 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
1927 * ptr: Host pointer to look up
1928 * round_offset: If true round the result offset down to a page boundary
1929 * *ram_addr: set to result ram_addr
1930 * *offset: set to result offset within the RAMBlock
1932 * Returns: RAMBlock (or NULL if not found)
1934 * By the time this function returns, the returned pointer is not protected
1935 * by RCU anymore. If the caller is not within an RCU critical section and
1936 * does not hold the iothread lock, it must have other means of protecting the
1937 * pointer, such as a reference to the region that includes the incoming
1940 RAMBlock
*qemu_ram_block_from_host(void *ptr
, bool round_offset
,
1944 uint8_t *host
= ptr
;
1946 if (xen_enabled()) {
1947 ram_addr_t ram_addr
;
1949 ram_addr
= xen_ram_addr_from_mapcache(ptr
);
1950 block
= qemu_get_ram_block(ram_addr
);
1952 *offset
= ram_addr
- block
->offset
;
1959 block
= atomic_rcu_read(&ram_list
.mru_block
);
1960 if (block
&& block
->host
&& host
- block
->host
< block
->max_length
) {
1964 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1965 /* This case append when the block is not mapped. */
1966 if (block
->host
== NULL
) {
1969 if (host
- block
->host
< block
->max_length
) {
1978 *offset
= (host
- block
->host
);
1980 *offset
&= TARGET_PAGE_MASK
;
1987 * Finds the named RAMBlock
1989 * name: The name of RAMBlock to find
1991 * Returns: RAMBlock (or NULL if not found)
1993 RAMBlock
*qemu_ram_block_by_name(const char *name
)
1997 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
1998 if (!strcmp(name
, block
->idstr
)) {
2006 /* Some of the softmmu routines need to translate from a host pointer
2007 (typically a TLB entry) back to a ram offset. */
2008 ram_addr_t
qemu_ram_addr_from_host(void *ptr
)
2013 block
= qemu_ram_block_from_host(ptr
, false, &offset
);
2015 return RAM_ADDR_INVALID
;
2018 return block
->offset
+ offset
;
2021 /* Called within RCU critical section. */
2022 static void notdirty_mem_write(void *opaque
, hwaddr ram_addr
,
2023 uint64_t val
, unsigned size
)
2025 bool locked
= false;
2027 if (!cpu_physical_memory_get_dirty_flag(ram_addr
, DIRTY_MEMORY_CODE
)) {
2030 tb_invalidate_phys_page_fast(ram_addr
, size
);
2034 stb_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2037 stw_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2040 stl_p(qemu_map_ram_ptr(NULL
, ram_addr
), val
);
2050 /* Set both VGA and migration bits for simplicity and to remove
2051 * the notdirty callback faster.
2053 cpu_physical_memory_set_dirty_range(ram_addr
, size
,
2054 DIRTY_CLIENTS_NOCODE
);
2055 /* we remove the notdirty callback only if the code has been
2057 if (!cpu_physical_memory_is_clean(ram_addr
)) {
2058 tlb_set_dirty(current_cpu
, current_cpu
->mem_io_vaddr
);
2062 static bool notdirty_mem_accepts(void *opaque
, hwaddr addr
,
2063 unsigned size
, bool is_write
)
2068 static const MemoryRegionOps notdirty_mem_ops
= {
2069 .write
= notdirty_mem_write
,
2070 .valid
.accepts
= notdirty_mem_accepts
,
2071 .endianness
= DEVICE_NATIVE_ENDIAN
,
2074 /* Generate a debug exception if a watchpoint has been hit. */
2075 static void check_watchpoint(int offset
, int len
, MemTxAttrs attrs
, int flags
)
2077 CPUState
*cpu
= current_cpu
;
2078 CPUClass
*cc
= CPU_GET_CLASS(cpu
);
2079 CPUArchState
*env
= cpu
->env_ptr
;
2080 target_ulong pc
, cs_base
;
2085 if (cpu
->watchpoint_hit
) {
2086 /* We re-entered the check after replacing the TB. Now raise
2087 * the debug interrupt so that is will trigger after the
2088 * current instruction. */
2089 cpu_interrupt(cpu
, CPU_INTERRUPT_DEBUG
);
2092 vaddr
= (cpu
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2093 QTAILQ_FOREACH(wp
, &cpu
->watchpoints
, entry
) {
2094 if (cpu_watchpoint_address_matches(wp
, vaddr
, len
)
2095 && (wp
->flags
& flags
)) {
2096 if (flags
== BP_MEM_READ
) {
2097 wp
->flags
|= BP_WATCHPOINT_HIT_READ
;
2099 wp
->flags
|= BP_WATCHPOINT_HIT_WRITE
;
2101 wp
->hitaddr
= vaddr
;
2102 wp
->hitattrs
= attrs
;
2103 if (!cpu
->watchpoint_hit
) {
2104 if (wp
->flags
& BP_CPU
&&
2105 !cc
->debug_check_watchpoint(cpu
, wp
)) {
2106 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2109 cpu
->watchpoint_hit
= wp
;
2111 /* The tb_lock will be reset when cpu_loop_exit or
2112 * cpu_loop_exit_noexc longjmp back into the cpu_exec
2116 tb_check_watchpoint(cpu
);
2117 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2118 cpu
->exception_index
= EXCP_DEBUG
;
2121 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
