target/ppc: Fold ci_large_pages flag into PPCHash64Options
[qemu.git] / hw / ppc / spapr.c
blobabf38c62e81e265c6e7650c33b6d1d532eb9a961
1 /*
2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
4 * Copyright (c) 2004-2007 Fabrice Bellard
5 * Copyright (c) 2007 Jocelyn Mayer
6 * Copyright (c) 2010 David Gibson, IBM Corporation.
8 * Permission is hereby granted, free of charge, to any person obtaining a copy
9 * of this software and associated documentation files (the "Software"), to deal
10 * in the Software without restriction, including without limitation the rights
11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12 * copies of the Software, and to permit persons to whom the Software is
13 * furnished to do so, subject to the following conditions:
15 * The above copyright notice and this permission notice shall be included in
16 * all copies or substantial portions of the Software.
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 * THE SOFTWARE.
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "hw/hw.h"
33 #include "qemu/log.h"
34 #include "hw/fw-path-provider.h"
35 #include "elf.h"
36 #include "net/net.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/block-backend.h"
39 #include "sysemu/cpus.h"
40 #include "sysemu/hw_accel.h"
41 #include "kvm_ppc.h"
42 #include "migration/misc.h"
43 #include "migration/global_state.h"
44 #include "migration/register.h"
45 #include "mmu-hash64.h"
46 #include "mmu-book3s-v3.h"
47 #include "cpu-models.h"
48 #include "qom/cpu.h"
50 #include "hw/boards.h"
51 #include "hw/ppc/ppc.h"
52 #include "hw/loader.h"
54 #include "hw/ppc/fdt.h"
55 #include "hw/ppc/spapr.h"
56 #include "hw/ppc/spapr_vio.h"
57 #include "hw/pci-host/spapr.h"
58 #include "hw/ppc/xics.h"
59 #include "hw/pci/msi.h"
61 #include "hw/pci/pci.h"
62 #include "hw/scsi/scsi.h"
63 #include "hw/virtio/virtio-scsi.h"
64 #include "hw/virtio/vhost-scsi-common.h"
66 #include "exec/address-spaces.h"
67 #include "hw/usb.h"
68 #include "qemu/config-file.h"
69 #include "qemu/error-report.h"
70 #include "trace.h"
71 #include "hw/nmi.h"
72 #include "hw/intc/intc.h"
74 #include "hw/compat.h"
75 #include "qemu/cutils.h"
76 #include "hw/ppc/spapr_cpu_core.h"
78 #include <libfdt.h>
80 /* SLOF memory layout:
82 * SLOF raw image loaded at 0, copies its romfs right below the flat
83 * device-tree, then position SLOF itself 31M below that
85 * So we set FW_OVERHEAD to 40MB which should account for all of that
86 * and more
88 * We load our kernel at 4M, leaving space for SLOF initial image
90 #define FDT_MAX_SIZE 0x100000
91 #define RTAS_MAX_SIZE 0x10000
92 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */
93 #define FW_MAX_SIZE 0x400000
94 #define FW_FILE_NAME "slof.bin"
95 #define FW_OVERHEAD 0x2800000
96 #define KERNEL_LOAD_ADDR FW_MAX_SIZE
98 #define MIN_RMA_SLOF 128UL
100 #define PHANDLE_XICP 0x00001111
102 /* These two functions implement the VCPU id numbering: one to compute them
103 * all and one to identify thread 0 of a VCORE. Any change to the first one
104 * is likely to have an impact on the second one, so let's keep them close.
106 static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index)
108 assert(spapr->vsmt);
109 return
110 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
112 static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr,
113 PowerPCCPU *cpu)
115 assert(spapr->vsmt);
116 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
119 static ICSState *spapr_ics_create(sPAPRMachineState *spapr,
120 const char *type_ics,
121 int nr_irqs, Error **errp)
123 Error *local_err = NULL;
124 Object *obj;
126 obj = object_new(type_ics);
127 object_property_add_child(OBJECT(spapr), "ics", obj, &error_abort);
128 object_property_add_const_link(obj, ICS_PROP_XICS, OBJECT(spapr),
129 &error_abort);
130 object_property_set_int(obj, nr_irqs, "nr-irqs", &local_err);
131 if (local_err) {
132 goto error;
134 object_property_set_bool(obj, true, "realized", &local_err);
135 if (local_err) {
136 goto error;
139 return ICS_SIMPLE(obj);
141 error:
142 error_propagate(errp, local_err);
143 return NULL;
146 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
148 /* Dummy entries correspond to unused ICPState objects in older QEMUs,
149 * and newer QEMUs don't even have them. In both cases, we don't want
150 * to send anything on the wire.
152 return false;
155 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
156 .name = "icp/server",
157 .version_id = 1,
158 .minimum_version_id = 1,
159 .needed = pre_2_10_vmstate_dummy_icp_needed,
160 .fields = (VMStateField[]) {
161 VMSTATE_UNUSED(4), /* uint32_t xirr */
162 VMSTATE_UNUSED(1), /* uint8_t pending_priority */
163 VMSTATE_UNUSED(1), /* uint8_t mfrr */
164 VMSTATE_END_OF_LIST()
168 static void pre_2_10_vmstate_register_dummy_icp(int i)
170 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
171 (void *)(uintptr_t) i);
174 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
176 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
177 (void *)(uintptr_t) i);
180 static int xics_max_server_number(sPAPRMachineState *spapr)
182 assert(spapr->vsmt);
183 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
186 static void xics_system_init(MachineState *machine, int nr_irqs, Error **errp)
188 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
190 if (kvm_enabled()) {
191 if (machine_kernel_irqchip_allowed(machine) &&
192 !xics_kvm_init(spapr, errp)) {
193 spapr->icp_type = TYPE_KVM_ICP;
194 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_KVM, nr_irqs, errp);
196 if (machine_kernel_irqchip_required(machine) && !spapr->ics) {
197 error_prepend(errp, "kernel_irqchip requested but unavailable: ");
198 return;
202 if (!spapr->ics) {
203 xics_spapr_init(spapr);
204 spapr->icp_type = TYPE_ICP;
205 spapr->ics = spapr_ics_create(spapr, TYPE_ICS_SIMPLE, nr_irqs, errp);
206 if (!spapr->ics) {
207 return;
212 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
213 int smt_threads)
215 int i, ret = 0;
216 uint32_t servers_prop[smt_threads];
217 uint32_t gservers_prop[smt_threads * 2];
218 int index = spapr_get_vcpu_id(cpu);
220 if (cpu->compat_pvr) {
221 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
222 if (ret < 0) {
223 return ret;
227 /* Build interrupt servers and gservers properties */
228 for (i = 0; i < smt_threads; i++) {
229 servers_prop[i] = cpu_to_be32(index + i);
230 /* Hack, direct the group queues back to cpu 0 */
231 gservers_prop[i*2] = cpu_to_be32(index + i);
232 gservers_prop[i*2 + 1] = 0;
234 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
235 servers_prop, sizeof(servers_prop));
236 if (ret < 0) {
237 return ret;
239 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
240 gservers_prop, sizeof(gservers_prop));
242 return ret;
245 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
247 int index = spapr_get_vcpu_id(cpu);
248 uint32_t associativity[] = {cpu_to_be32(0x5),
249 cpu_to_be32(0x0),
250 cpu_to_be32(0x0),
251 cpu_to_be32(0x0),
252 cpu_to_be32(cpu->node_id),
253 cpu_to_be32(index)};
255 /* Advertise NUMA via ibm,associativity */
256 return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
257 sizeof(associativity));
260 /* Populate the "ibm,pa-features" property */
261 static void spapr_populate_pa_features(sPAPRMachineState *spapr,
262 PowerPCCPU *cpu,
263 void *fdt, int offset,
264 bool legacy_guest)
266 uint8_t pa_features_206[] = { 6, 0,
267 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
268 uint8_t pa_features_207[] = { 24, 0,
269 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
270 0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
271 0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
272 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
273 uint8_t pa_features_300[] = { 66, 0,
274 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
275 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
276 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
277 /* 6: DS207 */
278 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
279 /* 16: Vector */
280 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
281 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
282 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
283 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
284 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
285 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
286 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
287 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
288 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
289 /* 42: PM, 44: PC RA, 46: SC vec'd */
290 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
291 /* 48: SIMD, 50: QP BFP, 52: String */
292 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
293 /* 54: DecFP, 56: DecI, 58: SHA */
294 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
295 /* 60: NM atomic, 62: RNG */
296 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
298 uint8_t *pa_features = NULL;
299 size_t pa_size;
301 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
302 pa_features = pa_features_206;
303 pa_size = sizeof(pa_features_206);
305 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
306 pa_features = pa_features_207;
307 pa_size = sizeof(pa_features_207);
309 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
310 pa_features = pa_features_300;
311 pa_size = sizeof(pa_features_300);
313 if (!pa_features) {
314 return;
317 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
319 * Note: we keep CI large pages off by default because a 64K capable
320 * guest provisioned with large pages might otherwise try to map a qemu
321 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
322 * even if that qemu runs on a 4k host.
323 * We dd this bit back here if we are confident this is not an issue
325 pa_features[3] |= 0x20;
327 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
328 pa_features[24] |= 0x80; /* Transactional memory support */
330 if (legacy_guest && pa_size > 40) {
331 /* Workaround for broken kernels that attempt (guest) radix
332 * mode when they can't handle it, if they see the radix bit set
333 * in pa-features. So hide it from them. */
334 pa_features[40 + 2] &= ~0x80; /* Radix MMU */
337 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
340 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
342 int ret = 0, offset, cpus_offset;
343 CPUState *cs;
344 char cpu_model[32];
345 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
347 CPU_FOREACH(cs) {
348 PowerPCCPU *cpu = POWERPC_CPU(cs);
349 DeviceClass *dc = DEVICE_GET_CLASS(cs);
350 int index = spapr_get_vcpu_id(cpu);
351 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
353 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
354 continue;
357 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
359 cpus_offset = fdt_path_offset(fdt, "/cpus");
360 if (cpus_offset < 0) {
361 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
362 if (cpus_offset < 0) {
363 return cpus_offset;
366 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
367 if (offset < 0) {
368 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
369 if (offset < 0) {
370 return offset;
374 ret = fdt_setprop(fdt, offset, "ibm,pft-size",
375 pft_size_prop, sizeof(pft_size_prop));
376 if (ret < 0) {
377 return ret;
380 if (nb_numa_nodes > 1) {
381 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
382 if (ret < 0) {
383 return ret;
387 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
388 if (ret < 0) {
389 return ret;
392 spapr_populate_pa_features(spapr, cpu, fdt, offset,
393 spapr->cas_legacy_guest_workaround);
395 return ret;
398 static hwaddr spapr_node0_size(MachineState *machine)
400 if (nb_numa_nodes) {
401 int i;
402 for (i = 0; i < nb_numa_nodes; ++i) {
403 if (numa_info[i].node_mem) {
404 return MIN(pow2floor(numa_info[i].node_mem),
405 machine->ram_size);
409 return machine->ram_size;
412 static void add_str(GString *s, const gchar *s1)
414 g_string_append_len(s, s1, strlen(s1) + 1);
417 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
418 hwaddr size)
420 uint32_t associativity[] = {
421 cpu_to_be32(0x4), /* length */
422 cpu_to_be32(0x0), cpu_to_be32(0x0),
423 cpu_to_be32(0x0), cpu_to_be32(nodeid)
425 char mem_name[32];
426 uint64_t mem_reg_property[2];
427 int off;
429 mem_reg_property[0] = cpu_to_be64(start);
430 mem_reg_property[1] = cpu_to_be64(size);
432 sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
433 off = fdt_add_subnode(fdt, 0, mem_name);
434 _FDT(off);
435 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
436 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
437 sizeof(mem_reg_property))));
438 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
439 sizeof(associativity))));
440 return off;
443 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
445 MachineState *machine = MACHINE(spapr);
446 hwaddr mem_start, node_size;
447 int i, nb_nodes = nb_numa_nodes;
448 NodeInfo *nodes = numa_info;
449 NodeInfo ramnode;
451 /* No NUMA nodes, assume there is just one node with whole RAM */
452 if (!nb_numa_nodes) {
453 nb_nodes = 1;
454 ramnode.node_mem = machine->ram_size;
455 nodes = &ramnode;
458 for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
459 if (!nodes[i].node_mem) {
460 continue;
462 if (mem_start >= machine->ram_size) {
463 node_size = 0;
464 } else {
465 node_size = nodes[i].node_mem;
466 if (node_size > machine->ram_size - mem_start) {
467 node_size = machine->ram_size - mem_start;
470 if (!mem_start) {
471 /* spapr_machine_init() checks for rma_size <= node0_size
472 * already */
473 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
474 mem_start += spapr->rma_size;
475 node_size -= spapr->rma_size;
477 for ( ; node_size; ) {
478 hwaddr sizetmp = pow2floor(node_size);
480 /* mem_start != 0 here */
481 if (ctzl(mem_start) < ctzl(sizetmp)) {
482 sizetmp = 1ULL << ctzl(mem_start);
485 spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
486 node_size -= sizetmp;
487 mem_start += sizetmp;
491 return 0;
494 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
495 sPAPRMachineState *spapr)
497 PowerPCCPU *cpu = POWERPC_CPU(cs);
498 CPUPPCState *env = &cpu->env;
499 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
500 int index = spapr_get_vcpu_id(cpu);
501 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
502 0xffffffff, 0xffffffff};
503 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
504 : SPAPR_TIMEBASE_FREQ;
505 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
506 uint32_t page_sizes_prop[64];
507 size_t page_sizes_prop_size;
508 uint32_t vcpus_per_socket = smp_threads * smp_cores;
509 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
510 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
511 sPAPRDRConnector *drc;
512 int drc_index;
513 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
514 int i;
516 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
517 if (drc) {
518 drc_index = spapr_drc_index(drc);
519 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
522 _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
523 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
525 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
526 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
527 env->dcache_line_size)));
528 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
529 env->dcache_line_size)));
530 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
531 env->icache_line_size)));
532 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
533 env->icache_line_size)));
535 if (pcc->l1_dcache_size) {
536 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
537 pcc->l1_dcache_size)));
538 } else {
539 warn_report("Unknown L1 dcache size for cpu");
541 if (pcc->l1_icache_size) {
542 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
543 pcc->l1_icache_size)));
544 } else {
545 warn_report("Unknown L1 icache size for cpu");
548 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
549 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
550 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", env->slb_nr)));
551 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", env->slb_nr)));
552 _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
553 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
555 if (env->spr_cb[SPR_PURR].oea_read) {
556 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
559 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
560 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
561 segs, sizeof(segs))));
564 /* Advertise VSX (vector extensions) if available
565 * 1 == VMX / Altivec available
566 * 2 == VSX available
568 * Only CPUs for which we create core types in spapr_cpu_core.c
569 * are possible, and all of those have VMX */
570 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
571 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
572 } else {
573 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
576 /* Advertise DFP (Decimal Floating Point) if available
577 * 0 / no property == no DFP
578 * 1 == DFP available */
579 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
580 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
583 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
584 sizeof(page_sizes_prop));
585 if (page_sizes_prop_size) {
586 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
587 page_sizes_prop, page_sizes_prop_size)));
590 spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
592 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
593 cs->cpu_index / vcpus_per_socket)));
595 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
596 pft_size_prop, sizeof(pft_size_prop))));
598 if (nb_numa_nodes > 1) {
599 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
602 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
604 if (pcc->radix_page_info) {
605 for (i = 0; i < pcc->radix_page_info->count; i++) {
606 radix_AP_encodings[i] =
607 cpu_to_be32(pcc->radix_page_info->entries[i]);
609 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
610 radix_AP_encodings,
611 pcc->radix_page_info->count *
612 sizeof(radix_AP_encodings[0]))));
616 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
618 CPUState *cs;
619 int cpus_offset;
620 char *nodename;
622 cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
623 _FDT(cpus_offset);
624 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
625 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
628 * We walk the CPUs in reverse order to ensure that CPU DT nodes
629 * created by fdt_add_subnode() end up in the right order in FDT
630 * for the guest kernel the enumerate the CPUs correctly.
