2 #include "exec/gdbstub.h"
4 #include "qemu/host-utils.h"
5 #include "sysemu/arch_init.h"
6 #include "sysemu/sysemu.h"
7 #include "qemu/bitops.h"
9 #ifndef CONFIG_USER_ONLY
10 static inline int get_phys_addr(CPUARMState
*env
, uint32_t address
,
11 int access_type
, int is_user
,
12 hwaddr
*phys_ptr
, int *prot
,
13 target_ulong
*page_size
);
16 static int vfp_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
20 /* VFP data registers are always little-endian. */
21 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
23 stfq_le_p(buf
, env
->vfp
.regs
[reg
]);
26 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
27 /* Aliases for Q regs. */
30 stfq_le_p(buf
, env
->vfp
.regs
[(reg
- 32) * 2]);
31 stfq_le_p(buf
+ 8, env
->vfp
.regs
[(reg
- 32) * 2 + 1]);
35 switch (reg
- nregs
) {
36 case 0: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSID
]); return 4;
37 case 1: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSCR
]); return 4;
38 case 2: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPEXC
]); return 4;
43 static int vfp_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
47 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
49 env
->vfp
.regs
[reg
] = ldfq_le_p(buf
);
52 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
55 env
->vfp
.regs
[(reg
- 32) * 2] = ldfq_le_p(buf
);
56 env
->vfp
.regs
[(reg
- 32) * 2 + 1] = ldfq_le_p(buf
+ 8);
60 switch (reg
- nregs
) {
61 case 0: env
->vfp
.xregs
[ARM_VFP_FPSID
] = ldl_p(buf
); return 4;
62 case 1: env
->vfp
.xregs
[ARM_VFP_FPSCR
] = ldl_p(buf
); return 4;
63 case 2: env
->vfp
.xregs
[ARM_VFP_FPEXC
] = ldl_p(buf
) & (1 << 30); return 4;
68 static int aarch64_fpu_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
72 /* 128 bit FP register */
73 stfq_le_p(buf
, env
->vfp
.regs
[reg
* 2]);
74 stfq_le_p(buf
+ 8, env
->vfp
.regs
[reg
* 2 + 1]);
78 stl_p(buf
, vfp_get_fpsr(env
));
82 stl_p(buf
, vfp_get_fpcr(env
));
89 static int aarch64_fpu_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
93 /* 128 bit FP register */
94 env
->vfp
.regs
[reg
* 2] = ldfq_le_p(buf
);
95 env
->vfp
.regs
[reg
* 2 + 1] = ldfq_le_p(buf
+ 8);
99 vfp_set_fpsr(env
, ldl_p(buf
));
103 vfp_set_fpcr(env
, ldl_p(buf
));
110 static int raw_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
113 if (ri
->type
& ARM_CP_64BIT
) {
114 *value
= CPREG_FIELD64(env
, ri
);
116 *value
= CPREG_FIELD32(env
, ri
);
121 static int raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
124 if (ri
->type
& ARM_CP_64BIT
) {
125 CPREG_FIELD64(env
, ri
) = value
;
127 CPREG_FIELD32(env
, ri
) = value
;
132 static bool read_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
135 /* Raw read of a coprocessor register (as needed for migration, etc)
136 * return true on success, false if the read is impossible for some reason.
138 if (ri
->type
& ARM_CP_CONST
) {
140 } else if (ri
->raw_readfn
) {
141 return (ri
->raw_readfn(env
, ri
, v
) == 0);
142 } else if (ri
->readfn
) {
143 return (ri
->readfn(env
, ri
, v
) == 0);
145 if (ri
->type
& ARM_CP_64BIT
) {
146 *v
= CPREG_FIELD64(env
, ri
);
148 *v
= CPREG_FIELD32(env
, ri
);
154 static bool write_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
157 /* Raw write of a coprocessor register (as needed for migration, etc).
158 * Return true on success, false if the write is impossible for some reason.
159 * Note that constant registers are treated as write-ignored; the
160 * caller should check for success by whether a readback gives the
163 if (ri
->type
& ARM_CP_CONST
) {
165 } else if (ri
->raw_writefn
) {
166 return (ri
->raw_writefn(env
, ri
, v
) == 0);
167 } else if (ri
->writefn
) {
168 return (ri
->writefn(env
, ri
, v
) == 0);
170 if (ri
->type
& ARM_CP_64BIT
) {
171 CPREG_FIELD64(env
, ri
) = v
;
173 CPREG_FIELD32(env
, ri
) = v
;
179 bool write_cpustate_to_list(ARMCPU
*cpu
)
181 /* Write the coprocessor state from cpu->env to the (index,value) list. */
185 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
186 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
187 const ARMCPRegInfo
*ri
;
189 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
194 if (ri
->type
& ARM_CP_NO_MIGRATE
) {
197 if (!read_raw_cp_reg(&cpu
->env
, ri
, &v
)) {
201 cpu
->cpreg_values
[i
] = v
;
206 bool write_list_to_cpustate(ARMCPU
*cpu
)
211 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
212 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
213 uint64_t v
= cpu
->cpreg_values
[i
];
215 const ARMCPRegInfo
*ri
;
217 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
222 if (ri
->type
& ARM_CP_NO_MIGRATE
) {
225 /* Write value and confirm it reads back as written
226 * (to catch read-only registers and partially read-only
227 * registers where the incoming migration value doesn't match)
229 if (!write_raw_cp_reg(&cpu
->env
, ri
, v
) ||
230 !read_raw_cp_reg(&cpu
->env
, ri
, &readback
) ||
238 static void add_cpreg_to_list(gpointer key
, gpointer opaque
)
240 ARMCPU
*cpu
= opaque
;
242 const ARMCPRegInfo
*ri
;
244 regidx
= *(uint32_t *)key
;
245 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
247 if (!(ri
->type
& ARM_CP_NO_MIGRATE
)) {
248 cpu
->cpreg_indexes
[cpu
->cpreg_array_len
] = cpreg_to_kvm_id(regidx
);
249 /* The value array need not be initialized at this point */
250 cpu
->cpreg_array_len
++;
254 static void count_cpreg(gpointer key
, gpointer opaque
)
256 ARMCPU
*cpu
= opaque
;
258 const ARMCPRegInfo
*ri
;
260 regidx
= *(uint32_t *)key
;
261 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
263 if (!(ri
->type
& ARM_CP_NO_MIGRATE
)) {
264 cpu
->cpreg_array_len
++;
268 static gint
cpreg_key_compare(gconstpointer a
, gconstpointer b
)
270 uint64_t aidx
= cpreg_to_kvm_id(*(uint32_t *)a
);
271 uint64_t bidx
= cpreg_to_kvm_id(*(uint32_t *)b
);
282 static void cpreg_make_keylist(gpointer key
, gpointer value
, gpointer udata
)
284 GList
**plist
= udata
;
286 *plist
= g_list_prepend(*plist
, key
);
289 void init_cpreg_list(ARMCPU
*cpu
)
291 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
292 * Note that we require cpreg_tuples[] to be sorted by key ID.
297 g_hash_table_foreach(cpu
->cp_regs
, cpreg_make_keylist
, &keys
);
299 keys
= g_list_sort(keys
, cpreg_key_compare
);
301 cpu
->cpreg_array_len
= 0;
303 g_list_foreach(keys
, count_cpreg
, cpu
);
305 arraylen
= cpu
->cpreg_array_len
;
306 cpu
->cpreg_indexes
= g_new(uint64_t, arraylen
);
307 cpu
->cpreg_values
= g_new(uint64_t, arraylen
);
308 cpu
->cpreg_vmstate_indexes
= g_new(uint64_t, arraylen
);
309 cpu
->cpreg_vmstate_values
= g_new(uint64_t, arraylen
);
310 cpu
->cpreg_vmstate_array_len
= cpu
->cpreg_array_len
;
311 cpu
->cpreg_array_len
= 0;
313 g_list_foreach(keys
, add_cpreg_to_list
, cpu
);
315 assert(cpu
->cpreg_array_len
== arraylen
);
320 static int dacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
322 env
->cp15
.c3
= value
;
323 tlb_flush(env
, 1); /* Flush TLB as domain not tracked in TLB */
327 static int fcse_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
329 if (env
->cp15
.c13_fcse
!= value
) {
330 /* Unlike real hardware the qemu TLB uses virtual addresses,
331 * not modified virtual addresses, so this causes a TLB flush.
334 env
->cp15
.c13_fcse
= value
;
338 static int contextidr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
341 if (env
->cp15
.c13_context
!= value
&& !arm_feature(env
, ARM_FEATURE_MPU
)) {
342 /* For VMSA (when not using the LPAE long descriptor page table
343 * format) this register includes the ASID, so do a TLB flush.
344 * For PMSA it is purely a process ID and no action is needed.
348 env
->cp15
.c13_context
= value
;
352 static int tlbiall_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
355 /* Invalidate all (TLBIALL) */
360 static int tlbimva_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
363 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
364 tlb_flush_page(env
, value
& TARGET_PAGE_MASK
);
368 static int tlbiasid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
371 /* Invalidate by ASID (TLBIASID) */
372 tlb_flush(env
, value
== 0);
376 static int tlbimvaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
379 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
380 tlb_flush_page(env
, value
& TARGET_PAGE_MASK
);
384 static const ARMCPRegInfo cp_reginfo
[] = {
385 /* DBGDIDR: just RAZ. In particular this means the "debug architecture
386 * version" bits will read as a reserved value, which should cause
387 * Linux to not try to use the debug hardware.
389 { .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
390 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
391 /* MMU Domain access control / MPU write buffer control */
392 { .name
= "DACR", .cp
= 15,
393 .crn
= 3, .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
394 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c3
),
395 .resetvalue
= 0, .writefn
= dacr_write
, .raw_writefn
= raw_write
, },
396 { .name
= "FCSEIDR", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 0,
397 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c13_fcse
),
398 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
399 { .name
= "CONTEXTIDR", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 1,
400 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c13_fcse
),
401 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
402 /* ??? This covers not just the impdef TLB lockdown registers but also
403 * some v7VMSA registers relating to TEX remap, so it is overly broad.
405 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= CP_ANY
,
406 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
407 /* MMU TLB control. Note that the wildcarding means we cover not just
408 * the unified TLB ops but also the dside/iside/inner-shareable variants.
410 { .name
= "TLBIALL", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
411 .opc1
= CP_ANY
, .opc2
= 0, .access
= PL1_W
, .writefn
= tlbiall_write
,
412 .type
= ARM_CP_NO_MIGRATE
},
413 { .name
= "TLBIMVA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
414 .opc1
= CP_ANY
, .opc2
= 1, .access
= PL1_W
, .writefn
= tlbimva_write
,
415 .type
= ARM_CP_NO_MIGRATE
},
416 { .name
= "TLBIASID", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
417 .opc1
= CP_ANY
, .opc2
= 2, .access
= PL1_W
, .writefn
= tlbiasid_write
,
418 .type
= ARM_CP_NO_MIGRATE
},
419 { .name
= "TLBIMVAA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
420 .opc1
= CP_ANY
, .opc2
= 3, .access
= PL1_W
, .writefn
= tlbimvaa_write
,
421 .type
= ARM_CP_NO_MIGRATE
},
422 /* Cache maintenance ops; some of this space may be overridden later. */
423 { .name
= "CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
424 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
425 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
},
429 static const ARMCPRegInfo not_v6_cp_reginfo
[] = {
430 /* Not all pre-v6 cores implemented this WFI, so this is slightly
433 { .name
= "WFI_v5", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= 2,
434 .access
= PL1_W
, .type
= ARM_CP_WFI
},
438 static const ARMCPRegInfo not_v7_cp_reginfo
[] = {
439 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
440 * is UNPREDICTABLE; we choose to NOP as most implementations do).
442 { .name
= "WFI_v6", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
443 .access
= PL1_W
, .type
= ARM_CP_WFI
},
444 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
445 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
446 * OMAPCP will override this space.
448 { .name
= "DLOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 0,
449 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_data
),
451 { .name
= "ILOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 1,
452 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_insn
),
454 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
455 { .name
= "DUMMY", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= CP_ANY
,
456 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
461 static int cpacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
463 if (env
->cp15
.c1_coproc
!= value
) {
464 env
->cp15
.c1_coproc
= value
;
465 /* ??? Is this safe when called from within a TB? */
471 static const ARMCPRegInfo v6_cp_reginfo
[] = {
472 /* prefetch by MVA in v6, NOP in v7 */
473 { .name
= "MVA_prefetch",
474 .cp
= 15, .crn
= 7, .crm
= 13, .opc1
= 0, .opc2
= 1,
475 .access
= PL1_W
, .type
= ARM_CP_NOP
},
476 { .name
= "ISB", .cp
= 15, .crn
= 7, .crm
= 5, .opc1
= 0, .opc2
= 4,
477 .access
= PL0_W
, .type
= ARM_CP_NOP
},
478 { .name
= "DSB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 4,
479 .access
= PL0_W
, .type
= ARM_CP_NOP
},
480 { .name
= "DMB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 5,
481 .access
= PL0_W
, .type
= ARM_CP_NOP
},
482 { .name
= "IFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 2,
483 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_insn
),
485 /* Watchpoint Fault Address Register : should actually only be present
486 * for 1136, 1176, 11MPCore.
488 { .name
= "WFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 1,
489 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0, },
490 { .name
= "CPACR", .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 2,
491 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_coproc
),
492 .resetvalue
= 0, .writefn
= cpacr_write
},
497 static int pmreg_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
500 /* Generic performance monitor register read function for where
501 * user access may be allowed by PMUSERENR.
503 if (arm_current_pl(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
506 *value
= CPREG_FIELD32(env
, ri
);
510 static int pmcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
513 if (arm_current_pl(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
516 /* only the DP, X, D and E bits are writable */
517 env
->cp15
.c9_pmcr
&= ~0x39;
518 env
->cp15
.c9_pmcr
|= (value
& 0x39);
522 static int pmcntenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
525 if (arm_current_pl(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
529 env
->cp15
.c9_pmcnten
|= value
;
533 static int pmcntenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
536 if (arm_current_pl(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
540 env
->cp15
.c9_pmcnten
&= ~value
;
544 static int pmovsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
547 if (arm_current_pl(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
550 env
->cp15
.c9_pmovsr
&= ~value
;
554 static int pmxevtyper_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
557 if (arm_current_pl(env
) == 0 && !env
->cp15
.c9_pmuserenr
) {
560 env
->cp15
.c9_pmxevtyper
= value
& 0xff;
564 static int pmuserenr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
567 env
->cp15
.c9_pmuserenr
= value
& 1;
571 static int pmintenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
574 /* We have no event counters so only the C bit can be changed */
576 env
->cp15
.c9_pminten
|= value
;
580 static int pmintenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
584 env
->cp15
.c9_pminten
&= ~value
;
588 static int vbar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
591 env
->cp15
.c12_vbar
= value
& ~0x1Ful
;
595 static int ccsidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
598 ARMCPU
*cpu
= arm_env_get_cpu(env
);
599 *value
= cpu
->ccsidr
[env
->cp15
.c0_cssel
];
603 static int csselr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
606 env
->cp15
.c0_cssel
= value
& 0xf;
610 static const ARMCPRegInfo v7_cp_reginfo
[] = {
611 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
614 { .name
= "DBGDRAR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
615 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
616 { .name
= "DBGDSAR", .cp
= 14, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
617 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
618 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
619 { .name
= "NOP", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
620 .access
= PL1_W
, .type
= ARM_CP_NOP
},
621 /* Performance monitors are implementation defined in v7,
622 * but with an ARM recommended set of registers, which we
623 * follow (although we don't actually implement any counters)
625 * Performance registers fall into three categories:
626 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
627 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
628 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
629 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
630 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
632 { .name
= "PMCNTENSET", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 1,
633 .access
= PL0_RW
, .resetvalue
= 0,
634 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
),
635 .readfn
= pmreg_read
, .writefn
= pmcntenset_write
,
636 .raw_readfn
= raw_read
, .raw_writefn
= raw_write
},
637 { .name
= "PMCNTENCLR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 2,
638 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
),
639 .readfn
= pmreg_read
, .writefn
= pmcntenclr_write
,
640 .type
= ARM_CP_NO_MIGRATE
},
641 { .name
= "PMOVSR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 3,
642 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
643 .readfn
= pmreg_read
, .writefn
= pmovsr_write
,
644 .raw_readfn
= raw_read
, .raw_writefn
= raw_write
},
645 /* Unimplemented so WI. Strictly speaking write accesses in PL0 should
648 { .name
= "PMSWINC", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 4,
649 .access
= PL0_W
, .type
= ARM_CP_NOP
},
650 /* Since we don't implement any events, writing to PMSELR is UNPREDICTABLE.