2122 tb_gen_code(cpu
, pc
, cs_base
, cpu_flags
, 1);
2123 cpu_loop_exit_noexc(cpu
);
2127 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2132 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2133 so these check for a hit then pass through to the normal out-of-line
2135 static MemTxResult
watch_mem_read(void *opaque
, hwaddr addr
, uint64_t *pdata
,
2136 unsigned size
, MemTxAttrs attrs
)
2140 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2141 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2143 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_READ
);
2146 data
= address_space_ldub(as
, addr
, attrs
, &res
);
2149 data
= address_space_lduw(as
, addr
, attrs
, &res
);
2152 data
= address_space_ldl(as
, addr
, attrs
, &res
);
2160 static MemTxResult
watch_mem_write(void *opaque
, hwaddr addr
,
2161 uint64_t val
, unsigned size
,
2165 int asidx
= cpu_asidx_from_attrs(current_cpu
, attrs
);
2166 AddressSpace
*as
= current_cpu
->cpu_ases
[asidx
].as
;
2168 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, size
, attrs
, BP_MEM_WRITE
);
2171 address_space_stb(as
, addr
, val
, attrs
, &res
);
2174 address_space_stw(as
, addr
, val
, attrs
, &res
);
2177 address_space_stl(as
, addr
, val
, attrs
, &res
);
2184 static const MemoryRegionOps watch_mem_ops
= {
2185 .read_with_attrs
= watch_mem_read
,
2186 .write_with_attrs
= watch_mem_write
,
2187 .endianness
= DEVICE_NATIVE_ENDIAN
,
2190 static MemTxResult
subpage_read(void *opaque
, hwaddr addr
, uint64_t *data
,
2191 unsigned len
, MemTxAttrs attrs
)
2193 subpage_t
*subpage
= opaque
;
2197 #if defined(DEBUG_SUBPAGE)
2198 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
"\n", __func__
,
2199 subpage
, len
, addr
);
2201 res
= address_space_read(subpage
->as
, addr
+ subpage
->base
,
2208 *data
= ldub_p(buf
);
2211 *data
= lduw_p(buf
);
2224 static MemTxResult
subpage_write(void *opaque
, hwaddr addr
,
2225 uint64_t value
, unsigned len
, MemTxAttrs attrs
)
2227 subpage_t
*subpage
= opaque
;
2230 #if defined(DEBUG_SUBPAGE)
2231 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
2232 " value %"PRIx64
"\n",
2233 __func__
, subpage
, len
, addr
, value
);
2251 return address_space_write(subpage
->as
, addr
+ subpage
->base
,
2255 static bool subpage_accepts(void *opaque
, hwaddr addr
,
2256 unsigned len
, bool is_write
)
2258 subpage_t
*subpage
= opaque
;
2259 #if defined(DEBUG_SUBPAGE)
2260 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx
"\n",
2261 __func__
, subpage
, is_write
? 'w' : 'r', len
, addr
);
2264 return address_space_access_valid(subpage
->as
, addr
+ subpage
->base
,
2268 static const MemoryRegionOps subpage_ops
= {
2269 .read_with_attrs
= subpage_read
,
2270 .write_with_attrs
= subpage_write
,
2271 .impl
.min_access_size
= 1,
2272 .impl
.max_access_size
= 8,
2273 .valid
.min_access_size
= 1,
2274 .valid
.max_access_size
= 8,
2275 .valid
.accepts
= subpage_accepts
,
2276 .endianness
= DEVICE_NATIVE_ENDIAN
,
2279 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2284 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2286 idx
= SUBPAGE_IDX(start
);
2287 eidx
= SUBPAGE_IDX(end
);
2288 #if defined(DEBUG_SUBPAGE)
2289 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2290 __func__
, mmio
, start
, end
, idx
, eidx
, section
);
2292 for (; idx
<= eidx
; idx
++) {
2293 mmio
->sub_section
[idx
] = section
;
2299 static subpage_t
*subpage_init(AddressSpace
*as
, hwaddr base
)
2303 mmio
= g_malloc0(sizeof(subpage_t
) + TARGET_PAGE_SIZE
* sizeof(uint16_t));
2306 memory_region_init_io(&mmio
->iomem
, NULL
, &subpage_ops
, mmio
,
2307 NULL
, TARGET_PAGE_SIZE
);
2308 mmio
->iomem
.subpage
= true;
2309 #if defined(DEBUG_SUBPAGE)
2310 printf("%s: %p base " TARGET_FMT_plx
" len %08x\n", __func__
,
2311 mmio
, base
, TARGET_PAGE_SIZE
);
2313 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
-1, PHYS_SECTION_UNASSIGNED
);
2318 static uint16_t dummy_section(PhysPageMap
*map
, AddressSpace
*as
,
2322 MemoryRegionSection section
= {
2323 .address_space
= as
,
2325 .offset_within_address_space
= 0,
2326 .offset_within_region
= 0,
2327 .size
= int128_2_64(),
2330 return phys_section_add(map
, §ion
);
2333 MemoryRegion
*iotlb_to_region(CPUState
*cpu
, hwaddr index
, MemTxAttrs attrs
)
2335 int asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
2336 CPUAddressSpace
*cpuas
= &cpu
->cpu_ases
[asidx
];
2337 AddressSpaceDispatch
*d
= atomic_rcu_read(&cpuas
->memory_dispatch
);
2338 MemoryRegionSection
*sections
= d
->map
.sections
