2 * QEMU NVM Express Controller
4 * Copyright (c) 2012, Intel Corporation
6 * Written by Keith Busch <keith.busch@intel.com>
8 * This code is licensed under the GNU GPL v2 or later.
12 * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e
14 * https://nvmexpress.org/developers/nvme-specification/
17 * Notes on coding style
18 * ---------------------
19 * While QEMU coding style prefers lowercase hexadecimals in constants, the
20 * NVMe subsystem use thes format from the NVMe specifications in the comments
21 * (i.e. 'h' suffix instead of '0x' prefix).
25 * See docs/system/nvme.rst for extensive documentation.
28 * -drive file=<file>,if=none,id=<drive_id>
29 * -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id>
30 * -device nvme,serial=<serial>,id=<bus_name>, \
31 * cmb_size_mb=<cmb_size_mb[optional]>, \
32 * [pmrdev=<mem_backend_file_id>,] \
33 * max_ioqpairs=<N[optional]>, \
34 * aerl=<N[optional]>,aer_max_queued=<N[optional]>, \
35 * mdts=<N[optional]>,vsl=<N[optional]>, \
36 * zoned.zasl=<N[optional]>, \
37 * zoned.auto_transition=<on|off[optional]>, \
39 * -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\
40 * zoned=<true|false[optional]>, \
41 * subsys=<subsys_id>,detached=<true|false[optional]>
43 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
44 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the
45 * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to
46 * always enable the CMBLOC and CMBSZ registers (v1.3 behavior).
48 * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
50 * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
51 * size=<size> .... -device nvme,...,pmrdev=<mem_id>
53 * The PMR will use BAR 4/5 exclusively.
55 * To place controller(s) and namespace(s) to a subsystem, then provide
56 * nvme-subsys device as above.
58 * nvme subsystem device parameters
59 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
61 * This parameter provides the `<nqn_id>` part of the string
62 * `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field
63 * of subsystem controllers. Note that `<nqn_id>` should be unique per
64 * subsystem, but this is not enforced by QEMU. If not specified, it will
65 * default to the value of the `id` parameter (`<subsys_id>`).
67 * nvme device parameters
68 * ~~~~~~~~~~~~~~~~~~~~~~
70 * Specifying this parameter attaches the controller to the subsystem and
71 * the SUBNQN field in the controller will report the NQN of the subsystem
72 * device. This also enables multi controller capability represented in
73 * Identify Controller data structure in CMIC (Controller Multi-path I/O and
74 * Namesapce Sharing Capabilities).
77 * The Asynchronous Event Request Limit (AERL). Indicates the maximum number
78 * of concurrently outstanding Asynchronous Event Request commands support
79 * by the controller. This is a 0's based value.
82 * This is the maximum number of events that the device will enqueue for
83 * completion when there are no outstanding AERs. When the maximum number of
84 * enqueued events are reached, subsequent events will be dropped.
87 * Indicates the maximum data transfer size for a command that transfers data
88 * between host-accessible memory and the controller. The value is specified
89 * as a power of two (2^n) and is in units of the minimum memory page size
90 * (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB).
93 * Indicates the maximum data size limit for the Verify command. Like `mdts`,
94 * this value is specified as a power of two (2^n) and is in units of the
95 * minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512
99 * Indicates the maximum data transfer size for the Zone Append command. Like
100 * `mdts`, the value is specified as a power of two (2^n) and is in units of
101 * the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e.
102 * defaulting to the value of `mdts`).
104 * - `zoned.auto_transition`
105 * Indicates if zones in zone state implicitly opened can be automatically
106 * transitioned to zone state closed for resource management purposes.
109 * nvme namespace device parameters
110 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
112 * When the parent nvme device (as defined explicitly by the 'bus' parameter
113 * or implicitly by the most recently defined NvmeBus) is linked to an
114 * nvme-subsys device, the namespace will be attached to all controllers in
115 * the subsystem. If set to 'off' (the default), the namespace will remain a
116 * private namespace and may only be attached to a single controller at a
120 * This parameter is only valid together with the `subsys` parameter. If left
121 * at the default value (`false/off`), the namespace will be attached to all
122 * controllers in the NVMe subsystem at boot-up. If set to `true/on`, the
123 * namespace will be available in the subsystem but not attached to any
126 * Setting `zoned` to true selects Zoned Command Set at the namespace.
127 * In this case, the following namespace properties are available to configure
129 * zoned.zone_size=<zone size in bytes, default: 128MiB>
130 * The number may be followed by K, M, G as in kilo-, mega- or giga-.
132 * zoned.zone_capacity=<zone capacity in bytes, default: zone size>
133 * The value 0 (default) forces zone capacity to be the same as zone
134 * size. The value of this property may not exceed zone size.
136 * zoned.descr_ext_size=<zone descriptor extension size, default 0>
137 * This value needs to be specified in 64B units. If it is zero,
138 * namespace(s) will not support zone descriptor extensions.
140 * zoned.max_active=<Maximum Active Resources (zones), default: 0>
141 * The default value means there is no limit to the number of
142 * concurrently active zones.
144 * zoned.max_open=<Maximum Open Resources (zones), default: 0>
145 * The default value means there is no limit to the number of
146 * concurrently open zones.
148 * zoned.cross_read=<enable RAZB, default: false>
149 * Setting this property to true enables Read Across Zone Boundaries.
152 #include "qemu/osdep.h"
153 #include "qemu/cutils.h"
154 #include "qemu/error-report.h"
155 #include "qemu/log.h"
156 #include "qemu/units.h"
157 #include "qapi/error.h"
158 #include "qapi/visitor.h"
159 #include "sysemu/sysemu.h"
160 #include "sysemu/block-backend.h"
161 #include "sysemu/hostmem.h"
162 #include "hw/pci/msix.h"
163 #include "migration/vmstate.h"
168 #define NVME_MAX_IOQPAIRS 0xffff
169 #define NVME_DB_SIZE 4
170 #define NVME_SPEC_VER 0x00010400
171 #define NVME_CMB_BIR 2
172 #define NVME_PMR_BIR 4
173 #define NVME_TEMPERATURE 0x143
174 #define NVME_TEMPERATURE_WARNING 0x157
175 #define NVME_TEMPERATURE_CRITICAL 0x175
176 #define NVME_NUM_FW_SLOTS 1
177 #define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB)
179 #define NVME_GUEST_ERR(trace, fmt, ...) \
181 (trace_##trace)(__VA_ARGS__); \
182 qemu_log_mask(LOG_GUEST_ERROR, #trace \
183 " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
186 static const bool nvme_feature_support
[NVME_FID_MAX
] = {
187 [NVME_ARBITRATION
] = true,
188 [NVME_POWER_MANAGEMENT
] = true,
189 [NVME_TEMPERATURE_THRESHOLD
] = true,
190 [NVME_ERROR_RECOVERY
] = true,
191 [NVME_VOLATILE_WRITE_CACHE
] = true,
192 [NVME_NUMBER_OF_QUEUES
] = true,
193 [NVME_INTERRUPT_COALESCING
] = true,
194 [NVME_INTERRUPT_VECTOR_CONF
] = true,
195 [NVME_WRITE_ATOMICITY
] = true,
196 [NVME_ASYNCHRONOUS_EVENT_CONF
] = true,
197 [NVME_TIMESTAMP
] = true,
198 [NVME_COMMAND_SET_PROFILE
] = true,
201 static const uint32_t nvme_feature_cap
[NVME_FID_MAX
] = {
202 [NVME_TEMPERATURE_THRESHOLD
] = NVME_FEAT_CAP_CHANGE
,
203 [NVME_ERROR_RECOVERY
] = NVME_FEAT_CAP_CHANGE
| NVME_FEAT_CAP_NS
,
204 [NVME_VOLATILE_WRITE_CACHE
] = NVME_FEAT_CAP_CHANGE
,
205 [NVME_NUMBER_OF_QUEUES
] = NVME_FEAT_CAP_CHANGE
,
206 [NVME_ASYNCHRONOUS_EVENT_CONF
] = NVME_FEAT_CAP_CHANGE
,
207 [NVME_TIMESTAMP
] = NVME_FEAT_CAP_CHANGE
,
208 [NVME_COMMAND_SET_PROFILE
] = NVME_FEAT_CAP_CHANGE
,
211 static const uint32_t nvme_cse_acs
[256] = {
212 [NVME_ADM_CMD_DELETE_SQ
] = NVME_CMD_EFF_CSUPP
,
213 [NVME_ADM_CMD_CREATE_SQ
] = NVME_CMD_EFF_CSUPP
,
214 [NVME_ADM_CMD_GET_LOG_PAGE
] = NVME_CMD_EFF_CSUPP
,
215 [NVME_ADM_CMD_DELETE_CQ
] = NVME_CMD_EFF_CSUPP
,
216 [NVME_ADM_CMD_CREATE_CQ
] = NVME_CMD_EFF_CSUPP
,
217 [NVME_ADM_CMD_IDENTIFY
] = NVME_CMD_EFF_CSUPP
,
218 [NVME_ADM_CMD_ABORT
] = NVME_CMD_EFF_CSUPP
,
219 [NVME_ADM_CMD_SET_FEATURES
] = NVME_CMD_EFF_CSUPP
,
220 [NVME_ADM_CMD_GET_FEATURES
] = NVME_CMD_EFF_CSUPP
,
221 [NVME_ADM_CMD_ASYNC_EV_REQ
] = NVME_CMD_EFF_CSUPP
,
222 [NVME_ADM_CMD_NS_ATTACHMENT
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_NIC
,
223 [NVME_ADM_CMD_FORMAT_NVM
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
226 static const uint32_t nvme_cse_iocs_none
[256];
228 static const uint32_t nvme_cse_iocs_nvm
[256] = {
229 [NVME_CMD_FLUSH
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
230 [NVME_CMD_WRITE_ZEROES
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
231 [NVME_CMD_WRITE
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
232 [NVME_CMD_READ
] = NVME_CMD_EFF_CSUPP
,
233 [NVME_CMD_DSM
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
234 [NVME_CMD_VERIFY
] = NVME_CMD_EFF_CSUPP
,
235 [NVME_CMD_COPY
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
236 [NVME_CMD_COMPARE
] = NVME_CMD_EFF_CSUPP
,
239 static const uint32_t nvme_cse_iocs_zoned
[256] = {
240 [NVME_CMD_FLUSH
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
241 [NVME_CMD_WRITE_ZEROES
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
242 [NVME_CMD_WRITE
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
243 [NVME_CMD_READ
] = NVME_CMD_EFF_CSUPP
,
244 [NVME_CMD_DSM
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
245 [NVME_CMD_VERIFY
] = NVME_CMD_EFF_CSUPP
,
246 [NVME_CMD_COPY
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
247 [NVME_CMD_COMPARE
] = NVME_CMD_EFF_CSUPP
,
248 [NVME_CMD_ZONE_APPEND
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
249 [NVME_CMD_ZONE_MGMT_SEND
] = NVME_CMD_EFF_CSUPP
| NVME_CMD_EFF_LBCC
,
250 [NVME_CMD_ZONE_MGMT_RECV
] = NVME_CMD_EFF_CSUPP
,
253 static void nvme_process_sq(void *opaque
);
255 static uint16_t nvme_sqid(NvmeRequest
*req
)
257 return le16_to_cpu(req
->sq
->sqid
);
260 static void nvme_assign_zone_state(NvmeNamespace
*ns
, NvmeZone
*zone
,
263 if (QTAILQ_IN_USE(zone
, entry
)) {
264 switch (nvme_get_zone_state(zone
)) {
265 case NVME_ZONE_STATE_EXPLICITLY_OPEN
:
266 QTAILQ_REMOVE(&ns
->exp_open_zones
, zone
, entry
);
268 case NVME_ZONE_STATE_IMPLICITLY_OPEN
:
269 QTAILQ_REMOVE(&ns
->imp_open_zones
, zone
, entry
);
271 case NVME_ZONE_STATE_CLOSED
:
272 QTAILQ_REMOVE(&ns
->closed_zones
, zone
, entry
);
274 case NVME_ZONE_STATE_FULL
:
275 QTAILQ_REMOVE(&ns
->full_zones
, zone
, entry
);
281 nvme_set_zone_state(zone
, state
);
284 case NVME_ZONE_STATE_EXPLICITLY_OPEN
:
285 QTAILQ_INSERT_TAIL(&ns
->exp_open_zones
, zone
, entry
);
287 case NVME_ZONE_STATE_IMPLICITLY_OPEN
:
288 QTAILQ_INSERT_TAIL(&ns
->imp_open_zones
, zone
, entry
);
290 case NVME_ZONE_STATE_CLOSED
:
291 QTAILQ_INSERT_TAIL(&ns
->closed_zones
, zone
, entry
);
293 case NVME_ZONE_STATE_FULL
:
294 QTAILQ_INSERT_TAIL(&ns
->full_zones
, zone
, entry
);
295 case NVME_ZONE_STATE_READ_ONLY
:
303 * Check if we can open a zone without exceeding open/active limits.
