2 * QEMU PowerPC pSeries Logical Partition NUMA associativity handling
4 * Copyright IBM Corp. 2020
7 * Daniel Henrique Barboza <danielhb413@gmail.com>
9 * This work is licensed under the terms of the GNU GPL, version 2 or later.
10 * See the COPYING file in the top-level directory.
13 #include "qemu/osdep.h"
14 #include "qemu-common.h"
15 #include "hw/ppc/spapr_numa.h"
16 #include "hw/pci-host/spapr.h"
17 #include "hw/ppc/fdt.h"
19 /* Moved from hw/ppc/spapr_pci_nvlink2.c */
20 #define SPAPR_GPU_NUMA_ID (cpu_to_be32(1))
23 * Retrieves max_dist_ref_points of the current NUMA affinity.
25 static int get_max_dist_ref_points(SpaprMachineState
*spapr
)
27 if (spapr_ovec_test(spapr
->ov5_cas
, OV5_FORM2_AFFINITY
)) {
28 return FORM2_DIST_REF_POINTS
;
31 return FORM1_DIST_REF_POINTS
;
35 * Retrieves numa_assoc_size of the current NUMA affinity.
37 static int get_numa_assoc_size(SpaprMachineState
*spapr
)
39 if (spapr_ovec_test(spapr
->ov5_cas
, OV5_FORM2_AFFINITY
)) {
40 return FORM2_NUMA_ASSOC_SIZE
;
43 return FORM1_NUMA_ASSOC_SIZE
;
47 * Retrieves vcpu_assoc_size of the current NUMA affinity.
49 * vcpu_assoc_size is the size of ibm,associativity array
50 * for CPUs, which has an extra element (vcpu_id) in the end.
52 static int get_vcpu_assoc_size(SpaprMachineState
*spapr
)
54 return get_numa_assoc_size(spapr
) + 1;
58 * Retrieves the ibm,associativity array of NUMA node 'node_id'
59 * for the current NUMA affinity.
61 static const uint32_t *get_associativity(SpaprMachineState
*spapr
, int node_id
)
63 if (spapr_ovec_test(spapr
->ov5_cas
, OV5_FORM2_AFFINITY
)) {
64 return spapr
->FORM2_assoc_array
[node_id
];
66 return spapr
->FORM1_assoc_array
[node_id
];
69 static bool spapr_numa_is_symmetrical(MachineState
*ms
)
72 int nb_numa_nodes
= ms
->numa_state
->num_nodes
;
73 NodeInfo
*numa_info
= ms
->numa_state
->nodes
;
75 for (src
= 0; src
< nb_numa_nodes
; src
++) {
76 for (dst
= src
; dst
< nb_numa_nodes
; dst
++) {
77 if (numa_info
[src
].distance
[dst
] !=
78 numa_info
[dst
].distance
[src
]) {
88 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
89 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
90 * called from vPHB reset handler so we initialize the counter here.
91 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
92 * must be equally distant from any other node.
93 * The final value of spapr->gpu_numa_id is going to be written to
94 * max-associativity-domains in spapr_build_fdt().
96 unsigned int spapr_numa_initial_nvgpu_numa_id(MachineState
*machine
)
98 return MAX(1, machine
->numa_state
->num_nodes
);
102 * This function will translate the user distances into
103 * what the kernel understand as possible values: 10
104 * (local distance), 20, 40, 80 and 160, and return the equivalent
105 * NUMA level for each. Current heuristic is:
106 * - local distance (10) returns numa_level = 0x4, meaning there is
107 * no rounding for local distance
108 * - distances between 11 and 30 inclusive -> rounded to 20,
110 * - distances between 31 and 60 inclusive -> rounded to 40,
112 * - distances between 61 and 120 inclusive -> rounded to 80,
114 * - everything above 120 returns numa_level = 0 to indicate that
115 * there is no match. This will be calculated as disntace = 160
116 * by the kernel (as of v5.9)
118 static uint8_t spapr_numa_get_numa_level(uint8_t distance
)
120 if (distance
== 10) {
122 } else if (distance
> 11 && distance
<= 30) {
124 } else if (distance
> 31 && distance
<= 60) {
126 } else if (distance
> 61 && distance
<= 120) {
133 static void spapr_numa_define_FORM1_domains(SpaprMachineState
*spapr
)
135 MachineState
*ms
= MACHINE(spapr
);
136 NodeInfo
*numa_info
= ms
->numa_state
->nodes
;
137 int nb_numa_nodes
= ms
->numa_state
->num_nodes
;
141 * Fill all associativity domains of non-zero NUMA nodes with
142 * node_id. This is required because the default value (0) is
143 * considered a match with associativity domains of node 0.