;
2340 return sections
[index
& ~TARGET_PAGE_MASK
].mr
;
2343 static void io_mem_init(void)
2345 memory_region_init_io(&io_mem_rom
, NULL
, &unassigned_mem_ops
, NULL
, NULL
, UINT64_MAX
);
2346 memory_region_init_io(&io_mem_unassigned
, NULL
, &unassigned_mem_ops
, NULL
,
2348 memory_region_init_io(&io_mem_notdirty
, NULL
, ¬dirty_mem_ops
, NULL
,
2350 memory_region_init_io(&io_mem_watch
, NULL
, &watch_mem_ops
, NULL
,
2354 static void mem_begin(MemoryListener
*listener
)
2356 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2357 AddressSpaceDispatch
*d
= g_new0(AddressSpaceDispatch
, 1);
2360 n
= dummy_section(&d
->map
, as
, &io_mem_unassigned
);
2361 assert(n
== PHYS_SECTION_UNASSIGNED
);
2362 n
= dummy_section(&d
->map
, as
, &io_mem_notdirty
);
2363 assert(n
== PHYS_SECTION_NOTDIRTY
);
2364 n
= dummy_section(&d
->map
, as
, &io_mem_rom
);
2365 assert(n
== PHYS_SECTION_ROM
);
2366 n
= dummy_section(&d
->map
, as
, &io_mem_watch
);
2367 assert(n
== PHYS_SECTION_WATCH
);
2369 d
->phys_map
= (PhysPageEntry
) { .ptr
= PHYS_MAP_NODE_NIL
, .skip
= 1 };
2371 as
->next_dispatch
= d
;
2374 static void address_space_dispatch_free(AddressSpaceDispatch
*d
)
2376 phys_sections_free(&d
->map
);
2380 static void mem_commit(MemoryListener
*listener
)
2382 AddressSpace
*as
= container_of(listener
, AddressSpace
, dispatch_listener
);
2383 AddressSpaceDispatch
*cur
= as
->dispatch
;
2384 AddressSpaceDispatch
*next
= as
->next_dispatch
;
2386 phys_page_compact_all(next
, next
->map
.nodes_nb
);
2388 atomic_rcu_set(&as
->dispatch
, next
);
2390 call_rcu(cur
, address_space_dispatch_free
, rcu
);
2394 static void tcg_commit(MemoryListener
*listener
)
2396 CPUAddressSpace
*cpuas
;
2397 AddressSpaceDispatch
*d
;
2399 /* since each CPU stores ram addresses in its TLB cache, we must
2400 reset the modified entries */
2401 cpuas
= container_of(listener
, CPUAddressSpace
, tcg_as_listener
);
2402 cpu_reloading_memory_map();
2403 /* The CPU and TLB are protected by the iothread lock.
2404 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2405 * may have split the RCU critical section.
2407 d
= atomic_rcu_read(&cpuas
->as
->dispatch
);
2408 atomic_rcu_set(&cpuas
->memory_dispatch
, d
);
2409 tlb_flush(cpuas
->cpu
, 1);
2412 void address_space_init_dispatch(AddressSpace
*as
)
2414 as
->dispatch
= NULL
;
2415 as
->dispatch_listener
= (MemoryListener
) {
2417 .commit
= mem_commit
,
2418 .region_add
= mem_add
,
2419 .region_nop
= mem_add
,
2422 memory_listener_register(&as
->dispatch_listener
, as
);
2425 void address_space_unregister(AddressSpace
*as
)
2427 memory_listener_unregister(&as
->dispatch_listener
);
2430 void address_space_destroy_dispatch(AddressSpace
*as
)
2432 AddressSpaceDispatch
*d
= as
->dispatch
;
2434 atomic_rcu_set(&as
->dispatch
, NULL
);
2436 call_rcu(d
, address_space_dispatch_free
, rcu
);
2440 static void memory_map_init(void)
2442 system_memory
= g_malloc(sizeof(*system_memory
));
2444 memory_region_init(system_memory
, NULL
, "system", UINT64_MAX
);
2445 address_space_init(&address_space_memory
, system_memory
, "memory");
2447 system_io
= g_malloc(sizeof(*system_io
));
2448 memory_region_init_io(system_io
, NULL
, &unassigned_io_ops
, NULL
, "io",
2450 address_space_init(&address_space_io
, system_io
, "I/O");
2453 MemoryRegion
*get_system_memory(void)
2455 return system_memory
;
2458 MemoryRegion
*get_system_io(void)
2463 #endif /* !defined(CONFIG_USER_ONLY) */
2465 /* physical memory access (slow version, mainly for debug) */
2466 #if defined(CONFIG_USER_ONLY)
2467 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
2468 uint8_t *buf
, int len
, int is_write
)
2475 page
= addr
& TARGET_PAGE_MASK
;
2476 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2479 flags
= page_get_flags(page
);
2480 if (!(flags
& PAGE_VALID
))
2483 if (!(flags
& PAGE_WRITE
))
2485 /* XXX: this code should not depend on lock_user */
2486 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
2489 unlock_user(p
, addr
, l
);
2491 if (!(flags
& PAGE_READ
))
2493 /* XXX: this code should not depend on lock_user */
2494 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
2497 unlock_user(p
, addr
, 0);
2508 static void invalidate_and_set_dirty(MemoryRegion
*mr
, hwaddr addr
,
2511 uint8_t dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
2512 addr
+= memory_region_get_ram_addr(mr
);
2514 /* No early return if dirty_log_mask is or becomes 0, because
2515 * cpu_physical_memory_set_dirty_range will still call
2516 * xen_modified_memory.