304 * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5).
306 static int nvme_aor_check(NvmeNamespace
*ns
, uint32_t act
, uint32_t opn
)
308 if (ns
->params
.max_active_zones
!= 0 &&
309 ns
->nr_active_zones
+ act
> ns
->params
.max_active_zones
) {
310 trace_pci_nvme_err_insuff_active_res(ns
->params
.max_active_zones
);
311 return NVME_ZONE_TOO_MANY_ACTIVE
| NVME_DNR
;
313 if (ns
->params
.max_open_zones
!= 0 &&
314 ns
->nr_open_zones
+ opn
> ns
->params
.max_open_zones
) {
315 trace_pci_nvme_err_insuff_open_res(ns
->params
.max_open_zones
);
316 return NVME_ZONE_TOO_MANY_OPEN
| NVME_DNR
;
322 static bool nvme_addr_is_cmb(NvmeCtrl
*n
, hwaddr addr
)
330 lo
= n
->params
.legacy_cmb
? n
->cmb
.mem
.addr
: n
->cmb
.cba
;
331 hi
= lo
+ int128_get64(n
->cmb
.mem
.size
);
333 return addr
>= lo
&& addr
< hi
;
336 static inline void *nvme_addr_to_cmb(NvmeCtrl
*n
, hwaddr addr
)
338 hwaddr base
= n
->params
.legacy_cmb
? n
->cmb
.mem
.addr
: n
->cmb
.cba
;
339 return &n
->cmb
.buf
[addr
- base
];
342 static bool nvme_addr_is_pmr(NvmeCtrl
*n
, hwaddr addr
)
350 hi
= n
->pmr
.cba
+ int128_get64(n
->pmr
.dev
->mr
.size
);
352 return addr
>= n
->pmr
.cba
&& addr
< hi
;
355 static inline void *nvme_addr_to_pmr(NvmeCtrl
*n
, hwaddr addr
)
357 return memory_region_get_ram_ptr(&n
->pmr
.dev
->mr
) + (addr
- n
->pmr
.cba
);
360 static int nvme_addr_read(NvmeCtrl
*n
, hwaddr addr
, void *buf
, int size
)
362 hwaddr hi
= addr
+ size
- 1;
367 if (n
->bar
.cmbsz
&& nvme_addr_is_cmb(n
, addr
) && nvme_addr_is_cmb(n
, hi
)) {
368 memcpy(buf
, nvme_addr_to_cmb(n
, addr
), size
);
372 if (nvme_addr_is_pmr(n
, addr
) && nvme_addr_is_pmr(n
, hi
)) {
373 memcpy(buf
, nvme_addr_to_pmr(n
, addr
), size
);
377 return pci_dma_read(&n
->parent_obj
, addr
, buf
, size
);
380 static int nvme_addr_write(NvmeCtrl
*n
, hwaddr addr
, void *buf
, int size
)
382 hwaddr hi
= addr
+ size
- 1;
387 if (n
->bar
.cmbsz
&& nvme_addr_is_cmb(n
, addr
) && nvme_addr_is_cmb(n
, hi
)) {
388 memcpy(nvme_addr_to_cmb(n
, addr
), buf
, size
);
392 if (nvme_addr_is_pmr(n
, addr
) && nvme_addr_is_pmr(n
, hi
)) {
393 memcpy(nvme_addr_to_pmr(n
, addr
), buf
, size
);
397 return pci_dma_write(&n
->parent_obj
, addr
, buf
, size
);
400 static bool nvme_nsid_valid(NvmeCtrl
*n
, uint32_t nsid
)
403 (nsid
== NVME_NSID_BROADCAST
|| nsid
<= NVME_MAX_NAMESPACES
);
406 static int nvme_check_sqid(NvmeCtrl
*n
, uint16_t sqid
)
408 return sqid
< n
->params
.max_ioqpairs
+ 1 && n
->sq
[sqid
] != NULL
? 0 : -1;
411 static int nvme_check_cqid(NvmeCtrl
*n
, uint16_t cqid
)
413 return cqid
< n
->params
.max_ioqpairs
+ 1 && n
->cq
[cqid
] != NULL
? 0 : -1;
416 static void nvme_inc_cq_tail(NvmeCQueue
*cq
)
419 if (cq
->tail
>= cq
->size
) {
421 cq
->phase
= !cq
->phase
;
425 static void nvme_inc_sq_head(NvmeSQueue
*sq
)
427 sq
->head
= (sq
->head
+ 1) % sq
->size
;
430 static uint8_t nvme_cq_full(NvmeCQueue
*cq
)
432 return (cq
->tail
+ 1) % cq
->size
== cq
->head
;
435 static uint8_t nvme_sq_empty(NvmeSQueue
*sq
)
437 return sq
->head
== sq
->tail
;
440 static void nvme_irq_check(NvmeCtrl
*n
)
442 uint32_t intms
= ldl_le_p(&n
->bar
.intms
);
444 if (msix_enabled(&(n
->parent_obj
))) {
447 if (~intms
& n
->irq_status
) {
448 pci_irq_assert(&n
->parent_obj
);
450 pci_irq_deassert(&n
->parent_obj
);
454 static void nvme_irq_assert(NvmeCtrl
*n
, NvmeCQueue
*cq
)
456 if (cq
->irq_enabled
) {
457 if (msix_enabled(&(n
->parent_obj
))) {
458 trace_pci_nvme_irq_msix(cq
->vector
);
459 msix_notify(&(n
->parent_obj
), cq
->vector
);
461 trace_pci_nvme_irq_pin();
462 assert(cq
->vector
< 32);
463 n
->irq_status
|= 1 << cq
->vector
;
467 trace_pci_nvme_irq_masked();
471 static void nvme_irq_deassert(NvmeCtrl
*n
, NvmeCQueue
*cq
)
473 if (cq
->irq_enabled
) {
474 if (msix_enabled(&(n
->parent_obj
))) {
477 assert(cq
->vector
< 32);
478 if (!n
->cq_pending
) {
479 n
->irq_status
&= ~(1 << cq
->vector
);
486 static void nvme_req_clear(NvmeRequest
*req
)
491 memset(&req
->cqe
, 0x0, sizeof(req
->cqe
));
492 req
->status
= NVME_SUCCESS
;
495 static inline void nvme_sg_init(NvmeCtrl
*n
, NvmeSg
*sg
, bool dma
)
498 pci_dma_sglist_init(&sg
->qsg
, &n
->parent_obj
, 0);
499 sg
->flags
= NVME_SG_DMA
;
501 qemu_iovec_init(&sg
->iov
, 0);
504 sg
->flags
|= NVME_SG_ALLOC
;
507 static inline void nvme_sg_unmap(NvmeSg
*sg
)
509 if (!(sg
->flags
& NVME_SG_ALLOC
)) {
513 if (sg
->flags
& NVME_SG_DMA
) {
514 qemu_sglist_destroy(&sg
->qsg
);
516 qemu_iovec_destroy(&sg
->iov
);
519 memset(sg
, 0x0, sizeof(*sg
));
523 * When metadata is transfered as extended LBAs, the DPTR mapped into `sg`
524 * holds both data and metadata. This function splits the data and metadata
525 * into two separate QSG/IOVs.
