fdc: fix vmstate variable passed
[qemu.git] / kvm-all.c
blob1916ec604a21726fbf55ab9b6ab619e64f82eaed
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "hw/hw.h"
26 #include "gdbstub.h"
27 #include "kvm.h"
29 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
30 #define PAGE_SIZE TARGET_PAGE_SIZE
32 //#define DEBUG_KVM
34 #ifdef DEBUG_KVM
35 #define dprintf(fmt, ...) \
36 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define dprintf(fmt, ...) \
39 do { } while (0)
40 #endif
42 typedef struct KVMSlot
44 target_phys_addr_t start_addr;
45 ram_addr_t memory_size;
46 ram_addr_t phys_offset;
47 int slot;
48 int flags;
49 } KVMSlot;
51 typedef struct kvm_dirty_log KVMDirtyLog;
53 int kvm_allowed = 0;
55 struct KVMState
57 KVMSlot slots[32];
58 int fd;
59 int vmfd;
60 int regs_modified;
61 int coalesced_mmio;
62 int broken_set_mem_region;
63 int migration_log;
64 #ifdef KVM_CAP_SET_GUEST_DEBUG
65 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
66 #endif
67 int irqchip_in_kernel;
68 int pit_in_kernel;
71 static KVMState *kvm_state;
73 static KVMSlot *kvm_alloc_slot(KVMState *s)
75 int i;
77 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
78 /* KVM private memory slots */
79 if (i >= 8 && i < 12)
80 continue;
81 if (s->slots[i].memory_size == 0)
82 return &s->slots[i];
85 fprintf(stderr, "%s: no free slot available\n", __func__);
86 abort();
89 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
90 target_phys_addr_t start_addr,
91 target_phys_addr_t end_addr)
93 int i;
95 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
96 KVMSlot *mem = &s->slots[i];
98 if (start_addr == mem->start_addr &&
99 end_addr == mem->start_addr + mem->memory_size) {
100 return mem;
104 return NULL;
108 * Find overlapping slot with lowest start address
110 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
111 target_phys_addr_t start_addr,
112 target_phys_addr_t end_addr)
114 KVMSlot *found = NULL;
115 int i;
117 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
118 KVMSlot *mem = &s->slots[i];
120 if (mem->memory_size == 0 ||
121 (found && found->start_addr < mem->start_addr)) {
122 continue;
125 if (end_addr > mem->start_addr &&
126 start_addr < mem->start_addr + mem->memory_size) {
127 found = mem;
131 return found;
134 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
136 struct kvm_userspace_memory_region mem;
138 mem.slot = slot->slot;
139 mem.guest_phys_addr = slot->start_addr;
140 mem.memory_size = slot->memory_size;
141 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
142 mem.flags = slot->flags;
143 if (s->migration_log) {
144 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
146 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
149 static void kvm_reset_vcpu(void *opaque)
151 CPUState *env = opaque;
153 if (kvm_arch_put_registers(env)) {
154 fprintf(stderr, "Fatal: kvm vcpu reset failed\n");
155 abort();
159 int kvm_irqchip_in_kernel(void)
161 return kvm_state->irqchip_in_kernel;
164 int kvm_pit_in_kernel(void)
166 return kvm_state->pit_in_kernel;
170 int kvm_init_vcpu(CPUState *env)
172 KVMState *s = kvm_state;
173 long mmap_size;
174 int ret;
176 dprintf("kvm_init_vcpu\n");
178 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
179 if (ret < 0) {
180 dprintf("kvm_create_vcpu failed\n");
181 goto err;
184 env->kvm_fd = ret;
185 env->kvm_state = s;
187 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
188 if (mmap_size < 0) {
189 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
190 goto err;
193 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
194 env->kvm_fd, 0);
195 if (env->kvm_run == MAP_FAILED) {
196 ret = -errno;
197 dprintf("mmap'ing vcpu state failed\n");
198 goto err;
201 ret = kvm_arch_init_vcpu(env);
202 if (ret == 0) {
203 qemu_register_reset(kvm_reset_vcpu, env);
204 ret = kvm_arch_put_registers(env);
206 err:
207 return ret;