2518 if (dirty_log_mask
) {
2520 cpu_physical_memory_range_includes_clean(addr
, length
, dirty_log_mask
);
2522 if (dirty_log_mask
& (1 << DIRTY_MEMORY_CODE
)) {
2524 tb_invalidate_phys_range(addr
, addr
+ length
);
2526 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
2528 cpu_physical_memory_set_dirty_range(addr
, length
, dirty_log_mask
);
2531 static int memory_access_size(MemoryRegion
*mr
, unsigned l
, hwaddr addr
)
2533 unsigned access_size_max
= mr
->ops
->valid
.max_access_size
;
2535 /* Regions are assumed to support 1-4 byte accesses unless
2536 otherwise specified. */
2537 if (access_size_max
== 0) {
2538 access_size_max
= 4;
2541 /* Bound the maximum access by the alignment of the address. */
2542 if (!mr
->ops
->impl
.unaligned
) {
2543 unsigned align_size_max
= addr
& -addr
;
2544 if (align_size_max
!= 0 && align_size_max
< access_size_max
) {
2545 access_size_max
= align_size_max
;
2549 /* Don't attempt accesses larger than the maximum. */
2550 if (l
> access_size_max
) {
2551 l
= access_size_max
;
2558 static bool prepare_mmio_access(MemoryRegion
*mr
)
2560 bool unlocked
= !qemu_mutex_iothread_locked();
2561 bool release_lock
= false;
2563 if (unlocked
&& mr
->global_locking
) {
2564 qemu_mutex_lock_iothread();
2566 release_lock
= true;
2568 if (mr
->flush_coalesced_mmio
) {
2570 qemu_mutex_lock_iothread();
2572 qemu_flush_coalesced_mmio_buffer();
2574 qemu_mutex_unlock_iothread();
2578 return release_lock
;
2581 /* Called within RCU critical section. */
2582 static MemTxResult
address_space_write_continue(AddressSpace
*as
, hwaddr addr
,
2585 int len
, hwaddr addr1
,
2586 hwaddr l
, MemoryRegion
*mr
)
2590 MemTxResult result
= MEMTX_OK
;
2591 bool release_lock
= false;
2594 if (!memory_access_is_direct(mr
, true)) {
2595 release_lock
|= prepare_mmio_access(mr
);
2596 l
= memory_access_size(mr
, l
, addr1
);
2597 /* XXX: could force current_cpu to NULL to avoid
2601 /* 64 bit write access */
2603 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 8,
2607 /* 32 bit write access */
2609 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 4,
2613 /* 16 bit write access */
2615 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 2,
2619 /* 8 bit write access */
2621 result
|= memory_region_dispatch_write(mr
, addr1
, val
, 1,
2629 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
2630 memcpy(ptr
, buf
, l
);
2631 invalidate_and_set_dirty(mr
, addr1
, l
);
2635 qemu_mutex_unlock_iothread();
2636 release_lock
= false;
2648 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2654 MemTxResult
address_space_write(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2655 const uint8_t *buf
, int len
)
2660 MemTxResult result
= MEMTX_OK
;
2665 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2666 result
= address_space_write_continue(as
, addr
, attrs
, buf
, len
,
2674 /* Called within RCU critical section. */
2675 MemTxResult
address_space_read_continue(AddressSpace
*as
, hwaddr addr
,
2676 MemTxAttrs attrs
, uint8_t *buf
,
2677 int len
, hwaddr addr1
, hwaddr l
,
2682 MemTxResult result
= MEMTX_OK
;
2683 bool release_lock
= false;
2686 if (!memory_access_is_direct(mr
, false)) {
2688 release_lock
|= prepare_mmio_access(mr
);
2689 l
= memory_access_size(mr
, l
, addr1
);
2692 /* 64 bit read access */
2693 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 8,
2698 /* 32 bit read access */
2699 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 4,
2704 /* 16 bit read access */
2705 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 2,
2710 /* 8 bit read access */
2711 result
|= memory_region_dispatch_read(mr
, addr1
, &val
, 1,
2720 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
2721 memcpy(buf
, ptr
, l
);
2725 qemu_mutex_unlock_iothread();
2726 release_lock
= false;
2738 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
2744 MemTxResult
address_space_read_full(AddressSpace
*as
, hwaddr addr
,
2745 MemTxAttrs attrs
, uint8_t *buf
, int len
)
2750 MemTxResult result
= MEMTX_OK
;
2755 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
2756 result
= address_space_read_continue(as
, addr
, attrs
, buf
, len
,
2764 MemTxResult
address_space_rw(AddressSpace
*as
, hwaddr addr
, MemTxAttrs attrs
,
2765 uint8_t *buf
, int len
, bool is_write
)
2768 return address_space_write(as
, addr
, attrs
, (uint8_t *)buf
, len
);
2770 return address_space_read(as
, addr
, attrs
, (uint8_t *)buf
, len
);
2774 void cpu_physical_memory_rw(hwaddr addr
, uint8_t *buf
,
2775 int len
, int is_write
)
2777 address_space_rw(&address_space_memory
, addr
, MEMTXATTRS_UNSPECIFIED
,
2778 buf
, len
, is_write
);
2781 enum write_rom_type
{
2786 static inline void cpu_physical_memory_write_rom_internal(AddressSpace
*as
,
2787 hwaddr addr
, const uint8_t *buf
, int len
, enum write_rom_type type
)
2797 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
2799 if (!(memory_region_is_ram(mr
) ||
2800 memory_region_is_romd(mr
))) {
2801 l
= memory_access_size(mr
, l
, addr1
);
2804 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
2807 memcpy(ptr
, buf
, l
);
2808 invalidate_and_set_dirty(mr
, addr1
, l
);
2811 flush_icache_range((uintptr_t)ptr
, (uintptr_t)ptr
+ l
);
2822 /* used for ROM loading : can write in RAM and ROM */
2823 void cpu_physical_memory_write_rom(AddressSpace
*as
, hwaddr addr
,
2824 const uint8_t *buf
, int len
)
2826 cpu_physical_memory_write_rom_internal(as
, addr
, buf
, len
, WRITE_DATA
);
2829 void cpu_flush_icache_range(hwaddr start
, int len
)
2832 * This function should do the same thing as an icache flush that was
2833 * triggered from within the guest. For TCG we are always cache coherent,
2834 * so there is no need to flush anything. For KVM / Xen we need to flush
2835 * the host's instruction cache at least.