651 * We choose to RAZ/WI. XXX should respect PMUSERENR.
653 { .name
= "PMSELR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 5,
654 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
655 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
656 { .name
= "PMCCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 0,
657 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
658 { .name
= "PMXEVTYPER", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 1,
660 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmxevtyper
),
661 .readfn
= pmreg_read
, .writefn
= pmxevtyper_write
,
662 .raw_readfn
= raw_read
, .raw_writefn
= raw_write
},
663 /* Unimplemented, RAZ/WI. XXX PMUSERENR */
664 { .name
= "PMXEVCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 2,
665 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
666 { .name
= "PMUSERENR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 0,
667 .access
= PL0_R
| PL1_RW
,
668 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmuserenr
),
670 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
671 { .name
= "PMINTENSET", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 1,
673 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
675 .writefn
= pmintenset_write
, .raw_writefn
= raw_write
},
676 { .name
= "PMINTENCLR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 2,
677 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
,
678 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
679 .resetvalue
= 0, .writefn
= pmintenclr_write
, },
680 { .name
= "VBAR", .cp
= 15, .crn
= 12, .crm
= 0, .opc1
= 0, .opc2
= 0,
681 .access
= PL1_RW
, .writefn
= vbar_write
,
682 .fieldoffset
= offsetof(CPUARMState
, cp15
.c12_vbar
),
684 { .name
= "SCR", .cp
= 15, .crn
= 1, .crm
= 1, .opc1
= 0, .opc2
= 0,
685 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_scr
),
687 { .name
= "CCSIDR", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 0,
688 .access
= PL1_R
, .readfn
= ccsidr_read
, .type
= ARM_CP_NO_MIGRATE
},
689 { .name
= "CSSELR", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 2, .opc2
= 0,
690 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cssel
),
691 .writefn
= csselr_write
, .resetvalue
= 0 },
692 /* Auxiliary ID register: this actually has an IMPDEF value but for now
693 * just RAZ for all cores:
695 { .name
= "AIDR", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 7,
696 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
700 static int teecr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
707 static int teehbr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
710 /* This is a helper function because the user access rights
711 * depend on the value of the TEECR.
713 if (arm_current_pl(env
) == 0 && (env
->teecr
& 1)) {
716 *value
= env
->teehbr
;
720 static int teehbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
723 if (arm_current_pl(env
) == 0 && (env
->teecr
& 1)) {
730 static const ARMCPRegInfo t2ee_cp_reginfo
[] = {
731 { .name
= "TEECR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 6, .opc2
= 0,
732 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, teecr
),
734 .writefn
= teecr_write
},
735 { .name
= "TEEHBR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 6, .opc2
= 0,
736 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, teehbr
),
737 .resetvalue
= 0, .raw_readfn
= raw_read
, .raw_writefn
= raw_write
,
738 .readfn
= teehbr_read
, .writefn
= teehbr_write
},
742 static const ARMCPRegInfo v6k_cp_reginfo
[] = {
743 { .name
= "TPIDR_EL0", .state
= ARM_CP_STATE_AA64
,
744 .opc0
= 3, .opc1
= 3, .opc2
= 2, .crn
= 13, .crm
= 0,
746 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el0
), .resetvalue
= 0 },
747 { .name
= "TPIDRURW", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 2,
749 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.tpidr_el0
),
750 .resetfn
= arm_cp_reset_ignore
},
751 { .name
= "TPIDRRO_EL0", .state
= ARM_CP_STATE_AA64
,
752 .opc0
= 3, .opc1
= 3, .opc2
= 3, .crn
= 13, .crm
= 0,
753 .access
= PL0_R
|PL1_W
,
754 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidrro_el0
), .resetvalue
= 0 },
755 { .name
= "TPIDRURO", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 3,
756 .access
= PL0_R
|PL1_W
,
757 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.tpidrro_el0
),
758 .resetfn
= arm_cp_reset_ignore
},
759 { .name
= "TPIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
760 .opc0
= 3, .opc1
= 0, .opc2
= 4, .crn
= 13, .crm
= 0,
762 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el1
), .resetvalue
= 0 },
766 #ifndef CONFIG_USER_ONLY
768 static uint64_t gt_get_countervalue(CPUARMState
*env
)
770 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) / GTIMER_SCALE
;
773 static void gt_recalc_timer(ARMCPU
*cpu
, int timeridx
)
775 ARMGenericTimer
*gt
= &cpu
->env
.cp15
.c14_timer
[timeridx
];
778 /* Timer enabled: calculate and set current ISTATUS, irq, and
779 * reset timer to when ISTATUS next has to change
781 uint64_t count
= gt_get_countervalue(&cpu
->env
);
782 /* Note that this must be unsigned 64 bit arithmetic: */
783 int istatus
= count
>= gt
->cval
;
786 gt
->ctl
= deposit32(gt
->ctl
, 2, 1, istatus
);
787 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
788 (istatus
&& !(gt
->ctl
& 2)));
790 /* Next transition is when count rolls back over to zero */
791 nexttick
= UINT64_MAX
;
793 /* Next transition is when we hit cval */
796 /* Note that the desired next expiry time might be beyond the
797 * signed-64-bit range of a QEMUTimer -- in this case we just
798 * set the timer for as far in the future as possible. When the
799 * timer expires we will reset the timer for any remaining period.
801 if (nexttick
> INT64_MAX
/ GTIMER_SCALE
) {
802 nexttick
= INT64_MAX
/ GTIMER_SCALE
;
804 timer_mod(cpu
->gt_timer
[timeridx
], nexttick
);
806 /* Timer disabled: ISTATUS and timer output always clear */
808 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], 0);
809 timer_del(cpu
->gt_timer
[timeridx
]);
813 static int gt_cntfrq_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
816 /* Not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero */
817 if (arm_current_pl(env
) == 0 && !extract32(env
->cp15
.c14_cntkctl
, 0, 2)) {
820 *value
= env
->cp15
.c14_cntfrq
;
824 static void gt_cnt_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
826 ARMCPU
*cpu
= arm_env_get_cpu(env
);
827 int timeridx
= ri
->opc1
& 1;
829 timer_del(cpu
->gt_timer
[timeridx
]);
832 static int gt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
835 int timeridx
= ri
->opc1
& 1;
837 if (arm_current_pl(env
) == 0 &&
838 !extract32(env
->cp15
.c14_cntkctl
, timeridx
, 1)) {
841 *value
= gt_get_countervalue(env
);
845 static int gt_cval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
848 int timeridx
= ri
->opc1
& 1;
850 if (arm_current_pl(env
) == 0 &&
851 !extract32(env
->cp15
.c14_cntkctl
, 9 - timeridx
, 1)) {
854 *value
= env
->cp15
.c14_timer
[timeridx
].cval
;
858 static int gt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
861 int timeridx
= ri
->opc1
& 1;
863 env
->cp15
.c14_timer
[timeridx
].cval
= value
;
864 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
867 static int gt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
870 int timeridx
= ri
->crm
& 1;
872 if (arm_current_pl(env
) == 0 &&
873 !extract32(env
->cp15
.c14_cntkctl
, 9 - timeridx
, 1)) {
876 *value
= (uint32_t)(env
->cp15
.c14_timer
[timeridx
].cval
-
877 gt_get_countervalue(env
));
881 static int gt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
884 int timeridx
= ri
->crm
& 1;
886 env
->cp15
.c14_timer
[timeridx
].cval
= gt_get_countervalue(env
) +
887 + sextract64(value
, 0, 32);
888 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
892 static int gt_ctl_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
895 int timeridx
= ri
->crm
& 1;
897 if (arm_current_pl(env
) == 0 &&
898 !extract32(env
->cp15
.c14_cntkctl
, 9 - timeridx
, 1)) {
901 *value
= env
->cp15
.c14_timer
[timeridx
].ctl
;
905 static int gt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
908 ARMCPU
*cpu
= arm_env_get_cpu(env
);
909 int timeridx
= ri
->crm
& 1;
910 uint32_t oldval
= env
->cp15
.c14_timer
[timeridx
].ctl
;
912 env
->cp15
.c14_timer
[timeridx
].ctl
= value
& 3;
913 if ((oldval
^ value
) & 1) {
915 gt_recalc_timer(cpu
, timeridx
);
916 } else if ((oldval
& value
) & 2) {
917 /* IMASK toggled: don't need to recalculate,
918 * just set the interrupt line based on ISTATUS
920 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
],
921 (oldval
& 4) && (value
& 2));
926 void arm_gt_ptimer_cb(void *opaque
)
928 ARMCPU
*cpu
= opaque
;
930 gt_recalc_timer(cpu
, GTIMER_PHYS
);
933 void arm_gt_vtimer_cb(void *opaque
)
935 ARMCPU
*cpu
= opaque
;
937 gt_recalc_timer(cpu
, GTIMER_VIRT
);
940 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
941 /* Note that CNTFRQ is purely reads-as-written for the benefit
942 * of software; writing it doesn't actually change the timer frequency.
943 * Our reset value matches the fixed frequency we implement the timer at.
945 { .name
= "CNTFRQ", .cp
= 15, .crn
= 14, .crm
= 0, .opc1
= 0, .opc2
= 0,
946 .access
= PL1_RW
| PL0_R
,
947 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntfrq
),
948 .resetvalue
= (1000 * 1000 * 1000) / GTIMER_SCALE
,
949 .readfn
= gt_cntfrq_read
, .raw_readfn
= raw_read
,
951 /* overall control: mostly access permissions */
952 { .name
= "CNTKCTL", .cp
= 15, .crn
= 14, .crm
= 1, .opc1
= 0, .opc2
= 0,
954 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntkctl
),
957 /* per-timer control */
958 { .name
= "CNTP_CTL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
959 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
960 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
962 .readfn
= gt_ctl_read
, .writefn
= gt_ctl_write
,
963 .raw_readfn
= raw_read
, .raw_writefn
= raw_write
,
965 { .name
= "CNTV_CTL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 1,
966 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
967 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
969 .readfn
= gt_ctl_read
, .writefn
= gt_ctl_write
,
970 .raw_readfn
= raw_read
, .raw_writefn
= raw_write
,
972 /* TimerValue views: a 32 bit downcounting view of the underlying state */
973 { .name
= "CNTP_TVAL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
974 .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
975 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
977 { .name
= "CNTV_TVAL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 0,
978 .type
= ARM_CP_NO_MIGRATE
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
979 .readfn
= gt_tval_read
, .writefn
= gt_tval_write
,
981 /* The counter itself */
982 { .name
= "CNTPCT", .cp
= 15, .crm
= 14, .opc1
= 0,
983 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_MIGRATE
| ARM_CP_IO
,
984 .readfn
= gt_cnt_read
, .resetfn
= gt_cnt_reset
,
986 { .name
= "CNTVCT", .cp
= 15, .crm
= 14, .opc1
= 1,
987 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_MIGRATE
| ARM_CP_IO
,
988 .readfn
= gt_cnt_read
, .resetfn
= gt_cnt_reset
,
990 /* Comparison value, indicating when the timer goes off */
991 { .name
= "CNTP_CVAL", .cp
= 15, .crm
= 14, .opc1
= 2,
992 .access
= PL1_RW
| PL0_R
,
993 .type
= ARM_CP_64BIT
| ARM_CP_IO
,
994 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
996 .readfn
= gt_cval_read
, .writefn
= gt_cval_write
,
997 .raw_readfn
= raw_read
, .raw_writefn
= raw_write
,
999 { .name
= "CNTV_CVAL", .cp
= 15, .crm
= 14, .opc1
= 3,
1000 .access
= PL1_RW
| PL0_R
,
1001 .type
= ARM_CP_64BIT
| ARM_CP_IO
,
1002 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
1004 .readfn
= gt_cval_read
, .writefn
= gt_cval_write
,
1005 .raw_readfn
= raw_read
, .raw_writefn
= raw_write
,
1011 /* In user-mode none of the generic timer registers are accessible,
1012 * and their implementation depends on QEMU_CLOCK_VIRTUAL and qdev gpio outputs,
1013 * so instead just don't register any of them.
1015 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
1021 static int par_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1023 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1024 env
->cp15
.c7_par
= value
;
1025 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
1026 env
->cp15
.c7_par
= value
& 0xfffff6ff;
1028 env
->cp15
.c7_par
= value
& 0xfffff1ff;
1033 #ifndef CONFIG_USER_ONLY
1034 /* get_phys_addr() isn't present for user-mode-only targets */
1036 /* Return true if extended addresses are enabled, ie this is an
1037 * LPAE implementation and we are using the long-descriptor translation
1038 * table format because the TTBCR EAE bit is set.
1040 static inline bool extended_addresses_enabled(CPUARMState
*env
)
1042 return arm_feature(env
, ARM_FEATURE_LPAE
)
1043 && (env
->cp15
.c2_control
& (1U << 31));
1046 static int ats_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1049 target_ulong page_size
;
1051 int ret
, is_user
= ri
->opc2
& 2;
1052 int access_type
= ri
->opc2
& 1;
1055 /* Other states are only available with TrustZone */
1058 ret
= get_phys_addr(env
, value
, access_type
, is_user
,
1059 &phys_addr
, &prot
, &page_size
);
1060 if (extended_addresses_enabled(env
)) {
1061 /* ret is a DFSR/IFSR value for the long descriptor
1062 * translation table format, but with WnR always clear.
1063 * Convert it to a 64-bit PAR.
1065 uint64_t par64
= (1 << 11); /* LPAE bit always set */
1067 par64
|= phys_addr
& ~0xfffULL
;
1068 /* We don't set the ATTR or SH fields in the PAR. */
1071 par64
|= (ret
& 0x3f) << 1; /* FS */
1072 /* Note that S2WLK and FSTAGE are always zero, because we don't
1073 * implement virtualization and therefore there can't be a stage 2
1077 env
->cp15
.c7_par
= par64
;
1078 env
->cp15
.c7_par_hi
= par64
>> 32;
1080 /* ret is a DFSR/IFSR value for the short descriptor
1081 * translation table format (with WnR always clear).
1082 * Convert it to a 32-bit PAR.