145 for (i
= 1; i
< nb_numa_nodes
; i
++) {
146 for (j
= 1; j
< FORM1_DIST_REF_POINTS
; j
++) {
147 spapr
->FORM1_assoc_array
[i
][j
] = cpu_to_be32(i
);
151 for (src
= 0; src
< nb_numa_nodes
; src
++) {
152 for (dst
= src
; dst
< nb_numa_nodes
; dst
++) {
154 * This is how the associativity domain between A and B
157 * - get the distance D between them
158 * - get the correspondent NUMA level 'n_level' for D
159 * - all associativity arrays were initialized with their own
160 * numa_ids, and we're calculating the distance in node_id
161 * ascending order, starting from node id 0 (the first node
162 * retrieved by numa_state). This will have a cascade effect in
163 * the algorithm because the associativity domains that node 0
164 * defines will be carried over to other nodes, and node 1
165 * associativities will be carried over after taking node 0
166 * associativities into account, and so on. This happens because
167 * we'll assign assoc_src as the associativity domain of dst
168 * as well, for all NUMA levels beyond and including n_level.
170 * The PPC kernel expects the associativity domains of node 0 to
171 * be always 0, and this algorithm will grant that by default.
173 uint8_t distance
= numa_info
[src
].distance
[dst
];
174 uint8_t n_level
= spapr_numa_get_numa_level(distance
);
178 * n_level = 0 means that the distance is greater than our last
179 * rounded value (120). In this case there is no NUMA level match
180 * between src and dst and we can skip the remaining of the loop.
182 * The Linux kernel will assume that the distance between src and
183 * dst, in this case of no match, is 10 (local distance) doubled
184 * for each NUMA it didn't match. We have FORM1_DIST_REF_POINTS
185 * levels (4), so this gives us 10*2*2*2*2 = 160.
187 * This logic can be seen in the Linux kernel source code, as of
188 * v5.9, in arch/powerpc/mm/numa.c, function __node_distance().
195 * We must assign all assoc_src to dst, starting from n_level
196 * and going up to 0x1.
198 for (i
= n_level
; i
> 0; i
--) {
199 assoc_src
= spapr
->FORM1_assoc_array
[src
][i
];
200 spapr
->FORM1_assoc_array
[dst
][i
] = assoc_src
;
207 static void spapr_numa_FORM1_affinity_check(MachineState
*machine
)
212 * Check we don't have a memory-less/cpu-less NUMA node
213 * Firmware relies on the existing memory/cpu topology to provide the
214 * NUMA topology to the kernel.
215 * And the linux kernel needs to know the NUMA topology at start
216 * to be able to hotplug CPUs later.
218 if (machine
->numa_state
->num_nodes
) {
219 for (i
= 0; i
< machine
->numa_state
->num_nodes
; ++i
) {
220 /* check for memory-less node */
221 if (machine
->numa_state
->nodes
[i
].node_mem
== 0) {
224 /* check for cpu-less node */
226 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
227 if (cpu
->node_id
== i
) {
232 /* memory-less and cpu-less node */
235 "Memory-less/cpu-less nodes are not supported with FORM1 NUMA (node %d)", i
);
242 if (!spapr_numa_is_symmetrical(machine
)) {
244 "Asymmetrical NUMA topologies aren't supported in the pSeries machine using FORM1 NUMA");
250 * Set NUMA machine state data based on FORM1 affinity semantics.
252 static void spapr_numa_FORM1_affinity_init(SpaprMachineState
*spapr
,
253 MachineState
*machine
)
255 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
256 int nb_numa_nodes
= machine
->numa_state
->num_nodes
;
257 int i
, j
, max_nodes_with_gpus
;
260 * For all associativity arrays: first position is the size,
261 * position FORM1_DIST_REF_POINTS is always the numa_id,
262 * represented by the index 'i'.