632 CPU_FOREACH_REVERSE(cs) {
633 PowerPCCPU *cpu = POWERPC_CPU(cs);
634 int index = spapr_get_vcpu_id(cpu);
635 DeviceClass *dc = DEVICE_GET_CLASS(cs);
636 int offset;
638 if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
639 continue;
642 nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
643 offset = fdt_add_subnode(fdt, cpus_offset, nodename);
644 g_free(nodename);
645 _FDT(offset);
646 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
651 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
653 MemoryDeviceInfoList *info;
655 for (info = list; info; info = info->next) {
656 MemoryDeviceInfo *value = info->value;
658 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
659 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
661 if (pcdimm_info->addr >= addr &&
662 addr < (pcdimm_info->addr + pcdimm_info->size)) {
663 return pcdimm_info->node;
668 return -1;
672 * Adds ibm,dynamic-reconfiguration-memory node.
673 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
674 * of this device tree node.
676 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
678 MachineState *machine = MACHINE(spapr);
679 int ret, i, offset;
680 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
681 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
682 uint32_t hotplug_lmb_start = spapr->hotplug_memory.base / lmb_size;
683 uint32_t nr_lmbs = (spapr->hotplug_memory.base +
684 memory_region_size(&spapr->hotplug_memory.mr)) /
685 lmb_size;
686 uint32_t *int_buf, *cur_index, buf_len;
687 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
688 MemoryDeviceInfoList *dimms = NULL;
691 * Don't create the node if there is no hotpluggable memory
693 if (machine->ram_size == machine->maxram_size) {
694 return 0;
698 * Allocate enough buffer size to fit in ibm,dynamic-memory
699 * or ibm,associativity-lookup-arrays
701 buf_len = MAX(nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1, nr_nodes * 4 + 2)
702 * sizeof(uint32_t);
703 cur_index = int_buf = g_malloc0(buf_len);
705 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
707 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
708 sizeof(prop_lmb_size));
709 if (ret < 0) {
710 goto out;
713 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
714 if (ret < 0) {
715 goto out;
718 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
719 if (ret < 0) {
720 goto out;
723 if (hotplug_lmb_start) {
724 dimms = qmp_pc_dimm_device_list();
727 /* ibm,dynamic-memory */
728 int_buf[0] = cpu_to_be32(nr_lmbs);
729 cur_index++;
730 for (i = 0; i < nr_lmbs; i++) {
731 uint64_t addr = i * lmb_size;
732 uint32_t *dynamic_memory = cur_index;
734 if (i >= hotplug_lmb_start) {
735 sPAPRDRConnector *drc;
737 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
738 g_assert(drc);
740 dynamic_memory[0] = cpu_to_be32(addr >> 32);
741 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
742 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
743 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
744 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
745 if (memory_region_present(get_system_memory(), addr)) {
746 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
747 } else {
748 dynamic_memory[5] = cpu_to_be32(0);
750 } else {
752 * LMB information for RMA, boot time RAM and gap b/n RAM and
753 * hotplug memory region -- all these are marked as reserved
754 * and as having no valid DRC.
756 dynamic_memory[0] = cpu_to_be32(addr >> 32);
757 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
758 dynamic_memory[2] = cpu_to_be32(0);
759 dynamic_memory[3] = cpu_to_be32(0); /* reserved */
760 dynamic_memory[4] = cpu_to_be32(-1);
761 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
762 SPAPR_LMB_FLAGS_DRC_INVALID);
765 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
767 qapi_free_MemoryDeviceInfoList(dimms);
768 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
769 if (ret < 0) {
770 goto out;
773 /* ibm,associativity-lookup-arrays */
774 cur_index = int_buf;
775 int_buf[0] = cpu_to_be32(nr_nodes);
776 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
777 cur_index += 2;
778 for (i = 0; i < nr_nodes; i++) {
779 uint32_t associativity[] = {
780 cpu_to_be32(0x0),
781 cpu_to_be32(0x0),
782 cpu_to_be32(0x0),
783 cpu_to_be32(i)
785 memcpy(cur_index, associativity, sizeof(associativity));
786 cur_index += 4;
788 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
789 (cur_index - int_buf) * sizeof(uint32_t));
790 out:
791 g_free(int_buf);
792 return ret;
795 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
796 sPAPROptionVector *ov5_updates)
798 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
799 int ret = 0, offset;
801 /* Generate ibm,dynamic-reconfiguration-memory node if required */
802 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
803 g_assert(smc->dr_lmb_enabled);
804 ret = spapr_populate_drconf_memory(spapr, fdt);
805 if (ret) {
806 goto out;
810 offset = fdt_path_offset(fdt, "/chosen");
811 if (offset < 0) {
812 offset = fdt_add_subnode(fdt, 0, "chosen");
813 if (offset < 0) {
814 return offset;
817 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
818 "ibm,architecture-vec-5");
820 out:
821 return ret;
824 static bool spapr_hotplugged_dev_before_cas(void)
826 Object *drc_container, *obj;
827 ObjectProperty *prop;
828 ObjectPropertyIterator iter;
830 drc_container = container_get(object_get_root(), "/dr-connector");
831 object_property_iter_init(&iter, drc_container);
832 while ((prop = object_property_iter_next(&iter))) {
833 if (!strstart(prop->type, "link<", NULL)) {
834 continue;
836 obj = object_property_get_link(drc_container, prop->name, NULL);
837 if (spapr_drc_needed(obj)) {
838 return true;
841 return false;
844 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
845 target_ulong addr, target_ulong size,
846 sPAPROptionVector *ov5_updates)
848 void *fdt, *fdt_skel;
849 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
851 if (spapr_hotplugged_dev_before_cas()) {
852 return 1;
855 if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
856 error_report("SLOF provided an unexpected CAS buffer size "
857 TARGET_FMT_lu " (min: %zu, max: %u)",
858 size, sizeof(hdr), FW_MAX_SIZE);
859 exit(EXIT_FAILURE);
862 size -= sizeof(hdr);
864 /* Create skeleton */
865 fdt_skel = g_malloc0(size);
866 _FDT((fdt_create(fdt_skel, size)));
867 _FDT((fdt_finish_reservemap(fdt_skel)));
868 _FDT((fdt_begin_node(fdt_skel, "")));
869 _FDT((fdt_end_node(fdt_skel)));
870 _FDT((fdt_finish(fdt_skel)));
871 fdt = g_malloc0(size);
872 _FDT((fdt_open_into(fdt_skel, fdt, size)));
873 g_free(fdt_skel);
875 /* Fixup cpu nodes */
876 _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
878 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
879 return -1;
882 /* Pack resulting tree */
883 _FDT((fdt_pack(fdt)));
885 if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
886 trace_spapr_cas_failed(size);
887 return -1;
890 cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
891 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
892 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
893 g_free(fdt);
895 return 0;
898 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
900 int rtas;
901 GString *hypertas = g_string_sized_new(256);
902 GString *qemu_hypertas = g_string_sized_new(256);
903 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
904 uint64_t max_hotplug_addr = spapr->hotplug_memory.base +
905 memory_region_size(&spapr->hotplug_memory.mr);
906 uint32_t lrdr_capacity[] = {
907 cpu_to_be32(max_hotplug_addr >> 32),
908 cpu_to_be32(max_hotplug_addr & 0xffffffff),
909 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
910 cpu_to_be32(max_cpus / smp_threads),
913 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
915 /* hypertas */
916 add_str(hypertas, "hcall-pft");
917 add_str(hypertas, "hcall-term");
918 add_str(hypertas, "hcall-dabr");
919 add_str(hypertas, "hcall-interrupt");
920 add_str(hypertas, "hcall-tce");
921 add_str(hypertas, "hcall-vio");
922 add_str(hypertas, "hcall-splpar");
923 add_str(hypertas, "hcall-bulk");
924 add_str(hypertas, "hcall-set-mode");
925 add_str(hypertas, "hcall-sprg0");
926 add_str(hypertas, "hcall-copy");
927 add_str(hypertas, "hcall-debug");
928 add_str(qemu_hypertas, "hcall-memop1");
930 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
931 add_str(hypertas, "hcall-multi-tce");
934 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
935 add_str(hypertas, "hcall-hpt-resize");
938 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
939 hypertas->str, hypertas->len));
940 g_string_free(hypertas, TRUE);
941 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
942 qemu_hypertas->str, qemu_hypertas->len));
943 g_string_free(qemu_hypertas, TRUE);
945 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
946 refpoints, sizeof(refpoints)));
948 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
949 RTAS_ERROR_LOG_MAX));
950 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
951 RTAS_EVENT_SCAN_RATE));
953 g_assert(msi_nonbroken);
954 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
957 * According to PAPR, rtas ibm,os-term does not guarantee a return
958 * back to the guest cpu.
960 * While an additional ibm,extended-os-term property indicates
961 * that rtas call return will always occur. Set this property.
963 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
965 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
966 lrdr_capacity, sizeof(lrdr_capacity)));
968 spapr_dt_rtas_tokens(fdt, rtas);
971 /* Prepare ibm,arch-vec-5-platform-support, which indicates the MMU features
972 * that the guest may request and thus the valid values for bytes 24..26 of
973 * option vector 5: */
974 static void spapr_dt_ov5_platform_support(void *fdt, int chosen)
976 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
978 char val[2 * 4] = {
979 23, 0x00, /* Xive mode, filled in below. */
980 24, 0x00, /* Hash/Radix, filled in below. */
981 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
982 26, 0x40, /* Radix options: GTSE == yes. */
985 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
986 first_ppc_cpu->compat_pvr)) {
987 /* If we're in a pre POWER9 compat mode then the guest should do hash */
988 val[3] = 0x00; /* Hash */
989 } else if (kvm_enabled()) {
990 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
991 val[3] = 0x80; /* OV5_MMU_BOTH */
992 } else if (kvmppc_has_cap_mmu_radix()) {
993 val[3] = 0x40; /* OV5_MMU_RADIX_300 */
994 } else {
995 val[3] = 0x00; /* Hash */
997 } else {
998 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
999 val[3] = 0xC0;
1001 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1002 val, sizeof(val)));
1005 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
1007 MachineState *machine = MACHINE(spapr);
1008 int chosen;
1009 const char *boot_device = machine->boot_order;
1010 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1011 size_t cb = 0;
1012 char *bootlist = get_boot_devices_list(&cb, true);
1014 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1016 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1017 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1018 spapr->initrd_base));
1019 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1020 spapr->initrd_base + spapr->initrd_size));
1022 if (spapr->kernel_size) {
1023 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1024 cpu_to_be64(spapr->kernel_size) };
1026 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1027 &kprop, sizeof(kprop)));
1028 if (spapr->kernel_le) {
1029 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1032 if (boot_menu) {
1033 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1035 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1036 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1037 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1039 if (cb && bootlist) {
1040 int i;
1042 for (i = 0; i < cb; i++) {
1043 if (bootlist[i] == '\n') {
1044 bootlist[i] = ' ';
1047 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1050 if (boot_device && strlen(boot_device)) {
1051 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1054 if (!spapr->has_graphics && stdout_path) {
1056 * "linux,stdout-path" and "stdout" properties are deprecated by linux
1057 * kernel. New platforms should only use the "stdout-path" property. Set
1058 * the new property and continue using older property to remain
1059 * compatible with the existing firmware.
1061 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1062 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1065 spapr_dt_ov5_platform_support(fdt, chosen);
1067 g_free(stdout_path);
1068 g_free(bootlist);
1071 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1073 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1074 * KVM to work under pHyp with some guest co-operation */
1075 int hypervisor;
1076 uint8_t hypercall[16];
1078 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1079 /* indicate KVM hypercall interface */
1080 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1081 if (kvmppc_has_cap_fixup_hcalls()) {
1083 * Older KVM versions with older guest kernels were broken
1084 * with the magic page, don't allow the guest to map it.