1085 /* We do not set any attribute bits in the PAR */
1086 if (page_size
== (1 << 24)
1087 && arm_feature(env
, ARM_FEATURE_V7
)) {
1088 env
->cp15
.c7_par
= (phys_addr
& 0xff000000) | 1 << 1;
1090 env
->cp15
.c7_par
= phys_addr
& 0xfffff000;
1093 env
->cp15
.c7_par
= ((ret
& (10 << 1)) >> 5) |
1094 ((ret
& (12 << 1)) >> 6) |
1095 ((ret
& 0xf) << 1) | 1;
1097 env
->cp15
.c7_par_hi
= 0;
1103 static const ARMCPRegInfo vapa_cp_reginfo
[] = {
1104 { .name
= "PAR", .cp
= 15, .crn
= 7, .crm
= 4, .opc1
= 0, .opc2
= 0,
1105 .access
= PL1_RW
, .resetvalue
= 0,
1106 .fieldoffset
= offsetof(CPUARMState
, cp15
.c7_par
),
1107 .writefn
= par_write
},
1108 #ifndef CONFIG_USER_ONLY
1109 { .name
= "ATS", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= CP_ANY
,
1110 .access
= PL1_W
, .writefn
= ats_write
, .type
= ARM_CP_NO_MIGRATE
},
1115 /* Return basic MPU access permission bits. */
1116 static uint32_t simple_mpu_ap_bits(uint32_t val
)
1123 for (i
= 0; i
< 16; i
+= 2) {
1124 ret
|= (val
>> i
) & mask
;
1130 /* Pad basic MPU access permission bits to extended format. */
1131 static uint32_t extended_mpu_ap_bits(uint32_t val
)
1138 for (i
= 0; i
< 16; i
+= 2) {
1139 ret
|= (val
& mask
) << i
;
1145 static int pmsav5_data_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1148 env
->cp15
.c5_data
= extended_mpu_ap_bits(value
);
1152 static int pmsav5_data_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1155 *value
= simple_mpu_ap_bits(env
->cp15
.c5_data
);
1159 static int pmsav5_insn_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1162 env
->cp15
.c5_insn
= extended_mpu_ap_bits(value
);
1166 static int pmsav5_insn_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1169 *value
= simple_mpu_ap_bits(env
->cp15
.c5_insn
);
1173 static int arm946_prbs_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1179 *value
= env
->cp15
.c6_region
[ri
->crm
];
1183 static int arm946_prbs_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1189 env
->cp15
.c6_region
[ri
->crm
] = value
;
1193 static const ARMCPRegInfo pmsav5_cp_reginfo
[] = {
1194 { .name
= "DATA_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
1195 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
,
1196 .fieldoffset
= offsetof(CPUARMState
, cp15
.c5_data
), .resetvalue
= 0,
1197 .readfn
= pmsav5_data_ap_read
, .writefn
= pmsav5_data_ap_write
, },
1198 { .name
= "INSN_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
1199 .access
= PL1_RW
, .type
= ARM_CP_NO_MIGRATE
,
1200 .fieldoffset
= offsetof(CPUARMState
, cp15
.c5_insn
), .resetvalue
= 0,
1201 .readfn
= pmsav5_insn_ap_read
, .writefn
= pmsav5_insn_ap_write
, },
1202 { .name
= "DATA_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 2,
1204 .fieldoffset
= offsetof(CPUARMState
, cp15
.c5_data
), .resetvalue
= 0, },
1205 { .name
= "INSN_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 3,
1207 .fieldoffset
= offsetof(CPUARMState
, cp15
.c5_insn
), .resetvalue
= 0, },
1208 { .name
= "DCACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
1210 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_data
), .resetvalue
= 0, },
1211 { .name
= "ICACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
1213 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_insn
), .resetvalue
= 0, },
1214 /* Protection region base and size registers */
1215 { .name
= "946_PRBS", .cp
= 15, .crn
= 6, .crm
= CP_ANY
, .opc1
= 0,
1216 .opc2
= CP_ANY
, .access
= PL1_RW
,
1217 .readfn
= arm946_prbs_read
, .writefn
= arm946_prbs_write
, },
1221 static int vmsa_ttbcr_raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1224 int maskshift
= extract32(value
, 0, 3);
1226 if (arm_feature(env
, ARM_FEATURE_LPAE
) && (value
& (1 << 31))) {
1227 value
&= ~((7 << 19) | (3 << 14) | (0xf << 3));
1231 /* Note that we always calculate c2_mask and c2_base_mask, but
1232 * they are only used for short-descriptor tables (ie if EAE is 0);
1233 * for long-descriptor tables the TTBCR fields are used differently
1234 * and the c2_mask and c2_base_mask values are meaningless.
1236 env
->cp15
.c2_control
= value
;
1237 env
->cp15
.c2_mask
= ~(((uint32_t)0xffffffffu
) >> maskshift
);
1238 env
->cp15
.c2_base_mask
= ~((uint32_t)0x3fffu
>> maskshift
);
1242 static int vmsa_ttbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1245 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1246 /* With LPAE the TTBCR could result in a change of ASID
1247 * via the TTBCR.A1 bit, so do a TLB flush.
1251 return vmsa_ttbcr_raw_write(env
, ri
, value
);
1254 static void vmsa_ttbcr_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1256 env
->cp15
.c2_base_mask
= 0xffffc000u
;
1257 env
->cp15
.c2_control
= 0;
1258 env
->cp15
.c2_mask
= 0;
1261 static const ARMCPRegInfo vmsa_cp_reginfo
[] = {
1262 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
1264 .fieldoffset
= offsetof(CPUARMState
, cp15
.c5_data
), .resetvalue
= 0, },
1265 { .name
= "IFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
1267 .fieldoffset
= offsetof(CPUARMState
, cp15
.c5_insn
), .resetvalue
= 0, },
1268 { .name
= "TTBR0", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
1270 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_base0
), .resetvalue
= 0, },
1271 { .name
= "TTBR1", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
1273 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_base1
), .resetvalue
= 0, },
1274 { .name
= "TTBCR", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
1275 .access
= PL1_RW
, .writefn
= vmsa_ttbcr_write
,
1276 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= vmsa_ttbcr_raw_write
,
1277 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_control
) },
1278 { .name
= "DFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 0,
1279 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_data
),
1284 static int omap_ticonfig_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1287 env
->cp15
.c15_ticonfig
= value
& 0xe7;
1288 /* The OS_TYPE bit in this register changes the reported CPUID! */
1289 env
->cp15
.c0_cpuid
= (value
& (1 << 5)) ?
1290 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
1294 static int omap_threadid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1297 env
->cp15
.c15_threadid
= value
& 0xffff;
1301 static int omap_wfi_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1304 /* Wait-for-interrupt (deprecated) */
1305 cpu_interrupt(CPU(arm_env_get_cpu(env
)), CPU_INTERRUPT_HALT
);
1309 static int omap_cachemaint_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1312 /* On OMAP there are registers indicating the max/min index of dcache lines
1313 * containing a dirty line; cache flush operations have to reset these.
1315 env
->cp15
.c15_i_max
= 0x000;
1316 env
->cp15
.c15_i_min
= 0xff0;
1320 static const ARMCPRegInfo omap_cp_reginfo
[] = {
1321 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= CP_ANY
,
1322 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_OVERRIDE
,
1323 .fieldoffset
= offsetof(CPUARMState
, cp15
.c5_data
), .resetvalue
= 0, },
1324 { .name
= "", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 0,
1325 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
1326 { .name
= "TICONFIG", .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0,
1328 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_ticonfig
), .resetvalue
= 0,
1329 .writefn
= omap_ticonfig_write
},
1330 { .name
= "IMAX", .cp
= 15, .crn
= 15, .crm
= 2, .opc1
= 0, .opc2
= 0,
1332 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_max
), .resetvalue
= 0, },
1333 { .name
= "IMIN", .cp
= 15, .crn
= 15, .crm
= 3, .opc1
= 0, .opc2
= 0,
1334 .access
= PL1_RW
, .resetvalue
= 0xff0,
1335 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_min
) },
1336 { .name
= "THREADID", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 0, .opc2
= 0,
1338 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_threadid
), .resetvalue
= 0,
1339 .writefn
= omap_threadid_write
},
1340 { .name
= "TI925T_STATUS", .cp
= 15, .crn
= 15,
1341 .crm
= 8, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
1342 .type
= ARM_CP_NO_MIGRATE
,
1343 .readfn
= arm_cp_read_zero
, .writefn
= omap_wfi_write
, },
1344 /* TODO: Peripheral port remap register:
1345 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
1346 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
1349 { .name
= "OMAP_CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
1350 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
1351 .type
= ARM_CP_OVERRIDE
| ARM_CP_NO_MIGRATE
,
1352 .writefn
= omap_cachemaint_write
},
1353 { .name
= "C9", .cp
= 15, .crn
= 9,
1354 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
,
1355 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
, .resetvalue
= 0 },
1359 static int xscale_cpar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1363 if (env
->cp15
.c15_cpar
!= value
) {
1364 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1366 env
->cp15
.c15_cpar
= value
;
1371 static const ARMCPRegInfo xscale_cp_reginfo
[] = {
1372 { .name
= "XSCALE_CPAR",
1373 .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
1374 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_cpar
), .resetvalue
= 0,
1375 .writefn
= xscale_cpar_write
, },
1376 { .name
= "XSCALE_AUXCR",
1377 .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 1, .access
= PL1_RW
,
1378 .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_xscaleauxcr
),
1383 static const ARMCPRegInfo dummy_c15_cp_reginfo
[] = {
1384 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
1385 * implementation of this implementation-defined space.
1386 * Ideally this should eventually disappear in favour of actually
1387 * implementing the correct behaviour for all cores.
1389 { .name
= "C15_IMPDEF", .cp
= 15, .crn
= 15,
1390 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
1392 .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
| ARM_CP_OVERRIDE
,
1397 static const ARMCPRegInfo cache_dirty_status_cp_reginfo
[] = {
1398 /* Cache status: RAZ because we have no cache so it's always clean */
1399 { .name
= "CDSR", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 6,
1400 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1405 static const ARMCPRegInfo cache_block_ops_cp_reginfo
[] = {
1406 /* We never have a a block transfer operation in progress */
1407 { .name
= "BXSR", .cp
= 15, .crn
= 7, .crm
= 12, .opc1
= 0, .opc2
= 4,
1408 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1410 /* The cache ops themselves: these all NOP for QEMU */
1411 { .name
= "IICR", .cp
= 15, .crm
= 5, .opc1
= 0,
1412 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1413 { .name
= "IDCR", .cp
= 15, .crm
= 6, .opc1
= 0,
1414 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1415 { .name
= "CDCR", .cp
= 15, .crm
= 12, .opc1
= 0,
1416 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1417 { .name
= "PIR", .cp
= 15, .crm
= 12, .opc1
= 1,
1418 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1419 { .name
= "PDR", .cp
= 15, .crm
= 12, .opc1
= 2,
1420 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1421 { .name
= "CIDCR", .cp
= 15, .crm
= 14, .opc1
= 0,
1422 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
1426 static const ARMCPRegInfo cache_test_clean_cp_reginfo
[] = {
1427 /* The cache test-and-clean instructions always return (1 << 30)
1428 * to indicate that there are no dirty cache lines.
1430 { .name
= "TC_DCACHE", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 3,
1431 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1432 .resetvalue
= (1 << 30) },
1433 { .name
= "TCI_DCACHE", .cp
= 15, .crn
= 7, .crm
= 14, .opc1
= 0, .opc2
= 3,
1434 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_MIGRATE
,
1435 .resetvalue
= (1 << 30) },
1439 static const ARMCPRegInfo strongarm_cp_reginfo
[] = {
1440 /* Ignore ReadBuffer accesses */
1441 { .name
= "C9_READBUFFER", .cp
= 15, .crn
= 9,
1442 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
1443 .access
= PL1_RW
, .resetvalue
= 0,
1444 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
| ARM_CP_NO_MIGRATE
},
1448 static int mpidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1451 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
1452 uint32_t mpidr
= cs
->cpu_index
;
1453 /* We don't support setting cluster ID ([8..11])
1454 * so these bits always RAZ.
1456 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
1457 mpidr
|= (1U << 31);
1458 /* Cores which are uniprocessor (non-coherent)
1459 * but still implement the MP extensions set
1460 * bit 30. (For instance, A9UP.) However we do
1461 * not currently model any of those cores.
1468 static const ARMCPRegInfo mpidr_cp_reginfo
[] = {
1469 { .name
= "MPIDR", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 5,
1470 .access
= PL1_R
, .readfn
= mpidr_read
, .type
= ARM_CP_NO_MIGRATE
},
1474 static int par64_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t *value
)
1476 *value
= ((uint64_t)env
->cp15
.c7_par_hi
<< 32) | env
->cp15
.c7_par
;
1480 static int par64_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1482 env
->cp15
.c7_par_hi
= value
>> 32;
1483 env
->cp15
.c7_par
= value
;
1487 static void par64_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1489 env
->cp15
.c7_par_hi
= 0;
1490 env
->cp15
.c7_par
= 0;
1493 static int ttbr064_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1496 *value
= ((uint64_t)env
->cp15
.c2_base0_hi
<< 32) | env
->cp15
.c2_base0
;
1500 static int ttbr064_raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1503 env
->cp15
.c2_base0_hi
= value
>> 32;
1504 env
->cp15
.c2_base0
= value
;
1508 static int ttbr064_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1511 /* Writes to the 64 bit format TTBRs may change the ASID */
1513 return ttbr064_raw_write(env
, ri
, value
);
1516 static void ttbr064_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1518 env
->cp15
.c2_base0_hi
= 0;
1519 env
->cp15
.c2_base0
= 0;
1522 static int ttbr164_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1525 *value
= ((uint64_t)env
->cp15
.c2_base1_hi
<< 32) | env
->cp15
.c2_base1
;
1529 static int ttbr164_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1532 env
->cp15
.c2_base1_hi
= value
>> 32;
1533 env
->cp15
.c2_base1
= value
;
1537 static void ttbr164_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1539 env
->cp15
.c2_base1_hi
= 0;
1540 env
->cp15
.c2_base1
= 0;
1543 static const ARMCPRegInfo lpae_cp_reginfo
[] = {
1544 /* NOP AMAIR0/1: the override is because these clash with the rather
1545 * broadly specified TLB_LOCKDOWN entry in the generic cp_reginfo.
1547 { .name
= "AMAIR0", .cp
= 15, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 0,
1548 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
,
1550 { .name
= "AMAIR1", .cp
= 15, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 1,
1551 .access
= PL1_RW
, .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
,
1553 /* 64 bit access versions of the (dummy) debug registers */
1554 { .name
= "DBGDRAR", .cp
= 14, .crm
= 1, .opc1
= 0,
1555 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
1556 { .name
= "DBGDSAR", .cp
= 14, .crm
= 2, .opc1
= 0,
1557 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
1558 { .name
= "PAR", .cp
= 15, .crm
= 7, .opc1
= 0,
1559 .access
= PL1_RW
, .type
= ARM_CP_64BIT
,
1560 .readfn
= par64_read
, .writefn
= par64_write
, .resetfn
= par64_reset
},
1561 { .name
= "TTBR0", .cp
= 15, .crm
= 2, .opc1
= 0,
1562 .access
= PL1_RW
, .type
= ARM_CP_64BIT
, .readfn
= ttbr064_read
,
1563 .writefn
= ttbr064_write
, .raw_writefn
= ttbr064_raw_write
,
1564 .resetfn
= ttbr064_reset
},
1565 { .name
= "TTBR1", .cp
= 15, .crm
= 2, .opc1
= 1,
1566 .access
= PL1_RW
, .type
= ARM_CP_64BIT
, .readfn
= ttbr164_read
,
1567 .writefn
= ttbr164_write
, .resetfn
= ttbr164_reset
},
1571 static int aa64_fpcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1574 *value
= vfp_get_fpcr(env
);
1578 static int aa64_fpcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1581 vfp_set_fpcr(env
, value
);
1585 static int aa64_fpsr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1588 *value
= vfp_get_fpsr(env
);
1592 static int aa64_fpsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1595 vfp_set_fpsr(env
, value
);
1599 static const ARMCPRegInfo v8_cp_reginfo
[] = {
1600 /* Minimal set of EL0-visible registers. This will need to be expanded
1601 * significantly for system emulation of AArch64 CPUs.
1603 { .name
= "NZCV", .state
= ARM_CP_STATE_AA64
,
1604 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 2,
1605 .access
= PL0_RW
, .type
= ARM_CP_NZCV
},
1606 { .name
= "FPCR", .state
= ARM_CP_STATE_AA64
,
1607 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 4,
1608 .access
= PL0_RW
, .readfn
= aa64_fpcr_read
, .writefn
= aa64_fpcr_write
},
1609 { .name
= "FPSR", .state
= ARM_CP_STATE_AA64
,
1610 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 4,
1611 .access
= PL0_RW
, .readfn
= aa64_fpsr_read
, .writefn
= aa64_fpsr_write
},
1612 /* This claims a 32 byte cacheline size for icache and dcache, VIPT icache.
1613 * It will eventually need to have a CPU-specified reset value.
1615 { .name
= "CTR_EL0", .state
= ARM_CP_STATE_AA64
,
1616 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 0, .crm
= 0,
1617 .access
= PL0_R
, .type
= ARM_CP_CONST
,
1618 .resetvalue
= 0x80030003 },
1619 /* Prohibit use of DC ZVA. OPTME: implement DC ZVA and allow its use.
1620 * For system mode the DZP bit here will need to be computed, not constant.