527 static void nvme_sg_split(NvmeSg
*sg
, NvmeNamespace
*ns
, NvmeSg
*data
,
531 uint32_t trans_len
, count
= ns
->lbasz
;
533 bool dma
= sg
->flags
& NVME_SG_DMA
;
535 size_t sg_len
= dma
? sg
->qsg
.size
: sg
->iov
.size
;
538 assert(sg
->flags
& NVME_SG_ALLOC
);
541 sge_len
= dma
? sg
->qsg
.sg
[sg_idx
].len
: sg
->iov
.iov
[sg_idx
].iov_len
;
543 trans_len
= MIN(sg_len
, count
);
544 trans_len
= MIN(trans_len
, sge_len
- offset
);
548 qemu_sglist_add(&dst
->qsg
, sg
->qsg
.sg
[sg_idx
].base
+ offset
,
551 qemu_iovec_add(&dst
->iov
,
552 sg
->iov
.iov
[sg_idx
].iov_base
+ offset
,
562 dst
= (dst
== data
) ? mdata
: data
;
563 count
= (dst
== data
) ? ns
->lbasz
: ns
->lbaf
.ms
;
566 if (sge_len
== offset
) {
573 static uint16_t nvme_map_addr_cmb(NvmeCtrl
*n
, QEMUIOVector
*iov
, hwaddr addr
,
580 trace_pci_nvme_map_addr_cmb(addr
, len
);
582 if (!nvme_addr_is_cmb(n
, addr
) || !nvme_addr_is_cmb(n
, addr
+ len
- 1)) {
583 return NVME_DATA_TRAS_ERROR
;
586 qemu_iovec_add(iov
, nvme_addr_to_cmb(n
, addr
), len
);
591 static uint16_t nvme_map_addr_pmr(NvmeCtrl
*n
, QEMUIOVector
*iov
, hwaddr addr
,
598 if (!nvme_addr_is_pmr(n
, addr
) || !nvme_addr_is_pmr(n
, addr
+ len
- 1)) {
599 return NVME_DATA_TRAS_ERROR
;
602 qemu_iovec_add(iov
, nvme_addr_to_pmr(n
, addr
), len
);
607 static uint16_t nvme_map_addr(NvmeCtrl
*n
, NvmeSg
*sg
, hwaddr addr
, size_t len
)
609 bool cmb
= false, pmr
= false;
615 trace_pci_nvme_map_addr(addr
, len
);
617 if (nvme_addr_is_cmb(n
, addr
)) {
619 } else if (nvme_addr_is_pmr(n
, addr
)) {
624 if (sg
->flags
& NVME_SG_DMA
) {
625 return NVME_INVALID_USE_OF_CMB
| NVME_DNR
;
628 if (sg
->iov
.niov
+ 1 > IOV_MAX
) {
629 goto max_mappings_exceeded
;
633 return nvme_map_addr_cmb(n
, &sg
->iov
, addr
, len
);
635 return nvme_map_addr_pmr(n
, &sg
->iov
, addr
, len
);
639 if (!(sg
->flags
& NVME_SG_DMA
)) {
640 return NVME_INVALID_USE_OF_CMB
| NVME_DNR
;
643 if (sg
->qsg
.nsg
+ 1 > IOV_MAX
) {
644 goto max_mappings_exceeded
;
647 qemu_sglist_add(&sg
->qsg
, addr
, len
);
651 max_mappings_exceeded
:
652 NVME_GUEST_ERR(pci_nvme_ub_too_many_mappings
,
653 "number of mappings exceed 1024");
654 return NVME_INTERNAL_DEV_ERROR
| NVME_DNR
;
657 static inline bool nvme_addr_is_dma(NvmeCtrl
*n
, hwaddr addr
)
659 return !(nvme_addr_is_cmb(n
, addr
) || nvme_addr_is_pmr(n
, addr
));
662 static uint16_t nvme_map_prp(NvmeCtrl
*n
, NvmeSg
*sg
, uint64_t prp1
,
663 uint64_t prp2
, uint32_t len
)
665 hwaddr trans_len
= n
->page_size
- (prp1
% n
->page_size
);
666 trans_len
= MIN(len
, trans_len
);
667 int num_prps
= (len
>> n
->page_bits
) + 1;
671 trace_pci_nvme_map_prp(trans_len
, len
, prp1
, prp2
, num_prps
);
673 nvme_sg_init(n
, sg
, nvme_addr_is_dma(n
, prp1
));
675 status
= nvme_map_addr(n
, sg
, prp1
, trans_len
);
682 if (len
> n
->page_size
) {
683 uint64_t prp_list
[n
->max_prp_ents
];
684 uint32_t nents
, prp_trans
;
688 * The first PRP list entry, pointed to by PRP2 may contain offset.
689 * Hence, we need to calculate the number of entries in based on
692 nents
= (n
->page_size
- (prp2
& (n
->page_size
- 1))) >> 3;
693 prp_trans
= MIN(n
->max_prp_ents
, nents
) * sizeof(uint64_t);
694 ret
= nvme_addr_read(n
, prp2
, (void *)prp_list
, prp_trans
);
696 trace_pci_nvme_err_addr_read(prp2
);
697 status
= NVME_DATA_TRAS_ERROR
;
701 uint64_t prp_ent
= le64_to_cpu(prp_list
[i
]);
703 if (i
== nents
- 1 && len
> n
->page_size
) {
704 if (unlikely(prp_ent
& (n
->page_size
- 1))) {
705 trace_pci_nvme_err_invalid_prplist_ent(prp_ent
);
706 status
= NVME_INVALID_PRP_OFFSET
| NVME_DNR
;
711 nents
= (len
+ n
->page_size
- 1) >> n
->page_bits
;
712 nents
= MIN(nents
, n
->max_prp_ents
);
713 prp_trans
= nents
* sizeof(uint64_t);
714 ret
= nvme_addr_read(n
, prp_ent
, (void *)prp_list
,
717 trace_pci_nvme_err_addr_read(prp_ent
);
718 status
= NVME_DATA_TRAS_ERROR
;
721 prp_ent
= le64_to_cpu(prp_list
[i
]);
724 if (unlikely(prp_ent
& (n
->page_size
- 1))) {
725 trace_pci_nvme_err_invalid_prplist_ent(prp_ent
);
726 status
= NVME_INVALID_PRP_OFFSET
| NVME_DNR
;
730 trans_len
= MIN(len
, n
->page_size
);
731 status
= nvme_map_addr(n
, sg
, prp_ent
, trans_len
);
740 if (unlikely(prp2
& (n
->page_size
- 1))) {
741 trace_pci_nvme_err_invalid_prp2_align(prp2
);
742 status
= NVME_INVALID_PRP_OFFSET
| NVME_DNR
;
745 status
= nvme_map_addr(n
, sg
, prp2
, len
);
760 * Map 'nsgld' data descriptors from 'segment'. The function will subtract the
761 * number of bytes mapped in len.
763 static uint16_t nvme_map_sgl_data(NvmeCtrl
*n
, NvmeSg
*sg
,
764 NvmeSglDescriptor
*segment
, uint64_t nsgld
,
765 size_t *len
, NvmeCmd
*cmd
)
767 dma_addr_t addr
, trans_len
;
771 for (int i
= 0; i
< nsgld
; i
++) {
772 uint8_t type
= NVME_SGL_TYPE(segment
[i
].type
);
775 case NVME_SGL_DESCR_TYPE_BIT_BUCKET
:
776 if (cmd
->opcode
== NVME_CMD_WRITE
) {
779 case NVME_SGL_DESCR_TYPE_DATA_BLOCK
:
781 case NVME_SGL_DESCR_TYPE_SEGMENT
:
782 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT
:
783 return NVME_INVALID_NUM_SGL_DESCRS
| NVME_DNR
;
785 return NVME_SGL_DESCR_TYPE_INVALID
| NVME_DNR
;
788 dlen
= le32_to_cpu(segment
[i
].len
);
796 * All data has been mapped, but the SGL contains additional
797 * segments and/or descriptors. The controller might accept
798 * ignoring the rest of the SGL.
800 uint32_t sgls
= le32_to_cpu(n
->id_ctrl
.sgls
);
801 if (sgls
& NVME_CTRL_SGLS_EXCESS_LENGTH
) {
805 trace_pci_nvme_err_invalid_sgl_excess_length(dlen
);
806 return NVME_DATA_SGL_LEN_INVALID
| NVME_DNR
;
809 trans_len
= MIN(*len
, dlen
);
811 if (type
== NVME_SGL_DESCR_TYPE_BIT_BUCKET
) {
815 addr
= le64_to_cpu(segment
[i
].addr
);
817 if (UINT64_MAX
- addr
< dlen
) {
818 return NVME_DATA_SGL_LEN_INVALID
| NVME_DNR
;
821 status
= nvme_map_addr(n
, sg
, addr
, trans_len
);
833 static uint16_t nvme_map_sgl(NvmeCtrl
*n
, NvmeSg
*sg
, NvmeSglDescriptor sgl
,
834 size_t len
, NvmeCmd
*cmd
)
837 * Read the segment in chunks of 256 descriptors (one 4k page) to avoid
838 * dynamically allocating a potentially huge SGL. The spec allows the SGL
839 * to be larger (as in number of bytes required to describe the SGL
840 * descriptors and segment chain) than the command transfer size, so it is
841 * not bounded by MDTS.
843 const int SEG_CHUNK_SIZE
= 256;
845 NvmeSglDescriptor segment
[SEG_CHUNK_SIZE
], *sgld
, *last_sgld
;
853 addr
= le64_to_cpu(sgl
.addr
);
855 trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl
.type
), len
);
857 nvme_sg_init(n
, sg
, nvme_addr_is_dma(n
, addr
));
860 * If the entire transfer can be described with a single data block it can
861 * be mapped directly.
863 if (NVME_SGL_TYPE(sgl
.type
) == NVME_SGL_DESCR_TYPE_DATA_BLOCK
) {
864 status
= nvme_map_sgl_data(n
, sg
, sgld
, 1, &len
, cmd
);
873 switch (NVME_SGL_TYPE(sgld
->type
)) {
874 case NVME_SGL_DESCR_TYPE_SEGMENT
:
875 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT
:
878 return NVME_INVALID_SGL_SEG_DESCR
| NVME_DNR
;
881 seg_len
= le32_to_cpu(sgld
->len
);
883 /* check the length of the (Last) Segment descriptor */
884 if ((!seg_len
|| seg_len
& 0xf) &&
885 (NVME_SGL_TYPE(sgld
->type
) != NVME_SGL_DESCR_TYPE_BIT_BUCKET
)) {
886 return NVME_INVALID_SGL_SEG_DESCR
| NVME_DNR
;
889 if (UINT64_MAX
- addr
< seg_len
) {
890 return NVME_DATA_SGL_LEN_INVALID
| NVME_DNR
;
893 nsgld
= seg_len
/ sizeof(NvmeSglDescriptor
);
895 while (nsgld
> SEG_CHUNK_SIZE
) {
896 if (nvme_addr_read(n
, addr
, segment
, sizeof(segment
))) {
897 trace_pci_nvme_err_addr_read(addr
);
898 status
= NVME_DATA_TRAS_ERROR
;
902 status
= nvme_map_sgl_data(n
, sg
, segment
, SEG_CHUNK_SIZE
,
908 nsgld
-= SEG_CHUNK_SIZE
;
909 addr
+= SEG_CHUNK_SIZE
* sizeof(NvmeSglDescriptor
);
912 ret
= nvme_addr_read(n
, addr
, segment
, nsgld
*
913 sizeof(NvmeSglDescriptor
));
915 trace_pci_nvme_err_addr_read(addr
);
916 status
= NVME_DATA_TRAS_ERROR
;
920 last_sgld
= &segment
[nsgld
- 1];
923 * If the segment ends with a Data Block or Bit Bucket Descriptor Type,
926 switch (NVME_SGL_TYPE(last_sgld
->type
)) {
927 case NVME_SGL_DESCR_TYPE_DATA_BLOCK
:
928 case NVME_SGL_DESCR_TYPE_BIT_BUCKET
:
929 status
= nvme_map_sgl_data(n
, sg
, segment
, nsgld
, &len
, cmd
);
941 * If the last descriptor was not a Data Block or Bit Bucket, then the
942 * current segment must not be a Last Segment.
944 if (NVME_SGL_TYPE(sgld
->type
) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT
) {
945 status
= NVME_INVALID_SGL_SEG_DESCR
| NVME_DNR
;
950 addr
= le64_to_cpu(sgld
->addr
);
953 * Do not map the last descriptor; it will be a Segment or Last Segment
954 * descriptor and is handled by the next iteration.