2837 if (tcg_enabled()) {
2841 cpu_physical_memory_write_rom_internal(&address_space_memory
,
2842 start
, NULL
, len
, FLUSH_CACHE
);
2853 static BounceBuffer bounce
;
2855 typedef struct MapClient
{
2857 QLIST_ENTRY(MapClient
) link
;
2860 QemuMutex map_client_list_lock
;
2861 static QLIST_HEAD(map_client_list
, MapClient
) map_client_list
2862 = QLIST_HEAD_INITIALIZER(map_client_list
);
2864 static void cpu_unregister_map_client_do(MapClient
*client
)
2866 QLIST_REMOVE(client
, link
);
2870 static void cpu_notify_map_clients_locked(void)
2874 while (!QLIST_EMPTY(&map_client_list
)) {
2875 client
= QLIST_FIRST(&map_client_list
);
2876 qemu_bh_schedule(client
->bh
);
2877 cpu_unregister_map_client_do(client
);
2881 void cpu_register_map_client(QEMUBH
*bh
)
2883 MapClient
*client
= g_malloc(sizeof(*client
));
2885 qemu_mutex_lock(&map_client_list_lock
);
2887 QLIST_INSERT_HEAD(&map_client_list
, client
, link
);
2888 if (!atomic_read(&bounce
.in_use
)) {
2889 cpu_notify_map_clients_locked();
2891 qemu_mutex_unlock(&map_client_list_lock
);
2894 void cpu_exec_init_all(void)
2896 qemu_mutex_init(&ram_list
.mutex
);
2897 /* The data structures we set up here depend on knowing the page size,
2898 * so no more changes can be made after this point.
2899 * In an ideal world, nothing we did before we had finished the
2900 * machine setup would care about the target page size, and we could
2901 * do this much later, rather than requiring board models to state
2902 * up front what their requirements are.
2904 finalize_target_page_bits();
2907 qemu_mutex_init(&map_client_list_lock
);
2910 void cpu_unregister_map_client(QEMUBH
*bh
)
2914 qemu_mutex_lock(&map_client_list_lock
);
2915 QLIST_FOREACH(client
, &map_client_list
, link
) {
2916 if (client
->bh
== bh
) {
2917 cpu_unregister_map_client_do(client
);
2921 qemu_mutex_unlock(&map_client_list_lock
);
2924 static void cpu_notify_map_clients(void)
2926 qemu_mutex_lock(&map_client_list_lock
);
2927 cpu_notify_map_clients_locked();
2928 qemu_mutex_unlock(&map_client_list_lock
);
2931 bool address_space_access_valid(AddressSpace
*as
, hwaddr addr
, int len
, bool is_write
)
2939 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2940 if (!memory_access_is_direct(mr
, is_write
)) {
2941 l
= memory_access_size(mr
, l
, addr
);
2942 if (!memory_region_access_valid(mr
, xlat
, l
, is_write
)) {
2954 /* Map a physical memory region into a host virtual address.
2955 * May map a subset of the requested range, given by and returned in *plen.
2956 * May return NULL if resources needed to perform the mapping are exhausted.
2957 * Use only for reads OR writes - not for read-modify-write operations.
2958 * Use cpu_register_map_client() to know when retrying the map operation is
2959 * likely to succeed.
2961 void *address_space_map(AddressSpace
*as
,
2968 hwaddr l
, xlat
, base
;
2969 MemoryRegion
*mr
, *this_mr
;
2978 mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
2980 if (!memory_access_is_direct(mr
, is_write
)) {
2981 if (atomic_xchg(&bounce
.in_use
, true)) {
2985 /* Avoid unbounded allocations */
2986 l
= MIN(l
, TARGET_PAGE_SIZE
);
2987 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, l
);
2991 memory_region_ref(mr
);
2994 address_space_read(as
, addr
, MEMTXATTRS_UNSPECIFIED
,
3000 return bounce
.buffer
;
3014 this_mr
= address_space_translate(as
, addr
, &xlat
, &l
, is_write
);
3015 if (this_mr
!= mr
|| xlat
!= base
+ done
) {
3020 memory_region_ref(mr
);
3022 ptr
= qemu_ram_ptr_length(mr
->ram_block
, base
, plen
);
3028 /* Unmaps a memory region previously mapped by address_space_map().