211 * dirty pages logging control
213 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
214 ram_addr_t size, int flags, int mask)
216 KVMState *s = kvm_state;
217 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
218 int old_flags;
220 if (mem == NULL) {
221 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
222 TARGET_FMT_plx "\n", __func__, phys_addr,
223 (target_phys_addr_t)(phys_addr + size - 1));
224 return -EINVAL;
227 old_flags = mem->flags;
229 flags = (mem->flags & ~mask) | flags;
230 mem->flags = flags;
232 /* If nothing changed effectively, no need to issue ioctl */
233 if (s->migration_log) {
234 flags |= KVM_MEM_LOG_DIRTY_PAGES;
236 if (flags == old_flags) {
237 return 0;
240 return kvm_set_user_memory_region(s, mem);
243 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
245 return kvm_dirty_pages_log_change(phys_addr, size,
246 KVM_MEM_LOG_DIRTY_PAGES,
247 KVM_MEM_LOG_DIRTY_PAGES);
250 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
252 return kvm_dirty_pages_log_change(phys_addr, size,
254 KVM_MEM_LOG_DIRTY_PAGES);
257 int kvm_set_migration_log(int enable)
259 KVMState *s = kvm_state;
260 KVMSlot *mem;
261 int i, err;
263 s->migration_log = enable;
265 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
266 mem = &s->slots[i];
268 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
269 continue;
271 err = kvm_set_user_memory_region(s, mem);
272 if (err) {
273 return err;
276 return 0;
279 static int test_le_bit(unsigned long nr, unsigned char *addr)
281 return (addr[nr >> 3] >> (nr & 7)) & 1;
285 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
286 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
287 * This means all bits are set to dirty.
289 * @start_add: start of logged region.
290 * @end_addr: end of logged region.
292 int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
293 target_phys_addr_t end_addr)
295 KVMState *s = kvm_state;
296 unsigned long size, allocated_size = 0;
297 target_phys_addr_t phys_addr;
298 ram_addr_t addr;
299 KVMDirtyLog d;
300 KVMSlot *mem;
301 int ret = 0;
303 d.dirty_bitmap = NULL;
304 while (start_addr < end_addr) {
305 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
306 if (mem == NULL) {
307 break;
310 size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
311 if (!d.dirty_bitmap) {
312 d.dirty_bitmap = qemu_malloc(size);
313 } else if (size > allocated_size) {
314 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
316 allocated_size = size;
317 memset(d.dirty_bitmap, 0, allocated_size);
319 d.slot = mem->slot;
321 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
322 dprintf("ioctl failed %d\n", errno);
323 ret = -1;
324 break;
327 for (phys_addr = mem->start_addr, addr = mem->phys_offset;
328 phys_addr < mem->start_addr + mem->memory_size;
329 phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
330 unsigned char *bitmap = (unsigned char *)d.dirty_bitmap;
331 unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
333 if (test_le_bit(nr, bitmap)) {
334 cpu_physical_memory_set_dirty(addr);
337 start_addr = phys_addr;
339 qemu_free(d.dirty_bitmap);
341 return ret;
344 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
346 int ret = -ENOSYS;
347 #ifdef KVM_CAP_COALESCED_MMIO
348 KVMState *s = kvm_state;
350 if (s->coalesced_mmio) {
351 struct kvm_coalesced_mmio_zone zone;
353 zone.addr = start;
354 zone.size = size;
356 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
358 #endif
360 return ret;
363 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
365 int ret = -ENOSYS;
366 #ifdef KVM_CAP_COALESCED_MMIO
367 KVMState *s = kvm_state;
369 if (s->coalesced_mmio) {
370 struct kvm_coalesced_mmio_zone zone;
372 zone.addr = start;
373 zone.size = size;
375 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
377 #endif
379 return ret;
382 int kvm_check_extension(KVMState *s, unsigned int extension)