1086 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1087 sizeof(hypercall))) {
1088 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1089 hypercall, sizeof(hypercall)));
1094 static void *spapr_build_fdt(sPAPRMachineState *spapr,
1095 hwaddr rtas_addr,
1096 hwaddr rtas_size)
1098 MachineState *machine = MACHINE(spapr);
1099 MachineClass *mc = MACHINE_GET_CLASS(machine);
1100 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1101 int ret;
1102 void *fdt;
1103 sPAPRPHBState *phb;
1104 char *buf;
1106 fdt = g_malloc0(FDT_MAX_SIZE);
1107 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1109 /* Root node */
1110 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1111 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1112 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1115 * Add info to guest to indentify which host is it being run on
1116 * and what is the uuid of the guest
1118 if (kvmppc_get_host_model(&buf)) {
1119 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1120 g_free(buf);
1122 if (kvmppc_get_host_serial(&buf)) {
1123 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1124 g_free(buf);
1127 buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1129 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1130 if (qemu_uuid_set) {
1131 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1133 g_free(buf);
1135 if (qemu_get_vm_name()) {
1136 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1137 qemu_get_vm_name()));
1140 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1141 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1143 /* /interrupt controller */
1144 spapr_dt_xics(xics_max_server_number(spapr), fdt, PHANDLE_XICP);
1146 ret = spapr_populate_memory(spapr, fdt);
1147 if (ret < 0) {
1148 error_report("couldn't setup memory nodes in fdt");
1149 exit(1);
1152 /* /vdevice */
1153 spapr_dt_vdevice(spapr->vio_bus, fdt);
1155 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1156 ret = spapr_rng_populate_dt(fdt);
1157 if (ret < 0) {
1158 error_report("could not set up rng device in the fdt");
1159 exit(1);
1163 QLIST_FOREACH(phb, &spapr->phbs, list) {
1164 ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
1165 if (ret < 0) {
1166 error_report("couldn't setup PCI devices in fdt");
1167 exit(1);
1171 /* cpus */
1172 spapr_populate_cpus_dt_node(fdt, spapr);
1174 if (smc->dr_lmb_enabled) {
1175 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1178 if (mc->has_hotpluggable_cpus) {
1179 int offset = fdt_path_offset(fdt, "/cpus");
1180 ret = spapr_drc_populate_dt(fdt, offset, NULL,
1181 SPAPR_DR_CONNECTOR_TYPE_CPU);
1182 if (ret < 0) {
1183 error_report("Couldn't set up CPU DR device tree properties");
1184 exit(1);
1188 /* /event-sources */
1189 spapr_dt_events(spapr, fdt);
1191 /* /rtas */
1192 spapr_dt_rtas(spapr, fdt);
1194 /* /chosen */
1195 spapr_dt_chosen(spapr, fdt);
1197 /* /hypervisor */
1198 if (kvm_enabled()) {
1199 spapr_dt_hypervisor(spapr, fdt);
1202 /* Build memory reserve map */
1203 if (spapr->kernel_size) {
1204 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1206 if (spapr->initrd_size) {
1207 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1210 /* ibm,client-architecture-support updates */
1211 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1212 if (ret < 0) {
1213 error_report("couldn't setup CAS properties fdt");
1214 exit(1);
1217 return fdt;
1220 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1222 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1225 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1226 PowerPCCPU *cpu)
1228 CPUPPCState *env = &cpu->env;
1230 /* The TCG path should also be holding the BQL at this point */
1231 g_assert(qemu_mutex_iothread_locked());
1233 if (msr_pr) {
1234 hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1235 env->gpr[3] = H_PRIVILEGE;
1236 } else {
1237 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1241 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1243 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1245 return spapr->patb_entry;
1248 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1249 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1250 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1251 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1252 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1255 * Get the fd to access the kernel htab, re-opening it if necessary
1257 static int get_htab_fd(sPAPRMachineState *spapr)
1259 Error *local_err = NULL;
1261 if (spapr->htab_fd >= 0) {
1262 return spapr->htab_fd;
1265 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1266 if (spapr->htab_fd < 0) {
1267 error_report_err(local_err);
1270 return spapr->htab_fd;
1273 void close_htab_fd(sPAPRMachineState *spapr)
1275 if (spapr->htab_fd >= 0) {
1276 close(spapr->htab_fd);
1278 spapr->htab_fd = -1;
1281 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1283 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1285 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1288 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1290 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1292 assert(kvm_enabled());
1294 if (!spapr->htab) {
1295 return 0;
1298 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1301 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1302 hwaddr ptex, int n)
1304 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1305 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1307 if (!spapr->htab) {
1309 * HTAB is controlled by KVM. Fetch into temporary buffer
1311 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1312 kvmppc_read_hptes(hptes, ptex, n);
1313 return hptes;
1317 * HTAB is controlled by QEMU. Just point to the internally
1318 * accessible PTEG.
1320 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1323 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1324 const ppc_hash_pte64_t *hptes,
1325 hwaddr ptex, int n)
1327 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1329 if (!spapr->htab) {
1330 g_free((void *)hptes);
1333 /* Nothing to do for qemu managed HPT */
1336 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1337 uint64_t pte0, uint64_t pte1)
1339 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1340 hwaddr offset = ptex * HASH_PTE_SIZE_64;
1342 if (!spapr->htab) {
1343 kvmppc_write_hpte(ptex, pte0, pte1);
1344 } else {
1345 stq_p(spapr->htab + offset, pte0);
1346 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1350 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1352 int shift;
1354 /* We aim for a hash table of size 1/128 the size of RAM (rounded
1355 * up). The PAPR recommendation is actually 1/64 of RAM size, but
1356 * that's much more than is needed for Linux guests */
1357 shift = ctz64(pow2ceil(ramsize)) - 7;
1358 shift = MAX(shift, 18); /* Minimum architected size */
1359 shift = MIN(shift, 46); /* Maximum architected size */
1360 return shift;
1363 void spapr_free_hpt(sPAPRMachineState *spapr)
1365 g_free(spapr->htab);
1366 spapr->htab = NULL;
1367 spapr->htab_shift = 0;
1368 close_htab_fd(spapr);
1371 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1372 Error **errp)
1374 long rc;
1376 /* Clean up any HPT info from a previous boot */
1377 spapr_free_hpt(spapr);
1379 rc = kvmppc_reset_htab(shift);
1380 if (rc < 0) {
1381 /* kernel-side HPT needed, but couldn't allocate one */
1382 error_setg_errno(errp, errno,
1383 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1384 shift);
1385 /* This is almost certainly fatal, but if the caller really
1386 * wants to carry on with shift == 0, it's welcome to try */
1387 } else if (rc > 0) {
1388 /* kernel-side HPT allocated */
1389 if (rc != shift) {
1390 error_setg(errp,
1391 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1392 shift, rc);
1395 spapr->htab_shift = shift;
1396 spapr->htab = NULL;
1397 } else {
1398 /* kernel-side HPT not needed, allocate in userspace instead */
1399 size_t size = 1ULL << shift;
1400 int i;
1402 spapr->htab = qemu_memalign(size, size);
1403 if (!spapr->htab) {
1404 error_setg_errno(errp, errno,
1405 "Could not allocate HPT of order %d", shift);
1406 return;
1409 memset(spapr->htab, 0, size);
1410 spapr->htab_shift = shift;
1412 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1413 DIRTY_HPTE(HPTE(spapr->htab, i));
1416 /* We're setting up a hash table, so that means we're not radix */
1417 spapr->patb_entry = 0;
1420 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1422 int hpt_shift;
1424 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1425 || (spapr->cas_reboot
1426 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1427 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1428 } else {
1429 uint64_t current_ram_size;
1431 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1432 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1434 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1436 if (spapr->vrma_adjust) {
1437 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1438 spapr->htab_shift);
1442 static int spapr_reset_drcs(Object *child, void *opaque)
1444 sPAPRDRConnector *drc =
1445 (sPAPRDRConnector *) object_dynamic_cast(child,
1446 TYPE_SPAPR_DR_CONNECTOR);
1448 if (drc) {
1449 spapr_drc_reset(drc);
1452 return 0;
1455 static void spapr_machine_reset(void)
1457 MachineState *machine = MACHINE(qdev_get_machine());
1458 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1459 PowerPCCPU *first_ppc_cpu;
1460 uint32_t rtas_limit;
1461 hwaddr rtas_addr, fdt_addr;
1462 void *fdt;
1463 int rc;
1465 spapr_caps_reset(spapr);
1467 first_ppc_cpu = POWERPC_CPU(first_cpu);
1468 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1469 ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1470 spapr->max_compat_pvr)) {
1471 /* If using KVM with radix mode available, VCPUs can be started
1472 * without a HPT because KVM will start them in radix mode.
1473 * Set the GR bit in PATB so that we know there is no HPT. */
1474 spapr->patb_entry = PATBE1_GR;
1475 } else {
1476 spapr_setup_hpt_and_vrma(spapr);
1479 /* if this reset wasn't generated by CAS, we should reset our
1480 * negotiated options and start from scratch */
1481 if (!spapr->cas_reboot) {
1482 spapr_ovec_cleanup(spapr->ov5_cas);
1483 spapr->ov5_cas = spapr_ovec_new();
1485 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1488 qemu_devices_reset();
1490 /* DRC reset may cause a device to be unplugged. This will cause troubles
1491 * if this device is used by another device (eg, a running vhost backend
1492 * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1493 * situations, we reset DRCs after all devices have been reset.
1495 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1497 spapr_clear_pending_events(spapr);
1500 * We place the device tree and RTAS just below either the top of the RMA,
1501 * or just below 2GB, whichever is lowere, so that it can be
1502 * processed with 32-bit real mode code if necessary
1504 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1505 rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1506 fdt_addr = rtas_addr - FDT_MAX_SIZE;
1508 fdt = spapr_build_fdt(spapr, rtas_addr, spapr->rtas_size);
1510 spapr_load_rtas(spapr, fdt, rtas_addr);
1512 rc = fdt_pack(fdt);
1514 /* Should only fail if we've built a corrupted tree */
1515 assert(rc == 0);
1517 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1518 error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1519 fdt_totalsize(fdt), FDT_MAX_SIZE);
1520 exit(1);
1523 /* Load the fdt */
1524 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1525 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1526 g_free(fdt);
1528 /* Set up the entry state */
1529 first_ppc_cpu->env.gpr[3] = fdt_addr;
1530 first_ppc_cpu->env.gpr[5] = 0;
1531 first_cpu->halted = 0;
1532 first_ppc_cpu->env.nip = SPAPR_ENTRY_POINT;
1534 spapr->cas_reboot = false;
1537 static void spapr_create_nvram(sPAPRMachineState *spapr)
1539 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1540 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1542 if (dinfo) {
1543 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1544 &error_fatal);
1547 qdev_init_nofail(dev);
1549 spapr->nvram = (struct sPAPRNVRAM *)dev;
1552 static void spapr_rtc_create(sPAPRMachineState *spapr)
1554 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1555 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1556 &error_fatal);
1557 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1558 &error_fatal);
1559 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1560 "date", &error_fatal);
1563 /* Returns whether we want to use VGA or not */
1564 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1566 switch (vga_interface_type) {
1567 case VGA_NONE:
1568 return false;
1569 case VGA_DEVICE:
1570 return true;
1571 case VGA_STD:
1572 case VGA_VIRTIO:
1573 return pci_vga_init(pci_bus) != NULL;
1574 default:
1575 error_setg(errp,
1576 "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1577 return false;
1581 static int spapr_pre_load(void *opaque)
1583 int rc;
1585 rc = spapr_caps_pre_load(opaque);
1586 if (rc) {
1587 return rc;
1590 return 0;
1593 static int spapr_post_load(void *opaque, int version_id)
1595 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1596 int err = 0;
1598 err = spapr_caps_post_migration(spapr);
1599 if (err) {
1600 return err;
1603 if (!object_dynamic_cast(OBJECT(spapr->ics), TYPE_ICS_KVM)) {
1604 CPUState *cs;
1605 CPU_FOREACH(cs) {
1606 PowerPCCPU *cpu = POWERPC_CPU(cs);
1607 icp_resend(ICP(cpu->intc));
1611 /* In earlier versions, there was no separate qdev for the PAPR
1612 * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1613 * So when migrating from those versions, poke the incoming offset
1614 * value into the RTC device */
1615 if (version_id < 3) {
1616 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1619 if (kvm_enabled() && spapr->patb_entry) {
1620 PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1621 bool radix = !!(spapr->patb_entry & PATBE1_GR);
1622 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1624 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1625 if (err) {
1626 error_report("Process table config unsupported by the host");
1627 return -EINVAL;
1631 return err;
1634 static int spapr_pre_save(void *opaque)
1636 int rc;
1638 rc = spapr_caps_pre_save(opaque);
1639 if (rc) {
1640 return rc;
1643 return 0;
1646 static bool version_before_3(void *opaque, int version_id)
1648 return version_id < 3;
1651 static bool spapr_pending_events_needed(void *opaque)
1653 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1654 return !QTAILQ_EMPTY(&spapr->pending_events);
1657 static const VMStateDescription vmstate_spapr_event_entry = {
1658 .name = "spapr_event_log_entry",
1659 .version_id = 1,
1660 .minimum_version_id = 1,
1661 .fields = (VMStateField[]) {
1662 VMSTATE_UINT32(summary, sPAPREventLogEntry),
1663 VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1664 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1665 NULL, extended_length),
1666 VMSTATE_END_OF_LIST()
1670 static const VMStateDescription vmstate_spapr_pending_events = {
1671 .name = "spapr_pending_events",
1672 .version_id = 1,
1673 .minimum_version_id = 1,
1674 .needed = spapr_pending_events_needed,
1675 .fields = (VMStateField[]) {
1676 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1677 vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1678 VMSTATE_END_OF_LIST()
1682 static bool spapr_ov5_cas_needed(void *opaque)
1684 sPAPRMachineState *spapr = opaque;
1685 sPAPROptionVector *ov5_mask = spapr_ovec_new();
1686 sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1687 sPAPROptionVector *ov5_removed = spapr_ovec_new();
1688 bool cas_needed;
1690 /* Prior to the introduction of sPAPROptionVector, we had two option
1691 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1692 * Both of these options encode machine topology into the device-tree
1693 * in such a way that the now-booted OS should still be able to interact
1694 * appropriately with QEMU regardless of what options were actually
1695 * negotiatied on the source side.