3029 * Will also mark the memory as dirty if is_write == 1. access_len gives
3030 * the amount of memory that was actually read or written by the caller.
3032 void address_space_unmap(AddressSpace
*as
, void *buffer
, hwaddr len
,
3033 int is_write
, hwaddr access_len
)
3035 if (buffer
!= bounce
.buffer
) {
3039 mr
= memory_region_from_host(buffer
, &addr1
);
3042 invalidate_and_set_dirty(mr
, addr1
, access_len
);
3044 if (xen_enabled()) {
3045 xen_invalidate_map_cache_entry(buffer
);
3047 memory_region_unref(mr
);
3051 address_space_write(as
, bounce
.addr
, MEMTXATTRS_UNSPECIFIED
,
3052 bounce
.buffer
, access_len
);
3054 qemu_vfree(bounce
.buffer
);
3055 bounce
.buffer
= NULL
;
3056 memory_region_unref(bounce
.mr
);
3057 atomic_mb_set(&bounce
.in_use
, false);
3058 cpu_notify_map_clients();
3061 void *cpu_physical_memory_map(hwaddr addr
,
3065 return address_space_map(&address_space_memory
, addr
, plen
, is_write
);
3068 void cpu_physical_memory_unmap(void *buffer
, hwaddr len
,
3069 int is_write
, hwaddr access_len
)
3071 return address_space_unmap(&address_space_memory
, buffer
, len
, is_write
, access_len
);
3074 /* warning: addr must be aligned */
3075 static inline uint32_t address_space_ldl_internal(AddressSpace
*as
, hwaddr addr
,
3077 MemTxResult
*result
,
3078 enum device_endian endian
)
3086 bool release_lock
= false;
3089 mr
= address_space_translate(as
, addr
, &addr1
, &l
, false);
3090 if (l
< 4 || !memory_access_is_direct(mr
, false)) {
3091 release_lock
|= prepare_mmio_access(mr
);
3094 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 4, attrs
);
3095 #if defined(TARGET_WORDS_BIGENDIAN)
3096 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3100 if (endian
== DEVICE_BIG_ENDIAN
) {
3106 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3108 case DEVICE_LITTLE_ENDIAN
:
3109 val
= ldl_le_p(ptr
);
3111 case DEVICE_BIG_ENDIAN
:
3112 val
= ldl_be_p(ptr
);
3124 qemu_mutex_unlock_iothread();
3130 uint32_t address_space_ldl(AddressSpace
*as
, hwaddr addr
,
3131 MemTxAttrs attrs
, MemTxResult
*result
)
3133 return address_space_ldl_internal(as
, addr
, attrs
, result
,
3134 DEVICE_NATIVE_ENDIAN
);
3137 uint32_t address_space_ldl_le(AddressSpace
*as
, hwaddr addr
,
3138 MemTxAttrs attrs
, MemTxResult
*result
)
3140 return address_space_ldl_internal(as
, addr
, attrs
, result
,
3141 DEVICE_LITTLE_ENDIAN
);
3144 uint32_t address_space_ldl_be(AddressSpace
*as
, hwaddr addr
,
3145 MemTxAttrs attrs
, MemTxResult
*result
)
3147 return address_space_ldl_internal(as
, addr
, attrs
, result
,
3151 uint32_t ldl_phys(AddressSpace
*as
, hwaddr addr
)
3153 return address_space_ldl(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3156 uint32_t ldl_le_phys(AddressSpace
*as
, hwaddr addr
)
3158 return address_space_ldl_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3161 uint32_t ldl_be_phys(AddressSpace
*as
, hwaddr addr
)
3163 return address_space_ldl_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3166 /* warning: addr must be aligned */
3167 static inline uint64_t address_space_ldq_internal(AddressSpace
*as
, hwaddr addr
,
3169 MemTxResult
*result
,
3170 enum device_endian endian
)
3178 bool release_lock
= false;
3181 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3183 if (l
< 8 || !memory_access_is_direct(mr
, false)) {
3184 release_lock
|= prepare_mmio_access(mr
);
3187 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 8, attrs
);
3188 #if defined(TARGET_WORDS_BIGENDIAN)
3189 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3193 if (endian
== DEVICE_BIG_ENDIAN
) {
3199 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3201 case DEVICE_LITTLE_ENDIAN
:
3202 val
= ldq_le_p(ptr
);
3204 case DEVICE_BIG_ENDIAN
:
3205 val
= ldq_be_p(ptr
);
3217 qemu_mutex_unlock_iothread();
3223 uint64_t address_space_ldq(AddressSpace
*as
, hwaddr addr
,
3224 MemTxAttrs attrs
, MemTxResult
*result
)
3226 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3227 DEVICE_NATIVE_ENDIAN
);
3230 uint64_t address_space_ldq_le(AddressSpace
*as
, hwaddr addr
,
3231 MemTxAttrs attrs
, MemTxResult
*result
)
3233 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3234 DEVICE_LITTLE_ENDIAN
);
3237 uint64_t address_space_ldq_be(AddressSpace
*as
, hwaddr addr
,
3238 MemTxAttrs attrs
, MemTxResult
*result
)
3240 return address_space_ldq_internal(as
, addr
, attrs
, result
,
3244 uint64_t ldq_phys(AddressSpace
*as
, hwaddr addr
)
3246 return address_space_ldq(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3249 uint64_t ldq_le_phys(AddressSpace
*as
, hwaddr addr
)
3251 return address_space_ldq_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3254 uint64_t ldq_be_phys(AddressSpace
*as
, hwaddr addr
)
3256 return address_space_ldq_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3260 uint32_t address_space_ldub(AddressSpace
*as
, hwaddr addr
,
3261 MemTxAttrs attrs
, MemTxResult
*result
)
3266 r