264 * This will break on sparse NUMA setups, when/if QEMU starts
265 * to support it, because there will be no more guarantee that
266 * 'i' will be a valid node_id set by the user.
268 for (i
= 0; i
< nb_numa_nodes
; i
++) {
269 spapr
->FORM1_assoc_array
[i
][0] = cpu_to_be32(FORM1_DIST_REF_POINTS
);
270 spapr
->FORM1_assoc_array
[i
][FORM1_DIST_REF_POINTS
] = cpu_to_be32(i
);
274 * Initialize NVLink GPU associativity arrays. We know that
275 * the first GPU will take the first available NUMA id, and
276 * we'll have a maximum of NVGPU_MAX_NUM GPUs in the machine.
277 * At this point we're not sure if there are GPUs or not, but
278 * let's initialize the associativity arrays and allow NVLink
279 * GPUs to be handled like regular NUMA nodes later on.
281 max_nodes_with_gpus
= nb_numa_nodes
+ NVGPU_MAX_NUM
;
283 for (i
= nb_numa_nodes
; i
< max_nodes_with_gpus
; i
++) {
284 spapr
->FORM1_assoc_array
[i
][0] = cpu_to_be32(FORM1_DIST_REF_POINTS
);
286 for (j
= 1; j
< FORM1_DIST_REF_POINTS
; j
++) {
287 uint32_t gpu_assoc
= smc
->pre_5_1_assoc_refpoints
?
288 SPAPR_GPU_NUMA_ID
: cpu_to_be32(i
);
289 spapr
->FORM1_assoc_array
[i
][j
] = gpu_assoc
;
292 spapr
->FORM1_assoc_array
[i
][FORM1_DIST_REF_POINTS
] = cpu_to_be32(i
);
296 * Guests pseries-5.1 and older uses zeroed associativity domains,
297 * i.e. no domain definition based on NUMA distance input.
299 * Same thing with guests that have only one NUMA node.
301 if (smc
->pre_5_2_numa_associativity
||
302 machine
->numa_state
->num_nodes
<= 1) {
306 spapr_numa_define_FORM1_domains(spapr
);
310 * Init NUMA FORM2 machine state data
312 static void spapr_numa_FORM2_affinity_init(SpaprMachineState
*spapr
)
317 * For all resources but CPUs, FORM2 associativity arrays will
318 * be a size 2 array with the following format:
320 * ibm,associativity = {1, numa_id}
322 * CPUs will write an additional 'vcpu_id' on top of the arrays
323 * being initialized here. 'numa_id' is represented by the
324 * index 'i' of the loop.
326 * Given that this initialization is also valid for GPU associativity
327 * arrays, handle everything in one single step by populating the
328 * arrays up to NUMA_NODES_MAX_NUM.
330 for (i
= 0; i
< NUMA_NODES_MAX_NUM
; i
++) {
331 spapr
->FORM2_assoc_array
[i
][0] = cpu_to_be32(1);
332 spapr
->FORM2_assoc_array
[i
][1] = cpu_to_be32(i
);
336 void spapr_numa_associativity_init(SpaprMachineState
*spapr
,
337 MachineState
*machine
)
339 spapr_numa_FORM1_affinity_init(spapr
, machine
);
340 spapr_numa_FORM2_affinity_init(spapr
);
343 void spapr_numa_associativity_check(SpaprMachineState
*spapr
)
346 * FORM2 does not have any restrictions we need to handle
347 * at CAS time, for now.