1697 * As such, we can avoid migrating the CAS-negotiated options if these
1698 * are the only options available on the current machine/platform.
1699 * Since these are the only options available for pseries-2.7 and
1700 * earlier, this allows us to maintain old->new/new->old migration
1701 * compatibility.
1703 * For QEMU 2.8+, there are additional CAS-negotiatable options available
1704 * via default pseries-2.8 machines and explicit command-line parameters.
1705 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1706 * of the actual CAS-negotiated values to continue working properly. For
1707 * example, availability of memory unplug depends on knowing whether
1708 * OV5_HP_EVT was negotiated via CAS.
1710 * Thus, for any cases where the set of available CAS-negotiatable
1711 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1712 * include the CAS-negotiated options in the migration stream.
1714 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1715 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1717 /* spapr_ovec_diff returns true if bits were removed. we avoid using
1718 * the mask itself since in the future it's possible "legacy" bits may be
1719 * removed via machine options, which could generate a false positive
1720 * that breaks migration.
1722 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1723 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1725 spapr_ovec_cleanup(ov5_mask);
1726 spapr_ovec_cleanup(ov5_legacy);
1727 spapr_ovec_cleanup(ov5_removed);
1729 return cas_needed;
1732 static const VMStateDescription vmstate_spapr_ov5_cas = {
1733 .name = "spapr_option_vector_ov5_cas",
1734 .version_id = 1,
1735 .minimum_version_id = 1,
1736 .needed = spapr_ov5_cas_needed,
1737 .fields = (VMStateField[]) {
1738 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1739 vmstate_spapr_ovec, sPAPROptionVector),
1740 VMSTATE_END_OF_LIST()
1744 static bool spapr_patb_entry_needed(void *opaque)
1746 sPAPRMachineState *spapr = opaque;
1748 return !!spapr->patb_entry;
1751 static const VMStateDescription vmstate_spapr_patb_entry = {
1752 .name = "spapr_patb_entry",
1753 .version_id = 1,
1754 .minimum_version_id = 1,
1755 .needed = spapr_patb_entry_needed,
1756 .fields = (VMStateField[]) {
1757 VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1758 VMSTATE_END_OF_LIST()
1762 static const VMStateDescription vmstate_spapr = {
1763 .name = "spapr",
1764 .version_id = 3,
1765 .minimum_version_id = 1,
1766 .pre_load = spapr_pre_load,
1767 .post_load = spapr_post_load,
1768 .pre_save = spapr_pre_save,
1769 .fields = (VMStateField[]) {
1770 /* used to be @next_irq */
1771 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1773 /* RTC offset */
1774 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1776 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1777 VMSTATE_END_OF_LIST()
1779 .subsections = (const VMStateDescription*[]) {
1780 &vmstate_spapr_ov5_cas,
1781 &vmstate_spapr_patb_entry,
1782 &vmstate_spapr_pending_events,
1783 &vmstate_spapr_cap_htm,
1784 &vmstate_spapr_cap_vsx,
1785 &vmstate_spapr_cap_dfp,
1786 &vmstate_spapr_cap_cfpc,
1787 &vmstate_spapr_cap_sbbc,
1788 &vmstate_spapr_cap_ibs,
1789 NULL
1793 static int htab_save_setup(QEMUFile *f, void *opaque)
1795 sPAPRMachineState *spapr = opaque;
1797 /* "Iteration" header */
1798 if (!spapr->htab_shift) {
1799 qemu_put_be32(f, -1);
1800 } else {
1801 qemu_put_be32(f, spapr->htab_shift);
1804 if (spapr->htab) {
1805 spapr->htab_save_index = 0;
1806 spapr->htab_first_pass = true;
1807 } else {
1808 if (spapr->htab_shift) {
1809 assert(kvm_enabled());
1814 return 0;
1817 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
1818 int chunkstart, int n_valid, int n_invalid)
1820 qemu_put_be32(f, chunkstart);
1821 qemu_put_be16(f, n_valid);
1822 qemu_put_be16(f, n_invalid);
1823 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
1824 HASH_PTE_SIZE_64 * n_valid);
1827 static void htab_save_end_marker(QEMUFile *f)
1829 qemu_put_be32(f, 0);
1830 qemu_put_be16(f, 0);
1831 qemu_put_be16(f, 0);
1834 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
1835 int64_t max_ns)
1837 bool has_timeout = max_ns != -1;
1838 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1839 int index = spapr->htab_save_index;
1840 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1842 assert(spapr->htab_first_pass);
1844 do {
1845 int chunkstart;
1847 /* Consume invalid HPTEs */
1848 while ((index < htabslots)
1849 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1850 CLEAN_HPTE(HPTE(spapr->htab, index));
1851 index++;
1854 /* Consume valid HPTEs */
1855 chunkstart = index;
1856 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1857 && HPTE_VALID(HPTE(spapr->htab, index))) {
1858 CLEAN_HPTE(HPTE(spapr->htab, index));
1859 index++;
1862 if (index > chunkstart) {
1863 int n_valid = index - chunkstart;
1865 htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
1867 if (has_timeout &&
1868 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1869 break;
1872 } while ((index < htabslots) && !qemu_file_rate_limit(f));
1874 if (index >= htabslots) {
1875 assert(index == htabslots);
1876 index = 0;
1877 spapr->htab_first_pass = false;
1879 spapr->htab_save_index = index;
1882 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
1883 int64_t max_ns)
1885 bool final = max_ns < 0;
1886 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
1887 int examined = 0, sent = 0;
1888 int index = spapr->htab_save_index;
1889 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1891 assert(!spapr->htab_first_pass);
1893 do {
1894 int chunkstart, invalidstart;
1896 /* Consume non-dirty HPTEs */
1897 while ((index < htabslots)
1898 && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
1899 index++;
1900 examined++;
1903 chunkstart = index;
1904 /* Consume valid dirty HPTEs */
1905 while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
1906 && HPTE_DIRTY(HPTE(spapr->htab, index))
1907 && HPTE_VALID(HPTE(spapr->htab, index))) {
1908 CLEAN_HPTE(HPTE(spapr->htab, index));
1909 index++;
1910 examined++;
1913 invalidstart = index;
1914 /* Consume invalid dirty HPTEs */
1915 while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
1916 && HPTE_DIRTY(HPTE(spapr->htab, index))
1917 && !HPTE_VALID(HPTE(spapr->htab, index))) {
1918 CLEAN_HPTE(HPTE(spapr->htab, index));
1919 index++;
1920 examined++;
1923 if (index > chunkstart) {
1924 int n_valid = invalidstart - chunkstart;
1925 int n_invalid = index - invalidstart;
1927 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
1928 sent += index - chunkstart;
1930 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
1931 break;
1935 if (examined >= htabslots) {
1936 break;
1939 if (index >= htabslots) {
1940 assert(index == htabslots);
1941 index = 0;
1943 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
1945 if (index >= htabslots) {
1946 assert(index == htabslots);
1947 index = 0;
1950 spapr->htab_save_index = index;
1952 return (examined >= htabslots) && (sent == 0) ? 1 : 0;
1955 #define MAX_ITERATION_NS 5000000 /* 5 ms */
1956 #define MAX_KVM_BUF_SIZE 2048
1958 static int htab_save_iterate(QEMUFile *f, void *opaque)
1960 sPAPRMachineState *spapr = opaque;
1961 int fd;
1962 int rc = 0;
1964 /* Iteration header */
1965 if (!spapr->htab_shift) {
1966 qemu_put_be32(f, -1);
1967 return 1;
1968 } else {
1969 qemu_put_be32(f, 0);
1972 if (!spapr->htab) {
1973 assert(kvm_enabled());
1975 fd = get_htab_fd(spapr);
1976 if (fd < 0) {
1977 return fd;
1980 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
1981 if (rc < 0) {
1982 return rc;
1984 } else if (spapr->htab_first_pass) {
1985 htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
1986 } else {
1987 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
1990 htab_save_end_marker(f);
1992 return rc;
1995 static int htab_save_complete(QEMUFile *f, void *opaque)
1997 sPAPRMachineState *spapr = opaque;
1998 int fd;
2000 /* Iteration header */
2001 if (!spapr->htab_shift) {
2002 qemu_put_be32(f, -1);
2003 return 0;
2004 } else {
2005 qemu_put_be32(f, 0);
2008 if (!spapr->htab) {
2009 int rc;
2011 assert(kvm_enabled());
2013 fd = get_htab_fd(spapr);
2014 if (fd < 0) {
2015 return fd;
2018 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2019 if (rc < 0) {
2020 return rc;
2022 } else {
2023 if (spapr->htab_first_pass) {
2024 htab_save_first_pass(f, spapr, -1);
2026 htab_save_later_pass(f, spapr, -1);
2029 /* End marker */
2030 htab_save_end_marker(f);
2032 return 0;
2035 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2037 sPAPRMachineState *spapr = opaque;
2038 uint32_t section_hdr;
2039 int fd = -1;
2040 Error *local_err = NULL;
2042 if (version_id < 1 || version_id > 1) {
2043 error_report("htab_load() bad version");
2044 return -EINVAL;
2047 section_hdr = qemu_get_be32(f);
2049 if (section_hdr == -1) {
2050 spapr_free_hpt(spapr);
2051 return 0;
2054 if (section_hdr) {
2055 /* First section gives the htab size */
2056 spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2057 if (local_err) {
2058 error_report_err(local_err);
2059 return -EINVAL;
2061 return 0;
2064 if (!spapr->htab) {
2065 assert(kvm_enabled());
2067 fd = kvmppc_get_htab_fd(true, 0, &local_err);
2068 if (fd < 0) {
2069 error_report_err(local_err);
2070 return fd;
2074 while (true) {
2075 uint32_t index;
2076 uint16_t n_valid, n_invalid;
2078 index = qemu_get_be32(f);
2079 n_valid = qemu_get_be16(f);
2080 n_invalid = qemu_get_be16(f);
2082 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2083 /* End of Stream */
2084 break;
2087 if ((index + n_valid + n_invalid) >
2088 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2089 /* Bad index in stream */
2090 error_report(
2091 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2092 index, n_valid, n_invalid, spapr->htab_shift);
2093 return -EINVAL;
2096 if (spapr->htab) {
2097 if (n_valid) {
2098 qemu_get_buffer(f, HPTE(spapr->htab, index),
2099 HASH_PTE_SIZE_64 * n_valid);
2101 if (n_invalid) {
2102 memset(HPTE(spapr->htab, index + n_valid), 0,
2103 HASH_PTE_SIZE_64 * n_invalid);
2105 } else {
2106 int rc;
2108 assert(fd >= 0);
2110 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2111 if (rc < 0) {
2112 return rc;
2117 if (!spapr->htab) {
2118 assert(fd >= 0);
2119 close(fd);
2122 return 0;
2125 static void htab_save_cleanup(void *opaque)
2127 sPAPRMachineState *spapr = opaque;
2129 close_htab_fd(spapr);
2132 static SaveVMHandlers savevm_htab_handlers = {
2133 .save_setup = htab_save_setup,
2134 .save_live_iterate = htab_save_iterate,
2135 .save_live_complete_precopy = htab_save_complete,
2136 .save_cleanup = htab_save_cleanup,
2137 .load_state = htab_load,
2140 static void spapr_boot_set(void *opaque, const char *boot_device,
2141 Error **errp)
2143 MachineState *machine = MACHINE(opaque);
2144 machine->boot_order = g_strdup(boot_device);
2147 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2149 MachineState *machine = MACHINE(spapr);
2150 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2151 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2152 int i;
2154 for (i = 0; i < nr_lmbs; i++) {
2155 uint64_t addr;
2157 addr = i * lmb_size + spapr->hotplug_memory.base;
2158 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2159 addr / lmb_size);
2164 * If RAM size, maxmem size and individual node mem sizes aren't aligned
2165 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2166 * since we can't support such unaligned sizes with DRCONF_MEMORY.
2168 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2170 int i;
2172 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2173 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2174 " is not aligned to %llu MiB",
2175 machine->ram_size,
2176 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2177 return;
2180 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2181 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2182 " is not aligned to %llu MiB",
2183 machine->ram_size,
2184 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2185 return;
2188 for (i = 0; i < nb_numa_nodes; i++) {
2189 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2190 error_setg(errp,
2191 "Node %d memory size 0x%" PRIx64
2192 " is not aligned to %llu MiB",
2193 i, numa_info[i].node_mem,
2194 SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
2195 return;
2200 /* find cpu slot in machine->possible_cpus by core_id */
2201 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2203 int index = id / smp_threads;
2205 if (index >= ms->possible_cpus->len) {
2206 return NULL;
2208 if (idx) {
2209 *idx = index;
2211 return &ms->possible_cpus->cpus[index];
2214 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2216 Error *local_err = NULL;
2217 bool vsmt_user = !!spapr->vsmt;
2218 int kvm_smt = kvmppc_smt_threads();
2219 int ret;
2221 if (!kvm_enabled() && (smp_threads > 1)) {
2222 error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2223 "on a pseries machine");
2224 goto out;
2226 if (!is_power_of_2(smp_threads)) {
2227 error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2228 "machine because it must be a power of 2", smp_threads);
2229 goto out;
2232 /* Detemine the VSMT mode to use: */
2233 if (vsmt_user) {
2234 if (spapr->vsmt < smp_threads) {
2235 error_setg(&local_err, "Cannot support VSMT mode %d"
2236 " because it must be >= threads/core (%d)",
2237 spapr->vsmt, smp_threads);
2238 goto out;
2240 /* In this case, spapr->vsmt has been set by the command line */
2241 } else {
2243 * Default VSMT value is tricky, because we need it to be as
2244 * consistent as possible (for migration), but this requires
2245 * changing it for at least some existing cases. We pick 8 as
2246 * the value that we'd get with KVM on POWER8, the
2247 * overwhelmingly common case in production systems.