1622 { .name
= "DCZID_EL0", .state
= ARM_CP_STATE_AA64
,
1623 .opc0
= 3, .opc1
= 3, .opc2
= 7, .crn
= 0, .crm
= 0,
1624 .access
= PL0_R
, .type
= ARM_CP_CONST
,
1625 .resetvalue
= 0x10 },
1629 static int sctlr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1631 env
->cp15
.c1_sys
= value
;
1632 /* ??? Lots of these bits are not implemented. */
1633 /* This may enable/disable the MMU, so do a TLB flush. */
1638 void register_cp_regs_for_features(ARMCPU
*cpu
)
1640 /* Register all the coprocessor registers based on feature bits */
1641 CPUARMState
*env
= &cpu
->env
;
1642 if (arm_feature(env
, ARM_FEATURE_M
)) {
1643 /* M profile has no coprocessor registers */
1647 define_arm_cp_regs(cpu
, cp_reginfo
);
1648 if (arm_feature(env
, ARM_FEATURE_V6
)) {
1649 /* The ID registers all have impdef reset values */
1650 ARMCPRegInfo v6_idregs
[] = {
1651 { .name
= "ID_PFR0", .cp
= 15, .crn
= 0, .crm
= 1,
1652 .opc1
= 0, .opc2
= 0, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1653 .resetvalue
= cpu
->id_pfr0
},
1654 { .name
= "ID_PFR1", .cp
= 15, .crn
= 0, .crm
= 1,
1655 .opc1
= 0, .opc2
= 1, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1656 .resetvalue
= cpu
->id_pfr1
},
1657 { .name
= "ID_DFR0", .cp
= 15, .crn
= 0, .crm
= 1,
1658 .opc1
= 0, .opc2
= 2, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1659 .resetvalue
= cpu
->id_dfr0
},
1660 { .name
= "ID_AFR0", .cp
= 15, .crn
= 0, .crm
= 1,
1661 .opc1
= 0, .opc2
= 3, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1662 .resetvalue
= cpu
->id_afr0
},
1663 { .name
= "ID_MMFR0", .cp
= 15, .crn
= 0, .crm
= 1,
1664 .opc1
= 0, .opc2
= 4, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1665 .resetvalue
= cpu
->id_mmfr0
},
1666 { .name
= "ID_MMFR1", .cp
= 15, .crn
= 0, .crm
= 1,
1667 .opc1
= 0, .opc2
= 5, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1668 .resetvalue
= cpu
->id_mmfr1
},
1669 { .name
= "ID_MMFR2", .cp
= 15, .crn
= 0, .crm
= 1,
1670 .opc1
= 0, .opc2
= 6, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1671 .resetvalue
= cpu
->id_mmfr2
},
1672 { .name
= "ID_MMFR3", .cp
= 15, .crn
= 0, .crm
= 1,
1673 .opc1
= 0, .opc2
= 7, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1674 .resetvalue
= cpu
->id_mmfr3
},
1675 { .name
= "ID_ISAR0", .cp
= 15, .crn
= 0, .crm
= 2,
1676 .opc1
= 0, .opc2
= 0, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1677 .resetvalue
= cpu
->id_isar0
},
1678 { .name
= "ID_ISAR1", .cp
= 15, .crn
= 0, .crm
= 2,
1679 .opc1
= 0, .opc2
= 1, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1680 .resetvalue
= cpu
->id_isar1
},
1681 { .name
= "ID_ISAR2", .cp
= 15, .crn
= 0, .crm
= 2,
1682 .opc1
= 0, .opc2
= 2, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1683 .resetvalue
= cpu
->id_isar2
},
1684 { .name
= "ID_ISAR3", .cp
= 15, .crn
= 0, .crm
= 2,
1685 .opc1
= 0, .opc2
= 3, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1686 .resetvalue
= cpu
->id_isar3
},
1687 { .name
= "ID_ISAR4", .cp
= 15, .crn
= 0, .crm
= 2,
1688 .opc1
= 0, .opc2
= 4, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1689 .resetvalue
= cpu
->id_isar4
},
1690 { .name
= "ID_ISAR5", .cp
= 15, .crn
= 0, .crm
= 2,
1691 .opc1
= 0, .opc2
= 5, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1692 .resetvalue
= cpu
->id_isar5
},
1693 /* 6..7 are as yet unallocated and must RAZ */
1694 { .name
= "ID_ISAR6", .cp
= 15, .crn
= 0, .crm
= 2,
1695 .opc1
= 0, .opc2
= 6, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1697 { .name
= "ID_ISAR7", .cp
= 15, .crn
= 0, .crm
= 2,
1698 .opc1
= 0, .opc2
= 7, .access
= PL1_R
, .type
= ARM_CP_CONST
,
1702 define_arm_cp_regs(cpu
, v6_idregs
);
1703 define_arm_cp_regs(cpu
, v6_cp_reginfo
);
1705 define_arm_cp_regs(cpu
, not_v6_cp_reginfo
);
1707 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
1708 define_arm_cp_regs(cpu
, v6k_cp_reginfo
);
1710 if (arm_feature(env
, ARM_FEATURE_V7
)) {
1711 /* v7 performance monitor control register: same implementor
1712 * field as main ID register, and we implement no event counters.
1714 ARMCPRegInfo pmcr
= {
1715 .name
= "PMCR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 0,
1716 .access
= PL0_RW
, .resetvalue
= cpu
->midr
& 0xff000000,
1717 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcr
),
1718 .readfn
= pmreg_read
, .writefn
= pmcr_write
,
1719 .raw_readfn
= raw_read
, .raw_writefn
= raw_write
,
1721 ARMCPRegInfo clidr
= {
1722 .name
= "CLIDR", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 1,
1723 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->clidr
1725 define_one_arm_cp_reg(cpu
, &pmcr
);
1726 define_one_arm_cp_reg(cpu
, &clidr
);
1727 define_arm_cp_regs(cpu
, v7_cp_reginfo
);
1729 define_arm_cp_regs(cpu
, not_v7_cp_reginfo
);
1731 if (arm_feature(env
, ARM_FEATURE_V8
)) {
1732 define_arm_cp_regs(cpu
, v8_cp_reginfo
);
1734 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1735 /* These are the MPU registers prior to PMSAv6. Any new
1736 * PMSA core later than the ARM946 will require that we
1737 * implement the PMSAv6 or PMSAv7 registers, which are
1738 * completely different.
1740 assert(!arm_feature(env
, ARM_FEATURE_V6
));
1741 define_arm_cp_regs(cpu
, pmsav5_cp_reginfo
);
1743 define_arm_cp_regs(cpu
, vmsa_cp_reginfo
);
1745 if (arm_feature(env
, ARM_FEATURE_THUMB2EE
)) {
1746 define_arm_cp_regs(cpu
, t2ee_cp_reginfo
);
1748 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
1749 define_arm_cp_regs(cpu
, generic_timer_cp_reginfo
);
1751 if (arm_feature(env
, ARM_FEATURE_VAPA
)) {
1752 define_arm_cp_regs(cpu
, vapa_cp_reginfo
);
1754 if (arm_feature(env
, ARM_FEATURE_CACHE_TEST_CLEAN
)) {
1755 define_arm_cp_regs(cpu
, cache_test_clean_cp_reginfo
);
1757 if (arm_feature(env
, ARM_FEATURE_CACHE_DIRTY_REG
)) {
1758 define_arm_cp_regs(cpu
, cache_dirty_status_cp_reginfo
);
1760 if (arm_feature(env
, ARM_FEATURE_CACHE_BLOCK_OPS
)) {
1761 define_arm_cp_regs(cpu
, cache_block_ops_cp_reginfo
);
1763 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
1764 define_arm_cp_regs(cpu
, omap_cp_reginfo
);
1766 if (arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
1767 define_arm_cp_regs(cpu
, strongarm_cp_reginfo
);
1769 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1770 define_arm_cp_regs(cpu
, xscale_cp_reginfo
);
1772 if (arm_feature(env
, ARM_FEATURE_DUMMY_C15_REGS
)) {
1773 define_arm_cp_regs(cpu
, dummy_c15_cp_reginfo
);
1775 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
1776 define_arm_cp_regs(cpu
, lpae_cp_reginfo
);
1778 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
1779 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
1780 * be read-only (ie write causes UNDEF exception).
1783 ARMCPRegInfo id_cp_reginfo
[] = {
1784 /* Note that the MIDR isn't a simple constant register because
1785 * of the TI925 behaviour where writes to another register can
1786 * cause the MIDR value to change.
1788 * Unimplemented registers in the c15 0 0 0 space default to
1789 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
1790 * and friends override accordingly.
1793 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= CP_ANY
,
1794 .access
= PL1_R
, .resetvalue
= cpu
->midr
,
1795 .writefn
= arm_cp_write_ignore
, .raw_writefn
= raw_write
,
1796 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
1797 .type
= ARM_CP_OVERRIDE
},
1799 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 1,
1800 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
1802 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 2,
1803 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1805 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 3,
1806 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1807 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
1809 .cp
= 15, .crn
= 0, .crm
= 3, .opc1
= 0, .opc2
= CP_ANY
,
1810 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1812 .cp
= 15, .crn
= 0, .crm
= 4, .opc1
= 0, .opc2
= CP_ANY
,
1813 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1815 .cp
= 15, .crn
= 0, .crm
= 5, .opc1
= 0, .opc2
= CP_ANY
,
1816 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1818 .cp
= 15, .crn
= 0, .crm
= 6, .opc1
= 0, .opc2
= CP_ANY
,
1819 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1821 .cp
= 15, .crn
= 0, .crm
= 7, .opc1
= 0, .opc2
= CP_ANY
,
1822 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1825 ARMCPRegInfo crn0_wi_reginfo
= {
1826 .name
= "CRN0_WI", .cp
= 15, .crn
= 0, .crm
= CP_ANY
,
1827 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_W
,
1828 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
1830 if (arm_feature(env
, ARM_FEATURE_OMAPCP
) ||
1831 arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
1833 /* Register the blanket "writes ignored" value first to cover the
1834 * whole space. Then update the specific ID registers to allow write
1835 * access, so that they ignore writes rather than causing them to
1838 define_one_arm_cp_reg(cpu
, &crn0_wi_reginfo
);
1839 for (r
= id_cp_reginfo
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
1843 define_arm_cp_regs(cpu
, id_cp_reginfo
);
1846 if (arm_feature(env
, ARM_FEATURE_MPIDR
)) {
1847 define_arm_cp_regs(cpu
, mpidr_cp_reginfo
);
1850 if (arm_feature(env
, ARM_FEATURE_AUXCR
)) {
1851 ARMCPRegInfo auxcr
= {
1852 .name
= "AUXCR", .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 1,
1853 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
1854 .resetvalue
= cpu
->reset_auxcr
1856 define_one_arm_cp_reg(cpu
, &auxcr
);
1859 if (arm_feature(env
, ARM_FEATURE_CBAR
)) {
1860 ARMCPRegInfo cbar
= {
1861 .name
= "CBAR", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
1862 .access
= PL1_R
|PL3_W
, .resetvalue
= cpu
->reset_cbar
,
1863 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_config_base_address
)
1865 define_one_arm_cp_reg(cpu
, &cbar
);
1868 /* Generic registers whose values depend on the implementation */
1870 ARMCPRegInfo sctlr
= {
1871 .name
= "SCTLR", .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
1872 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_sys
),
1873 .writefn
= sctlr_write
, .resetvalue
= cpu
->reset_sctlr
,
1874 .raw_writefn
= raw_write
,
1876 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1877 /* Normally we would always end the TB on an SCTLR write, but Linux
1878 * arch/arm/mach-pxa/sleep.S expects two instructions following
1879 * an MMU enable to execute from cache. Imitate this behaviour.
1881 sctlr
.type
|= ARM_CP_SUPPRESS_TB_END
;
1883 define_one_arm_cp_reg(cpu
, &sctlr
);
1887 ARMCPU
*cpu_arm_init(const char *cpu_model
)
1892 oc
= cpu_class_by_name(TYPE_ARM_CPU
, cpu_model
);
1896 cpu
= ARM_CPU(object_new(object_class_get_name(oc
)));
1898 /* TODO this should be set centrally, once possible */
1899 object_property_set_bool(OBJECT(cpu
), true, "realized", NULL
);
1904 void arm_cpu_register_gdb_regs_for_features(ARMCPU
*cpu
)
1906 CPUState
*cs
= CPU(cpu
);
1907 CPUARMState
*env
= &cpu
->env
;
1909 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
1910 gdb_register_coprocessor(cs
, aarch64_fpu_gdb_get_reg
,
1911 aarch64_fpu_gdb_set_reg
,
1912 34, "aarch64-fpu.xml", 0);
1913 } else if (arm_feature(env
, ARM_FEATURE_NEON
)) {
1914 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
1915 51, "arm-neon.xml", 0);
1916 } else if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
1917 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
1918 35, "arm-vfp3.xml", 0);
1919 } else if (arm_feature(env
, ARM_FEATURE_VFP
)) {
1920 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
1921 19, "arm-vfp.xml", 0);
1925 /* Sort alphabetically by type name, except for "any". */
1926 static gint
arm_cpu_list_compare(gconstpointer a
, gconstpointer b
)
1928 ObjectClass
*class_a
= (ObjectClass
*)a
;
1929 ObjectClass
*class_b
= (ObjectClass
*)b
;
1930 const char *name_a
, *name_b
;
1932 name_a
= object_class_get_name(class_a
);
1933 name_b
= object_class_get_name(class_b
);
1934 if (strcmp(name_a
, "any-" TYPE_ARM_CPU
) == 0) {
1936 } else if (strcmp(name_b
, "any-" TYPE_ARM_CPU
) == 0) {
1939 return strcmp(name_a
, name_b
);
1943 static void arm_cpu_list_entry(gpointer data
, gpointer user_data
)
1945 ObjectClass
*oc
= data
;
1946 CPUListState
*s
= user_data
;
1947 const char *typename
;
1950 typename
= object_class_get_name(oc
);
1951 name
= g_strndup(typename
, strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
1952 (*s
->cpu_fprintf
)(s
->file
, " %s\n",
1957 void arm_cpu_list(FILE *f
, fprintf_function cpu_fprintf
)
1961 .cpu_fprintf
= cpu_fprintf
,
1965 list
= object_class_get_list(TYPE_ARM_CPU
, false);
1966 list
= g_slist_sort(list
, arm_cpu_list_compare
);
1967 (*cpu_fprintf
)(f
, "Available CPUs:\n");
1968 g_slist_foreach(list
, arm_cpu_list_entry
, &s
);
1971 /* The 'host' CPU type is dynamically registered only if KVM is
1972 * enabled, so we have to special-case it here:
1974 (*cpu_fprintf
)(f
, " host (only available in KVM mode)\n");
1978 static void arm_cpu_add_definition(gpointer data
, gpointer user_data
)
1980 ObjectClass
*oc
= data
;
1981 CpuDefinitionInfoList
**cpu_list
= user_data
;
1982 CpuDefinitionInfoList
*entry
;
1983 CpuDefinitionInfo
*info
;
1984 const char *typename
;
1986 typename
= object_class_get_name(oc
);
1987 info
= g_malloc0(sizeof(*info
));
1988 info
->name
= g_strndup(typename
,
1989 strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
1991 entry
= g_malloc0(sizeof(*entry
));
1992 entry
->value
= info
;
1993 entry
->next
= *cpu_list
;
1997 CpuDefinitionInfoList
*arch_query_cpu_definitions(Error
**errp
)
1999 CpuDefinitionInfoList
*cpu_list
= NULL
;
2002 list
= object_class_get_list(TYPE_ARM_CPU
, false);
2003 g_slist_foreach(list
, arm_cpu_add_definition
, &cpu_list
);
2009 static void add_cpreg_to_hashtable(ARMCPU
*cpu
, const ARMCPRegInfo
*r
,
2010 void *opaque
, int state
,
2011 int crm
, int opc1
, int opc2
)
2013 /* Private utility function for define_one_arm_cp_reg_with_opaque():
2014 * add a single reginfo struct to the hash table.
2016 uint32_t *key
= g_new(uint32_t, 1);
2017 ARMCPRegInfo
*r2
= g_memdup(r
, sizeof(ARMCPRegInfo
));
2018 int is64
= (r
->type
& ARM_CP_64BIT
) ? 1 : 0;
2019 if (r
->state
== ARM_CP_STATE_BOTH
&& state
== ARM_CP_STATE_AA32
) {
2020 /* The AArch32 view of a shared register sees the lower 32 bits
2021 * of a 64 bit backing field. It is not migratable as the AArch64
2022 * view handles that. AArch64 also handles reset.
2023 * We assume it is a cp15 register.