349 if (spapr_ovec_test(spapr
->ov5_cas
, OV5_FORM2_AFFINITY
)) {
353 spapr_numa_FORM1_affinity_check(MACHINE(spapr
));
356 void spapr_numa_write_associativity_dt(SpaprMachineState
*spapr
, void *fdt
,
357 int offset
, int nodeid
)
359 const uint32_t *associativity
= get_associativity(spapr
, nodeid
);
361 _FDT((fdt_setprop(fdt
, offset
, "ibm,associativity",
363 get_numa_assoc_size(spapr
) * sizeof(uint32_t))));
366 static uint32_t *spapr_numa_get_vcpu_assoc(SpaprMachineState
*spapr
,
369 const uint32_t *associativity
= get_associativity(spapr
, cpu
->node_id
);
370 int max_distance_ref_points
= get_max_dist_ref_points(spapr
);
371 int vcpu_assoc_size
= get_vcpu_assoc_size(spapr
);
372 uint32_t *vcpu_assoc
= g_new(uint32_t, vcpu_assoc_size
);
373 int index
= spapr_get_vcpu_id(cpu
);
376 * VCPUs have an extra 'cpu_id' value in ibm,associativity
377 * compared to other resources. Increment the size at index
378 * 0, put cpu_id last, then copy the remaining associativity
381 vcpu_assoc
[0] = cpu_to_be32(max_distance_ref_points
+ 1);
382 vcpu_assoc
[vcpu_assoc_size
- 1] = cpu_to_be32(index
);
383 memcpy(vcpu_assoc
+ 1, associativity
+ 1,
384 (vcpu_assoc_size
- 2) * sizeof(uint32_t));
389 int spapr_numa_fixup_cpu_dt(SpaprMachineState
*spapr
, void *fdt
,
390 int offset
, PowerPCCPU
*cpu
)
392 g_autofree
uint32_t *vcpu_assoc
= NULL
;
393 int vcpu_assoc_size
= get_vcpu_assoc_size(spapr
);
395 vcpu_assoc
= spapr_numa_get_vcpu_assoc(spapr
, cpu
);
397 /* Advertise NUMA via ibm,associativity */
398 return fdt_setprop(fdt
, offset
, "ibm,associativity", vcpu_assoc
,
399 vcpu_assoc_size
* sizeof(uint32_t));
403 int spapr_numa_write_assoc_lookup_arrays(SpaprMachineState
*spapr
, void *fdt
,
406 MachineState
*machine
= MACHINE(spapr
);
407 int max_distance_ref_points
= get_max_dist_ref_points(spapr
);
408 int nb_numa_nodes
= machine
->numa_state
->num_nodes
;
409 int nr_nodes
= nb_numa_nodes
? nb_numa_nodes
: 1;
410 uint32_t *int_buf
, *cur_index
, buf_len
;
413 /* ibm,associativity-lookup-arrays */
414 buf_len
= (nr_nodes
* max_distance_ref_points
+ 2) * sizeof(uint32_t);
415 cur_index
= int_buf
= g_malloc0(buf_len
);
416 int_buf
[0] = cpu_to_be32(nr_nodes
);
417 /* Number of entries per associativity list */
418 int_buf
[1] = cpu_to_be32(max_distance_ref_points
);
420 for (i
= 0; i
< nr_nodes
; i
++) {
422 * For the lookup-array we use the ibm,associativity array of the
423 * current NUMA affinity, without the first element (size).
425 const uint32_t *associativity
= get_associativity(spapr
, i
);
426 memcpy(cur_index
, ++associativity
,
427 sizeof(uint32_t) * max_distance_ref_points
);
428 cur_index
+= max_distance_ref_points
;
430 ret
= fdt_setprop(fdt
, offset
, "ibm,associativity-lookup-arrays", int_buf
,
431 (cur_index
- int_buf
) * sizeof(uint32_t));
437 static void spapr_numa_FORM1_write_rtas_dt(SpaprMachineState
*spapr
,
440 MachineState
*ms
= MACHINE(spapr
);
441 SpaprMachineClass
*smc
= SPAPR_MACHINE_GET_CLASS(spapr
);
442 uint32_t number_nvgpus_nodes
= spapr
->gpu_numa_id
-
443 spapr_numa_initial_nvgpu_numa_id(ms
);
444 uint32_t refpoints
[] = {
450 uint32_t nr_refpoints
= ARRAY_SIZE(refpoints
);
451 uint32_t maxdomain
= ms
->numa_state
->num_nodes
+ number_nvgpus_nodes
;
452 uint32_t maxdomains
[] = {
454 cpu_to_be32(maxdomain
),
455 cpu_to_be32(maxdomain
),
456 cpu_to_be32(maxdomain
),
457 cpu_to_be32(maxdomain
)
460 if (smc
->pre_5_2_numa_associativity