2249 spapr->vsmt = MAX(8, smp_threads);
2252 /* KVM: If necessary, set the SMT mode: */
2253 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2254 ret = kvmppc_set_smt_threads(spapr->vsmt);
2255 if (ret) {
2256 /* Looks like KVM isn't able to change VSMT mode */
2257 error_setg(&local_err,
2258 "Failed to set KVM's VSMT mode to %d (errno %d)",
2259 spapr->vsmt, ret);
2260 /* We can live with that if the default one is big enough
2261 * for the number of threads, and a submultiple of the one
2262 * we want. In this case we'll waste some vcpu ids, but
2263 * behaviour will be correct */
2264 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2265 warn_report_err(local_err);
2266 local_err = NULL;
2267 goto out;
2268 } else {
2269 if (!vsmt_user) {
2270 error_append_hint(&local_err,
2271 "On PPC, a VM with %d threads/core"
2272 " on a host with %d threads/core"
2273 " requires the use of VSMT mode %d.\n",
2274 smp_threads, kvm_smt, spapr->vsmt);
2276 kvmppc_hint_smt_possible(&local_err);
2277 goto out;
2281 /* else TCG: nothing to do currently */
2282 out:
2283 error_propagate(errp, local_err);
2286 static void spapr_init_cpus(sPAPRMachineState *spapr)
2288 MachineState *machine = MACHINE(spapr);
2289 MachineClass *mc = MACHINE_GET_CLASS(machine);
2290 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2291 const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2292 const CPUArchIdList *possible_cpus;
2293 int boot_cores_nr = smp_cpus / smp_threads;
2294 int i;
2296 possible_cpus = mc->possible_cpu_arch_ids(machine);
2297 if (mc->has_hotpluggable_cpus) {
2298 if (smp_cpus % smp_threads) {
2299 error_report("smp_cpus (%u) must be multiple of threads (%u)",
2300 smp_cpus, smp_threads);
2301 exit(1);
2303 if (max_cpus % smp_threads) {
2304 error_report("max_cpus (%u) must be multiple of threads (%u)",
2305 max_cpus, smp_threads);
2306 exit(1);
2308 } else {
2309 if (max_cpus != smp_cpus) {
2310 error_report("This machine version does not support CPU hotplug");
2311 exit(1);
2313 boot_cores_nr = possible_cpus->len;
2316 /* VSMT must be set in order to be able to compute VCPU ids, ie to
2317 * call xics_max_server_number() or spapr_vcpu_id().
2319 spapr_set_vsmt_mode(spapr, &error_fatal);
2321 if (smc->pre_2_10_has_unused_icps) {
2322 int i;
2324 for (i = 0; i < xics_max_server_number(spapr); i++) {
2325 /* Dummy entries get deregistered when real ICPState objects
2326 * are registered during CPU core hotplug.
2328 pre_2_10_vmstate_register_dummy_icp(i);
2332 for (i = 0; i < possible_cpus->len; i++) {
2333 int core_id = i * smp_threads;
2335 if (mc->has_hotpluggable_cpus) {
2336 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2337 spapr_vcpu_id(spapr, core_id));
2340 if (i < boot_cores_nr) {
2341 Object *core = object_new(type);
2342 int nr_threads = smp_threads;
2344 /* Handle the partially filled core for older machine types */
2345 if ((i + 1) * smp_threads >= smp_cpus) {
2346 nr_threads = smp_cpus - i * smp_threads;
2349 object_property_set_int(core, nr_threads, "nr-threads",
2350 &error_fatal);
2351 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2352 &error_fatal);
2353 object_property_set_bool(core, true, "realized", &error_fatal);
2358 /* pSeries LPAR / sPAPR hardware init */
2359 static void spapr_machine_init(MachineState *machine)
2361 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2362 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2363 const char *kernel_filename = machine->kernel_filename;
2364 const char *initrd_filename = machine->initrd_filename;
2365 PCIHostState *phb;
2366 int i;
2367 MemoryRegion *sysmem = get_system_memory();
2368 MemoryRegion *ram = g_new(MemoryRegion, 1);
2369 MemoryRegion *rma_region;
2370 void *rma = NULL;
2371 hwaddr rma_alloc_size;
2372 hwaddr node0_size = spapr_node0_size(machine);
2373 long load_limit, fw_size;
2374 char *filename;
2375 Error *resize_hpt_err = NULL;
2377 msi_nonbroken = true;
2379 QLIST_INIT(&spapr->phbs);
2380 QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2382 /* Check HPT resizing availability */
2383 kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2384 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2386 * If the user explicitly requested a mode we should either
2387 * supply it, or fail completely (which we do below). But if
2388 * it's not set explicitly, we reset our mode to something
2389 * that works
2391 if (resize_hpt_err) {
2392 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2393 error_free(resize_hpt_err);
2394 resize_hpt_err = NULL;
2395 } else {
2396 spapr->resize_hpt = smc->resize_hpt_default;
2400 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2402 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2404 * User requested HPT resize, but this host can't supply it. Bail out
2406 error_report_err(resize_hpt_err);
2407 exit(1);
2410 /* Allocate RMA if necessary */
2411 rma_alloc_size = kvmppc_alloc_rma(&rma);
2413 if (rma_alloc_size == -1) {
2414 error_report("Unable to create RMA");
2415 exit(1);
2418 if (rma_alloc_size && (rma_alloc_size < node0_size)) {
2419 spapr->rma_size = rma_alloc_size;
2420 } else {
2421 spapr->rma_size = node0_size;
2423 /* With KVM, we don't actually know whether KVM supports an
2424 * unbounded RMA (PR KVM) or is limited by the hash table size
2425 * (HV KVM using VRMA), so we always assume the latter
2427 * In that case, we also limit the initial allocations for RTAS
2428 * etc... to 256M since we have no way to know what the VRMA size
2429 * is going to be as it depends on the size of the hash table
2430 * isn't determined yet.
2432 if (kvm_enabled()) {
2433 spapr->vrma_adjust = 1;
2434 spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2437 /* Actually we don't support unbounded RMA anymore since we
2438 * added proper emulation of HV mode. The max we can get is
2439 * 16G which also happens to be what we configure for PAPR
2440 * mode so make sure we don't do anything bigger than that
2442 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2445 if (spapr->rma_size > node0_size) {
2446 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2447 spapr->rma_size);
2448 exit(1);
2451 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2452 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2454 /* Set up Interrupt Controller before we create the VCPUs */
2455 xics_system_init(machine, XICS_IRQS_SPAPR, &error_fatal);
2457 /* Set up containers for ibm,client-architecture-support negotiated options
2459 spapr->ov5 = spapr_ovec_new();
2460 spapr->ov5_cas = spapr_ovec_new();
2462 if (smc->dr_lmb_enabled) {
2463 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2464 spapr_validate_node_memory(machine, &error_fatal);
2467 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2468 if (!kvm_enabled() || kvmppc_has_cap_mmu_radix()) {
2469 /* KVM and TCG always allow GTSE with radix... */
2470 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2472 /* ... but not with hash (currently). */
2474 /* advertise support for dedicated HP event source to guests */
2475 if (spapr->use_hotplug_event_source) {
2476 spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2479 /* advertise support for HPT resizing */
2480 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2481 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2484 /* init CPUs */
2485 spapr_init_cpus(spapr);
2487 if (kvm_enabled()) {
2488 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2489 kvmppc_enable_logical_ci_hcalls();
2490 kvmppc_enable_set_mode_hcall();
2492 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2493 kvmppc_enable_clear_ref_mod_hcalls();
2496 /* allocate RAM */
2497 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2498 machine->ram_size);
2499 memory_region_add_subregion(sysmem, 0, ram);
2501 if (rma_alloc_size && rma) {
2502 rma_region = g_new(MemoryRegion, 1);
2503 memory_region_init_ram_ptr(rma_region, NULL, "ppc_spapr.rma",
2504 rma_alloc_size, rma);
2505 vmstate_register_ram_global(rma_region);
2506 memory_region_add_subregion(sysmem, 0, rma_region);
2509 /* initialize hotplug memory address space */
2510 if (machine->ram_size < machine->maxram_size) {
2511 ram_addr_t hotplug_mem_size = machine->maxram_size - machine->ram_size;
2513 * Limit the number of hotpluggable memory slots to half the number
2514 * slots that KVM supports, leaving the other half for PCI and other
2515 * devices. However ensure that number of slots doesn't drop below 32.
2517 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2518 SPAPR_MAX_RAM_SLOTS;
2520 if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2521 max_memslots = SPAPR_MAX_RAM_SLOTS;
2523 if (machine->ram_slots > max_memslots) {
2524 error_report("Specified number of memory slots %"
2525 PRIu64" exceeds max supported %d",
2526 machine->ram_slots, max_memslots);
2527 exit(1);
2530 spapr->hotplug_memory.base = ROUND_UP(machine->ram_size,
2531 SPAPR_HOTPLUG_MEM_ALIGN);
2532 memory_region_init(&spapr->hotplug_memory.mr, OBJECT(spapr),
2533 "hotplug-memory", hotplug_mem_size);
2534 memory_region_add_subregion(sysmem, spapr->hotplug_memory.base,
2535 &spapr->hotplug_memory.mr);
2538 if (smc->dr_lmb_enabled) {
2539 spapr_create_lmb_dr_connectors(spapr);
2542 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2543 if (!filename) {
2544 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2545 exit(1);
2547 spapr->rtas_size = get_image_size(filename);
2548 if (spapr->rtas_size < 0) {
2549 error_report("Could not get size of LPAR rtas '%s'", filename);
2550 exit(1);
2552 spapr->rtas_blob = g_malloc(spapr->rtas_size);
2553 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2554 error_report("Could not load LPAR rtas '%s'", filename);
2555 exit(1);
2557 if (spapr->rtas_size > RTAS_MAX_SIZE) {
2558 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2559 (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2560 exit(1);
2562 g_free(filename);
2564 /* Set up RTAS event infrastructure */
2565 spapr_events_init(spapr);
2567 /* Set up the RTC RTAS interfaces */
2568 spapr_rtc_create(spapr);
2570 /* Set up VIO bus */
2571 spapr->vio_bus = spapr_vio_bus_init();
2573 for (i = 0; i < serial_max_hds(); i++) {
2574 if (serial_hd(i)) {
2575 spapr_vty_create(spapr->vio_bus, serial_hd(i));
2579 /* We always have at least the nvram device on VIO */
2580 spapr_create_nvram(spapr);
2582 /* Set up PCI */
2583 spapr_pci_rtas_init();
2585 phb = spapr_create_phb(spapr, 0);
2587 for (i = 0; i < nb_nics; i++) {
2588 NICInfo *nd = &nd_table[i];
2590 if (!nd->model) {
2591 nd->model = g_strdup("spapr-vlan");
2594 if (g_str_equal(nd->model, "spapr-vlan") ||
2595 g_str_equal(nd->model, "ibmveth")) {
2596 spapr_vlan_create(spapr->vio_bus, nd);
2597 } else {
2598 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2602 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2603 spapr_vscsi_create(spapr->vio_bus);
2606 /* Graphics */
2607 if (spapr_vga_init(phb->bus, &error_fatal)) {
2608 spapr->has_graphics = true;
2609 machine->usb |= defaults_enabled() && !machine->usb_disabled;
2612 if (machine->usb) {
2613 if (smc->use_ohci_by_default) {
2614 pci_create_simple(phb->bus, -1, "pci-ohci");
2615 } else {
2616 pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2619 if (spapr->has_graphics) {
2620 USBBus *usb_bus = usb_bus_find(-1);
2622 usb_create_simple(usb_bus, "usb-kbd");
2623 usb_create_simple(usb_bus, "usb-mouse");
2627 if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
2628 error_report(
2629 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2630 MIN_RMA_SLOF);
2631 exit(1);
2634 if (kernel_filename) {
2635 uint64_t lowaddr = 0;
2637 spapr->kernel_size = load_elf(kernel_filename, translate_kernel_address,
2638 NULL, NULL, &lowaddr, NULL, 1,
2639 PPC_ELF_MACHINE, 0, 0);
2640 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2641 spapr->kernel_size = load_elf(kernel_filename,
2642 translate_kernel_address, NULL, NULL,
2643 &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2644 0, 0);
2645 spapr->kernel_le = spapr->kernel_size > 0;
2647 if (spapr->kernel_size < 0) {
2648 error_report("error loading %s: %s", kernel_filename,
2649 load_elf_strerror(spapr->kernel_size));
2650 exit(1);
2653 /* load initrd */
2654 if (initrd_filename) {
2655 /* Try to locate the initrd in the gap between the kernel
2656 * and the firmware. Add a bit of space just in case
2658 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2659 + 0x1ffff) & ~0xffff;
2660 spapr->initrd_size = load_image_targphys(initrd_filename,
2661 spapr->initrd_base,
2662 load_limit
2663 - spapr->initrd_base);
2664 if (spapr->initrd_size < 0) {
2665 error_report("could not load initial ram disk '%s'",
2666 initrd_filename);
2667 exit(1);
2672 if (bios_name == NULL) {
2673 bios_name = FW_FILE_NAME;
2675 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2676 if (!filename) {
2677 error_report("Could not find LPAR firmware '%s'", bios_name);
2678 exit(1);
2680 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2681 if (fw_size <= 0) {
2682 error_report("Could not load LPAR firmware '%s'", filename);
2683 exit(1);
2685 g_free(filename);
2687 /* FIXME: Should register things through the MachineState's qdev
2688 * interface, this is a legacy from the sPAPREnvironment structure
2689 * which predated MachineState but had a similar function */
2690 vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2691 register_savevm_live(NULL, "spapr/htab", -1, 1,
2692 &savevm_htab_handlers, spapr);
2694 qemu_register_boot_set(spapr_boot_set, spapr);
2696 if (kvm_enabled()) {
2697 /* to stop and start vmclock */
2698 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2699 &spapr->tb);
2701 kvmppc_spapr_enable_inkernel_multitce();
2705 static int spapr_kvm_type(const char *vm_type)
2707 if (!vm_type) {
2708 return 0;
2711 if (!strcmp(vm_type, "HV")) {
2712 return 1;
2715 if (!strcmp(vm_type, "PR")) {
2716 return 2;
2719 error_report("Unknown kvm-type specified '%s'", vm_type);
2720 exit(1);
2724 * Implementation of an interface to adjust firmware path
2725 * for the bootindex property handling.