2026 r2
->type
|= ARM_CP_NO_MIGRATE
;
2027 r2
->resetfn
= arm_cp_reset_ignore
;
2028 #ifdef HOST_WORDS_BIGENDIAN
2029 if (r2
->fieldoffset
) {
2030 r2
->fieldoffset
+= sizeof(uint32_t);
2034 if (state
== ARM_CP_STATE_AA64
) {
2035 /* To allow abbreviation of ARMCPRegInfo
2036 * definitions, we treat cp == 0 as equivalent to
2037 * the value for "standard guest-visible sysreg".
2040 r2
->cp
= CP_REG_ARM64_SYSREG_CP
;
2042 *key
= ENCODE_AA64_CP_REG(r2
->cp
, r2
->crn
, crm
,
2043 r2
->opc0
, opc1
, opc2
);
2045 *key
= ENCODE_CP_REG(r2
->cp
, is64
, r2
->crn
, crm
, opc1
, opc2
);
2048 r2
->opaque
= opaque
;
2050 /* Make sure reginfo passed to helpers for wildcarded regs
2051 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
2056 /* By convention, for wildcarded registers only the first
2057 * entry is used for migration; the others are marked as
2058 * NO_MIGRATE so we don't try to transfer the register
2059 * multiple times. Special registers (ie NOP/WFI) are
2062 if ((r
->type
& ARM_CP_SPECIAL
) ||
2063 ((r
->crm
== CP_ANY
) && crm
!= 0) ||
2064 ((r
->opc1
== CP_ANY
) && opc1
!= 0) ||
2065 ((r
->opc2
== CP_ANY
) && opc2
!= 0)) {
2066 r2
->type
|= ARM_CP_NO_MIGRATE
;
2069 /* Overriding of an existing definition must be explicitly
2072 if (!(r
->type
& ARM_CP_OVERRIDE
)) {
2073 ARMCPRegInfo
*oldreg
;
2074 oldreg
= g_hash_table_lookup(cpu
->cp_regs
, key
);
2075 if (oldreg
&& !(oldreg
->type
& ARM_CP_OVERRIDE
)) {
2076 fprintf(stderr
, "Register redefined: cp=%d %d bit "
2077 "crn=%d crm=%d opc1=%d opc2=%d, "
2078 "was %s, now %s\n", r2
->cp
, 32 + 32 * is64
,
2079 r2
->crn
, r2
->crm
, r2
->opc1
, r2
->opc2
,
2080 oldreg
->name
, r2
->name
);
2081 g_assert_not_reached();
2084 g_hash_table_insert(cpu
->cp_regs
, key
, r2
);
2088 void define_one_arm_cp_reg_with_opaque(ARMCPU
*cpu
,
2089 const ARMCPRegInfo
*r
, void *opaque
)
2091 /* Define implementations of coprocessor registers.
2092 * We store these in a hashtable because typically
2093 * there are less than 150 registers in a space which
2094 * is 16*16*16*8*8 = 262144 in size.
2095 * Wildcarding is supported for the crm, opc1 and opc2 fields.
2096 * If a register is defined twice then the second definition is
2097 * used, so this can be used to define some generic registers and
2098 * then override them with implementation specific variations.
2099 * At least one of the original and the second definition should
2100 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
2101 * against accidental use.
2103 * The state field defines whether the register is to be
2104 * visible in the AArch32 or AArch64 execution state. If the
2105 * state is set to ARM_CP_STATE_BOTH then we synthesise a
2106 * reginfo structure for the AArch32 view, which sees the lower
2107 * 32 bits of the 64 bit register.
2109 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
2110 * be wildcarded. AArch64 registers are always considered to be 64
2111 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
2112 * the register, if any.
2114 int crm
, opc1
, opc2
, state
;
2115 int crmmin
= (r
->crm
== CP_ANY
) ? 0 : r
->crm
;
2116 int crmmax
= (r
->crm
== CP_ANY
) ? 15 : r
->crm
;
2117 int opc1min
= (r
->opc1
== CP_ANY
) ? 0 : r
->opc1
;
2118 int opc1max
= (r
->opc1
== CP_ANY
) ? 7 : r
->opc1
;
2119 int opc2min
= (r
->opc2
== CP_ANY
) ? 0 : r
->opc2
;
2120 int opc2max
= (r
->opc2
== CP_ANY
) ? 7 : r
->opc2
;
2121 /* 64 bit registers have only CRm and Opc1 fields */
2122 assert(!((r
->type
& ARM_CP_64BIT
) && (r
->opc2
|| r
->crn
)));
2123 /* op0 only exists in the AArch64 encodings */
2124 assert((r
->state
!= ARM_CP_STATE_AA32
) || (r
->opc0
== 0));
2125 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
2126 assert((r
->state
!= ARM_CP_STATE_AA64
) || !(r
->type
& ARM_CP_64BIT
));
2127 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
2128 * encodes a minimum access level for the register. We roll this
2129 * runtime check into our general permission check code, so check
2130 * here that the reginfo's specified permissions are strict enough
2131 * to encompass the generic architectural permission check.
2133 if (r
->state
!= ARM_CP_STATE_AA32
) {
2136 case 0: case 1: case 2:
2149 /* unallocated encoding, so not possible */
2157 /* min_EL EL1, secure mode only (we don't check the latter) */
2161 /* broken reginfo with out-of-range opc1 */
2165 /* assert our permissions are not too lax (stricter is fine) */
2166 assert((r
->access
& ~mask
) == 0);
2169 /* Check that the register definition has enough info to handle
2170 * reads and writes if they are permitted.
2172 if (!(r
->type
& (ARM_CP_SPECIAL
|ARM_CP_CONST
))) {
2173 if (r
->access
& PL3_R
) {
2174 assert(r
->fieldoffset
|| r
->readfn
);
2176 if (r
->access
& PL3_W
) {
2177 assert(r
->fieldoffset
|| r
->writefn
);
2180 /* Bad type field probably means missing sentinel at end of reg list */
2181 assert(cptype_valid(r
->type
));
2182 for (crm
= crmmin
; crm
<= crmmax
; crm
++) {
2183 for (opc1
= opc1min
; opc1
<= opc1max
; opc1
++) {
2184 for (opc2
= opc2min
; opc2
<= opc2max
; opc2
++) {
2185 for (state
= ARM_CP_STATE_AA32
;
2186 state
<= ARM_CP_STATE_AA64
; state
++) {
2187 if (r
->state
!= state
&& r
->state
!= ARM_CP_STATE_BOTH
) {
2190 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
2198 void define_arm_cp_regs_with_opaque(ARMCPU
*cpu
,
2199 const ARMCPRegInfo
*regs
, void *opaque
)
2201 /* Define a whole list of registers */
2202 const ARMCPRegInfo
*r
;
2203 for (r
= regs
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
2204 define_one_arm_cp_reg_with_opaque(cpu
, r
, opaque
);
2208 const ARMCPRegInfo
*get_arm_cp_reginfo(GHashTable
*cpregs
, uint32_t encoded_cp
)
2210 return g_hash_table_lookup(cpregs
, &encoded_cp
);
2213 int arm_cp_write_ignore(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2216 /* Helper coprocessor write function for write-ignore registers */
2220 int arm_cp_read_zero(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t *value
)
2222 /* Helper coprocessor write function for read-as-zero registers */
2227 void arm_cp_reset_ignore(CPUARMState
*env
, const ARMCPRegInfo
*opaque
)
2229 /* Helper coprocessor reset function for do-nothing-on-reset registers */
2232 static int bad_mode_switch(CPUARMState
*env
, int mode
)
2234 /* Return true if it is not valid for us to switch to
2235 * this CPU mode (ie all the UNPREDICTABLE cases in
2236 * the ARM ARM CPSRWriteByInstr pseudocode).
2239 case ARM_CPU_MODE_USR
:
2240 case ARM_CPU_MODE_SYS
:
2241 case ARM_CPU_MODE_SVC
:
2242 case ARM_CPU_MODE_ABT
:
2243 case ARM_CPU_MODE_UND
:
2244 case ARM_CPU_MODE_IRQ
:
2245 case ARM_CPU_MODE_FIQ
:
2252 uint32_t cpsr_read(CPUARMState
*env
)
2255 ZF
= (env
->ZF
== 0);
2256 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
2257 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
2258 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
2259 | ((env
->condexec_bits
& 0xfc) << 8)
2263 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
2265 if (mask
& CPSR_NZCV
) {
2266 env
->ZF
= (~val
) & CPSR_Z
;
2268 env
->CF
= (val
>> 29) & 1;
2269 env
->VF
= (val
<< 3) & 0x80000000;
2272 env
->QF
= ((val
& CPSR_Q
) != 0);
2274 env
->thumb
= ((val
& CPSR_T
) != 0);
2275 if (mask
& CPSR_IT_0_1
) {
2276 env
->condexec_bits
&= ~3;
2277 env
->condexec_bits
|= (val
>> 25) & 3;
2279 if (mask
& CPSR_IT_2_7
) {
2280 env
->condexec_bits
&= 3;
2281 env
->condexec_bits
|= (val
>> 8) & 0xfc;
2283 if (mask
& CPSR_GE
) {
2284 env
->GE
= (val
>> 16) & 0xf;
2287 if ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
) {
2288 if (bad_mode_switch(env
, val
& CPSR_M
)) {
2289 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE.
2290 * We choose to ignore the attempt and leave the CPSR M field
2295 switch_mode(env
, val
& CPSR_M
);
2298 mask
&= ~CACHED_CPSR_BITS
;
2299 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
2302 /* Sign/zero extend */
2303 uint32_t HELPER(sxtb16
)(uint32_t x
)
2306 res
= (uint16_t)(int8_t)x
;
2307 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
2311 uint32_t HELPER(uxtb16
)(uint32_t x
)
2314 res
= (uint16_t)(uint8_t)x
;
2315 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
2319 uint32_t HELPER(clz
)(uint32_t x
)
2324 int32_t HELPER(sdiv
)(int32_t num
, int32_t den
)
2328 if (num
== INT_MIN
&& den
== -1)
2333 uint32_t HELPER(udiv
)(uint32_t num
, uint32_t den
)
2340 uint32_t HELPER(rbit
)(uint32_t x
)
2342 x
= ((x
& 0xff000000) >> 24)
2343 | ((x
& 0x00ff0000) >> 8)
2344 | ((x
& 0x0000ff00) << 8)
2345 | ((x
& 0x000000ff) << 24);
2346 x
= ((x
& 0xf0f0f0f0) >> 4)
2347 | ((x
& 0x0f0f0f0f) << 4);
2348 x
= ((x
& 0x88888888) >> 3)
2349 | ((x
& 0x44444444) >> 1)
2350 | ((x
& 0x22222222) << 1)
2351 | ((x
& 0x11111111) << 3);
2355 #if defined(CONFIG_USER_ONLY)
2357 void arm_cpu_do_interrupt(CPUState
*cs
)
2359 ARMCPU
*cpu
= ARM_CPU(cs
);
2360 CPUARMState
*env
= &cpu
->env
;
2362 env
->exception_index
= -1;
2365 int cpu_arm_handle_mmu_fault (CPUARMState
*env
, target_ulong address
, int rw
,
2369 env
->exception_index
= EXCP_PREFETCH_ABORT
;
2370 env
->cp15
.c6_insn
= address
;
2372 env
->exception_index
= EXCP_DATA_ABORT
;
2373 env
->cp15
.c6_data
= address
;
2378 /* These should probably raise undefined insn exceptions. */
2379 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
2381 cpu_abort(env
, "v7m_mrs %d\n", reg
);
2384 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
2386 cpu_abort(env
, "v7m_mrs %d\n", reg
);
2390 void switch_mode(CPUARMState
*env
, int mode
)
2392 if (mode
!= ARM_CPU_MODE_USR
)
2393 cpu_abort(env
, "Tried to switch out of user mode\n");
2396 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
2398 cpu_abort(env
, "banked r13 write\n");
2401 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
2403 cpu_abort(env
, "banked r13 read\n");
2409 /* Map CPU modes onto saved register banks. */
2410 int bank_number(int mode
)
2413 case ARM_CPU_MODE_USR
:
2414 case ARM_CPU_MODE_SYS
:
2416 case ARM_CPU_MODE_SVC
:
2418 case ARM_CPU_MODE_ABT
:
2420 case ARM_CPU_MODE_UND
:
2422 case ARM_CPU_MODE_IRQ
:
2424 case ARM_CPU_MODE_FIQ
:
2427 hw_error("bank number requested for bad CPSR mode value 0x%x\n", mode
);
2430 void switch_mode(CPUARMState
*env
, int mode
)
2435 old_mode
= env
->uncached_cpsr
& CPSR_M
;
2436 if (mode
== old_mode
)
2439 if (old_mode
== ARM_CPU_MODE_FIQ
) {
2440 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
2441 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
2442 } else if (mode
== ARM_CPU_MODE_FIQ
) {
2443 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
2444 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
2447 i
= bank_number(old_mode
);
2448 env
->banked_r13
[i
] = env
->regs
[13];
2449 env
->banked_r14
[i
] = env
->regs
[14];
2450 env
->banked_spsr
[i
] = env
->spsr
;
2452 i
= bank_number(mode
);
2453 env
->regs
[13] = env
->banked_r13
[i
];
2454 env
->regs
[14] = env
->banked_r14
[i
];
2455 env
->spsr
= env
->banked_spsr
[i
];
2458 static void v7m_push(CPUARMState
*env
, uint32_t val
)
2461 stl_phys(env
->regs
[13], val
);
2464 static uint32_t v7m_pop(CPUARMState
*env
)
2467 val
= ldl_phys(env
->regs
[13]);
2472 /* Switch to V7M main or process stack pointer. */
2473 static void switch_v7m_sp(CPUARMState
*env
, int process
)
2476 if (env
->v7m
.current_sp
!= process
) {
2477 tmp
= env
->v7m
.other_sp
;
2478 env
->v7m
.other_sp
= env
->regs
[13];
2479 env
->regs
[13] = tmp
;
2480 env
->v7m
.current_sp
= process
;
2484 static void do_v7m_exception_exit(CPUARMState
*env
)
2489 type
= env
->regs
[15];
2490 if (env
->v7m
.exception
!= 0)
2491 armv7m_nvic_complete_irq(env
->nvic
, env
->v7m
.exception
);
2493 /* Switch to the target stack. */
2494 switch_v7m_sp(env
, (type
& 4) != 0);
2495 /* Pop registers. */
2496 env
->regs
[0] = v7m_pop(env
);
2497 env
->regs
[1] = v7m_pop(env
);
2498 env
->regs
[2] = v7m_pop(env
);
2499 env
->regs
[3] = v7m_pop(env
);
2500 env
->regs
[12] = v7m_pop(env
);
2501 env
->regs
[14] = v7m_pop(env
);
2502 env
->regs
[15] = v7m_pop(env
);
2503 xpsr
= v7m_pop(env
);
2504 xpsr_write(env
, xpsr
, 0xfffffdff);
2505 /* Undo stack alignment. */
2508 /* ??? The exception return type specifies Thread/Handler mode. However
2509 this is also implied by the xPSR value. Not sure what to do
2510 if there is a mismatch. */
2511 /* ??? Likewise for mismatches between the CONTROL register and the stack
2515 /* Exception names for debug logging; note that not all of these
2516 * precisely correspond to architectural exceptions.