384 int ret;
386 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
387 if (ret < 0) {
388 ret = 0;
391 return ret;
394 int kvm_init(int smp_cpus)
396 static const char upgrade_note[] =
397 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
398 "(see http://sourceforge.net/projects/kvm).\n";
399 KVMState *s;
400 int ret;
401 int i;
403 if (smp_cpus > 1) {
404 fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
405 return -EINVAL;
408 s = qemu_mallocz(sizeof(KVMState));
410 #ifdef KVM_CAP_SET_GUEST_DEBUG
411 QTAILQ_INIT(&s->kvm_sw_breakpoints);
412 #endif
413 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
414 s->slots[i].slot = i;
416 s->vmfd = -1;
417 s->fd = open("/dev/kvm", O_RDWR);
418 if (s->fd == -1) {
419 fprintf(stderr, "Could not access KVM kernel module: %m\n");
420 ret = -errno;
421 goto err;
424 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
425 if (ret < KVM_API_VERSION) {
426 if (ret > 0)
427 ret = -EINVAL;
428 fprintf(stderr, "kvm version too old\n");
429 goto err;
432 if (ret > KVM_API_VERSION) {
433 ret = -EINVAL;
434 fprintf(stderr, "kvm version not supported\n");
435 goto err;
438 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
439 if (s->vmfd < 0)
440 goto err;
442 /* initially, KVM allocated its own memory and we had to jump through
443 * hooks to make phys_ram_base point to this. Modern versions of KVM
444 * just use a user allocated buffer so we can use regular pages
445 * unmodified. Make sure we have a sufficiently modern version of KVM.
447 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
448 ret = -EINVAL;
449 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
450 upgrade_note);
451 goto err;
454 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
455 * destroyed properly. Since we rely on this capability, refuse to work
456 * with any kernel without this capability. */
457 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
458 ret = -EINVAL;
460 fprintf(stderr,
461 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
462 upgrade_note);
463 goto err;
466 #ifdef KVM_CAP_COALESCED_MMIO
467 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
468 #else
469 s->coalesced_mmio = 0;
470 #endif
472 s->broken_set_mem_region = 1;
473 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
474 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
475 if (ret > 0) {
476 s->broken_set_mem_region = 0;
478 #endif
480 ret = kvm_arch_init(s, smp_cpus);
481 if (ret < 0)
482 goto err;
484 kvm_state = s;
486 return 0;
488 err:
489 if (s) {
490 if (s->vmfd != -1)
491 close(s->vmfd);
492 if (s->fd != -1)
493 close(s->fd);
495 qemu_free(s);
497 return ret;
500 static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
501 uint32_t count)
503 int i;
504 uint8_t *ptr = data;
506 for (i = 0; i < count; i++) {
507 if (direction == KVM_EXIT_IO_IN) {
508 switch (size) {
509 case 1:
510 stb_p(ptr, cpu_inb(port));
511 break;
512 case 2:
513 stw_p(ptr, cpu_inw(port));
514 break;
515 case 4:
516 stl_p(ptr, cpu_inl(port));
517 break;
519 } else {
520 switch (size) {
521 case 1:
522 cpu_outb(port, ldub_p(ptr));
523 break;
524 case 2:
525 cpu_outw(port, lduw_p(ptr));
526 break;
527 case 4:
528 cpu_outl(port, ldl_p(ptr));
529 break;
533 ptr += size;
536 return 1;
539 static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
541 #ifdef KVM_CAP_COALESCED_MMIO
542 KVMState *s = kvm_state;
543 if (s->coalesced_mmio) {
544 struct kvm_coalesced_mmio_ring *ring;
546 ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
547 while (ring->first != ring->last) {
548 struct kvm_coalesced_mmio *ent;
550 ent = &ring->coalesced_mmio[ring->first];
552 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
553 /* FIXME smp_wmb() */
554 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
557 #endif
560 void kvm_cpu_synchronize_state(CPUState *env)