2727 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2728 DeviceState *dev)
2730 #define CAST(type, obj, name) \
2731 ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2732 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE);
2733 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2734 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2736 if (d) {
2737 void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2738 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2739 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2741 if (spapr) {
2743 * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2744 * We use SRP luns of the form 8000 | (bus << 8) | (id << 5) | lun
2745 * in the top 16 bits of the 64-bit LUN
2747 unsigned id = 0x8000 | (d->id << 8) | d->lun;
2748 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2749 (uint64_t)id << 48);
2750 } else if (virtio) {
2752 * We use SRP luns of the form 01000000 | (target << 8) | lun
2753 * in the top 32 bits of the 64-bit LUN
2754 * Note: the quote above is from SLOF and it is wrong,
2755 * the actual binding is:
2756 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2758 unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2759 if (d->lun >= 256) {
2760 /* Use the LUN "flat space addressing method" */
2761 id |= 0x4000;
2763 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2764 (uint64_t)id << 32);
2765 } else if (usb) {
2767 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
2768 * in the top 32 bits of the 64-bit LUN
2770 unsigned usb_port = atoi(usb->port->path);
2771 unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
2772 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2773 (uint64_t)id << 32);
2778 * SLOF probes the USB devices, and if it recognizes that the device is a
2779 * storage device, it changes its name to "storage" instead of "usb-host",
2780 * and additionally adds a child node for the SCSI LUN, so the correct
2781 * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
2783 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
2784 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
2785 if (usb_host_dev_is_scsi_storage(usbdev)) {
2786 return g_strdup_printf("storage@%s/disk", usbdev->port->path);
2790 if (phb) {
2791 /* Replace "pci" with "pci@800000020000000" */
2792 return g_strdup_printf("pci@%"PRIX64, phb->buid);
2795 if (vsc) {
2796 /* Same logic as virtio above */
2797 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
2798 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
2801 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
2802 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
2803 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
2804 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
2807 return NULL;
2810 static char *spapr_get_kvm_type(Object *obj, Error **errp)
2812 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2814 return g_strdup(spapr->kvm_type);
2817 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
2819 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2821 g_free(spapr->kvm_type);
2822 spapr->kvm_type = g_strdup(value);
2825 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
2827 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2829 return spapr->use_hotplug_event_source;
2832 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
2833 Error **errp)
2835 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2837 spapr->use_hotplug_event_source = value;
2840 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
2842 return true;
2845 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
2847 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2849 switch (spapr->resize_hpt) {
2850 case SPAPR_RESIZE_HPT_DEFAULT:
2851 return g_strdup("default");
2852 case SPAPR_RESIZE_HPT_DISABLED:
2853 return g_strdup("disabled");
2854 case SPAPR_RESIZE_HPT_ENABLED:
2855 return g_strdup("enabled");
2856 case SPAPR_RESIZE_HPT_REQUIRED:
2857 return g_strdup("required");
2859 g_assert_not_reached();
2862 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
2864 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2866 if (strcmp(value, "default") == 0) {
2867 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
2868 } else if (strcmp(value, "disabled") == 0) {
2869 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2870 } else if (strcmp(value, "enabled") == 0) {
2871 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
2872 } else if (strcmp(value, "required") == 0) {
2873 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
2874 } else {
2875 error_setg(errp, "Bad value for \"resize-hpt\" property");
2879 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
2880 void *opaque, Error **errp)
2882 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
2885 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
2886 void *opaque, Error **errp)
2888 visit_type_uint32(v, name, (uint32_t *)opaque, errp);
2891 static void spapr_instance_init(Object *obj)
2893 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2895 spapr->htab_fd = -1;
2896 spapr->use_hotplug_event_source = true;
2897 object_property_add_str(obj, "kvm-type",
2898 spapr_get_kvm_type, spapr_set_kvm_type, NULL);
2899 object_property_set_description(obj, "kvm-type",
2900 "Specifies the KVM virtualization mode (HV, PR)",
2901 NULL);
2902 object_property_add_bool(obj, "modern-hotplug-events",
2903 spapr_get_modern_hotplug_events,
2904 spapr_set_modern_hotplug_events,
2905 NULL);
2906 object_property_set_description(obj, "modern-hotplug-events",
2907 "Use dedicated hotplug event mechanism in"
2908 " place of standard EPOW events when possible"
2909 " (required for memory hot-unplug support)",
2910 NULL);
2912 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
2913 "Maximum permitted CPU compatibility mode",
2914 &error_fatal);
2916 object_property_add_str(obj, "resize-hpt",
2917 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
2918 object_property_set_description(obj, "resize-hpt",
2919 "Resizing of the Hash Page Table (enabled, disabled, required)",
2920 NULL);
2921 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
2922 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
2923 object_property_set_description(obj, "vsmt",
2924 "Virtual SMT: KVM behaves as if this were"
2925 " the host's SMT mode", &error_abort);
2926 object_property_add_bool(obj, "vfio-no-msix-emulation",
2927 spapr_get_msix_emulation, NULL, NULL);
2930 static void spapr_machine_finalizefn(Object *obj)
2932 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
2934 g_free(spapr->kvm_type);
2937 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
2939 cpu_synchronize_state(cs);
2940 ppc_cpu_do_system_reset(cs);
2943 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
2945 CPUState *cs;
2947 CPU_FOREACH(cs) {
2948 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
2952 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
2953 uint32_t node, bool dedicated_hp_event_source,
2954 Error **errp)
2956 sPAPRDRConnector *drc;
2957 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
2958 int i, fdt_offset, fdt_size;
2959 void *fdt;
2960 uint64_t addr = addr_start;
2961 bool hotplugged = spapr_drc_hotplugged(dev);
2962 Error *local_err = NULL;
2964 for (i = 0; i < nr_lmbs; i++) {
2965 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2966 addr / SPAPR_MEMORY_BLOCK_SIZE);
2967 g_assert(drc);
2969 fdt = create_device_tree(&fdt_size);
2970 fdt_offset = spapr_populate_memory_node(fdt, node, addr,
2971 SPAPR_MEMORY_BLOCK_SIZE);
2973 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
2974 if (local_err) {
2975 while (addr > addr_start) {
2976 addr -= SPAPR_MEMORY_BLOCK_SIZE;
2977 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2978 addr / SPAPR_MEMORY_BLOCK_SIZE);
2979 spapr_drc_detach(drc);
2981 g_free(fdt);
2982 error_propagate(errp, local_err);
2983 return;
2985 if (!hotplugged) {
2986 spapr_drc_reset(drc);
2988 addr += SPAPR_MEMORY_BLOCK_SIZE;
2990 /* send hotplug notification to the
2991 * guest only in case of hotplugged memory
2993 if (hotplugged) {
2994 if (dedicated_hp_event_source) {
2995 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
2996 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
2997 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
2998 nr_lmbs,
2999 spapr_drc_index(drc));
3000 } else {
3001 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3002 nr_lmbs);
3007 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3008 uint32_t node, Error **errp)
3010 Error *local_err = NULL;
3011 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3012 PCDIMMDevice *dimm = PC_DIMM(dev);
3013 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3014 MemoryRegion *mr;
3015 uint64_t align, size, addr;
3017 mr = ddc->get_memory_region(dimm, &local_err);
3018 if (local_err) {
3019 goto out;
3021 align = memory_region_get_alignment(mr);
3022 size = memory_region_size(mr);
3024 pc_dimm_memory_plug(dev, &ms->hotplug_memory, mr, align, &local_err);
3025 if (local_err) {
3026 goto out;
3029 addr = object_property_get_uint(OBJECT(dimm),
3030 PC_DIMM_ADDR_PROP, &local_err);
3031 if (local_err) {
3032 goto out_unplug;
3035 spapr_add_lmbs(dev, addr, size, node,
3036 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3037 &local_err);
3038 if (local_err) {
3039 goto out_unplug;
3042 return;
3044 out_unplug:
3045 pc_dimm_memory_unplug(dev, &ms->hotplug_memory, mr);
3046 out:
3047 error_propagate(errp, local_err);
3050 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3051 Error **errp)
3053 PCDIMMDevice *dimm = PC_DIMM(dev);
3054 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3055 MemoryRegion *mr;
3056 uint64_t size;
3057 char *mem_dev;
3059 mr = ddc->get_memory_region(dimm, errp);
3060 if (!mr) {
3061 return;
3063 size = memory_region_size(mr);
3065 if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3066 error_setg(errp, "Hotplugged memory size must be a multiple of "
3067 "%lld MB", SPAPR_MEMORY_BLOCK_SIZE / M_BYTE);
3068 return;
3071 mem_dev = object_property_get_str(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, NULL);
3072 if (mem_dev && !kvmppc_is_mem_backend_page_size_ok(mem_dev)) {
3073 error_setg(errp, "Memory backend has bad page size. "
3074 "Use 'memory-backend-file' with correct mem-path.");
3075 goto out;
3078 out:
3079 g_free(mem_dev);
3082 struct sPAPRDIMMState {
3083 PCDIMMDevice *dimm;
3084 uint32_t nr_lmbs;
3085 QTAILQ_ENTRY(sPAPRDIMMState) next;
3088 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
3089 PCDIMMDevice *dimm)
3091 sPAPRDIMMState *dimm_state = NULL;
3093 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3094 if (dimm_state->dimm == dimm) {
3095 break;
3098 return dimm_state;
3101 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3102 uint32_t nr_lmbs,
3103 PCDIMMDevice *dimm)
3105 sPAPRDIMMState *ds = NULL;
3108 * If this request is for a DIMM whose removal had failed earlier
3109 * (due to guest's refusal to remove the LMBs), we would have this
3110 * dimm already in the pending_dimm_unplugs list. In that
3111 * case don't add again.
3113 ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3114 if (!ds) {
3115 ds = g_malloc0(sizeof(sPAPRDIMMState));
3116 ds->nr_lmbs = nr_lmbs;
3117 ds->dimm = dimm;
3118 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3120 return ds;
3123 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3124 sPAPRDIMMState *dimm_state)
3126 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3127 g_free(dimm_state);
3130 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3131 PCDIMMDevice *dimm)
3133 sPAPRDRConnector *drc;
3134 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3135 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3136 uint64_t size = memory_region_size(mr);
3137 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3138 uint32_t avail_lmbs = 0;
3139 uint64_t addr_start, addr;
3140 int i;
3142 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3143 &error_abort);
3145 addr = addr_start;
3146 for (i = 0; i < nr_lmbs; i++) {
3147 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3148 addr / SPAPR_MEMORY_BLOCK_SIZE);
3149 g_assert(drc);
3150 if (drc->dev) {
3151 avail_lmbs++;
3153 addr += SPAPR_MEMORY_BLOCK_SIZE;
3156 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3159 /* Callback to be called during DRC release. */
3160 void spapr_lmb_release(DeviceState *dev)
3162 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_hotplug_handler(dev));
3163 PCDIMMDevice *dimm = PC_DIMM(dev);
3164 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3165 MemoryRegion *mr = ddc->get_memory_region(dimm, &error_abort);
3166 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3168 /* This information will get lost if a migration occurs
3169 * during the unplug process. In this case recover it. */
3170 if (ds == NULL) {
3171 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3172 g_assert(ds);
3173 /* The DRC being examined by the caller at least must be counted */
3174 g_assert(ds->nr_lmbs);
3177 if (--ds->nr_lmbs) {
3178 return;
3182 * Now that all the LMBs have been removed by the guest, call the
3183 * pc-dimm unplug handler to cleanup up the pc-dimm device.
3185 pc_dimm_memory_unplug(dev, &spapr->hotplug_memory, mr);
3186 object_unparent(OBJECT(dev));
3187 spapr_pending_dimm_unplugs_remove(spapr, ds);
3190 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3191 DeviceState *dev, Error **errp)
3193 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3194 Error *local_err = NULL;
3195 PCDIMMDevice *dimm = PC_DIMM(dev);
3196 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
3197 MemoryRegion *mr;
3198 uint32_t nr_lmbs;
3199 uint64_t size, addr_start, addr;
3200 int i;
3201 sPAPRDRConnector *drc;
3203 mr = ddc->get_memory_region(dimm, &local_err);
3204 if (local_err) {
3205 goto out;
3207 size = memory_region_size(mr);
3208 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3210 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3211 &local_err);
3212 if (local_err) {
3213 goto out;
3217 * An existing pending dimm state for this DIMM means that there is an
3218 * unplug operation in progress, waiting for the spapr_lmb_release
3219 * callback to complete the job (BQL can't cover that far). In this case,
3220 * bail out to avoid detaching DRCs that were already released.