956 status
= nvme_map_sgl_data(n
, sg
, segment
, nsgld
- 1, &len
, cmd
);
963 /* if there is any residual left in len, the SGL was too short */
965 status
= NVME_DATA_SGL_LEN_INVALID
| NVME_DNR
;
976 uint16_t nvme_map_dptr(NvmeCtrl
*n
, NvmeSg
*sg
, size_t len
,
981 switch (NVME_CMD_FLAGS_PSDT(cmd
->flags
)) {
983 prp1
= le64_to_cpu(cmd
->dptr
.prp1
);
984 prp2
= le64_to_cpu(cmd
->dptr
.prp2
);
986 return nvme_map_prp(n
, sg
, prp1
, prp2
, len
);
987 case NVME_PSDT_SGL_MPTR_CONTIGUOUS
:
988 case NVME_PSDT_SGL_MPTR_SGL
:
989 return nvme_map_sgl(n
, sg
, cmd
->dptr
.sgl
, len
, cmd
);
991 return NVME_INVALID_FIELD
;
995 static uint16_t nvme_map_mptr(NvmeCtrl
*n
, NvmeSg
*sg
, size_t len
,
998 int psdt
= NVME_CMD_FLAGS_PSDT(cmd
->flags
);
999 hwaddr mptr
= le64_to_cpu(cmd
->mptr
);
1002 if (psdt
== NVME_PSDT_SGL_MPTR_SGL
) {
1003 NvmeSglDescriptor sgl
;
1005 if (nvme_addr_read(n
, mptr
, &sgl
, sizeof(sgl
))) {
1006 return NVME_DATA_TRAS_ERROR
;
1009 status
= nvme_map_sgl(n
, sg
, sgl
, len
, cmd
);
1010 if (status
&& (status
& 0x7ff) == NVME_DATA_SGL_LEN_INVALID
) {
1011 status
= NVME_MD_SGL_LEN_INVALID
| NVME_DNR
;
1017 nvme_sg_init(n
, sg
, nvme_addr_is_dma(n
, mptr
));
1018 status
= nvme_map_addr(n
, sg
, mptr
, len
);
1026 static uint16_t nvme_map_data(NvmeCtrl
*n
, uint32_t nlb
, NvmeRequest
*req
)
1028 NvmeNamespace
*ns
= req
->ns
;
1029 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
1030 bool pi
= !!NVME_ID_NS_DPS_TYPE(ns
->id_ns
.dps
);
1031 bool pract
= !!(le16_to_cpu(rw
->control
) & NVME_RW_PRINFO_PRACT
);
1032 size_t len
= nvme_l2b(ns
, nlb
);
1035 if (nvme_ns_ext(ns
) && !(pi
&& pract
&& ns
->lbaf
.ms
== 8)) {
1038 len
+= nvme_m2b(ns
, nlb
);
1040 status
= nvme_map_dptr(n
, &sg
, len
, &req
->cmd
);
1045 nvme_sg_init(n
, &req
->sg
, sg
.flags
& NVME_SG_DMA
);
1046 nvme_sg_split(&sg
, ns
, &req
->sg
, NULL
);
1049 return NVME_SUCCESS
;
1052 return nvme_map_dptr(n
, &req
->sg
, len
, &req
->cmd
);
1055 static uint16_t nvme_map_mdata(NvmeCtrl
*n
, uint32_t nlb
, NvmeRequest
*req
)
1057 NvmeNamespace
*ns
= req
->ns
;
1058 size_t len
= nvme_m2b(ns
, nlb
);
1061 if (nvme_ns_ext(ns
)) {
1064 len
+= nvme_l2b(ns
, nlb
);
1066 status
= nvme_map_dptr(n
, &sg
, len
, &req
->cmd
);
1071 nvme_sg_init(n
, &req
->sg
, sg
.flags
& NVME_SG_DMA
);
1072 nvme_sg_split(&sg
, ns
, NULL
, &req
->sg
);
1075 return NVME_SUCCESS
;
1078 return nvme_map_mptr(n
, &req
->sg
, len
, &req
->cmd
);
1081 static uint16_t nvme_tx_interleaved(NvmeCtrl
*n
, NvmeSg
*sg
, uint8_t *ptr
,
1082 uint32_t len
, uint32_t bytes
,
1083 int32_t skip_bytes
, int64_t offset
,
1084 NvmeTxDirection dir
)
1087 uint32_t trans_len
, count
= bytes
;
1088 bool dma
= sg
->flags
& NVME_SG_DMA
;
1093 assert(sg
->flags
& NVME_SG_ALLOC
);
1096 sge_len
= dma
? sg
->qsg
.sg
[sg_idx
].len
: sg
->iov
.iov
[sg_idx
].iov_len
;
1098 if (sge_len
- offset
< 0) {
1104 if (sge_len
== offset
) {
1110 trans_len
= MIN(len
, count
);
1111 trans_len
= MIN(trans_len
, sge_len
- offset
);
1114 addr
= sg
->qsg
.sg
[sg_idx
].base
+ offset
;
1116 addr
= (hwaddr
)(uintptr_t)sg
->iov
.iov
[sg_idx
].iov_base
+ offset
;
1119 if (dir
== NVME_TX_DIRECTION_TO_DEVICE
) {
1120 ret
= nvme_addr_read(n
, addr
, ptr
, trans_len
);
1122 ret
= nvme_addr_write(n
, addr
, ptr
, trans_len
);
1126 return NVME_DATA_TRAS_ERROR
;
1132 offset
+= trans_len
;
1136 offset
+= skip_bytes
;
1140 return NVME_SUCCESS
;
1143 static uint16_t nvme_tx(NvmeCtrl
*n
, NvmeSg
*sg
, uint8_t *ptr
, uint32_t len
,
1144 NvmeTxDirection dir
)
1146 assert(sg
->flags
& NVME_SG_ALLOC
);
1148 if (sg
->flags
& NVME_SG_DMA
) {
1151 if (dir
== NVME_TX_DIRECTION_TO_DEVICE
) {
1152 residual
= dma_buf_write(ptr
, len
, &sg
->qsg
);
1154 residual
= dma_buf_read(ptr
, len
, &sg
->qsg
);
1157 if (unlikely(residual
)) {
1158 trace_pci_nvme_err_invalid_dma();
1159 return NVME_INVALID_FIELD
| NVME_DNR
;
1164 if (dir
== NVME_TX_DIRECTION_TO_DEVICE
) {
1165 bytes
= qemu_iovec_to_buf(&sg
->iov
, 0, ptr
, len
);
1167 bytes
= qemu_iovec_from_buf(&sg
->iov
, 0, ptr
, len
);
1170 if (unlikely(bytes
!= len
)) {
1171 trace_pci_nvme_err_invalid_dma();
1172 return NVME_INVALID_FIELD
| NVME_DNR
;
1176 return NVME_SUCCESS
;
1179 static inline uint16_t nvme_c2h(NvmeCtrl
*n
, uint8_t *ptr
, uint32_t len
,
1184 status
= nvme_map_dptr(n
, &req
->sg
, len
, &req
->cmd
);
1189 return nvme_tx(n
, &req
->sg
, ptr
, len
, NVME_TX_DIRECTION_FROM_DEVICE
);
1192 static inline uint16_t nvme_h2c(NvmeCtrl
*n
, uint8_t *ptr
, uint32_t len
,
1197 status
= nvme_map_dptr(n
, &req
->sg
, len
, &req
->cmd
);
1202 return nvme_tx(n
, &req
->sg
, ptr
, len
, NVME_TX_DIRECTION_TO_DEVICE
);
1205 uint16_t nvme_bounce_data(NvmeCtrl
*n
, uint8_t *ptr
, uint32_t len
,
1206 NvmeTxDirection dir
, NvmeRequest
*req
)
1208 NvmeNamespace
*ns
= req
->ns
;
1209 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
1210 bool pi
= !!NVME_ID_NS_DPS_TYPE(ns
->id_ns
.dps
);
1211 bool pract
= !!(le16_to_cpu(rw
->control
) & NVME_RW_PRINFO_PRACT
);
1213 if (nvme_ns_ext(ns
) && !(pi
&& pract
&& ns
->lbaf
.ms
== 8)) {
1214 return nvme_tx_interleaved(n
, &req
->sg
, ptr
, len
, ns
->lbasz
,
1215 ns
->lbaf
.ms
, 0, dir
);
1218 return nvme_tx(n
, &req
->sg
, ptr
, len
, dir
);
1221 uint16_t nvme_bounce_mdata(NvmeCtrl
*n
, uint8_t *ptr
, uint32_t len
,
1222 NvmeTxDirection dir
, NvmeRequest
*req
)
1224 NvmeNamespace
*ns
= req
->ns
;
1227 if (nvme_ns_ext(ns
)) {
1228 return nvme_tx_interleaved(n
, &req
->sg
, ptr
, len
, ns
->lbaf
.ms
,
1229 ns
->lbasz
, ns
->lbasz
, dir
);
1232 nvme_sg_unmap(&req
->sg
);
1234 status
= nvme_map_mptr(n
, &req
->sg
, len
, &req
->cmd
);
1239 return nvme_tx(n
, &req
->sg
, ptr
, len
, dir
);
1242 static inline void nvme_blk_read(BlockBackend
*blk
, int64_t offset
,
1243 BlockCompletionFunc
*cb
, NvmeRequest
*req
)
1245 assert(req
->sg
.flags
& NVME_SG_ALLOC
);
1247 if (req
->sg
.flags
& NVME_SG_DMA
) {
1248 req
->aiocb
= dma_blk_read(blk
, &req
->sg
.qsg
, offset
, BDRV_SECTOR_SIZE
,
1251 req
->aiocb
= blk_aio_preadv(blk
, offset
, &req
->sg
.iov
, 0, cb
, req
);
1255 static inline void nvme_blk_write(BlockBackend
*blk
, int64_t offset
,
1256 BlockCompletionFunc
*cb
, NvmeRequest
*req
)
1258 assert(req
->sg
.flags
& NVME_SG_ALLOC
);
1260 if (req
->sg
.flags
& NVME_SG_DMA
) {
1261 req
->aiocb
= dma_blk_write(blk
, &req
->sg
.qsg
, offset
, BDRV_SECTOR_SIZE
,
1264 req
->aiocb
= blk_aio_pwritev(blk
, offset
, &req
->sg
.iov
, 0, cb
, req
);
1268 static void nvme_post_cqes(void *opaque
)
1270 NvmeCQueue
*cq
= opaque
;
1271 NvmeCtrl
*n
= cq
->ctrl
;
1272 NvmeRequest
*req
, *next
;
1273 bool pending
= cq
->head
!= cq
->tail
;
1276 QTAILQ_FOREACH_SAFE(req
, &cq
->req_list
, entry
, next
) {
1280 if (nvme_cq_full(cq
)) {
1285 req
->cqe
.status
= cpu_to_le16((req
->status
<< 1) | cq
->phase
);
1286 req
->cqe
.sq_id
= cpu_to_le16(sq
->sqid
);
1287 req
->cqe
.sq_head
= cpu_to_le16(sq
->head
);
1288 addr
= cq
->dma_addr
+ cq
->tail
* n
->cqe_size
;
1289 ret
= pci_dma_write(&n
->parent_obj
, addr
, (void *)&req
->cqe
,
1292 trace_pci_nvme_err_addr_write(addr
);
1293 trace_pci_nvme_err_cfs();
1294 stl_le_p(&n
->bar
.csts
, NVME_CSTS_FAILED
);
1297 QTAILQ_REMOVE(&cq
->req_list
, req
, entry
);
1298 nvme_inc_cq_tail(cq
);
1299 nvme_sg_unmap(&req
->sg
);
1300 QTAILQ_INSERT_TAIL(&sq
->req_list
, req
, entry
);
1302 if (cq
->tail
!= cq
->head
) {
1303 if (cq
->irq_enabled
&& !pending
) {
1307 nvme_irq_assert(n
, cq
);
1311 static void nvme_enqueue_req_completion(NvmeCQueue
*cq
, NvmeRequest
*req
)
1313 assert(cq
->cqid
== req
->sq
->cqid
);
1314 trace_pci_nvme_enqueue_req_completion(nvme_cid(req
), cq
->cqid
,
1315 le32_to_cpu(req
->cqe
.result
),
1316 le32_to_cpu(req
->cqe
.dw1
),
1320 trace_pci_nvme_err_req_status(nvme_cid(req
), nvme_nsid(req
->ns
),
1321 req
->status
, req
->cmd
.opcode
);
1324 QTAILQ_REMOVE(&req
->sq
->out_req_list
, req
, entry
);
1325 QTAILQ_INSERT_TAIL(&cq