2518 static const char * const excnames
[] = {
2519 [EXCP_UDEF
] = "Undefined Instruction",
2521 [EXCP_PREFETCH_ABORT
] = "Prefetch Abort",
2522 [EXCP_DATA_ABORT
] = "Data Abort",
2525 [EXCP_BKPT
] = "Breakpoint",
2526 [EXCP_EXCEPTION_EXIT
] = "QEMU v7M exception exit",
2527 [EXCP_KERNEL_TRAP
] = "QEMU intercept of kernel commpage",
2528 [EXCP_STREX
] = "QEMU intercept of STREX",
2531 static inline void arm_log_exception(int idx
)
2533 if (qemu_loglevel_mask(CPU_LOG_INT
)) {
2534 const char *exc
= NULL
;
2536 if (idx
>= 0 && idx
< ARRAY_SIZE(excnames
)) {
2537 exc
= excnames
[idx
];
2542 qemu_log_mask(CPU_LOG_INT
, "Taking exception %d [%s]\n", idx
, exc
);
2546 void arm_v7m_cpu_do_interrupt(CPUState
*cs
)
2548 ARMCPU
*cpu
= ARM_CPU(cs
);
2549 CPUARMState
*env
= &cpu
->env
;
2550 uint32_t xpsr
= xpsr_read(env
);
2554 arm_log_exception(env
->exception_index
);
2557 if (env
->v7m
.current_sp
)
2559 if (env
->v7m
.exception
== 0)
2562 /* For exceptions we just mark as pending on the NVIC, and let that
2564 /* TODO: Need to escalate if the current priority is higher than the
2565 one we're raising. */
2566 switch (env
->exception_index
) {
2568 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
);
2571 /* The PC already points to the next instruction. */
2572 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SVC
);
2574 case EXCP_PREFETCH_ABORT
:
2575 case EXCP_DATA_ABORT
:
2576 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
);
2579 if (semihosting_enabled
) {
2581 nr
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
2584 env
->regs
[0] = do_arm_semihosting(env
);
2585 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
2589 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_DEBUG
);
2592 env
->v7m
.exception
= armv7m_nvic_acknowledge_irq(env
->nvic
);
2594 case EXCP_EXCEPTION_EXIT
:
2595 do_v7m_exception_exit(env
);
2598 cpu_abort(env
, "Unhandled exception 0x%x\n", env
->exception_index
);
2599 return; /* Never happens. Keep compiler happy. */
2602 /* Align stack pointer. */
2603 /* ??? Should only do this if Configuration Control Register
2604 STACKALIGN bit is set. */
2605 if (env
->regs
[13] & 4) {
2609 /* Switch to the handler mode. */
2610 v7m_push(env
, xpsr
);
2611 v7m_push(env
, env
->regs
[15]);
2612 v7m_push(env
, env
->regs
[14]);
2613 v7m_push(env
, env
->regs
[12]);
2614 v7m_push(env
, env
->regs
[3]);
2615 v7m_push(env
, env
->regs
[2]);
2616 v7m_push(env
, env
->regs
[1]);
2617 v7m_push(env
, env
->regs
[0]);
2618 switch_v7m_sp(env
, 0);
2620 env
->condexec_bits
= 0;
2622 addr
= ldl_phys(env
->v7m
.vecbase
+ env
->v7m
.exception
* 4);
2623 env
->regs
[15] = addr
& 0xfffffffe;
2624 env
->thumb
= addr
& 1;
2627 /* Handle a CPU exception. */
2628 void arm_cpu_do_interrupt(CPUState
*cs
)
2630 ARMCPU
*cpu
= ARM_CPU(cs
);
2631 CPUARMState
*env
= &cpu
->env
;
2639 arm_log_exception(env
->exception_index
);
2641 /* TODO: Vectored interrupt controller. */
2642 switch (env
->exception_index
) {
2644 new_mode
= ARM_CPU_MODE_UND
;
2653 if (semihosting_enabled
) {
2654 /* Check for semihosting interrupt. */
2656 mask
= arm_lduw_code(env
, env
->regs
[15] - 2, env
->bswap_code
)
2659 mask
= arm_ldl_code(env
, env
->regs
[15] - 4, env
->bswap_code
)
2662 /* Only intercept calls from privileged modes, to provide some
2663 semblance of security. */
2664 if (((mask
== 0x123456 && !env
->thumb
)
2665 || (mask
== 0xab && env
->thumb
))
2666 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
2667 env
->regs
[0] = do_arm_semihosting(env
);
2668 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
2672 new_mode
= ARM_CPU_MODE_SVC
;
2675 /* The PC already points to the next instruction. */
2679 /* See if this is a semihosting syscall. */
2680 if (env
->thumb
&& semihosting_enabled
) {
2681 mask
= arm_lduw_code(env
, env
->regs
[15], env
->bswap_code
) & 0xff;
2683 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
2685 env
->regs
[0] = do_arm_semihosting(env
);
2686 qemu_log_mask(CPU_LOG_INT
, "...handled as semihosting call\n");
2690 env
->cp15
.c5_insn
= 2;
2691 /* Fall through to prefetch abort. */
2692 case EXCP_PREFETCH_ABORT
:
2693 qemu_log_mask(CPU_LOG_INT
, "...with IFSR 0x%x IFAR 0x%x\n",
2694 env
->cp15
.c5_insn
, env
->cp15
.c6_insn
);
2695 new_mode
= ARM_CPU_MODE_ABT
;
2697 mask
= CPSR_A
| CPSR_I
;
2700 case EXCP_DATA_ABORT
:
2701 qemu_log_mask(CPU_LOG_INT
, "...with DFSR 0x%x DFAR 0x%x\n",
2702 env
->cp15
.c5_data
, env
->cp15
.c6_data
);
2703 new_mode
= ARM_CPU_MODE_ABT
;
2705 mask
= CPSR_A
| CPSR_I
;
2709 new_mode
= ARM_CPU_MODE_IRQ
;
2711 /* Disable IRQ and imprecise data aborts. */
2712 mask
= CPSR_A
| CPSR_I
;
2716 new_mode
= ARM_CPU_MODE_FIQ
;
2718 /* Disable FIQ, IRQ and imprecise data aborts. */
2719 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
2723 cpu_abort(env
, "Unhandled exception 0x%x\n", env
->exception_index
);
2724 return; /* Never happens. Keep compiler happy. */
2727 if (env
->cp15
.c1_sys
& (1 << 13)) {
2728 /* when enabled, base address cannot be remapped. */
2731 /* ARM v7 architectures provide a vector base address register to remap
2732 * the interrupt vector table.
2733 * This register is only followed in non-monitor mode, and has a secure
2734 * and un-secure copy. Since the cpu is always in a un-secure operation
2735 * and is never in monitor mode this feature is always active.
2736 * Note: only bits 31:5 are valid.
2738 addr
+= env
->cp15
.c12_vbar
;
2740 switch_mode (env
, new_mode
);
2741 env
->spsr
= cpsr_read(env
);
2742 /* Clear IT bits. */
2743 env
->condexec_bits
= 0;
2744 /* Switch to the new mode, and to the correct instruction set. */
2745 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
2746 env
->uncached_cpsr
|= mask
;
2747 /* this is a lie, as the was no c1_sys on V4T/V5, but who cares
2748 * and we should just guard the thumb mode on V4 */
2749 if (arm_feature(env
, ARM_FEATURE_V4T
)) {
2750 env
->thumb
= (env
->cp15
.c1_sys
& (1 << 30)) != 0;
2752 env
->regs
[14] = env
->regs
[15] + offset
;
2753 env
->regs
[15] = addr
;
2754 cs
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
2757 /* Check section/page access permissions.
2758 Returns the page protection flags, or zero if the access is not
2760 static inline int check_ap(CPUARMState
*env
, int ap
, int domain_prot
,
2761 int access_type
, int is_user
)
2765 if (domain_prot
== 3) {
2766 return PAGE_READ
| PAGE_WRITE
;
2769 if (access_type
== 1)
2772 prot_ro
= PAGE_READ
;
2776 if (access_type
== 1)
2778 switch ((env
->cp15
.c1_sys
>> 8) & 3) {
2780 return is_user
? 0 : PAGE_READ
;
2787 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
2792 return PAGE_READ
| PAGE_WRITE
;
2794 return PAGE_READ
| PAGE_WRITE
;
2795 case 4: /* Reserved. */
2798 return is_user
? 0 : prot_ro
;
2802 if (!arm_feature (env
, ARM_FEATURE_V6K
))
2810 static uint32_t get_level1_table_address(CPUARMState
*env
, uint32_t address
)
2814 if (address
& env
->cp15
.c2_mask
)
2815 table
= env
->cp15
.c2_base1
& 0xffffc000;
2817 table
= env
->cp15
.c2_base0
& env
->cp15
.c2_base_mask
;
2819 table
|= (address
>> 18) & 0x3ffc;
2823 static int get_phys_addr_v5(CPUARMState
*env
, uint32_t address
, int access_type
,
2824 int is_user
, hwaddr
*phys_ptr
,
2825 int *prot
, target_ulong
*page_size
)
2836 /* Pagetable walk. */
2837 /* Lookup l1 descriptor. */
2838 table
= get_level1_table_address(env
, address
);
2839 desc
= ldl_phys(table
);
2841 domain
= (desc
>> 5) & 0x0f;
2842 domain_prot
= (env
->cp15
.c3
>> (domain
* 2)) & 3;
2844 /* Section translation fault. */
2848 if (domain_prot
== 0 || domain_prot
== 2) {
2850 code
= 9; /* Section domain fault. */
2852 code
= 11; /* Page domain fault. */
2857 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
2858 ap
= (desc
>> 10) & 3;
2860 *page_size
= 1024 * 1024;
2862 /* Lookup l2 entry. */
2864 /* Coarse pagetable. */
2865 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
2867 /* Fine pagetable. */
2868 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
2870 desc
= ldl_phys(table
);
2872 case 0: /* Page translation fault. */
2875 case 1: /* 64k page. */
2876 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
2877 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
2878 *page_size
= 0x10000;
2880 case 2: /* 4k page. */
2881 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
2882 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
2883 *page_size
= 0x1000;
2885 case 3: /* 1k page. */
2887 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
2888 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
2890 /* Page translation fault. */
2895 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
2897 ap
= (desc
>> 4) & 3;
2901 /* Never happens, but compiler isn't smart enough to tell. */
2906 *prot
= check_ap(env
, ap
, domain_prot
, access_type
, is_user
);
2908 /* Access permission fault. */
2912 *phys_ptr
= phys_addr
;
2915 return code
| (domain
<< 4);
2918 static int get_phys_addr_v6(CPUARMState
*env
, uint32_t address
, int access_type
,
2919 int is_user
, hwaddr
*phys_ptr
,
2920 int *prot
, target_ulong
*page_size
)
2933 /* Pagetable walk. */
2934 /* Lookup l1 descriptor. */
2935 table
= get_level1_table_address(env
, address
);
2936 desc
= ldl_phys(table
);
2938 if (type
== 0 || (type
== 3 && !arm_feature(env
, ARM_FEATURE_PXN
))) {
2939 /* Section translation fault, or attempt to use the encoding
2940 * which is Reserved on implementations without PXN.
2945 if ((type
== 1) || !(desc
& (1 << 18))) {
2946 /* Page or Section. */
2947 domain
= (desc
>> 5) & 0x0f;
2949 domain_prot
= (env
->cp15
.c3
>> (domain
* 2)) & 3;
2950 if (domain_prot
== 0 || domain_prot
== 2) {
2952 code
= 9; /* Section domain fault. */
2954 code
= 11; /* Page domain fault. */
2959 if (desc
& (1 << 18)) {
2961 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
2962 *page_size
= 0x1000000;
2965 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
2966 *page_size
= 0x100000;
2968 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
2969 xn
= desc
& (1 << 4);
2973 if (arm_feature(env
, ARM_FEATURE_PXN
)) {
2974 pxn
= (desc
>> 2) & 1;
2976 /* Lookup l2 entry. */
2977 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
2978 desc
= ldl_phys(table
);
2979 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
2981 case 0: /* Page translation fault. */
2984 case 1: /* 64k page. */
2985 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
2986 xn
= desc
& (1 << 15);
2987 *page_size
= 0x10000;
2989 case 2: case 3: /* 4k page. */
2990 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
2992 *page_size
= 0x1000;
2995 /* Never happens, but compiler isn't smart enough to tell. */
3000 if (domain_prot
== 3) {
3001 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
3003 if (pxn
&& !is_user
) {
3006 if (xn
&& access_type
== 2)
3009 /* The simplified model uses AP[0] as an access control bit. */
3010 if ((env
->cp15
.c1_sys
& (1 << 29)) && (ap
& 1) == 0) {
3011 /* Access flag fault. */
3012 code
= (code
== 15) ? 6 : 3;
3015 *prot
= check_ap(env
, ap
, domain_prot
, access_type
, is_user
);
3017 /* Access permission fault. */
3024 *phys_ptr
= phys_addr
;
3027 return code
| (domain
<< 4);
3030 /* Fault type for long-descriptor MMU fault reporting; this corresponds
3031 * to bits [5..2] in the STATUS field in long-format DFSR/IFSR.
3034 translation_fault
= 1,
3036 permission_fault
= 3,
3039 static int get_phys_addr_lpae(CPUARMState
*env
, uint32_t address
,
3040 int access_type
, int is_user
,
3041 hwaddr
*phys_ptr
, int *prot
,
3042 target_ulong
*page_size_ptr
)
3044 /* Read an LPAE long-descriptor translation table. */
3045 MMUFaultType fault_type
= translation_fault
;
3053 uint32_t tableattrs
;
3054 target_ulong page_size
;
3057 /* Determine whether this address is in the region controlled by
3058 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
3059 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
3060 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
3062 uint32_t t0sz
= extract32(env
->cp15
.c2_control
, 0, 3);
3063 uint32_t t1sz
= extract32(env
->cp15
.c2_control
, 16, 3);
3064 if (t0sz
&& !extract32(address
, 32 - t0sz
, t0sz
)) {
3065 /* there is a ttbr0 region and we are in it (high bits all zero) */
3067 } else if (t1sz
&& !extract32(~address
, 32 - t1sz
, t1sz
)) {
3068 /* there is a ttbr1 region and we are in it (high bits all one) */
3071 /* ttbr0 region is "everything not in the ttbr1 region" */
3074 /* ttbr1 region is "everything not in the ttbr0 region" */
3077 /* in the gap between the two regions, this is a Translation fault */
3078 fault_type
= translation_fault
;
3082 /* Note that QEMU ignores shareability and cacheability attributes,
3083 * so we don't need to do anything with the SH, ORGN, IRGN fields
3084 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
3085 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
3086 * implement any ASID-like capability so we can ignore it (instead
3087 * we will always flush the TLB any time the ASID is changed).
3089 if (ttbr_select
== 0) {
3090 ttbr
= ((uint64_t)env
->cp15
.c2_base0_hi
<< 32) | env
->cp15
.c2_base0
;
3091 epd
= extract32(env
->cp15
.c2_control
, 7, 1);
3094 ttbr
= ((uint64_t)env
->cp15
.c2_base1_hi
<< 32) | env
->cp15
.c2_base1
;
3095 epd
= extract32(env
->cp15
.c2_control
, 23, 1);
3100 /* Translation table walk disabled => Translation fault on TLB miss */
3104 /* If the region is small enough we will skip straight to a 2nd level
3105 * lookup. This affects the number of bits of the address used in
3106 * combination with the TTBR to find the first descriptor. ('n' here
3107 * matches the usage in the ARM ARM sB3.6.6, where bits [39..n] are
3108 * from the TTBR, [n-1..3] from the vaddr, and [2..0] always zero).
3117 /* Clear the vaddr bits which aren't part of the within-region address,
3118 * so that we don't have to special case things when calculating the
3119 * first descriptor address.
3121 address
&= (0xffffffffU
>> tsz
);
3123 /* Now we can extract the actual base address from the TTBR */
3124 descaddr
= extract64(ttbr
, 0, 40);
3125 descaddr
&= ~((1ULL << n
) - 1);
3129 uint64_t descriptor
;
3131 descaddr
|= ((address
>> (9 * (4 - level
))) & 0xff8);
3132 descriptor
= ldq_phys(descaddr
);
3133 if (!(descriptor
& 1) ||
3134 (!(descriptor
& 2) && (level
== 3))) {
3135 /* Invalid, or the Reserved level 3 encoding */
3138 descaddr
= descriptor
& 0xfffffff000ULL
;
3140 if ((descriptor
& 2) && (level
< 3)) {
3141 /* Table entry. The top five bits are attributes which may
3142 * propagate down through lower levels of the table (and
3143 * which are all arranged so that 0 means "no effect", so
3144 * we can gather them up by ORing in the bits at each level).
3146 tableattrs
|= extract64(descriptor
, 59, 5);
3150 /* Block entry at level 1 or 2, or page entry at level 3.
3151 * These are basically the same thing, although the number
3152 * of bits we pull in from the vaddr varies.