||
461 ms
->numa_state
->num_nodes
<= 1) {
462 uint32_t legacy_refpoints
[] = {
467 uint32_t legacy_maxdomain
= spapr
->gpu_numa_id
> 1 ? 1 : 0;
468 uint32_t legacy_maxdomains
[] = {
470 cpu_to_be32(legacy_maxdomain
),
471 cpu_to_be32(legacy_maxdomain
),
472 cpu_to_be32(legacy_maxdomain
),
473 cpu_to_be32(spapr
->gpu_numa_id
),
476 G_STATIC_ASSERT(sizeof(legacy_refpoints
) <= sizeof(refpoints
));
477 G_STATIC_ASSERT(sizeof(legacy_maxdomains
) <= sizeof(maxdomains
));
481 memcpy(refpoints
, legacy_refpoints
, sizeof(legacy_refpoints
));
482 memcpy(maxdomains
, legacy_maxdomains
, sizeof(legacy_maxdomains
));
484 /* pseries-5.0 and older reference-points array is {0x4, 0x4} */
485 if (smc
->pre_5_1_assoc_refpoints
) {
490 _FDT(fdt_setprop(fdt
, rtas
, "ibm,associativity-reference-points",
491 refpoints
, nr_refpoints
* sizeof(refpoints
[0])));
493 _FDT(fdt_setprop(fdt
, rtas
, "ibm,max-associativity-domains",
494 maxdomains
, sizeof(maxdomains
)));
497 static void spapr_numa_FORM2_write_rtas_tables(SpaprMachineState
*spapr
,
500 MachineState
*ms
= MACHINE(spapr
);
501 NodeInfo
*numa_info
= ms
->numa_state
->nodes
;
502 int nb_numa_nodes
= ms
->numa_state
->num_nodes
;
503 int distance_table_entries
= nb_numa_nodes
* nb_numa_nodes
;
504 g_autofree
uint32_t *lookup_index_table
= NULL
;
505 g_autofree
uint8_t *distance_table
= NULL
;
506 int src
, dst
, i
, distance_table_size
;
509 * ibm,numa-lookup-index-table: array with length and a
510 * list of NUMA ids present in the guest.
512 lookup_index_table
= g_new0(uint32_t, nb_numa_nodes
+ 1);
513 lookup_index_table
[0] = cpu_to_be32(nb_numa_nodes
);
515 for (i
= 0; i
< nb_numa_nodes
; i
++) {
516 lookup_index_table
[i
+ 1] = cpu_to_be32(i
);
519 _FDT(fdt_setprop(fdt
, rtas
, "ibm,numa-lookup-index-table",
521 (nb_numa_nodes
+ 1) * sizeof(uint32_t)));
524 * ibm,numa-distance-table: contains all node distances. First
525 * element is the size of the table as uint32, followed up
526 * by all the uint8 distances from the first NUMA node, then all
527 * distances from the second NUMA node and so on.
529 * ibm,numa-lookup-index-table is used by guest to navigate this
530 * array because NUMA ids can be sparse (node 0 is the first,
531 * node 8 is the second ...).
533 distance_table_size
= distance_table_entries
* sizeof(uint8_t) +
535 distance_table
= g_new0(uint8_t, distance_table_size
);
536 stl_be_p(distance_table
, distance_table_entries
);
538 /* Skip the uint32_t array length at the start */
539 i
= sizeof(uint32_t);
541 for (src
= 0; src
< nb_numa_nodes
; src
++) {
542 for (dst
= 0; dst
< nb_numa_nodes
; dst
++) {
544 * We need to be explicit with the local distance
545 * value to cover the case where the user didn't added any
546 * NUMA nodes, but QEMU adds the default NUMA node without
547 * adding the numa_info to retrieve distance info from.
550 distance_table
[i
++] = NUMA_DISTANCE_MIN
;
554 distance_table
[i
++] = numa_info
[src
].distance
[dst
];
558 _FDT(fdt_setprop(fdt
, rtas
, "ibm,numa-distance-table",
559 distance_table
, distance_table_size
));
563 * This helper could be compressed in a single function with
564 * FORM1 logic since we're setting the same DT values, with the
565 * difference being a call to spapr_numa_FORM2_write_rtas_tables()
566 * in the end. The separation was made to avoid clogging FORM1 code
567 * which already has to deal with compat modes from previous
568 * QEMU machine types.