->req_list
, req
, entry
);
1326 timer_mod(cq
->timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + 500);
1329 static void nvme_process_aers(void *opaque
)
1331 NvmeCtrl
*n
= opaque
;
1332 NvmeAsyncEvent
*event
, *next
;
1334 trace_pci_nvme_process_aers(n
->aer_queued
);
1336 QTAILQ_FOREACH_SAFE(event
, &n
->aer_queue
, entry
, next
) {
1338 NvmeAerResult
*result
;
1340 /* can't post cqe if there is nothing to complete */
1341 if (!n
->outstanding_aers
) {
1342 trace_pci_nvme_no_outstanding_aers();
1346 /* ignore if masked (cqe posted, but event not cleared) */
1347 if (n
->aer_mask
& (1 << event
->result
.event_type
)) {
1348 trace_pci_nvme_aer_masked(event
->result
.event_type
, n
->aer_mask
);
1352 QTAILQ_REMOVE(&n
->aer_queue
, event
, entry
);
1355 n
->aer_mask
|= 1 << event
->result
.event_type
;
1356 n
->outstanding_aers
--;
1358 req
= n
->aer_reqs
[n
->outstanding_aers
];
1360 result
= (NvmeAerResult
*) &req
->cqe
.result
;
1361 result
->event_type
= event
->result
.event_type
;
1362 result
->event_info
= event
->result
.event_info
;
1363 result
->log_page
= event
->result
.log_page
;
1366 trace_pci_nvme_aer_post_cqe(result
->event_type
, result
->event_info
,
1369 nvme_enqueue_req_completion(&n
->admin_cq
, req
);
1373 static void nvme_enqueue_event(NvmeCtrl
*n
, uint8_t event_type
,
1374 uint8_t event_info
, uint8_t log_page
)
1376 NvmeAsyncEvent
*event
;
1378 trace_pci_nvme_enqueue_event(event_type
, event_info
, log_page
);
1380 if (n
->aer_queued
== n
->params
.aer_max_queued
) {
1381 trace_pci_nvme_enqueue_event_noqueue(n
->aer_queued
);
1385 event
= g_new(NvmeAsyncEvent
, 1);
1386 event
->result
= (NvmeAerResult
) {
1387 .event_type
= event_type
,
1388 .event_info
= event_info
,
1389 .log_page
= log_page
,
1392 QTAILQ_INSERT_TAIL(&n
->aer_queue
, event
, entry
);
1395 nvme_process_aers(n
);
1398 static void nvme_smart_event(NvmeCtrl
*n
, uint8_t event
)
1402 /* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */
1403 if (!(NVME_AEC_SMART(n
->features
.async_config
) & event
)) {
1408 case NVME_SMART_SPARE
:
1409 aer_info
= NVME_AER_INFO_SMART_SPARE_THRESH
;
1411 case NVME_SMART_TEMPERATURE
:
1412 aer_info
= NVME_AER_INFO_SMART_TEMP_THRESH
;
1414 case NVME_SMART_RELIABILITY
:
1415 case NVME_SMART_MEDIA_READ_ONLY
:
1416 case NVME_SMART_FAILED_VOLATILE_MEDIA
:
1417 case NVME_SMART_PMR_UNRELIABLE
:
1418 aer_info
= NVME_AER_INFO_SMART_RELIABILITY
;
1424 nvme_enqueue_event(n
, NVME_AER_TYPE_SMART
, aer_info
, NVME_LOG_SMART_INFO
);
1427 static void nvme_clear_events(NvmeCtrl
*n
, uint8_t event_type
)
1429 n
->aer_mask
&= ~(1 << event_type
);
1430 if (!QTAILQ_EMPTY(&n
->aer_queue
)) {
1431 nvme_process_aers(n
);
1435 static inline uint16_t nvme_check_mdts(NvmeCtrl
*n
, size_t len
)
1437 uint8_t mdts
= n
->params
.mdts
;
1439 if (mdts
&& len
> n
->page_size
<< mdts
) {
1440 trace_pci_nvme_err_mdts(len
);
1441 return NVME_INVALID_FIELD
| NVME_DNR
;
1444 return NVME_SUCCESS
;
1447 static inline uint16_t nvme_check_bounds(NvmeNamespace
*ns
, uint64_t slba
,
1450 uint64_t nsze
= le64_to_cpu(ns
->id_ns
.nsze
);
1452 if (unlikely(UINT64_MAX
- slba
< nlb
|| slba
+ nlb
> nsze
)) {
1453 trace_pci_nvme_err_invalid_lba_range(slba
, nlb
, nsze
);
1454 return NVME_LBA_RANGE
| NVME_DNR
;
1457 return NVME_SUCCESS
;
1460 static int nvme_block_status_all(NvmeNamespace
*ns
, uint64_t slba
,
1461 uint32_t nlb
, int flags
)
1463 BlockDriverState
*bs
= blk_bs(ns
->blkconf
.blk
);
1465 int64_t pnum
= 0, bytes
= nvme_l2b(ns
, nlb
);
1466 int64_t offset
= nvme_l2b(ns
, slba
);
1470 * `pnum` holds the number of bytes after offset that shares the same
1471 * allocation status as the byte at offset. If `pnum` is different from
1472 * `bytes`, we should check the allocation status of the next range and
1473 * continue this until all bytes have been checked.
1478 ret
= bdrv_block_status(bs
, offset
, bytes
, &pnum
, NULL
, NULL
);
1484 trace_pci_nvme_block_status(offset
, bytes
, pnum
, ret
,
1485 !!(ret
& BDRV_BLOCK_ZERO
));
1487 if (!(ret
& flags
)) {
1492 } while (pnum
!= bytes
);
1497 static uint16_t nvme_check_dulbe(NvmeNamespace
*ns
, uint64_t slba
,
1503 ret
= nvme_block_status_all(ns
, slba
, nlb
, BDRV_BLOCK_DATA
);
1506 error_setg_errno(&err
, -ret
, "unable to get block status");
1507 error_report_err(err
);
1509 return NVME_INTERNAL_DEV_ERROR
;
1515 return NVME_SUCCESS
;
1518 static void nvme_aio_err(NvmeRequest
*req
, int ret
)
1520 uint16_t status
= NVME_SUCCESS
;
1521 Error
*local_err
= NULL
;
1523 switch (req
->cmd
.opcode
) {
1525 status
= NVME_UNRECOVERED_READ
;
1527 case NVME_CMD_FLUSH
:
1528 case NVME_CMD_WRITE
:
1529 case NVME_CMD_WRITE_ZEROES
:
1530 case NVME_CMD_ZONE_APPEND
:
1531 status
= NVME_WRITE_FAULT
;
1534 status
= NVME_INTERNAL_DEV_ERROR
;
1538 trace_pci_nvme_err_aio(nvme_cid(req
), strerror(-ret
), status
);
1540 error_setg_errno(&local_err
, -ret
, "aio failed");
1541 error_report_err(local_err
);
1544 * Set the command status code to the first encountered error but allow a
1545 * subsequent Internal Device Error to trump it.
1547 if (req
->status
&& status
!= NVME_INTERNAL_DEV_ERROR
) {
1551 req
->status
= status
;
1554 static inline uint32_t nvme_zone_idx(NvmeNamespace
*ns
, uint64_t slba
)
1556 return ns
->zone_size_log2
> 0 ? slba
>> ns
->zone_size_log2
:
1557 slba
/ ns
->zone_size
;
1560 static inline NvmeZone
*nvme_get_zone_by_slba(NvmeNamespace
*ns
, uint64_t slba
)
1562 uint32_t zone_idx
= nvme_zone_idx(ns
, slba
);
1564 if (zone_idx
>= ns
->num_zones
) {
1568 return &ns
->zone_array
[zone_idx
];
1571 static uint16_t nvme_check_zone_state_for_write(NvmeZone
*zone
)
1573 uint64_t zslba
= zone
->d
.zslba
;
1575 switch (nvme_get_zone_state(zone
)) {
1576 case NVME_ZONE_STATE_EMPTY
:
1577 case NVME_ZONE_STATE_IMPLICITLY_OPEN
:
1578 case NVME_ZONE_STATE_EXPLICITLY_OPEN
:
1579 case NVME_ZONE_STATE_CLOSED
:
1580 return NVME_SUCCESS
;
1581 case NVME_ZONE_STATE_FULL
:
1582 trace_pci_nvme_err_zone_is_full(zslba
);
1583 return NVME_ZONE_FULL
;
1584 case NVME_ZONE_STATE_OFFLINE
:
1585 trace_pci_nvme_err_zone_is_offline(zslba
);
1586 return NVME_ZONE_OFFLINE
;
1587 case NVME_ZONE_STATE_READ_ONLY
:
1588 trace_pci_nvme_err_zone_is_read_only(zslba
);
1589 return NVME_ZONE_READ_ONLY
;
1594 return NVME_INTERNAL_DEV_ERROR
;
1597 static uint16_t nvme_check_zone_write(NvmeNamespace
*ns
, NvmeZone
*zone
,
1598 uint64_t slba
, uint32_t nlb
)
1600 uint64_t zcap
= nvme_zone_wr_boundary(zone
);
1603 status
= nvme_check_zone_state_for_write(zone
);
1608 if (unlikely(slba
!= zone
->w_ptr
)) {
1609 trace_pci_nvme_err_write_not_at_wp(slba
, zone
->d
.zslba
, zone
->w_ptr
);
1610 return NVME_ZONE_INVALID_WRITE
;
1613 if (unlikely((slba
+ nlb
) > zcap
)) {
1614 trace_pci_nvme_err_zone_boundary(slba
, nlb
, zcap
);
1615 return NVME_ZONE_BOUNDARY_ERROR
;
1618 return NVME_SUCCESS
;
1621 static uint16_t nvme_check_zone_state_for_read(NvmeZone
*zone
)
1623 switch (nvme_get_zone_state(zone
)) {
1624 case NVME_ZONE_STATE_EMPTY
:
1625 case NVME_ZONE_STATE_IMPLICITLY_OPEN
:
1626 case NVME_ZONE_STATE_EXPLICITLY_OPEN
:
1627 case NVME_ZONE_STATE_FULL
:
1628 case NVME_ZONE_STATE_CLOSED
:
1629 case NVME_ZONE_STATE_READ_ONLY
:
1630 return NVME_SUCCESS
;
1631 case NVME_ZONE_STATE_OFFLINE
:
1632 trace_pci_nvme_err_zone_is_offline(zone
->d
.zslba
);
1633 return NVME_ZONE_OFFLINE
;
1638 return NVME_INTERNAL_DEV_ERROR
;
1641 static uint16_t nvme_check_zone_read(NvmeNamespace
*ns
, uint64_t slba
,
1645 uint64_t bndry
, end
;
1648 zone
= nvme_get_zone_by_slba(ns
, slba
);
1651 bndry
= nvme_zone_rd_boundary(ns
, zone
);
1654 status
= nvme_check_zone_state_for_read(zone
);
1657 } else if (unlikely(end
> bndry
)) {
1658 if (!ns
->params
.cross_zone_read
) {
1659 status
= NVME_ZONE_BOUNDARY_ERROR
;
1662 * Read across zone boundary - check that all subsequent
1663 * zones that are being read have an appropriate state.