562 if (!env->kvm_state->regs_modified) {
563 kvm_arch_get_registers(env);
564 env->kvm_state->regs_modified = 1;
568 int kvm_cpu_exec(CPUState *env)
570 struct kvm_run *run = env->kvm_run;
571 int ret;
573 dprintf("kvm_cpu_exec()\n");
575 do {
576 if (env->exit_request) {
577 dprintf("interrupt exit requested\n");
578 ret = 0;
579 break;
582 if (env->kvm_state->regs_modified) {
583 kvm_arch_put_registers(env);
584 env->kvm_state->regs_modified = 0;
587 kvm_arch_pre_run(env, run);
588 qemu_mutex_unlock_iothread();
589 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
590 qemu_mutex_lock_iothread();
591 kvm_arch_post_run(env, run);
593 if (ret == -EINTR || ret == -EAGAIN) {
594 dprintf("io window exit\n");
595 ret = 0;
596 break;
599 if (ret < 0) {
600 dprintf("kvm run failed %s\n", strerror(-ret));
601 abort();
604 kvm_run_coalesced_mmio(env, run);
606 ret = 0; /* exit loop */
607 switch (run->exit_reason) {
608 case KVM_EXIT_IO:
609 dprintf("handle_io\n");
610 ret = kvm_handle_io(run->io.port,
611 (uint8_t *)run + run->io.data_offset,
612 run->io.direction,
613 run->io.size,
614 run->io.count);
615 break;
616 case KVM_EXIT_MMIO:
617 dprintf("handle_mmio\n");
618 cpu_physical_memory_rw(run->mmio.phys_addr,
619 run->mmio.data,
620 run->mmio.len,
621 run->mmio.is_write);
622 ret = 1;
623 break;
624 case KVM_EXIT_IRQ_WINDOW_OPEN:
625 dprintf("irq_window_open\n");
626 break;
627 case KVM_EXIT_SHUTDOWN:
628 dprintf("shutdown\n");
629 qemu_system_reset_request();
630 ret = 1;
631 break;
632 case KVM_EXIT_UNKNOWN:
633 dprintf("kvm_exit_unknown\n");
634 break;
635 case KVM_EXIT_FAIL_ENTRY:
636 dprintf("kvm_exit_fail_entry\n");
637 break;
638 case KVM_EXIT_EXCEPTION:
639 dprintf("kvm_exit_exception\n");
640 break;
641 case KVM_EXIT_DEBUG:
642 dprintf("kvm_exit_debug\n");
643 #ifdef KVM_CAP_SET_GUEST_DEBUG
644 if (kvm_arch_debug(&run->debug.arch)) {
645 gdb_set_stop_cpu(env);
646 vm_stop(EXCP_DEBUG);
647 env->exception_index = EXCP_DEBUG;
648 return 0;
650 /* re-enter, this exception was guest-internal */
651 ret = 1;
652 #endif /* KVM_CAP_SET_GUEST_DEBUG */
653 break;
654 default:
655 dprintf("kvm_arch_handle_exit\n");
656 ret = kvm_arch_handle_exit(env, run);
657 break;
659 } while (ret > 0);
661 if (env->exit_request) {
662 env->exit_request = 0;
663 env->exception_index = EXCP_INTERRUPT;
666 return ret;
669 void kvm_set_phys_mem(target_phys_addr_t start_addr,
670 ram_addr_t size,
671 ram_addr_t phys_offset)
673 KVMState *s = kvm_state;
674 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
675 KVMSlot *mem, old;
676 int err;
678 if (start_addr & ~TARGET_PAGE_MASK) {
679 if (flags >= IO_MEM_UNASSIGNED) {
680 if (!kvm_lookup_overlapping_slot(s, start_addr,
681 start_addr + size)) {
682 return;
684 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
685 } else {
686 fprintf(stderr, "Only page-aligned memory slots supported\n");
688 abort();
691 /* KVM does not support read-only slots */
692 phys_offset &= ~IO_MEM_ROM;
694 while (1) {
695 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
696 if (!mem) {
697 break;
700 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
701 (start_addr + size <= mem->start_addr + mem->memory_size) &&
702 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
703 /* The new slot fits into the existing one and comes with
704 * identical parameters - nothing to be done. */
705 return;
708 old = *mem;
710 /* unregister the overlapping slot */
711 mem->memory_size = 0;
712 err = kvm_set_user_memory_region(s, mem);
713 if (err) {
714 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
715 __func__, strerror(-err));
716 abort();
719 /* Workaround for older KVM versions: we can't join slots, even not by
720 * unregistering the previous ones and then registering the larger
721 * slot. We have to maintain the existing fragmentation. Sigh.