= address_space_rw(as
, addr
, attrs
, &val
, 1, 0);
3273 uint32_t ldub_phys(AddressSpace
*as
, hwaddr addr
)
3275 return address_space_ldub(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3278 /* warning: addr must be aligned */
3279 static inline uint32_t address_space_lduw_internal(AddressSpace
*as
,
3282 MemTxResult
*result
,
3283 enum device_endian endian
)
3291 bool release_lock
= false;
3294 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3296 if (l
< 2 || !memory_access_is_direct(mr
, false)) {
3297 release_lock
|= prepare_mmio_access(mr
);
3300 r
= memory_region_dispatch_read(mr
, addr1
, &val
, 2, attrs
);
3301 #if defined(TARGET_WORDS_BIGENDIAN)
3302 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3306 if (endian
== DEVICE_BIG_ENDIAN
) {
3312 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3314 case DEVICE_LITTLE_ENDIAN
:
3315 val
= lduw_le_p(ptr
);
3317 case DEVICE_BIG_ENDIAN
:
3318 val
= lduw_be_p(ptr
);
3330 qemu_mutex_unlock_iothread();
3336 uint32_t address_space_lduw(AddressSpace
*as
, hwaddr addr
,
3337 MemTxAttrs attrs
, MemTxResult
*result
)
3339 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3340 DEVICE_NATIVE_ENDIAN
);
3343 uint32_t address_space_lduw_le(AddressSpace
*as
, hwaddr addr
,
3344 MemTxAttrs attrs
, MemTxResult
*result
)
3346 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3347 DEVICE_LITTLE_ENDIAN
);
3350 uint32_t address_space_lduw_be(AddressSpace
*as
, hwaddr addr
,
3351 MemTxAttrs attrs
, MemTxResult
*result
)
3353 return address_space_lduw_internal(as
, addr
, attrs
, result
,
3357 uint32_t lduw_phys(AddressSpace
*as
, hwaddr addr
)
3359 return address_space_lduw(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3362 uint32_t lduw_le_phys(AddressSpace
*as
, hwaddr addr
)
3364 return address_space_lduw_le(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3367 uint32_t lduw_be_phys(AddressSpace
*as
, hwaddr addr
)
3369 return address_space_lduw_be(as
, addr
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3372 /* warning: addr must be aligned. The ram page is not masked as dirty
3373 and the code inside is not invalidated. It is useful if the dirty
3374 bits are used to track modified PTEs */
3375 void address_space_stl_notdirty(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3376 MemTxAttrs attrs
, MemTxResult
*result
)
3383 uint8_t dirty_log_mask
;
3384 bool release_lock
= false;
3387 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3389 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
3390 release_lock
|= prepare_mmio_access(mr
);
3392 r
= memory_region_dispatch_write(mr
, addr1
, val
, 4, attrs
);
3394 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3397 dirty_log_mask
= memory_region_get_dirty_log_mask(mr
);
3398 dirty_log_mask
&= ~(1 << DIRTY_MEMORY_CODE
);
3399 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr
) + addr
,
3407 qemu_mutex_unlock_iothread();
3412 void stl_phys_notdirty(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3414 address_space_stl_notdirty(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3417 /* warning: addr must be aligned */
3418 static inline void address_space_stl_internal(AddressSpace
*as
,
3419 hwaddr addr
, uint32_t val
,
3421 MemTxResult
*result
,
3422 enum device_endian endian
)
3429 bool release_lock
= false;
3432 mr
= address_space_translate(as
, addr
, &addr1
, &l
,
3434 if (l
< 4 || !memory_access_is_direct(mr
, true)) {
3435 release_lock
|= prepare_mmio_access(mr
);
3437 #if defined(TARGET_WORDS_BIGENDIAN)
3438 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3442 if (endian
== DEVICE_BIG_ENDIAN
) {
3446 r
= memory_region_dispatch_write(mr
, addr1
, val
, 4, attrs
);
3449 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3451 case DEVICE_LITTLE_ENDIAN
:
3454 case DEVICE_BIG_ENDIAN
:
3461 invalidate_and_set_dirty(mr
, addr1
, 4);
3468 qemu_mutex_unlock_iothread();
3473 void address_space_stl(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3474 MemTxAttrs attrs
, MemTxResult
*result
)
3476 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3477 DEVICE_NATIVE_ENDIAN
);
3480 void address_space_stl_le(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3481 MemTxAttrs attrs
, MemTxResult
*result
)
3483 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3484 DEVICE_LITTLE_ENDIAN
);
3487 void address_space_stl_be(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3488 MemTxAttrs attrs
, MemTxResult
*result
)
3490 address_space_stl_internal(as
, addr
, val
, attrs
, result
,
3494 void stl_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3496 address_space_stl(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3499 void stl_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3501 address_space_stl_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3504 void stl_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3506 address_space_stl_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3510 void address_space_stb(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3511 MemTxAttrs attrs