1667 status
= nvme_check_zone_state_for_read(zone
);
1671 } while (end
> nvme_zone_rd_boundary(ns
, zone
));
1678 static uint16_t nvme_zrm_finish(NvmeNamespace
*ns
, NvmeZone
*zone
)
1680 switch (nvme_get_zone_state(zone
)) {
1681 case NVME_ZONE_STATE_FULL
:
1682 return NVME_SUCCESS
;
1684 case NVME_ZONE_STATE_IMPLICITLY_OPEN
:
1685 case NVME_ZONE_STATE_EXPLICITLY_OPEN
:
1686 nvme_aor_dec_open(ns
);
1688 case NVME_ZONE_STATE_CLOSED
:
1689 nvme_aor_dec_active(ns
);
1691 case NVME_ZONE_STATE_EMPTY
:
1692 nvme_assign_zone_state(ns
, zone
, NVME_ZONE_STATE_FULL
);
1693 return NVME_SUCCESS
;
1696 return NVME_ZONE_INVAL_TRANSITION
;
1700 static uint16_t nvme_zrm_close(NvmeNamespace
*ns
, NvmeZone
*zone
)
1702 switch (nvme_get_zone_state(zone
)) {
1703 case NVME_ZONE_STATE_EXPLICITLY_OPEN
:
1704 case NVME_ZONE_STATE_IMPLICITLY_OPEN
:
1705 nvme_aor_dec_open(ns
);
1706 nvme_assign_zone_state(ns
, zone
, NVME_ZONE_STATE_CLOSED
);
1708 case NVME_ZONE_STATE_CLOSED
:
1709 return NVME_SUCCESS
;
1712 return NVME_ZONE_INVAL_TRANSITION
;
1716 static uint16_t nvme_zrm_reset(NvmeNamespace
*ns
, NvmeZone
*zone
)
1718 switch (nvme_get_zone_state(zone
)) {
1719 case NVME_ZONE_STATE_EXPLICITLY_OPEN
:
1720 case NVME_ZONE_STATE_IMPLICITLY_OPEN
:
1721 nvme_aor_dec_open(ns
);
1723 case NVME_ZONE_STATE_CLOSED
:
1724 nvme_aor_dec_active(ns
);
1726 case NVME_ZONE_STATE_FULL
:
1727 zone
->w_ptr
= zone
->d
.zslba
;
1728 zone
->d
.wp
= zone
->w_ptr
;
1729 nvme_assign_zone_state(ns
, zone
, NVME_ZONE_STATE_EMPTY
);
1731 case NVME_ZONE_STATE_EMPTY
:
1732 return NVME_SUCCESS
;
1735 return NVME_ZONE_INVAL_TRANSITION
;
1739 static void nvme_zrm_auto_transition_zone(NvmeNamespace
*ns
)
1743 if (ns
->params
.max_open_zones
&&
1744 ns
->nr_open_zones
== ns
->params
.max_open_zones
) {
1745 zone
= QTAILQ_FIRST(&ns
->imp_open_zones
);
1748 * Automatically close this implicitly open zone.
1750 QTAILQ_REMOVE(&ns
->imp_open_zones
, zone
, entry
);
1751 nvme_zrm_close(ns
, zone
);
1757 NVME_ZRM_AUTO
= 1 << 0,
1760 static uint16_t nvme_zrm_open_flags(NvmeCtrl
*n
, NvmeNamespace
*ns
,
1761 NvmeZone
*zone
, int flags
)
1766 switch (nvme_get_zone_state(zone
)) {
1767 case NVME_ZONE_STATE_EMPTY
:
1772 case NVME_ZONE_STATE_CLOSED
:
1773 if (n
->params
.auto_transition_zones
) {
1774 nvme_zrm_auto_transition_zone(ns
);
1776 status
= nvme_aor_check(ns
, act
, 1);
1782 nvme_aor_inc_active(ns
);
1785 nvme_aor_inc_open(ns
);
1787 if (flags
& NVME_ZRM_AUTO
) {
1788 nvme_assign_zone_state(ns
, zone
, NVME_ZONE_STATE_IMPLICITLY_OPEN
);
1789 return NVME_SUCCESS
;
1794 case NVME_ZONE_STATE_IMPLICITLY_OPEN
:
1795 if (flags
& NVME_ZRM_AUTO
) {
1796 return NVME_SUCCESS
;
1799 nvme_assign_zone_state(ns
, zone
, NVME_ZONE_STATE_EXPLICITLY_OPEN
);
1803 case NVME_ZONE_STATE_EXPLICITLY_OPEN
:
1804 return NVME_SUCCESS
;
1807 return NVME_ZONE_INVAL_TRANSITION
;
1811 static inline uint16_t nvme_zrm_auto(NvmeCtrl
*n
, NvmeNamespace
*ns
,
1814 return nvme_zrm_open_flags(n
, ns
, zone
, NVME_ZRM_AUTO
);
1817 static inline uint16_t nvme_zrm_open(NvmeCtrl
*n
, NvmeNamespace
*ns
,
1820 return nvme_zrm_open_flags(n
, ns
, zone
, 0);
1823 static void nvme_advance_zone_wp(NvmeNamespace
*ns
, NvmeZone
*zone
,
1828 if (zone
->d
.wp
== nvme_zone_wr_boundary(zone
)) {
1829 nvme_zrm_finish(ns
, zone
);
1833 static void nvme_finalize_zoned_write(NvmeNamespace
*ns
, NvmeRequest
*req
)
1835 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
1840 slba
= le64_to_cpu(rw
->slba
);
1841 nlb
= le16_to_cpu(rw
->nlb
) + 1;
1842 zone
= nvme_get_zone_by_slba(ns
, slba
);
1845 nvme_advance_zone_wp(ns
, zone
, nlb
);
1848 static inline bool nvme_is_write(NvmeRequest
*req
)
1850 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
1852 return rw
->opcode
== NVME_CMD_WRITE
||
1853 rw
->opcode
== NVME_CMD_ZONE_APPEND
||
1854 rw
->opcode
== NVME_CMD_WRITE_ZEROES
;
1857 static AioContext
*nvme_get_aio_context(BlockAIOCB
*acb
)
1859 return qemu_get_aio_context();
1862 static void nvme_misc_cb(void *opaque
, int ret
)
1864 NvmeRequest
*req
= opaque
;
1866 trace_pci_nvme_misc_cb(nvme_cid(req
));
1869 nvme_aio_err(req
, ret
);
1872 nvme_enqueue_req_completion(nvme_cq(req
), req
);
1875 void nvme_rw_complete_cb(void *opaque
, int ret
)
1877 NvmeRequest
*req
= opaque
;
1878 NvmeNamespace
*ns
= req
->ns
;
1879 BlockBackend
*blk
= ns
->blkconf
.blk
;
1880 BlockAcctCookie
*acct
= &req
->acct
;
1881 BlockAcctStats
*stats
= blk_get_stats(blk
);
1883 trace_pci_nvme_rw_complete_cb(nvme_cid(req
), blk_name(blk
));
1886 block_acct_failed(stats
, acct
);
1887 nvme_aio_err(req
, ret
);
1889 block_acct_done(stats
, acct
);
1892 if (ns
->params
.zoned
&& nvme_is_write(req
)) {
1893 nvme_finalize_zoned_write(ns
, req
);
1896 nvme_enqueue_req_completion(nvme_cq(req
), req
);
1899 static void nvme_rw_cb(void *opaque
, int ret
)
1901 NvmeRequest
*req
= opaque
;
1902 NvmeNamespace
*ns
= req
->ns
;
1904 BlockBackend
*blk
= ns
->blkconf
.blk
;
1906 trace_pci_nvme_rw_cb(nvme_cid(req
), blk_name(blk
));
1913 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
1914 uint64_t slba
= le64_to_cpu(rw
->slba
);
1915 uint32_t nlb
= (uint32_t)le16_to_cpu(rw
->nlb
) + 1;
1916 uint64_t offset
= nvme_moff(ns
, slba
);
1918 if (req
->cmd
.opcode
== NVME_CMD_WRITE_ZEROES
) {
1919 size_t mlen
= nvme_m2b(ns
, nlb
);
1921 req
->aiocb
= blk_aio_pwrite_zeroes(blk
, offset
, mlen
,
1923 nvme_rw_complete_cb
, req
);
1927 if (nvme_ns_ext(ns
) || req
->cmd
.mptr
) {
1930 nvme_sg_unmap(&req
->sg
);
1931 status
= nvme_map_mdata(nvme_ctrl(req
), nlb
, req
);
1937 if (req
->cmd
.opcode
== NVME_CMD_READ
) {
1938 return nvme_blk_read(blk
, offset
, nvme_rw_complete_cb
, req
);
1941 return nvme_blk_write(blk
, offset
, nvme_rw_complete_cb
, req
);
1946 nvme_rw_complete_cb(req
, ret
);
1949 static void nvme_verify_cb(void *opaque
, int ret
)
1951 NvmeBounceContext
*ctx
= opaque
;
1952 NvmeRequest
*req
= ctx
->req
;
1953 NvmeNamespace
*ns
= req
->ns
;
1954 BlockBackend
*blk
= ns
->blkconf
.blk
;
1955 BlockAcctCookie
*acct
= &req
->acct
;
1956 BlockAcctStats
*stats
= blk_get_stats(blk
);