3222 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3223 error_setg(&local_err,
3224 "Memory unplug already in progress for device %s",
3225 dev->id);
3226 goto out;
3229 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3231 addr = addr_start;
3232 for (i = 0; i < nr_lmbs; i++) {
3233 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3234 addr / SPAPR_MEMORY_BLOCK_SIZE);
3235 g_assert(drc);
3237 spapr_drc_detach(drc);
3238 addr += SPAPR_MEMORY_BLOCK_SIZE;
3241 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3242 addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3243 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3244 nr_lmbs, spapr_drc_index(drc));
3245 out:
3246 error_propagate(errp, local_err);
3249 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3250 sPAPRMachineState *spapr)
3252 PowerPCCPU *cpu = POWERPC_CPU(cs);
3253 DeviceClass *dc = DEVICE_GET_CLASS(cs);
3254 int id = spapr_get_vcpu_id(cpu);
3255 void *fdt;
3256 int offset, fdt_size;
3257 char *nodename;
3259 fdt = create_device_tree(&fdt_size);
3260 nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3261 offset = fdt_add_subnode(fdt, 0, nodename);
3263 spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3264 g_free(nodename);
3266 *fdt_offset = offset;
3267 return fdt;
3270 /* Callback to be called during DRC release. */
3271 void spapr_core_release(DeviceState *dev)
3273 MachineState *ms = MACHINE(qdev_get_hotplug_handler(dev));
3274 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3275 CPUCore *cc = CPU_CORE(dev);
3276 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3278 if (smc->pre_2_10_has_unused_icps) {
3279 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3280 int i;
3282 for (i = 0; i < cc->nr_threads; i++) {
3283 CPUState *cs = CPU(sc->threads[i]);
3285 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3289 assert(core_slot);
3290 core_slot->cpu = NULL;
3291 object_unparent(OBJECT(dev));
3294 static
3295 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3296 Error **errp)
3298 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3299 int index;
3300 sPAPRDRConnector *drc;
3301 CPUCore *cc = CPU_CORE(dev);
3303 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3304 error_setg(errp, "Unable to find CPU core with core-id: %d",
3305 cc->core_id);
3306 return;
3308 if (index == 0) {
3309 error_setg(errp, "Boot CPU core may not be unplugged");
3310 return;
3313 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3314 spapr_vcpu_id(spapr, cc->core_id));
3315 g_assert(drc);
3317 spapr_drc_detach(drc);
3319 spapr_hotplug_req_remove_by_index(drc);
3322 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3323 Error **errp)
3325 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3326 MachineClass *mc = MACHINE_GET_CLASS(spapr);
3327 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3328 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3329 CPUCore *cc = CPU_CORE(dev);
3330 CPUState *cs = CPU(core->threads[0]);
3331 sPAPRDRConnector *drc;
3332 Error *local_err = NULL;
3333 CPUArchId *core_slot;
3334 int index;
3335 bool hotplugged = spapr_drc_hotplugged(dev);
3337 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3338 if (!core_slot) {
3339 error_setg(errp, "Unable to find CPU core with core-id: %d",
3340 cc->core_id);
3341 return;
3343 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3344 spapr_vcpu_id(spapr, cc->core_id));
3346 g_assert(drc || !mc->has_hotpluggable_cpus);
3348 if (drc) {
3349 void *fdt;
3350 int fdt_offset;
3352 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3354 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3355 if (local_err) {
3356 g_free(fdt);
3357 error_propagate(errp, local_err);
3358 return;
3361 if (hotplugged) {
3363 * Send hotplug notification interrupt to the guest only
3364 * in case of hotplugged CPUs.
3366 spapr_hotplug_req_add_by_index(drc);
3367 } else {
3368 spapr_drc_reset(drc);
3372 core_slot->cpu = OBJECT(dev);
3374 if (smc->pre_2_10_has_unused_icps) {
3375 int i;
3377 for (i = 0; i < cc->nr_threads; i++) {
3378 cs = CPU(core->threads[i]);
3379 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3384 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3385 Error **errp)
3387 MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3388 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3389 Error *local_err = NULL;
3390 CPUCore *cc = CPU_CORE(dev);
3391 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3392 const char *type = object_get_typename(OBJECT(dev));
3393 CPUArchId *core_slot;
3394 int index;
3396 if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3397 error_setg(&local_err, "CPU hotplug not supported for this machine");
3398 goto out;
3401 if (strcmp(base_core_type, type)) {
3402 error_setg(&local_err, "CPU core type should be %s", base_core_type);
3403 goto out;
3406 if (cc->core_id % smp_threads) {
3407 error_setg(&local_err, "invalid core id %d", cc->core_id);
3408 goto out;
3412 * In general we should have homogeneous threads-per-core, but old
3413 * (pre hotplug support) machine types allow the last core to have
3414 * reduced threads as a compatibility hack for when we allowed
3415 * total vcpus not a multiple of threads-per-core.
3417 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3418 error_setg(&local_err, "invalid nr-threads %d, must be %d",
3419 cc->nr_threads, smp_threads);
3420 goto out;
3423 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3424 if (!core_slot) {
3425 error_setg(&local_err, "core id %d out of range", cc->core_id);
3426 goto out;
3429 if (core_slot->cpu) {
3430 error_setg(&local_err, "core %d already populated", cc->core_id);
3431 goto out;
3434 numa_cpu_pre_plug(core_slot, dev, &local_err);
3436 out:
3437 error_propagate(errp, local_err);
3440 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3441 DeviceState *dev, Error **errp)
3443 MachineState *ms = MACHINE(hotplug_dev);
3444 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3446 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3447 int node;
3449 if (!smc->dr_lmb_enabled) {
3450 error_setg(errp, "Memory hotplug not supported for this machine");
3451 return;
3453 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, errp);
3454 if (*errp) {
3455 return;
3457 if (node < 0 || node >= MAX_NODES) {
3458 error_setg(errp, "Invaild node %d", node);
3459 return;
3462 spapr_memory_plug(hotplug_dev, dev, node, errp);
3463 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3464 spapr_core_plug(hotplug_dev, dev, errp);
3468 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3469 DeviceState *dev, Error **errp)
3471 sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3472 MachineClass *mc = MACHINE_GET_CLASS(sms);
3474 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3475 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3476 spapr_memory_unplug_request(hotplug_dev, dev, errp);
3477 } else {
3478 /* NOTE: this means there is a window after guest reset, prior to
3479 * CAS negotiation, where unplug requests will fail due to the
3480 * capability not being detected yet. This is a bit different than
3481 * the case with PCI unplug, where the events will be queued and
3482 * eventually handled by the guest after boot
3484 error_setg(errp, "Memory hot unplug not supported for this guest");
3486 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3487 if (!mc->has_hotpluggable_cpus) {
3488 error_setg(errp, "CPU hot unplug not supported on this machine");
3489 return;
3491 spapr_core_unplug_request(hotplug_dev, dev, errp);
3495 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3496 DeviceState *dev, Error **errp)
3498 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3499 spapr_memory_pre_plug(hotplug_dev, dev, errp);
3500 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3501 spapr_core_pre_plug(hotplug_dev, dev, errp);
3505 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3506 DeviceState *dev)
3508 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3509 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3510 return HOTPLUG_HANDLER(machine);
3512 return NULL;
3515 static CpuInstanceProperties
3516 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3518 CPUArchId *core_slot;
3519 MachineClass *mc = MACHINE_GET_CLASS(machine);
3521 /* make sure possible_cpu are intialized */
3522 mc->possible_cpu_arch_ids(machine);
3523 /* get CPU core slot containing thread that matches cpu_index */
3524 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3525 assert(core_slot);
3526 return core_slot->props;
3529 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3531 return idx / smp_cores % nb_numa_nodes;
3534 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3536 int i;
3537 const char *core_type;
3538 int spapr_max_cores = max_cpus / smp_threads;
3539 MachineClass *mc = MACHINE_GET_CLASS(machine);
3541 if (!mc->has_hotpluggable_cpus) {
3542 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3544 if (machine->possible_cpus) {
3545 assert(machine->possible_cpus->len == spapr_max_cores);
3546 return machine->possible_cpus;
3549 core_type = spapr_get_cpu_core_type(machine->cpu_type);
3550 if (!core_type) {
3551 error_report("Unable to find sPAPR CPU Core definition");
3552 exit(1);
3555 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3556 sizeof(CPUArchId) * spapr_max_cores);
3557 machine->possible_cpus->len = spapr_max_cores;
3558 for (i = 0; i < machine->possible_cpus->len; i++) {
3559 int core_id = i * smp_threads;
3561 machine->possible_cpus->cpus[i].type = core_type;
3562 machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3563 machine->possible_cpus->cpus[i].arch_id = core_id;
3564 machine->possible_cpus->cpus[i].props.has_core_id = true;
3565 machine->possible_cpus->cpus[i].props.core_id = core_id;
3567 return machine->possible_cpus;
3570 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3571 uint64_t *buid, hwaddr *pio,
3572 hwaddr *mmio32, hwaddr *mmio64,
3573 unsigned n_dma, uint32_t *liobns, Error **errp)
3576 * New-style PHB window placement.
3578 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3579 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3580 * windows.
3582 * Some guest kernels can't work with MMIO windows above 1<<46
3583 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3585 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3586 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the
3587 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the
3588 * 1TiB 64-bit MMIO windows for each PHB.
3590 const uint64_t base_buid = 0x800000020000000ULL;
3591 #define SPAPR_MAX_PHBS ((SPAPR_PCI_LIMIT - SPAPR_PCI_BASE) / \
3592 SPAPR_PCI_MEM64_WIN_SIZE - 1)
3593 int i;
3595 /* Sanity check natural alignments */
3596 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3597 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3598 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3599 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3600 /* Sanity check bounds */
3601 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3602 SPAPR_PCI_MEM32_WIN_SIZE);
3603 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3604 SPAPR_PCI_MEM64_WIN_SIZE);
3606 if (index >= SPAPR_MAX_PHBS) {
3607 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3608 SPAPR_MAX_PHBS - 1);
3609 return;
3612 *buid = base_buid + index;
3613 for (i = 0; i < n_dma; ++i) {
3614 liobns[i] = SPAPR_PCI_LIOBN(index, i);
3617 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3618 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3619 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3622 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3624 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3626 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3629 static void spapr_ics_resend(XICSFabric *dev)
3631 sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3633 ics_resend(spapr->ics);
3636 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3638 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
3640 return cpu ? ICP(cpu->intc) : NULL;
3643 #define ICS_IRQ_FREE(ics, srcno) \
3644 (!((ics)->irqs[(srcno)].flags & (XICS_FLAGS_IRQ_MASK)))
3646 static int ics_find_free_block(ICSState *ics, int num, int alignnum)
3648 int first, i;
3650 for (first = 0; first < ics->nr_irqs; first += alignnum) {
3651 if (num > (ics->nr_irqs - first)) {
3652 return -1;
3654 for (i = first; i < first + num; ++i) {
3655 if (!ICS_IRQ_FREE(ics, i)) {
3656 break;
3659 if (i == (first + num)) {
3660 return first;
3664 return -1;
3668 * Allocate the IRQ number and set the IRQ type, LSI or MSI
3670 static void spapr_irq_set_lsi(sPAPRMachineState *spapr, int irq, bool lsi)
3672 ics_set_irq_type(spapr->ics, irq - spapr->ics->offset, lsi);
3675 int spapr_irq_alloc(sPAPRMachineState *spapr, int irq_hint, bool lsi,
3676 Error **errp)
3678 ICSState *ics = spapr->ics;
3679 int irq;
3681 assert(ics);
3683 if (irq_hint) {
3684 if (!ICS_IRQ_FREE(ics, irq_hint - ics->offset)) {
3685 error_setg(errp, "can't allocate IRQ %d: already in use", irq_hint);
3686 return -1;
3688 irq = irq_hint;
3689 } else {
3690 irq = ics_find_free_block(ics, 1, 1);
3691 if (irq < 0) {
3692 error_setg(errp, "can't allocate IRQ: no IRQ left");
3693 return -1;
3695 irq += ics->offset;
3698 spapr_irq_set_lsi(spapr, irq, lsi);
3699 trace_spapr_irq_alloc(irq);
3701 return irq;
3705 * Allocate block of consecutive IRQs, and return the number of the first IRQ in
3706 * the block. If align==true, aligns the first IRQ number to num.
3708 int spapr_irq_alloc_block(sPAPRMachineState *spapr, int num, bool lsi,
3709 bool align, Error **errp)
3711 ICSState *ics = spapr->ics;
3712 int i, first = -1;
3714 assert(ics);
3717 * MSIMesage::data is used for storing VIRQ so
3718 * it has to be aligned to num to support multiple
3719 * MSI vectors. MSI-X is not affected by this.
3720 * The hint is used for the first IRQ, the rest should
3721 * be allocated continuously.