, MemTxResult
*result
)
3516 r
= address_space_rw(as
, addr
, attrs
, &v
, 1, 1);
3522 void stb_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3524 address_space_stb(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3527 /* warning: addr must be aligned */
3528 static inline void address_space_stw_internal(AddressSpace
*as
,
3529 hwaddr addr
, uint32_t val
,
3531 MemTxResult
*result
,
3532 enum device_endian endian
)
3539 bool release_lock
= false;
3542 mr
= address_space_translate(as
, addr
, &addr1
, &l
, true);
3543 if (l
< 2 || !memory_access_is_direct(mr
, true)) {
3544 release_lock
|= prepare_mmio_access(mr
);
3546 #if defined(TARGET_WORDS_BIGENDIAN)
3547 if (endian
== DEVICE_LITTLE_ENDIAN
) {
3551 if (endian
== DEVICE_BIG_ENDIAN
) {
3555 r
= memory_region_dispatch_write(mr
, addr1
, val
, 2, attrs
);
3558 ptr
= qemu_map_ram_ptr(mr
->ram_block
, addr1
);
3560 case DEVICE_LITTLE_ENDIAN
:
3563 case DEVICE_BIG_ENDIAN
:
3570 invalidate_and_set_dirty(mr
, addr1
, 2);
3577 qemu_mutex_unlock_iothread();
3582 void address_space_stw(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3583 MemTxAttrs attrs
, MemTxResult
*result
)
3585 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3586 DEVICE_NATIVE_ENDIAN
);
3589 void address_space_stw_le(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3590 MemTxAttrs attrs
, MemTxResult
*result
)
3592 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3593 DEVICE_LITTLE_ENDIAN
);
3596 void address_space_stw_be(AddressSpace
*as
, hwaddr addr
, uint32_t val
,
3597 MemTxAttrs attrs
, MemTxResult
*result
)
3599 address_space_stw_internal(as
, addr
, val
, attrs
, result
,
3603 void stw_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3605 address_space_stw(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3608 void stw_le_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3610 address_space_stw_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3613 void stw_be_phys(AddressSpace
*as
, hwaddr addr
, uint32_t val
)
3615 address_space_stw_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3619 void address_space_stq(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3620 MemTxAttrs attrs
, MemTxResult
*result
)
3624 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3630 void address_space_stq_le(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3631 MemTxAttrs attrs
, MemTxResult
*result
)
3634 val
= cpu_to_le64(val
);
3635 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3640 void address_space_stq_be(AddressSpace
*as
, hwaddr addr
, uint64_t val
,
3641 MemTxAttrs attrs
, MemTxResult
*result
)
3644 val
= cpu_to_be64(val
);
3645 r
= address_space_rw(as
, addr
, attrs
, (void *) &val
, 8, 1);
3651 void stq_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3653 address_space_stq(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3656 void stq_le_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3658 address_space_stq_le(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3661 void stq_be_phys(AddressSpace
*as
, hwaddr addr
, uint64_t val
)
3663 address_space_stq_be(as
, addr
, val
, MEMTXATTRS_UNSPECIFIED
, NULL
);
3666 /* virtual memory access for debug (includes writing to ROM) */
3667 int cpu_memory_rw_debug(CPUState
*cpu
, target_ulong addr
,
3668 uint8_t *buf
, int len
, int is_write
)
3678 page
= addr
& TARGET_PAGE_MASK
;
3679 phys_addr
= cpu_get_phys_page_attrs_debug(cpu
, page
, &attrs
);
3680 asidx
= cpu_asidx_from_attrs(cpu
, attrs
);
3681 /* if no physical page mapped, return an error */
3682 if (phys_addr
== -1)
3684 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3687 phys_addr
+= (addr
& ~TARGET_PAGE_MASK
);
3689 cpu_physical_memory_write_rom(cpu
->cpu_ases
[asidx
].as
,
3692 address_space_rw(cpu
->cpu_ases
[asidx
].as
, phys_addr
,
3693 MEMTXATTRS_UNSPECIFIED
,
3704 * Allows code that needs to deal with migration bitmaps etc to still be built
3705 * target independent.
3707 size_t qemu_target_page_bits(void)
3709 return TARGET_PAGE_BITS
;
3715 * A helper function for the _utterly broken_ virtio device model to find out if
3716 * it's running on a big endian machine. Don't do this at home kids!
3718 bool target_words_bigendian(void);
3719 bool target_words_bigendian(void)
3721 #if defined(TARGET_WORDS_BIGENDIAN)
3728 #ifndef CONFIG_USER_ONLY
3729 bool cpu_physical_memory_is_io(hwaddr phys_addr
)
3736 mr
= address_space_translate(&address_space_memory
,
3737 phys_addr
, &phys_addr
, &l
, false);
3739 res
= !(memory_region_is_ram(mr
) || memory_region_is_romd(mr
));
3744 int qemu_ram_foreach_block(RAMBlockIterFunc func
, void *opaque
)
3750 QLIST_FOREACH_RCU(block
, &ram_list
.blocks
, next
) {
3751 ret
= func(block
->idstr
, block
->host
, block
->offset
,
3752 block
->used_length
, opaque
);