1957 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
1958 uint64_t slba
= le64_to_cpu(rw
->slba
);
1959 uint8_t prinfo
= NVME_RW_PRINFO(le16_to_cpu(rw
->control
));
1960 uint16_t apptag
= le16_to_cpu(rw
->apptag
);
1961 uint16_t appmask
= le16_to_cpu(rw
->appmask
);
1962 uint32_t reftag
= le32_to_cpu(rw
->reftag
);
1965 trace_pci_nvme_verify_cb(nvme_cid(req
), prinfo
, apptag
, appmask
, reftag
);
1968 block_acct_failed(stats
, acct
);
1969 nvme_aio_err(req
, ret
);
1973 block_acct_done(stats
, acct
);
1975 if (NVME_ID_NS_DPS_TYPE(ns
->id_ns
.dps
)) {
1976 status
= nvme_dif_mangle_mdata(ns
, ctx
->mdata
.bounce
,
1977 ctx
->mdata
.iov
.size
, slba
);
1979 req
->status
= status
;
1983 req
->status
= nvme_dif_check(ns
, ctx
->data
.bounce
, ctx
->data
.iov
.size
,
1984 ctx
->mdata
.bounce
, ctx
->mdata
.iov
.size
,
1985 prinfo
, slba
, apptag
, appmask
, &reftag
);
1989 qemu_iovec_destroy(&ctx
->data
.iov
);
1990 g_free(ctx
->data
.bounce
);
1992 qemu_iovec_destroy(&ctx
->mdata
.iov
);
1993 g_free(ctx
->mdata
.bounce
);
1997 nvme_enqueue_req_completion(nvme_cq(req
), req
);
2001 static void nvme_verify_mdata_in_cb(void *opaque
, int ret
)
2003 NvmeBounceContext
*ctx
= opaque
;
2004 NvmeRequest
*req
= ctx
->req
;
2005 NvmeNamespace
*ns
= req
->ns
;
2006 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
2007 uint64_t slba
= le64_to_cpu(rw
->slba
);
2008 uint32_t nlb
= le16_to_cpu(rw
->nlb
) + 1;
2009 size_t mlen
= nvme_m2b(ns
, nlb
);
2010 uint64_t offset
= nvme_moff(ns
, slba
);
2011 BlockBackend
*blk
= ns
->blkconf
.blk
;
2013 trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req
), blk_name(blk
));
2019 ctx
->mdata
.bounce
= g_malloc(mlen
);
2021 qemu_iovec_reset(&ctx
->mdata
.iov
);
2022 qemu_iovec_add(&ctx
->mdata
.iov
, ctx
->mdata
.bounce
, mlen
);
2024 req
->aiocb
= blk_aio_preadv(blk
, offset
, &ctx
->mdata
.iov
, 0,
2025 nvme_verify_cb
, ctx
);
2029 nvme_verify_cb(ctx
, ret
);
2032 struct nvme_compare_ctx
{
2044 static void nvme_compare_mdata_cb(void *opaque
, int ret
)
2046 NvmeRequest
*req
= opaque
;
2047 NvmeNamespace
*ns
= req
->ns
;
2048 NvmeCtrl
*n
= nvme_ctrl(req
);
2049 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
2050 uint8_t prinfo
= NVME_RW_PRINFO(le16_to_cpu(rw
->control
));
2051 uint16_t apptag
= le16_to_cpu(rw
->apptag
);
2052 uint16_t appmask
= le16_to_cpu(rw
->appmask
);
2053 uint32_t reftag
= le32_to_cpu(rw
->reftag
);
2054 struct nvme_compare_ctx
*ctx
= req
->opaque
;
2055 g_autofree
uint8_t *buf
= NULL
;
2056 BlockBackend
*blk
= ns
->blkconf
.blk
;
2057 BlockAcctCookie
*acct
= &req
->acct
;
2058 BlockAcctStats
*stats
= blk_get_stats(blk
);
2059 uint16_t status
= NVME_SUCCESS
;
2061 trace_pci_nvme_compare_mdata_cb(nvme_cid(req
));
2064 block_acct_failed(stats
, acct
);
2065 nvme_aio_err(req
, ret
);
2069 buf
= g_malloc(ctx
->mdata
.iov
.size
);
2071 status
= nvme_bounce_mdata(n
, buf
, ctx
->mdata
.iov
.size
,
2072 NVME_TX_DIRECTION_TO_DEVICE
, req
);
2074 req
->status
= status
;
2078 if (NVME_ID_NS_DPS_TYPE(ns
->id_ns
.dps
)) {
2079 uint64_t slba
= le64_to_cpu(rw
->slba
);
2081 uint8_t *mbufp
= ctx
->mdata
.bounce
;
2082 uint8_t *end
= mbufp
+ ctx
->mdata
.iov
.size
;
2085 status
= nvme_dif_check(ns
, ctx
->data
.bounce
, ctx
->data
.iov
.size
,
2086 ctx
->mdata
.bounce
, ctx
->mdata
.iov
.size
, prinfo
,
2087 slba
, apptag
, appmask
, &reftag
);
2089 req
->status
= status
;
2094 * When formatted with protection information, do not compare the DIF
2097 if (!(ns
->id_ns
.dps
& NVME_ID_NS_DPS_FIRST_EIGHT
)) {
2098 pil
= ns
->lbaf
.ms
- sizeof(NvmeDifTuple
);
2101 for (bufp
= buf
; mbufp
< end
; bufp
+= ns
->lbaf
.ms
, mbufp
+= ns
->lbaf
.ms
) {
2102 if (memcmp(bufp
+ pil
, mbufp
+ pil
, ns
->lbaf
.ms
- pil
)) {
2103 req
->status
= NVME_CMP_FAILURE
;
2111 if (memcmp(buf
, ctx
->mdata
.bounce
, ctx
->mdata
.iov
.size
)) {
2112 req
->status
= NVME_CMP_FAILURE
;
2116 block_acct_done(stats
, acct
);
2119 qemu_iovec_destroy(&ctx
->data
.iov
);
2120 g_free(ctx
->data
.bounce
);
2122 qemu_iovec_destroy(&ctx
->mdata
.iov
);
2123 g_free(ctx
->mdata
.bounce
);
2127 nvme_enqueue_req_completion(nvme_cq(req
), req
);
2130 static void nvme_compare_data_cb(void *opaque
, int ret
)
2132 NvmeRequest
*req
= opaque
;
2133 NvmeCtrl
*n
= nvme_ctrl(req
);
2134 NvmeNamespace
*ns
= req
->ns
;
2135 BlockBackend
*blk
= ns
->blkconf
.blk
;
2136 BlockAcctCookie
*acct
= &req
->acct
;
2137 BlockAcctStats
*stats
= blk_get_stats(blk
);
2139 struct nvme_compare_ctx
*ctx
= req
->opaque
;
2140 g_autofree
uint8_t *buf
= NULL
;
2143 trace_pci_nvme_compare_data_cb(nvme_cid(req
));
2146 block_acct_failed(stats
, acct
);
2147 nvme_aio_err(req
, ret
);
2151 buf
= g_malloc(ctx
->data
.iov
.size
);
2153 status
= nvme_bounce_data(n
, buf
, ctx
->data
.iov
.size
,
2154 NVME_TX_DIRECTION_TO_DEVICE
, req
);
2156 req
->status
= status
;
2160 if (memcmp(buf
, ctx
->data
.bounce
, ctx
->data
.iov
.size
)) {
2161 req
->status
= NVME_CMP_FAILURE
;
2166 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
2167 uint64_t slba
= le64_to_cpu(rw
->slba
);
2168 uint32_t nlb
= le16_to_cpu(rw
->nlb
) + 1;
2169 size_t mlen
= nvme_m2b(ns
, nlb
);
2170 uint64_t offset
= nvme_moff(ns
, slba
);
2172 ctx
->mdata
.bounce
= g_malloc(mlen
);
2174 qemu_iovec_init(&ctx
->mdata
.iov
, 1);
2175 qemu_iovec_add(&ctx
->mdata
.iov
, ctx
->mdata
.bounce
, mlen
);
2177 req
->aiocb
= blk_aio_preadv(blk
, offset
, &ctx
->mdata
.iov
, 0,
2178 nvme_compare_mdata_cb
, req
);
2182 block_acct_done(stats
, acct
);
2185 qemu_iovec_destroy(&ctx
->data
.iov
);
2186 g_free(ctx
->data
.bounce
);
2189 nvme_enqueue_req_completion(nvme_cq(req
), req
);
2192 typedef struct NvmeDSMAIOCB
{
2199 NvmeDsmRange
*range
;
2204 static void nvme_dsm_cancel(BlockAIOCB
*aiocb
)
2206 NvmeDSMAIOCB
*iocb
= container_of(aiocb
, NvmeDSMAIOCB
, common
);
2208 /* break nvme_dsm_cb loop */
2209 iocb
->idx
= iocb
->nr
;
2210 iocb
->ret
= -ECANCELED
;
2213 blk_aio_cancel_async(iocb
->aiocb
);
2217 * We only reach this if nvme_dsm_cancel() has already been called or
2218 * the command ran to completion and nvme_dsm_bh is scheduled to run.