723 * This workaround assumes that the new slot starts at the same
724 * address as the first existing one. If not or if some overlapping
725 * slot comes around later, we will fail (not seen in practice so far)
726 * - and actually require a recent KVM version. */
727 if (s->broken_set_mem_region &&
728 old.start_addr == start_addr && old.memory_size < size &&
729 flags < IO_MEM_UNASSIGNED) {
730 mem = kvm_alloc_slot(s);
731 mem->memory_size = old.memory_size;
732 mem->start_addr = old.start_addr;
733 mem->phys_offset = old.phys_offset;
734 mem->flags = 0;
736 err = kvm_set_user_memory_region(s, mem);
737 if (err) {
738 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
739 strerror(-err));
740 abort();
743 start_addr += old.memory_size;
744 phys_offset += old.memory_size;
745 size -= old.memory_size;
746 continue;
749 /* register prefix slot */
750 if (old.start_addr < start_addr) {
751 mem = kvm_alloc_slot(s);
752 mem->memory_size = start_addr - old.start_addr;
753 mem->start_addr = old.start_addr;
754 mem->phys_offset = old.phys_offset;
755 mem->flags = 0;
757 err = kvm_set_user_memory_region(s, mem);
758 if (err) {
759 fprintf(stderr, "%s: error registering prefix slot: %s\n",
760 __func__, strerror(-err));
761 abort();
765 /* register suffix slot */
766 if (old.start_addr + old.memory_size > start_addr + size) {
767 ram_addr_t size_delta;
769 mem = kvm_alloc_slot(s);
770 mem->start_addr = start_addr + size;
771 size_delta = mem->start_addr - old.start_addr;
772 mem->memory_size = old.memory_size - size_delta;
773 mem->phys_offset = old.phys_offset + size_delta;
774 mem->flags = 0;
776 err = kvm_set_user_memory_region(s, mem);
777 if (err) {
778 fprintf(stderr, "%s: error registering suffix slot: %s\n",
779 __func__, strerror(-err));
780 abort();
785 /* in case the KVM bug workaround already "consumed" the new slot */
786 if (!size)
787 return;
789 /* KVM does not need to know about this memory */
790 if (flags >= IO_MEM_UNASSIGNED)
791 return;
793 mem = kvm_alloc_slot(s);
794 mem->memory_size = size;
795 mem->start_addr = start_addr;
796 mem->phys_offset = phys_offset;
797 mem->flags = 0;
799 err = kvm_set_user_memory_region(s, mem);
800 if (err) {
801 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
802 strerror(-err));
803 abort();
807 int kvm_ioctl(KVMState *s, int type, ...)
809 int ret;
810 void *arg;
811 va_list ap;
813 va_start(ap, type);
814 arg = va_arg(ap, void *);
815 va_end(ap);
817 ret = ioctl(s->fd, type, arg);
818 if (ret == -1)
819 ret = -errno;
821 return ret;
824 int kvm_vm_ioctl(KVMState *s, int type, ...)