3723 if (align) {
3724 assert((num == 1) || (num == 2) || (num == 4) ||
3725 (num == 8) || (num == 16) || (num == 32));
3726 first = ics_find_free_block(ics, num, num);
3727 } else {
3728 first = ics_find_free_block(ics, num, 1);
3730 if (first < 0) {
3731 error_setg(errp, "can't find a free %d-IRQ block", num);
3732 return -1;
3735 first += ics->offset;
3736 for (i = first; i < first + num; ++i) {
3737 spapr_irq_set_lsi(spapr, i, lsi);
3740 trace_spapr_irq_alloc_block(first, num, lsi, align);
3742 return first;
3745 void spapr_irq_free(sPAPRMachineState *spapr, int irq, int num)
3747 ICSState *ics = spapr->ics;
3748 int srcno = irq - ics->offset;
3749 int i;
3751 if (ics_valid_irq(ics, irq)) {
3752 trace_spapr_irq_free(0, irq, num);
3753 for (i = srcno; i < srcno + num; ++i) {
3754 if (ICS_IRQ_FREE(ics, i)) {
3755 trace_spapr_irq_free_warn(0, i + ics->offset);
3757 memset(&ics->irqs[i], 0, sizeof(ICSIRQState));
3762 qemu_irq spapr_qirq(sPAPRMachineState *spapr, int irq)
3764 ICSState *ics = spapr->ics;
3766 if (ics_valid_irq(ics, irq)) {
3767 return ics->qirqs[irq - ics->offset];
3770 return NULL;
3773 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3774 Monitor *mon)
3776 sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3777 CPUState *cs;
3779 CPU_FOREACH(cs) {
3780 PowerPCCPU *cpu = POWERPC_CPU(cs);
3782 icp_pic_print_info(ICP(cpu->intc), mon);
3785 ics_pic_print_info(spapr->ics, mon);
3788 int spapr_get_vcpu_id(PowerPCCPU *cpu)
3790 return cpu->vcpu_id;
3793 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
3795 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3796 int vcpu_id;
3798 vcpu_id = spapr_vcpu_id(spapr, cpu_index);
3800 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
3801 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
3802 error_append_hint(errp, "Adjust the number of cpus to %d "
3803 "or try to raise the number of threads per core\n",
3804 vcpu_id * smp_threads / spapr->vsmt);
3805 return;
3808 cpu->vcpu_id = vcpu_id;
3811 PowerPCCPU *spapr_find_cpu(int vcpu_id)
3813 CPUState *cs;
3815 CPU_FOREACH(cs) {
3816 PowerPCCPU *cpu = POWERPC_CPU(cs);
3818 if (spapr_get_vcpu_id(cpu) == vcpu_id) {
3819 return cpu;
3823 return NULL;
3826 static void spapr_machine_class_init(ObjectClass *oc, void *data)
3828 MachineClass *mc = MACHINE_CLASS(oc);
3829 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
3830 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
3831 NMIClass *nc = NMI_CLASS(oc);
3832 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
3833 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
3834 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
3835 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
3837 mc->desc = "pSeries Logical Partition (PAPR compliant)";
3840 * We set up the default / latest behaviour here. The class_init
3841 * functions for the specific versioned machine types can override
3842 * these details for backwards compatibility
3844 mc->init = spapr_machine_init;
3845 mc->reset = spapr_machine_reset;
3846 mc->block_default_type = IF_SCSI;
3847 mc->max_cpus = 1024;
3848 mc->no_parallel = 1;
3849 mc->default_boot_order = "";
3850 mc->default_ram_size = 512 * M_BYTE;
3851 mc->kvm_type = spapr_kvm_type;
3852 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
3853 mc->pci_allow_0_address = true;
3854 mc->get_hotplug_handler = spapr_get_hotplug_handler;
3855 hc->pre_plug = spapr_machine_device_pre_plug;
3856 hc->plug = spapr_machine_device_plug;
3857 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
3858 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
3859 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
3860 hc->unplug_request = spapr_machine_device_unplug_request;
3862 smc->dr_lmb_enabled = true;
3863 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
3864 mc->has_hotpluggable_cpus = true;
3865 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
3866 fwc->get_dev_path = spapr_get_fw_dev_path;
3867 nc->nmi_monitor_handler = spapr_nmi;
3868 smc->phb_placement = spapr_phb_placement;
3869 vhc->hypercall = emulate_spapr_hypercall;
3870 vhc->hpt_mask = spapr_hpt_mask;
3871 vhc->map_hptes = spapr_map_hptes;
3872 vhc->unmap_hptes = spapr_unmap_hptes;
3873 vhc->store_hpte = spapr_store_hpte;
3874 vhc->get_patbe = spapr_get_patbe;
3875 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
3876 xic->ics_get = spapr_ics_get;
3877 xic->ics_resend = spapr_ics_resend;
3878 xic->icp_get = spapr_icp_get;
3879 ispc->print_info = spapr_pic_print_info;
3880 /* Force NUMA node memory size to be a multiple of
3881 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
3882 * in which LMBs are represented and hot-added
3884 mc->numa_mem_align_shift = 28;
3886 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
3887 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
3888 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
3889 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
3890 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
3891 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
3892 spapr_caps_add_properties(smc, &error_abort);
3895 static const TypeInfo spapr_machine_info = {
3896 .name = TYPE_SPAPR_MACHINE,
3897 .parent = TYPE_MACHINE,
3898 .abstract = true,
3899 .instance_size = sizeof(sPAPRMachineState),
3900 .instance_init = spapr_instance_init,
3901 .instance_finalize = spapr_machine_finalizefn,
3902 .class_size = sizeof(sPAPRMachineClass),
3903 .class_init = spapr_machine_class_init,
3904 .interfaces = (InterfaceInfo[]) {
3905 { TYPE_FW_PATH_PROVIDER },
3906 { TYPE_NMI },
3907 { TYPE_HOTPLUG_HANDLER },
3908 { TYPE_PPC_VIRTUAL_HYPERVISOR },
3909 { TYPE_XICS_FABRIC },
3910 { TYPE_INTERRUPT_STATS_PROVIDER },
3915 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \
3916 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
3917 void *data) \
3919 MachineClass *mc = MACHINE_CLASS(oc); \
3920 spapr_machine_##suffix##_class_options(mc); \
3921 if (latest) { \
3922 mc->alias = "pseries"; \
3923 mc->is_default = 1; \
3926 static void spapr_machine_##suffix##_instance_init(Object *obj) \
3928 MachineState *machine = MACHINE(obj); \
3929 spapr_machine_##suffix##_instance_options(machine); \
3931 static const TypeInfo spapr_machine_##suffix##_info = { \
3932 .name = MACHINE_TYPE_NAME("pseries-" verstr), \
3933 .parent = TYPE_SPAPR_MACHINE, \
3934 .class_init = spapr_machine_##suffix##_class_init, \
3935 .instance_init = spapr_machine_##suffix##_instance_init, \
3936 }; \
3937 static void spapr_machine_register_##suffix(void) \
3939 type_register(&spapr_machine_##suffix##_info); \
3941 type_init(spapr_machine_register_##suffix)
3944 * pseries-2.13
3946 static void spapr_machine_2_13_instance_options(MachineState *machine)
3950 static void spapr_machine_2_13_class_options(MachineClass *mc)
3952 /* Defaults for the latest behaviour inherited from the base class */
3955 DEFINE_SPAPR_MACHINE(2_13, "2.13", true);
3958 * pseries-2.12
3960 #define SPAPR_COMPAT_2_12 \
3961 HW_COMPAT_2_12
3963 static void spapr_machine_2_12_instance_options(MachineState *machine)
3965 spapr_machine_2_13_instance_options(machine);
3968 static void spapr_machine_2_12_class_options(MachineClass *mc)
3970 spapr_machine_2_13_class_options(mc);
3971 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_12);
3974 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
3976 static void spapr_machine_2_12_sxxm_instance_options(MachineState *machine)
3978 spapr_machine_2_12_instance_options(machine);
3981 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
3983 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3985 spapr_machine_2_12_class_options(mc);
3986 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
3987 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
3988 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
3991 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
3994 * pseries-2.11
3996 #define SPAPR_COMPAT_2_11 \
3997 HW_COMPAT_2_11
3999 static void spapr_machine_2_11_instance_options(MachineState *machine)
4001 spapr_machine_2_12_instance_options(machine);
4004 static void spapr_machine_2_11_class_options(MachineClass *mc)
4006 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4008 spapr_machine_2_12_class_options(mc);
4009 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4010 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_11);
4013 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4016 * pseries-2.10
4018 #define SPAPR_COMPAT_2_10 \
4019 HW_COMPAT_2_10
4021 static void spapr_machine_2_10_instance_options(MachineState *machine)
4023 spapr_machine_2_11_instance_options(machine);
4026 static void spapr_machine_2_10_class_options(MachineClass *mc)
4028 spapr_machine_2_11_class_options(mc);
4029 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_10);
4032 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4035 * pseries-2.9
4037 #define SPAPR_COMPAT_2_9 \
4038 HW_COMPAT_2_9 \
4040 .driver = TYPE_POWERPC_CPU, \
4041 .property = "pre-2.10-migration", \
4042 .value = "on", \
4043 }, \
4045 static void spapr_machine_2_9_instance_options(MachineState *machine)
4047 spapr_machine_2_10_instance_options(machine);
4050 static void spapr_machine_2_9_class_options(MachineClass *mc)
4052 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4054 spapr_machine_2_10_class_options(mc);
4055 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_9);
4056 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4057 smc->pre_2_10_has_unused_icps = true;
4058 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4061 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4064 * pseries-2.8
4066 #define SPAPR_COMPAT_2_8 \
4067 HW_COMPAT_2_8 \
4069 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4070 .property = "pcie-extended-configuration-space", \
4071 .value = "off", \
4074 static void spapr_machine_2_8_instance_options(MachineState *machine)
4076 spapr_machine_2_9_instance_options(machine);
4079 static void spapr_machine_2_8_class_options(MachineClass *mc)
4081 spapr_machine_2_9_class_options(mc);
4082 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_8);
4083 mc->numa_mem_align_shift = 23;
4086 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4089 * pseries-2.7
4091 #define SPAPR_COMPAT_2_7 \
4092 HW_COMPAT_2_7 \
4094 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4095 .property = "mem_win_size", \
4096 .value = stringify(SPAPR_PCI_2_7_MMIO_WIN_SIZE),\
4097 }, \
4099 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4100 .property = "mem64_win_size", \
4101 .value = "0", \
4102 }, \
4104 .driver = TYPE_POWERPC_CPU, \
4105 .property = "pre-2.8-migration", \
4106 .value = "on", \
4107 }, \
4109 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE, \
4110 .property = "pre-2.8-migration", \
4111 .value = "on", \
4114 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
4115 uint64_t *buid, hwaddr *pio,
4116 hwaddr *mmio32, hwaddr *mmio64,
4117 unsigned n_dma, uint32_t *liobns, Error **errp)
4119 /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4120 const uint64_t base_buid = 0x800000020000000ULL;
4121 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4122 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4123 const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4124 const uint32_t max_index = 255;
4125 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4127 uint64_t ram_top = MACHINE(spapr)->ram_size;
4128 hwaddr phb0_base, phb_base;
4129 int i;
4131 /* Do we have hotpluggable memory? */
4132 if (MACHINE(spapr)->maxram_size > ram_top) {
4133 /* Can't just use maxram_size, because there may be an
4134 * alignment gap between normal and hotpluggable memory
4135 * regions */
4136 ram_top = spapr->hotplug_memory.base +
4137 memory_region_size(&spapr->hotplug_memory.mr);
4140 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4142 if (index > max_index) {
4143 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4144 max_index);
4145 return;
4148 *buid = base_buid + index;
4149 for (i = 0; i < n_dma; ++i) {
4150 liobns[i] = SPAPR_PCI_LIOBN(index, i);
4153 phb_base = phb0_base + index * phb_spacing;
4154 *pio = phb_base + pio_offset;
4155 *mmio32 = phb_base + mmio_offset;
4157 * We don't set the 64-bit MMIO window, relying on the PHB's
4158 * fallback behaviour of automatically splitting a large "32-bit"
4159 * window into contiguous 32-bit and 64-bit windows
4163 static void spapr_machine_2_7_instance_options(MachineState *machine)
4165 sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
4167 spapr_machine_2_8_instance_options(machine);
4168 spapr->use_hotplug_event_source = false;
4171 static void spapr_machine_2_7_class_options(MachineClass *mc)
4173 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4175 spapr_machine_2_8_class_options(mc);
4176 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4177 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_7);
4178 smc->phb_placement = phb_placement_2_7;
4181 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4184 * pseries-2.6
4186 #define SPAPR_COMPAT_2_6 \
4187 HW_COMPAT_2_6 \
4189 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4190 .property = "ddw",\
4191 .value = stringify(off),\
4194 static void spapr_machine_2_6_instance_options(MachineState *machine)
4196 spapr_machine_2_7_instance_options(machine);
4199 static void spapr_machine_2_6_class_options(MachineClass *mc)
4201 spapr_machine_2_7_class_options(mc);
4202 mc->has_hotpluggable_cpus = false;
4203 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_6);
4206 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4209 * pseries-2.5
4211 #define SPAPR_COMPAT_2_5 \
4212 HW_COMPAT_2_5 \
4214 .driver = "spapr-vlan", \
4215 .property = "use-rx-buffer-pools", \
4216 .value = "off", \
4219 static void spapr_machine_2_5_instance_options(MachineState *machine)
4221 spapr_machine_2_6_instance_options(machine);
4224 static void spapr_machine_2_5_class_options(MachineClass *mc)
4226 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4228 spapr_machine_2_6_class_options(mc);
4229 smc->use_ohci_by_default = true;
4230 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_5);
4233 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4236 * pseries-2.4
4238 #define SPAPR_COMPAT_2_4 \
4239 HW_COMPAT_2_4
4241 static void spapr_machine_2_4_instance_options(MachineState *machine)
4243 spapr_machine_2_5_instance_options(machine);
4246 static void spapr_machine_2_4_class_options(MachineClass *mc)
4248 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4250 spapr_machine_2_5_class_options(mc);
4251 smc->dr_lmb_enabled = false;
4252 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_4);
4255 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4258 * pseries-2.3
4260 #define SPAPR_COMPAT_2_3 \
4261 HW_COMPAT_2_3 \
4263 .driver = "spapr-pci-host-bridge",\
4264 .property = "dynamic-reconfiguration",\
4265 .value = "off",\
4268 static void spapr_machine_2_3_instance_options(MachineState *machine)
4270 spapr_machine_2_4_instance_options(machine);
4273 static void spapr_machine_2_3_class_options(MachineClass *mc)
4275 spapr_machine_2_4_class_options(mc);
4276 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_3);
4278 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4281 * pseries-2.2
4284 #define SPAPR_COMPAT_2_2 \
4285 HW_COMPAT_2_2 \
4287 .driver = TYPE_SPAPR_PCI_HOST_BRIDGE,\
4288 .property = "mem_win_size",\
4289 .value = "0x20000000",\
4292 static void spapr_machine_2_2_instance_options(MachineState *machine)
4294 spapr_machine_2_3_instance_options(machine);
4295 machine->suppress_vmdesc = true;
4298 static void spapr_machine_2_2_class_options(MachineClass *mc)
4300 spapr_machine_2_3_class_options(mc);
4301 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_2);
4303 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4306 * pseries-2.1
4308 #define SPAPR_COMPAT_2_1 \
4309 HW_COMPAT_2_1
4311 static void spapr_machine_2_1_instance_options(MachineState *machine)
4313 spapr_machine_2_2_instance_options(machine);
4316 static void spapr_machine_2_1_class_options(MachineClass *mc)
4318 spapr_machine_2_2_class_options(mc);
4319 SET_MACHINE_COMPAT(mc, SPAPR_COMPAT_2_1);
4321 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4323 static void spapr_machine_register_types(void)
4325 type_register_static(&spapr_machine_info);
4328 type_init(spapr_machine_register_types)