3154 page_size
= (1 << (39 - (9 * level
)));
3155 descaddr
|= (address
& (page_size
- 1));
3156 /* Extract attributes from the descriptor and merge with table attrs */
3157 attrs
= extract64(descriptor
, 2, 10)
3158 | (extract64(descriptor
, 52, 12) << 10);
3159 attrs
|= extract32(tableattrs
, 0, 2) << 11; /* XN, PXN */
3160 attrs
|= extract32(tableattrs
, 3, 1) << 5; /* APTable[1] => AP[2] */
3161 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
3162 * means "force PL1 access only", which means forcing AP[1] to 0.
3164 if (extract32(tableattrs
, 2, 1)) {
3167 /* Since we're always in the Non-secure state, NSTable is ignored. */
3170 /* Here descaddr is the final physical address, and attributes
3173 fault_type
= access_fault
;
3174 if ((attrs
& (1 << 8)) == 0) {
3178 fault_type
= permission_fault
;
3179 if (is_user
&& !(attrs
& (1 << 4))) {
3180 /* Unprivileged access not enabled */
3183 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
3184 if (attrs
& (1 << 12) || (!is_user
&& (attrs
& (1 << 11)))) {
3186 if (access_type
== 2) {
3189 *prot
&= ~PAGE_EXEC
;
3191 if (attrs
& (1 << 5)) {
3192 /* Write access forbidden */
3193 if (access_type
== 1) {
3196 *prot
&= ~PAGE_WRITE
;
3199 *phys_ptr
= descaddr
;
3200 *page_size_ptr
= page_size
;
3204 /* Long-descriptor format IFSR/DFSR value */
3205 return (1 << 9) | (fault_type
<< 2) | level
;
3208 static int get_phys_addr_mpu(CPUARMState
*env
, uint32_t address
,
3209 int access_type
, int is_user
,
3210 hwaddr
*phys_ptr
, int *prot
)
3216 *phys_ptr
= address
;
3217 for (n
= 7; n
>= 0; n
--) {
3218 base
= env
->cp15
.c6_region
[n
];
3219 if ((base
& 1) == 0)
3221 mask
= 1 << ((base
>> 1) & 0x1f);
3222 /* Keep this shift separate from the above to avoid an
3223 (undefined) << 32. */
3224 mask
= (mask
<< 1) - 1;
3225 if (((base
^ address
) & ~mask
) == 0)
3231 if (access_type
== 2) {
3232 mask
= env
->cp15
.c5_insn
;
3234 mask
= env
->cp15
.c5_data
;
3236 mask
= (mask
>> (n
* 4)) & 0xf;
3243 *prot
= PAGE_READ
| PAGE_WRITE
;
3248 *prot
|= PAGE_WRITE
;
3251 *prot
= PAGE_READ
| PAGE_WRITE
;
3262 /* Bad permission. */
3269 /* get_phys_addr - get the physical address for this virtual address
3271 * Find the physical address corresponding to the given virtual address,
3272 * by doing a translation table walk on MMU based systems or using the
3273 * MPU state on MPU based systems.
3275 * Returns 0 if the translation was successful. Otherwise, phys_ptr,
3276 * prot and page_size are not filled in, and the return value provides
3277 * information on why the translation aborted, in the format of a
3278 * DFSR/IFSR fault register, with the following caveats:
3279 * * we honour the short vs long DFSR format differences.
3280 * * the WnR bit is never set (the caller must do this).
3281 * * for MPU based systems we don't bother to return a full FSR format
3285 * @address: virtual address to get physical address for
3286 * @access_type: 0 for read, 1 for write, 2 for execute
3287 * @is_user: 0 for privileged access, 1 for user
3288 * @phys_ptr: set to the physical address corresponding to the virtual address
3289 * @prot: set to the permissions for the page containing phys_ptr
3290 * @page_size: set to the size of the page containing phys_ptr
3292 static inline int get_phys_addr(CPUARMState
*env
, uint32_t address
,
3293 int access_type
, int is_user
,
3294 hwaddr
*phys_ptr
, int *prot
,
3295 target_ulong
*page_size
)
3297 /* Fast Context Switch Extension. */
3298 if (address
< 0x02000000)
3299 address
+= env
->cp15
.c13_fcse
;
3301 if ((env
->cp15
.c1_sys
& 1) == 0) {
3302 /* MMU/MPU disabled. */
3303 *phys_ptr
= address
;
3304 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
3305 *page_size
= TARGET_PAGE_SIZE
;
3307 } else if (arm_feature(env
, ARM_FEATURE_MPU
)) {
3308 *page_size
= TARGET_PAGE_SIZE
;
3309 return get_phys_addr_mpu(env
, address
, access_type
, is_user
, phys_ptr
,
3311 } else if (extended_addresses_enabled(env
)) {
3312 return get_phys_addr_lpae(env
, address
, access_type
, is_user
, phys_ptr
,
3314 } else if (env
->cp15
.c1_sys
& (1 << 23)) {
3315 return get_phys_addr_v6(env
, address
, access_type
, is_user
, phys_ptr
,
3318 return get_phys_addr_v5(env
, address
, access_type
, is_user
, phys_ptr
,
3323 int cpu_arm_handle_mmu_fault (CPUARMState
*env
, target_ulong address
,
3324 int access_type
, int mmu_idx
)
3327 target_ulong page_size
;
3331 is_user
= mmu_idx
== MMU_USER_IDX
;
3332 ret
= get_phys_addr(env
, address
, access_type
, is_user
, &phys_addr
, &prot
,
3335 /* Map a single [sub]page. */
3336 phys_addr
&= ~(hwaddr
)0x3ff;
3337 address
&= ~(uint32_t)0x3ff;
3338 tlb_set_page (env
, address
, phys_addr
, prot
, mmu_idx
, page_size
);
3342 if (access_type
== 2) {
3343 env
->cp15
.c5_insn
= ret
;
3344 env
->cp15
.c6_insn
= address
;
3345 env
->exception_index
= EXCP_PREFETCH_ABORT
;
3347 env
->cp15
.c5_data
= ret
;
3348 if (access_type
== 1 && arm_feature(env
, ARM_FEATURE_V6
))
3349 env
->cp15
.c5_data
|= (1 << 11);
3350 env
->cp15
.c6_data
= address
;
3351 env
->exception_index
= EXCP_DATA_ABORT
;
3356 hwaddr
arm_cpu_get_phys_page_debug(CPUState
*cs
, vaddr addr
)
3358 ARMCPU
*cpu
= ARM_CPU(cs
);
3360 target_ulong page_size
;
3364 ret
= get_phys_addr(&cpu
->env
, addr
, 0, 0, &phys_addr
, &prot
, &page_size
);
3373 void HELPER(set_r13_banked
)(CPUARMState
*env
, uint32_t mode
, uint32_t val
)
3375 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
3376 env
->regs
[13] = val
;
3378 env
->banked_r13
[bank_number(mode
)] = val
;
3382 uint32_t HELPER(get_r13_banked
)(CPUARMState
*env
, uint32_t mode
)
3384 if ((env
->uncached_cpsr
& CPSR_M
) == mode
) {
3385 return env
->regs
[13];
3387 return env
->banked_r13
[bank_number(mode
)];
3391 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
3395 return xpsr_read(env
) & 0xf8000000;
3397 return xpsr_read(env
) & 0xf80001ff;
3399 return xpsr_read(env
) & 0xff00fc00;
3401 return xpsr_read(env
) & 0xff00fdff;
3403 return xpsr_read(env
) & 0x000001ff;
3405 return xpsr_read(env
) & 0x0700fc00;
3407 return xpsr_read(env
) & 0x0700edff;
3409 return env
->v7m
.current_sp
? env
->v7m
.other_sp
: env
->regs
[13];
3411 return env
->v7m
.current_sp
? env
->regs
[13] : env
->v7m
.other_sp
;
3412 case 16: /* PRIMASK */
3413 return (env
->uncached_cpsr
& CPSR_I
) != 0;
3414 case 17: /* BASEPRI */
3415 case 18: /* BASEPRI_MAX */
3416 return env
->v7m
.basepri
;
3417 case 19: /* FAULTMASK */
3418 return (env
->uncached_cpsr
& CPSR_F
) != 0;
3419 case 20: /* CONTROL */
3420 return env
->v7m
.control
;
3422 /* ??? For debugging only. */
3423 cpu_abort(env
, "Unimplemented system register read (%d)\n", reg
);
3428 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
3432 xpsr_write(env
, val
, 0xf8000000);
3435 xpsr_write(env
, val
, 0xf8000000);
3438 xpsr_write(env
, val
, 0xfe00fc00);
3441 xpsr_write(env
, val
, 0xfe00fc00);
3444 /* IPSR bits are readonly. */
3447 xpsr_write(env
, val
, 0x0600fc00);
3450 xpsr_write(env
, val
, 0x0600fc00);
3453 if (env
->v7m
.current_sp
)
3454 env
->v7m
.other_sp
= val
;
3456 env
->regs
[13] = val
;
3459 if (env
->v7m
.current_sp
)
3460 env
->regs
[13] = val
;
3462 env
->v7m
.other_sp
= val
;
3464 case 16: /* PRIMASK */
3466 env
->uncached_cpsr
|= CPSR_I
;
3468 env
->uncached_cpsr
&= ~CPSR_I
;
3470 case 17: /* BASEPRI */
3471 env
->v7m
.basepri
= val
& 0xff;
3473 case 18: /* BASEPRI_MAX */
3475 if (val
!= 0 && (val
< env
->v7m
.basepri
|| env
->v7m
.basepri
== 0))
3476 env
->v7m
.basepri
= val
;
3478 case 19: /* FAULTMASK */
3480 env
->uncached_cpsr
|= CPSR_F
;
3482 env
->uncached_cpsr
&= ~CPSR_F
;
3484 case 20: /* CONTROL */
3485 env
->v7m
.control
= val
& 3;
3486 switch_v7m_sp(env
, (val
& 2) != 0);
3489 /* ??? For debugging only. */
3490 cpu_abort(env
, "Unimplemented system register write (%d)\n", reg
);
3497 /* Note that signed overflow is undefined in C. The following routines are
3498 careful to use unsigned types where modulo arithmetic is required.
3499 Failure to do so _will_ break on newer gcc. */
3501 /* Signed saturating arithmetic. */
3503 /* Perform 16-bit signed saturating addition. */
3504 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
3509 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
3518 /* Perform 8-bit signed saturating addition. */
3519 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
3524 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
3533 /* Perform 16-bit signed saturating subtraction. */
3534 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
3539 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
3548 /* Perform 8-bit signed saturating subtraction. */
3549 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
3554 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
3563 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
3564 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
3565 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
3566 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
3569 #include "op_addsub.h"
3571 /* Unsigned saturating arithmetic. */
3572 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
3581 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
3589 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
3598 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
3606 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
3607 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
3608 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
3609 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
3612 #include "op_addsub.h"
3614 /* Signed modulo arithmetic. */
3615 #define SARITH16(a, b, n, op) do { \
3617 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
3618 RESULT(sum, n, 16); \
3620 ge |= 3 << (n * 2); \
3623 #define SARITH8(a, b, n, op) do { \
3625 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
3626 RESULT(sum, n, 8); \
3632 #define ADD16(a, b, n) SARITH16(a, b, n, +)
3633 #define SUB16(a, b, n) SARITH16(a, b, n, -)
3634 #define ADD8(a, b, n) SARITH8(a, b, n, +)
3635 #define SUB8(a, b, n) SARITH8(a, b, n, -)
3639 #include "op_addsub.h"
3641 /* Unsigned modulo arithmetic. */
3642 #define ADD16(a, b, n) do { \
3644 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
3645 RESULT(sum, n, 16); \
3646 if ((sum >> 16) == 1) \
3647 ge |= 3 << (n * 2); \
3650 #define ADD8(a, b, n) do { \
3652 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
3653 RESULT(sum, n, 8); \
3654 if ((sum >> 8) == 1) \
3658 #define SUB16(a, b, n) do { \
3660 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
3661 RESULT(sum, n, 16); \
3662 if ((sum >> 16) == 0) \
3663 ge |= 3 << (n * 2); \
3666 #define SUB8(a, b, n) do { \
3668 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
3669 RESULT(sum, n, 8); \
3670 if ((sum >> 8) == 0) \
3677 #include "op_addsub.h"
3679 /* Halved signed arithmetic. */
3680 #define ADD16(a, b, n) \
3681 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
3682 #define SUB16(a, b, n) \
3683 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
3684 #define ADD8(a, b, n) \
3685 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
3686 #define SUB8(a, b, n) \
3687 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
3690 #include "op_addsub.h"
3692 /* Halved unsigned arithmetic. */
3693 #define ADD16(a, b, n) \
3694 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
3695 #define SUB16(a, b, n) \
3696 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
3697 #define ADD8(a, b, n) \
3698 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
3699 #define SUB8(a, b, n) \
3700 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
3703 #include "op_addsub.h"
3705 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
3713 /* Unsigned sum of absolute byte differences. */
3714 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
3717 sum
= do_usad(a
, b
);
3718 sum
+= do_usad(a
>> 8, b
>> 8);
3719 sum
+= do_usad(a
>> 16, b
>>16);
3720 sum
+= do_usad(a
>> 24, b
>> 24);
3724 /* For ARMv6 SEL instruction. */
3725 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
3738 return (a
& mask
) | (b
& ~mask
);
3741 /* VFP support. We follow the convention used for VFP instructions:
3742 Single precision routines have a "s" suffix, double precision a
3745 /* Convert host exception flags to vfp form. */
3746 static inline int vfp_exceptbits_from_host(int host_bits
)
3748 int target_bits
= 0;
3750 if (host_bits
& float_flag_invalid
)
3752 if (host_bits
& float_flag_divbyzero
)
3754 if (host_bits
& float_flag_overflow
)
3756 if (host_bits
& (float_flag_underflow
| float_flag_output_denormal
))
3758 if (host_bits
& float_flag_inexact
)
3759 target_bits
|= 0x10;
3760 if (host_bits
& float_flag_input_denormal
)
3761 target_bits
|= 0x80;
3765 uint32_t HELPER(vfp_get_fpscr
)(CPUARMState
*env
)
3770 fpscr
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & 0xffc8ffff)
3771 | (env
->vfp
.vec_len
<< 16)
3772 | (env
->vfp
.vec_stride
<< 20);
3773 i
= get_float_exception_flags(&env
->vfp
.fp_status
);
3774 i
|= get_float_exception_flags(&env
->vfp
.standard_fp_status
);
3775 fpscr
|= vfp_exceptbits_from_host(i
);
3779 uint32_t vfp_get_fpscr(CPUARMState
*env
)
3781 return HELPER(vfp_get_fpscr
)(env
);
3784 /* Convert vfp exception flags to target form. */
3785 static inline int vfp_exceptbits_to_host(int target_bits
)
3789 if (target_bits
& 1)
3790 host_bits
|= float_flag_invalid
;
3791 if (target_bits
& 2)
3792 host_bits
|= float_flag_divbyzero
;
3793 if (target_bits
& 4)
3794 host_bits
|= float_flag_overflow
;
3795 if (target_bits
& 8)
3796 host_bits
|= float_flag_underflow
;
3797 if (target_bits
& 0x10)
3798 host_bits
|= float_flag_inexact
;
3799 if (target_bits
& 0x80)
3800 host_bits
|= float_flag_input_denormal
;
3804 void HELPER(vfp_set_fpscr
)(CPUARMState
*env
, uint32_t val
)
3809 changed
= env
->vfp
.xregs
[ARM_VFP_FPSCR
];
3810 env
->vfp
.xregs
[ARM_VFP_FPSCR
] = (val
& 0xffc8ffff);
3811 env
->vfp
.vec_len
= (val
>> 16) & 7;
3812 env
->vfp
.vec_stride
= (val
>> 20) & 3;
3815 if (changed
& (3 << 22)) {
3816 i
= (val
>> 22) & 3;
3819 i
= float_round_nearest_even
;
3825 i
= float_round_down
;
3828 i
= float_round_to_zero
;
3831 set_float_rounding_mode(i
, &env
->vfp
.fp_status
);
3833 if (changed
& (1 << 24)) {
3834 set_flush_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
3835 set_flush_inputs_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
3837 if (changed
& (1 << 25))
3838 set_default_nan_mode((val
& (1 << 25)) != 0, &env
->vfp
.fp_status
);
3840 i
= vfp_exceptbits_to_host(val
);
3841 set_float_exception_flags(i
, &env
->vfp
.fp_status
);
3842 set_float_exception_flags(0, &env
->vfp
.standard_fp_status
);
3845 void vfp_set_fpscr(CPUARMState
*env
, uint32_t val
)
3847 HELPER(vfp_set_fpscr
)(env
, val
);
3850 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
3852 #define VFP_BINOP(name) \
3853 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
3855 float_status *fpst = fpstp; \
3856 return float32_ ## name(a, b, fpst); \
3858 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
3860 float_status *fpst = fpstp; \
3861 return float64_ ## name(a, b, fpst); \
3873 float32
VFP_HELPER(neg
, s
)(float32 a
)
3875 return float32_chs(a
);
3878 float64
VFP_HELPER(neg
, d
)(float64 a
)
3880 return float64_chs(a
);
3883 float32
VFP_HELPER(abs
, s
)(float32 a
)
3885 return float32_abs(a
);
3888 float64
VFP_HELPER(abs
, d
)(float64 a
)
3890 return float64_abs(a
);
3893 float32
VFP_HELPER(sqrt
, s
)(float32 a
, CPUARMState
*env
)
3895 return float32_sqrt(a
, &env
->vfp
.fp_status
);
3898 float64
VFP_HELPER(sqrt
, d
)(float64 a
, CPUARMState
*env
)
3900 return float64_sqrt(a
, &env
->vfp
.fp_status
);
3903 /* XXX: check quiet/signaling case */
3904 #define DO_VFP_cmp(p, type) \
3905 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
3908 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
3909 case 0: flags = 0x6; break; \
3910 case -1: flags = 0x8; break; \
3911 case 1: flags = 0x2; break; \
3912 default: case 2: flags = 0x3; break; \
3914 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3915 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3917 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
3920 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
3921 case 0: flags = 0x6; break; \
3922 case -1: flags = 0x8; break; \
3923 case 1: flags = 0x2; break; \
3924 default: case 2: flags = 0x3; break; \
3926 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
3927 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
3929 DO_VFP_cmp(s
, float32
)
3930 DO_VFP_cmp(d
, float64
)
3933 /* Integer to float and float to integer conversions */
3935 #define CONV_ITOF(name, fsz, sign) \
3936 float##fsz HELPER(name)(uint32_t x, void *fpstp) \
3938 float_status *fpst = fpstp; \
3939 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
3942 #define CONV_FTOI(name, fsz, sign, round) \
3943 uint32_t HELPER(name)(float##fsz x, void *fpstp) \
3945 float_status *fpst = fpstp; \
3946 if (float##fsz##_is_any_nan(x)) { \
3947 float_raise(float_flag_invalid, fpst); \
3950 return float##fsz##_to_##sign##int32##round(x, fpst); \
3953 #define FLOAT_CONVS(name, p, fsz, sign) \
3954 CONV_ITOF(vfp_##name##to##p, fsz, sign) \
3955 CONV_FTOI(vfp_to##name##p, fsz, sign, ) \
3956 CONV_FTOI(vfp_to##name##z##p, fsz, sign, _round_to_zero)
3958 FLOAT_CONVS(si
, s
, 32, )
3959 FLOAT_CONVS(si
, d
, 64, )
3960 FLOAT_CONVS(ui
, s
, 32, u
)
3961 FLOAT_CONVS(ui
, d
, 64, u
)
3967 /* floating point conversion */
3968 float64
VFP_HELPER(fcvtd
, s
)(float32 x
, CPUARMState
*env
)
3970 float64 r
= float32_to_float64(x
, &env
->vfp
.fp_status
);
3971 /* ARM requires that S<->D conversion of any kind of NaN generates
3972 * a quiet NaN by forcing the most significant frac bit to 1.