826 int ret;
827 void *arg;
828 va_list ap;
830 va_start(ap, type);
831 arg = va_arg(ap, void *);
832 va_end(ap);
834 ret = ioctl(s->vmfd, type, arg);
835 if (ret == -1)
836 ret = -errno;
838 return ret;
841 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
843 int ret;
844 void *arg;
845 va_list ap;
847 va_start(ap, type);
848 arg = va_arg(ap, void *);
849 va_end(ap);
851 ret = ioctl(env->kvm_fd, type, arg);
852 if (ret == -1)
853 ret = -errno;
855 return ret;
858 int kvm_has_sync_mmu(void)
860 #ifdef KVM_CAP_SYNC_MMU
861 KVMState *s = kvm_state;
863 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
864 #else
865 return 0;
866 #endif
869 void kvm_setup_guest_memory(void *start, size_t size)
871 if (!kvm_has_sync_mmu()) {
872 #ifdef MADV_DONTFORK
873 int ret = madvise(start, size, MADV_DONTFORK);
875 if (ret) {
876 perror("madvice");
877 exit(1);
879 #else
880 fprintf(stderr,
881 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
882 exit(1);
883 #endif
887 #ifdef KVM_CAP_SET_GUEST_DEBUG
888 static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
890 #ifdef CONFIG_IOTHREAD
891 if (env == cpu_single_env) {
892 func(data);
893 return;
895 abort();
896 #else
897 func(data);
898 #endif
901 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
902 target_ulong pc)
904 struct kvm_sw_breakpoint *bp;
906 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
907 if (bp->pc == pc)
908 return bp;
910 return NULL;
913 int kvm_sw_breakpoints_active(CPUState *env)
915 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
918 struct kvm_set_guest_debug_data {
919 struct kvm_guest_debug dbg;
920 CPUState *env;
921 int err;
924 static void kvm_invoke_set_guest_debug(void *data)
926 struct kvm_set_guest_debug_data *dbg_data = data;
927 CPUState *env = dbg_data->env;
929 if (env->kvm_state->regs_modified) {
930 kvm_arch_put_registers(env);
931 env->kvm_state->regs_modified = 0;
933 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
936 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
938 struct kvm_set_guest_debug_data data;
940 data.dbg.control = 0;
941 if (env->singlestep_enabled)
942 data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
944 kvm_arch_update_guest_debug(env, &data.dbg);
945 data.dbg.control |= reinject_trap;
946 data.env = env;
948 on_vcpu(env, kvm_invoke_set_guest_debug, &data);
949 return data.err;
952 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
953 target_ulong len, int type)
955 struct kvm_sw_breakpoint *bp;
956 CPUState *env;
957 int err;
959 if (type == GDB_BREAKPOINT_SW) {
960 bp = kvm_find_sw_breakpoint(current_env, addr);
961 if (bp) {
962 bp->use_count++;
963 return 0;
966 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
967 if (!bp)
968 return -ENOMEM;
970 bp->pc = addr;
971 bp->use_count = 1;
972 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
973 if (err) {
974 free(bp);
975 return err;
978 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
979 bp, entry);
980 } else {
981 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
982 if (err)
983 return err;
986 for (env = first_cpu; env != NULL; env = env->next_cpu) {
987 err = kvm_update_guest_debug(env, 0);
988 if (err)
989 return err;
991 return 0;
994 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
995 target_ulong len, int type)
997 struct kvm_sw_breakpoint *bp;
998 CPUState *env;
999 int err;
1001 if (type == GDB_BREAKPOINT_SW) {
1002 bp = kvm_find_sw_breakpoint(current_env, addr);
1003 if (!bp)
1004 return -ENOENT;
1006 if (bp->use_count > 1) {
1007 bp->use_count--;
1008 return 0;
1011 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1012 if (err)
1013 return err;
1015 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1016 qemu_free(bp);
1017 } else {
1018 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1019 if (err)
1020 return err;
1023 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1024 err = kvm_update_guest_debug(env, 0);
1025 if (err)
1026 return err;
1028 return 0;
1031 void kvm_remove_all_breakpoints(CPUState *current_env)
1033 struct kvm_sw_breakpoint *bp, *next;
1034 KVMState *s = current_env->kvm_state;
1035 CPUState *env;
1037 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1038 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1039 /* Try harder to find a CPU that currently sees the breakpoint. */
1040 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1041 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1042 break;
1046 kvm_arch_remove_all_hw_breakpoints();
1048 for (env = first_cpu; env != NULL; env = env->next_cpu)
1049 kvm_update_guest_debug(env, 0);
1052 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1054 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1056 return -EINVAL;
1059 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1060 target_ulong len, int type)
1062 return -EINVAL;
1065 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1066 target_ulong len, int type)
1068 return -EINVAL;
1071 void kvm_remove_all_breakpoints(CPUState *current_env)
1074 #endif /* !KVM_CAP_SET_GUEST_DEBUG */