570 static void spapr_numa_FORM2_write_rtas_dt(SpaprMachineState
*spapr
,
573 MachineState
*ms
= MACHINE(spapr
);
574 uint32_t number_nvgpus_nodes
= spapr
->gpu_numa_id
-
575 spapr_numa_initial_nvgpu_numa_id(ms
);
578 * In FORM2, ibm,associativity-reference-points will point to
579 * the element in the ibm,associativity array that contains the
580 * primary domain index (for FORM2, the first element).
582 * This value (in our case, the numa-id) is then used as an index
583 * to retrieve all other attributes of the node (distance,
584 * bandwidth, latency) via ibm,numa-lookup-index-table and other
585 * ibm,numa-*-table properties.
587 uint32_t refpoints
[] = { cpu_to_be32(1) };
589 uint32_t maxdomain
= ms
->numa_state
->num_nodes
+ number_nvgpus_nodes
;
590 uint32_t maxdomains
[] = { cpu_to_be32(1), cpu_to_be32(maxdomain
) };
592 _FDT(fdt_setprop(fdt
, rtas
, "ibm,associativity-reference-points",
593 refpoints
, sizeof(refpoints
)));
595 _FDT(fdt_setprop(fdt
, rtas
, "ibm,max-associativity-domains",
596 maxdomains
, sizeof(maxdomains
)));
598 spapr_numa_FORM2_write_rtas_tables(spapr
, fdt
, rtas
);
602 * Helper that writes ibm,associativity-reference-points and
603 * max-associativity-domains in the RTAS pointed by @rtas
606 void spapr_numa_write_rtas_dt(SpaprMachineState
*spapr
, void *fdt
, int rtas
)
608 if (spapr_ovec_test(spapr
->ov5_cas
, OV5_FORM2_AFFINITY
)) {
609 spapr_numa_FORM2_write_rtas_dt(spapr
, fdt
, rtas
);
613 spapr_numa_FORM1_write_rtas_dt(spapr
, fdt
, rtas
);
616 static target_ulong
h_home_node_associativity(PowerPCCPU
*cpu
,
617 SpaprMachineState
*spapr
,
621 g_autofree
uint32_t *vcpu_assoc
= NULL
;
622 target_ulong flags
= args
[0];
623 target_ulong procno
= args
[1];
626 int vcpu_assoc_size
= get_vcpu_assoc_size(spapr
);
628 /* only support procno from H_REGISTER_VPA */
633 tcpu
= spapr_find_cpu(procno
);
639 * Given that we want to be flexible with the sizes and indexes,
640 * we must consider that there is a hard limit of how many
641 * associativities domain we can fit in R4 up to R9, which would be
642 * 12 associativity domains for vcpus. Assert and bail if that's
645 g_assert((vcpu_assoc_size
- 1) <= 12);
647 vcpu_assoc
= spapr_numa_get_vcpu_assoc(spapr
, tcpu
);
648 /* assoc_idx starts at 1 to skip associativity size */
651 #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \
652 ((uint64_t)(b) & 0xffffffff))
654 for (idx
= 0; idx
< 6; idx
++) {
658 * vcpu_assoc[] will contain the associativity domains for tcpu,
659 * including tcpu->node_id and procno, meaning that we don't
660 * need to use these variables here.
662 * We'll read 2 values at a time to fill up the ASSOCIATIVITY()
663 * macro. The ternary will fill the remaining registers with -1
664 * after we went through vcpu_assoc[].
666 a
= assoc_idx
< vcpu_assoc_size
?
667 be32_to_cpu(vcpu_assoc
[assoc_idx
++]) : -1;
668 b
= assoc_idx
< vcpu_assoc_size
?
669 be32_to_cpu(vcpu_assoc
[assoc_idx
++]) : -1;
671 args
[idx
] = ASSOCIATIVITY(a
, b
);
678 static void spapr_numa_register_types(void)
680 /* Virtual Processor Home Node */
681 spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY
,
682 h_home_node_associativity
);
685 type_init(spapr_numa_register_types
)