3974 return float64_maybe_silence_nan(r
);
3977 float32
VFP_HELPER(fcvts
, d
)(float64 x
, CPUARMState
*env
)
3979 float32 r
= float64_to_float32(x
, &env
->vfp
.fp_status
);
3980 /* ARM requires that S<->D conversion of any kind of NaN generates
3981 * a quiet NaN by forcing the most significant frac bit to 1.
3983 return float32_maybe_silence_nan(r
);
3986 /* VFP3 fixed point conversion. */
3987 #define VFP_CONV_FIX(name, p, fsz, itype, sign) \
3988 float##fsz HELPER(vfp_##name##to##p)(uint##fsz##_t x, uint32_t shift, \
3991 float_status *fpst = fpstp; \
3993 tmp = sign##int32_to_##float##fsz((itype##_t)x, fpst); \
3994 return float##fsz##_scalbn(tmp, -(int)shift, fpst); \
3996 uint##fsz##_t HELPER(vfp_to##name##p)(float##fsz x, uint32_t shift, \
3999 float_status *fpst = fpstp; \
4001 if (float##fsz##_is_any_nan(x)) { \
4002 float_raise(float_flag_invalid, fpst); \
4005 tmp = float##fsz##_scalbn(x, shift, fpst); \
4006 return float##fsz##_to_##itype##_round_to_zero(tmp, fpst); \
4009 VFP_CONV_FIX(sh
, d
, 64, int16
, )
4010 VFP_CONV_FIX(sl
, d
, 64, int32
, )
4011 VFP_CONV_FIX(uh
, d
, 64, uint16
, u
)
4012 VFP_CONV_FIX(ul
, d
, 64, uint32
, u
)
4013 VFP_CONV_FIX(sh
, s
, 32, int16
, )
4014 VFP_CONV_FIX(sl
, s
, 32, int32
, )
4015 VFP_CONV_FIX(uh
, s
, 32, uint16
, u
)
4016 VFP_CONV_FIX(ul
, s
, 32, uint32
, u
)
4019 /* Half precision conversions. */
4020 static float32
do_fcvt_f16_to_f32(uint32_t a
, CPUARMState
*env
, float_status
*s
)
4022 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
4023 float32 r
= float16_to_float32(make_float16(a
), ieee
, s
);
4025 return float32_maybe_silence_nan(r
);
4030 static uint32_t do_fcvt_f32_to_f16(float32 a
, CPUARMState
*env
, float_status
*s
)
4032 int ieee
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & (1 << 26)) == 0;
4033 float16 r
= float32_to_float16(a
, ieee
, s
);
4035 r
= float16_maybe_silence_nan(r
);
4037 return float16_val(r
);
4040 float32
HELPER(neon_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
4042 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.standard_fp_status
);
4045 uint32_t HELPER(neon_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
4047 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.standard_fp_status
);
4050 float32
HELPER(vfp_fcvt_f16_to_f32
)(uint32_t a
, CPUARMState
*env
)
4052 return do_fcvt_f16_to_f32(a
, env
, &env
->vfp
.fp_status
);
4055 uint32_t HELPER(vfp_fcvt_f32_to_f16
)(float32 a
, CPUARMState
*env
)
4057 return do_fcvt_f32_to_f16(a
, env
, &env
->vfp
.fp_status
);
4060 #define float32_two make_float32(0x40000000)
4061 #define float32_three make_float32(0x40400000)
4062 #define float32_one_point_five make_float32(0x3fc00000)
4064 float32
HELPER(recps_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
4066 float_status
*s
= &env
->vfp
.standard_fp_status
;
4067 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
4068 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
4069 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
4070 float_raise(float_flag_input_denormal
, s
);
4074 return float32_sub(float32_two
, float32_mul(a
, b
, s
), s
);
4077 float32
HELPER(rsqrts_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
4079 float_status
*s
= &env
->vfp
.standard_fp_status
;
4081 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
4082 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
4083 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
4084 float_raise(float_flag_input_denormal
, s
);
4086 return float32_one_point_five
;
4088 product
= float32_mul(a
, b
, s
);
4089 return float32_div(float32_sub(float32_three
, product
, s
), float32_two
, s
);
4094 /* Constants 256 and 512 are used in some helpers; we avoid relying on
4095 * int->float conversions at run-time. */
4096 #define float64_256 make_float64(0x4070000000000000LL)
4097 #define float64_512 make_float64(0x4080000000000000LL)
4099 /* The algorithm that must be used to calculate the estimate
4100 * is specified by the ARM ARM.
4102 static float64
recip_estimate(float64 a
, CPUARMState
*env
)
4104 /* These calculations mustn't set any fp exception flags,
4105 * so we use a local copy of the fp_status.
4107 float_status dummy_status
= env
->vfp
.standard_fp_status
;
4108 float_status
*s
= &dummy_status
;
4109 /* q = (int)(a * 512.0) */
4110 float64 q
= float64_mul(float64_512
, a
, s
);
4111 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
4113 /* r = 1.0 / (((double)q + 0.5) / 512.0) */
4114 q
= int64_to_float64(q_int
, s
);
4115 q
= float64_add(q
, float64_half
, s
);
4116 q
= float64_div(q
, float64_512
, s
);
4117 q
= float64_div(float64_one
, q
, s
);
4119 /* s = (int)(256.0 * r + 0.5) */
4120 q
= float64_mul(q
, float64_256
, s
);
4121 q
= float64_add(q
, float64_half
, s
);
4122 q_int
= float64_to_int64_round_to_zero(q
, s
);
4124 /* return (double)s / 256.0 */
4125 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
4128 float32
HELPER(recpe_f32
)(float32 a
, CPUARMState
*env
)
4130 float_status
*s
= &env
->vfp
.standard_fp_status
;
4132 uint32_t val32
= float32_val(a
);
4135 int a_exp
= (val32
& 0x7f800000) >> 23;
4136 int sign
= val32
& 0x80000000;
4138 if (float32_is_any_nan(a
)) {
4139 if (float32_is_signaling_nan(a
)) {
4140 float_raise(float_flag_invalid
, s
);
4142 return float32_default_nan
;
4143 } else if (float32_is_infinity(a
)) {
4144 return float32_set_sign(float32_zero
, float32_is_neg(a
));
4145 } else if (float32_is_zero_or_denormal(a
)) {
4146 if (!float32_is_zero(a
)) {
4147 float_raise(float_flag_input_denormal
, s
);
4149 float_raise(float_flag_divbyzero
, s
);
4150 return float32_set_sign(float32_infinity
, float32_is_neg(a
));
4151 } else if (a_exp
>= 253) {
4152 float_raise(float_flag_underflow
, s
);
4153 return float32_set_sign(float32_zero
, float32_is_neg(a
));
4156 f64
= make_float64((0x3feULL
<< 52)
4157 | ((int64_t)(val32
& 0x7fffff) << 29));
4159 result_exp
= 253 - a_exp
;
4161 f64
= recip_estimate(f64
, env
);
4164 | ((result_exp
& 0xff) << 23)
4165 | ((float64_val(f64
) >> 29) & 0x7fffff);
4166 return make_float32(val32
);
4169 /* The algorithm that must be used to calculate the estimate
4170 * is specified by the ARM ARM.
4172 static float64
recip_sqrt_estimate(float64 a
, CPUARMState
*env
)
4174 /* These calculations mustn't set any fp exception flags,
4175 * so we use a local copy of the fp_status.
4177 float_status dummy_status
= env
->vfp
.standard_fp_status
;
4178 float_status
*s
= &dummy_status
;
4182 if (float64_lt(a
, float64_half
, s
)) {
4183 /* range 0.25 <= a < 0.5 */
4185 /* a in units of 1/512 rounded down */
4186 /* q0 = (int)(a * 512.0); */
4187 q
= float64_mul(float64_512
, a
, s
);
4188 q_int
= float64_to_int64_round_to_zero(q
, s
);
4190 /* reciprocal root r */
4191 /* r = 1.0 / sqrt(((double)q0 + 0.5) / 512.0); */
4192 q
= int64_to_float64(q_int
, s
);
4193 q
= float64_add(q
, float64_half
, s
);
4194 q
= float64_div(q
, float64_512
, s
);
4195 q
= float64_sqrt(q
, s
);
4196 q
= float64_div(float64_one
, q
, s
);
4198 /* range 0.5 <= a < 1.0 */
4200 /* a in units of 1/256 rounded down */
4201 /* q1 = (int)(a * 256.0); */
4202 q
= float64_mul(float64_256
, a
, s
);
4203 int64_t q_int
= float64_to_int64_round_to_zero(q
, s
);
4205 /* reciprocal root r */
4206 /* r = 1.0 /sqrt(((double)q1 + 0.5) / 256); */
4207 q
= int64_to_float64(q_int
, s
);
4208 q
= float64_add(q
, float64_half
, s
);
4209 q
= float64_div(q
, float64_256
, s
);
4210 q
= float64_sqrt(q
, s
);
4211 q
= float64_div(float64_one
, q
, s
);
4213 /* r in units of 1/256 rounded to nearest */
4214 /* s = (int)(256.0 * r + 0.5); */
4216 q
= float64_mul(q
, float64_256
,s
);
4217 q
= float64_add(q
, float64_half
, s
);
4218 q_int
= float64_to_int64_round_to_zero(q
, s
);
4220 /* return (double)s / 256.0;*/
4221 return float64_div(int64_to_float64(q_int
, s
), float64_256
, s
);
4224 float32
HELPER(rsqrte_f32
)(float32 a
, CPUARMState
*env
)
4226 float_status
*s
= &env
->vfp
.standard_fp_status
;
4232 val
= float32_val(a
);
4234 if (float32_is_any_nan(a
)) {
4235 if (float32_is_signaling_nan(a
)) {
4236 float_raise(float_flag_invalid
, s
);
4238 return float32_default_nan
;
4239 } else if (float32_is_zero_or_denormal(a
)) {
4240 if (!float32_is_zero(a
)) {
4241 float_raise(float_flag_input_denormal
, s
);
4243 float_raise(float_flag_divbyzero
, s
);
4244 return float32_set_sign(float32_infinity
, float32_is_neg(a
));
4245 } else if (float32_is_neg(a
)) {
4246 float_raise(float_flag_invalid
, s
);
4247 return float32_default_nan
;
4248 } else if (float32_is_infinity(a
)) {
4249 return float32_zero
;
4252 /* Normalize to a double-precision value between 0.25 and 1.0,
4253 * preserving the parity of the exponent. */
4254 if ((val
& 0x800000) == 0) {
4255 f64
= make_float64(((uint64_t)(val
& 0x80000000) << 32)
4257 | ((uint64_t)(val
& 0x7fffff) << 29));
4259 f64
= make_float64(((uint64_t)(val
& 0x80000000) << 32)
4261 | ((uint64_t)(val
& 0x7fffff) << 29));
4264 result_exp
= (380 - ((val
& 0x7f800000) >> 23)) / 2;
4266 f64
= recip_sqrt_estimate(f64
, env
);
4268 val64
= float64_val(f64
);
4270 val
= ((result_exp
& 0xff) << 23)
4271 | ((val64
>> 29) & 0x7fffff);
4272 return make_float32(val
);
4275 uint32_t HELPER(recpe_u32
)(uint32_t a
, CPUARMState
*env
)
4279 if ((a
& 0x80000000) == 0) {
4283 f64
= make_float64((0x3feULL
<< 52)
4284 | ((int64_t)(a
& 0x7fffffff) << 21));
4286 f64
= recip_estimate (f64
, env
);
4288 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
4291 uint32_t HELPER(rsqrte_u32
)(uint32_t a
, CPUARMState
*env
)
4295 if ((a
& 0xc0000000) == 0) {
4299 if (a
& 0x80000000) {
4300 f64
= make_float64((0x3feULL
<< 52)
4301 | ((uint64_t)(a
& 0x7fffffff) << 21));
4302 } else { /* bits 31-30 == '01' */
4303 f64
= make_float64((0x3fdULL
<< 52)
4304 | ((uint64_t)(a
& 0x3fffffff) << 22));
4307 f64
= recip_sqrt_estimate(f64
, env
);
4309 return 0x80000000 | ((float64_val(f64
) >> 21) & 0x7fffffff);
4312 /* VFPv4 fused multiply-accumulate */
4313 float32
VFP_HELPER(muladd
, s
)(float32 a
, float32 b
, float32 c
, void *fpstp
)
4315 float_status
*fpst
= fpstp
;
4316 return float32_muladd(a
, b
, c
, 0, fpst
);
4319 float64
VFP_HELPER(muladd
, d
)(float64 a
, float64 b
, float64 c
, void *fpstp
)
4321 float_status
*fpst
= fpstp
;
4322 return float64_muladd(a
, b
, c
, 0, fpst
);