2220 assert(iocb
->idx
== iocb
->nr
);
2224 static const AIOCBInfo nvme_dsm_aiocb_info
= {
2225 .aiocb_size
= sizeof(NvmeDSMAIOCB
),
2226 .cancel_async
= nvme_dsm_cancel
,
2229 static void nvme_dsm_bh(void *opaque
)
2231 NvmeDSMAIOCB
*iocb
= opaque
;
2233 iocb
->common
.cb(iocb
->common
.opaque
, iocb
->ret
);
2235 qemu_bh_delete(iocb
->bh
);
2237 qemu_aio_unref(iocb
);
2240 static void nvme_dsm_cb(void *opaque
, int ret
);
2242 static void nvme_dsm_md_cb(void *opaque
, int ret
)
2244 NvmeDSMAIOCB
*iocb
= opaque
;
2245 NvmeRequest
*req
= iocb
->req
;
2246 NvmeNamespace
*ns
= req
->ns
;
2247 NvmeDsmRange
*range
;
2257 nvme_dsm_cb(iocb
, 0);
2261 range
= &iocb
->range
[iocb
->idx
- 1];
2262 slba
= le64_to_cpu(range
->slba
);
2263 nlb
= le32_to_cpu(range
->nlb
);
2266 * Check that all block were discarded (zeroed); otherwise we do not zero
2270 ret
= nvme_block_status_all(ns
, slba
, nlb
, BDRV_BLOCK_ZERO
);
2277 nvme_dsm_cb(iocb
, 0);
2280 iocb
->aiocb
= blk_aio_pwrite_zeroes(ns
->blkconf
.blk
, nvme_moff(ns
, slba
),
2281 nvme_m2b(ns
, nlb
), BDRV_REQ_MAY_UNMAP
,
2287 qemu_bh_schedule(iocb
->bh
);
2290 static void nvme_dsm_cb(void *opaque
, int ret
)
2292 NvmeDSMAIOCB
*iocb
= opaque
;
2293 NvmeRequest
*req
= iocb
->req
;
2294 NvmeCtrl
*n
= nvme_ctrl(req
);
2295 NvmeNamespace
*ns
= req
->ns
;
2296 NvmeDsmRange
*range
;
2306 if (iocb
->idx
== iocb
->nr
) {
2310 range
= &iocb
->range
[iocb
->idx
++];
2311 slba
= le64_to_cpu(range
->slba
);
2312 nlb
= le32_to_cpu(range
->nlb
);
2314 trace_pci_nvme_dsm_deallocate(slba
, nlb
);
2316 if (nlb
> n
->dmrsl
) {
2317 trace_pci_nvme_dsm_single_range_limit_exceeded(nlb
, n
->dmrsl
);
2321 if (nvme_check_bounds(ns
, slba
, nlb
)) {
2322 trace_pci_nvme_err_invalid_lba_range(slba
, nlb
,
2327 iocb
->aiocb
= blk_aio_pdiscard(ns
->blkconf
.blk
, nvme_l2b(ns
, slba
),
2329 nvme_dsm_md_cb
, iocb
);
2334 qemu_bh_schedule(iocb
->bh
);
2337 static uint16_t nvme_dsm(NvmeCtrl
*n
, NvmeRequest
*req
)
2339 NvmeNamespace
*ns
= req
->ns
;
2340 NvmeDsmCmd
*dsm
= (NvmeDsmCmd
*) &req
->cmd
;
2341 uint32_t attr
= le32_to_cpu(dsm
->attributes
);
2342 uint32_t nr
= (le32_to_cpu(dsm
->nr
) & 0xff) + 1;
2343 uint16_t status
= NVME_SUCCESS
;
2345 trace_pci_nvme_dsm(nr
, attr
);
2347 if (attr
& NVME_DSMGMT_AD
) {
2348 NvmeDSMAIOCB
*iocb
= blk_aio_get(&nvme_dsm_aiocb_info
, ns
->blkconf
.blk
,
2352 iocb
->bh
= qemu_bh_new(nvme_dsm_bh
, iocb
);
2354 iocb
->range
= g_new(NvmeDsmRange
, nr
);
2358 status
= nvme_h2c(n
, (uint8_t *)iocb
->range
, sizeof(NvmeDsmRange
) * nr
,
2364 req
->aiocb
= &iocb
->common
;
2365 nvme_dsm_cb(iocb
, 0);
2367 return NVME_NO_COMPLETE
;
2373 static uint16_t nvme_verify(NvmeCtrl
*n
, NvmeRequest
*req
)
2375 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
2376 NvmeNamespace
*ns
= req
->ns
;
2377 BlockBackend
*blk
= ns
->blkconf
.blk
;
2378 uint64_t slba
= le64_to_cpu(rw
->slba
);
2379 uint32_t nlb
= le16_to_cpu(rw
->nlb
) + 1;
2380 size_t len
= nvme_l2b(ns
, nlb
);
2381 int64_t offset
= nvme_l2b(ns
, slba
);
2382 uint8_t prinfo
= NVME_RW_PRINFO(le16_to_cpu(rw
->control
));
2383 uint32_t reftag
= le32_to_cpu(rw
->reftag
);
2384 NvmeBounceContext
*ctx
= NULL
;
2387 trace_pci_nvme_verify(nvme_cid(req
), nvme_nsid(ns
), slba
, nlb
);
2389 if (NVME_ID_NS_DPS_TYPE(ns
->id_ns
.dps
)) {
2390 status
= nvme_check_prinfo(ns
, prinfo
, slba
, reftag
);
2395 if (prinfo
& NVME_PRINFO_PRACT
) {
2396 return NVME_INVALID_PROT_INFO
| NVME_DNR
;
2400 if (len
> n
->page_size
<< n
->params
.vsl
) {
2401 return NVME_INVALID_FIELD
| NVME_DNR
;
2404 status
= nvme_check_bounds(ns
, slba
, nlb
);
2409 if (NVME_ERR_REC_DULBE(ns
->features
.err_rec
)) {
2410 status
= nvme_check_dulbe(ns
, slba
, nlb
);
2416 ctx
= g_new0(NvmeBounceContext
, 1);
2419 ctx
->data
.bounce
= g_malloc(len
);
2421 qemu_iovec_init(&ctx
->data
.iov
, 1);
2422 qemu_iovec_add(&ctx
->data
.iov
, ctx
->data
.bounce
, len
);
2424 block_acct_start(blk_get_stats(blk
), &req
->acct
, ctx
->data
.iov
.size
,
2427 req
->aiocb
= blk_aio_preadv(ns
->blkconf
.blk
, offset
, &ctx
->data
.iov
, 0,
2428 nvme_verify_mdata_in_cb
, ctx
);
2429 return NVME_NO_COMPLETE
;
2432 typedef struct NvmeCopyAIOCB
{
2439 NvmeCopySourceRange
*ranges
;
2446 BlockAcctCookie read
;
2447 BlockAcctCookie write
;
2456 static void nvme_copy_cancel(BlockAIOCB
*aiocb
)
2458 NvmeCopyAIOCB
*iocb
= container_of(aiocb
, NvmeCopyAIOCB
, common
);
2460 iocb
->ret
= -ECANCELED
;
2463 blk_aio_cancel_async(iocb
->aiocb
);
2468 static const AIOCBInfo nvme_copy_aiocb_info
= {
2469 .aiocb_size
= sizeof(NvmeCopyAIOCB
),
2470 .cancel_async
= nvme_copy_cancel
,
2473 static void nvme_copy_bh(void *opaque
)
2475 NvmeCopyAIOCB
*iocb
= opaque
;
2476 NvmeRequest
*req
= iocb
->req
;
2477 NvmeNamespace
*ns
= req
->ns
;
2478 BlockAcctStats
*stats
= blk_get_stats(ns
->blkconf
.blk
);
2480 if (iocb
->idx
!= iocb
->nr
) {
2481 req
->cqe
.result
= cpu_to_le32(iocb
->idx
);
2484 qemu_iovec_destroy(&iocb
->iov
);
2485 g_free(iocb
->bounce
);
2487 qemu_bh_delete(iocb
->bh
);
2490 if (iocb
->ret
< 0) {
2491 block_acct_failed(stats
, &iocb
->acct
.read
);
2492 block_acct_failed(stats
, &iocb
->acct
.write
);
2494 block_acct_done(stats
, &iocb
->acct
.read
);
2495 block_acct_done(stats
, &iocb
->acct
.write
);
2498 iocb
->common
.cb(iocb
->common
.opaque
, iocb
->ret
);
2499 qemu_aio_unref(iocb
);
2502 static void nvme_copy_cb(void *opaque
, int ret
);
2504 static void nvme_copy_out_completed_cb(void *opaque
, int ret
)
2506 NvmeCopyAIOCB
*iocb
= opaque
;
2507 NvmeRequest
*req
= iocb
->req
;
2508 NvmeNamespace
*ns
= req
->ns
;
2509 NvmeCopySourceRange
*range
= &iocb
->ranges
[iocb
->idx
];
2510 uint32_t nlb
= le32_to_cpu(range
->nlb
) + 1;
2515 } else if (iocb
->ret
< 0) {
2519 if (ns
->params
.zoned
) {
2520 nvme_advance_zone_wp(ns
, iocb
->zone
, nlb
);
2526 nvme_copy_cb(iocb
, iocb
->ret
);
2529 static void nvme_copy_out_cb(void *opaque
, int ret
)
2531 NvmeCopyAIOCB
*iocb
= opaque
;
2532 NvmeRequest
*req
= iocb
->req
;
2533 NvmeNamespace
*ns
= req
->ns
;
2534 NvmeCopySourceRange
*range
;
2542 } else if (iocb
->ret
< 0) {
2547 nvme_copy_out_completed_cb(iocb
, 0);
2551 range
= &iocb
->ranges
[iocb
->idx
];
2552 nlb
= le32_to_cpu(range
->nlb
) + 1;
2554 mlen
= nvme_m2b(ns
, nlb
);
2555 mbounce
= iocb
->bounce
+ nvme_l2b(ns
, nlb
);
2557 qemu_iovec_reset(&iocb
->iov
);
2558 qemu_iovec_add(&iocb
->iov
, mbounce
, mlen
);
2560 iocb
->aiocb
= blk_aio_pwritev(ns
->blkconf
.blk
, nvme_moff(ns
, iocb
->slba
),
2561 &iocb
->iov
, 0, nvme_copy_out_completed_cb
,
2567 nvme_copy_cb(iocb
, ret
);
2570 static void nvme_copy_in_completed_cb(void *opaque
, int ret
)
2572 NvmeCopyAIOCB
*iocb
= opaque
;
2573 NvmeRequest
*req
= iocb
->req
;
2574 NvmeNamespace
*ns
= req
->ns
;
2575 NvmeCopySourceRange
*range
;
2583 } else if (iocb
->ret
< 0) {
2587 range
= &iocb
->ranges
[iocb
->idx
];
2588 nlb
= le32_to_cpu(range
->nlb
) + 1;
2589 len
= nvme_l2b(ns
, nlb
);
2591 trace_pci_nvme_copy_out(iocb
->slba
, nlb
);
2593 if (NVME_ID_NS_DPS_TYPE(ns
->id_ns
.dps
)) {
2594 NvmeCopyCmd
*copy
= (NvmeCopyCmd
*)&req
->cmd
;
2596 uint16_t prinfor
= ((copy
->control
[0] >> 4) & 0xf);
2597 uint16_t prinfow
= ((copy
->control
[2] >> 2) & 0xf);
2599 uint16_t apptag
= le16_to_cpu(range
->apptag
);
2600 uint16_t appmask
= le16_to_cpu(range
->appmask
);
2601 uint32_t reftag
= le32_to_cpu(range
->reftag
);
2603 uint64_t slba
= le64_to_cpu(range
->slba
);
2604 size_t mlen
= nvme_m2b(ns
, nlb
);
2605 uint8_t *mbounce
= iocb
->bounce
+ nvme_l2b(ns
, nlb
);
2607 status
= nvme_dif_check(ns
, iocb
->bounce
, len
, mbounce
, mlen
, prinfor
,
2608 slba
, apptag
, appmask
, &reftag
);
2613 apptag
= le16_to_cpu(copy
->apptag
);
2614 appmask
= le16_to_cpu(copy
->appmask
);
2616 if (prinfow
& NVME_PRINFO_PRACT
) {
2617 status
= nvme_check_prinfo(ns
, prinfow
, iocb
->slba
, iocb
->reftag
);
2622 nvme_dif_pract_generate_dif(ns
, iocb
->bounce
, len
, mbounce
, mlen
,
2623 apptag
, &iocb
->reftag
);
2625 status
= nvme_dif_check(ns
, iocb
->bounce
, len
, mbounce
, mlen
,
2626 prinfow
, iocb
->slba
, apptag
, appmask
,
2634 status
= nvme_check_bounds(ns
, iocb
->slba
, nlb
);
2639 if (ns
->params
.zoned
) {
2640 status
= nvme_check_zone_write(ns
, iocb
->zone
, iocb
->slba
, nlb
);
2645 iocb
->zone
->w_ptr
+= nlb
;
2648 qemu_iovec_reset(&iocb
->iov
);
2649 qemu_iovec_add(&iocb
->iov
, iocb
->bounce
, len
);
2651 iocb
->aiocb
= blk_aio_pwritev(ns
->blkconf
.blk
, nvme_l2b(ns
, iocb
->slba
),
2652 &iocb
->iov
, 0, nvme_copy_out_cb
, iocb
);
2657 req
->status
= status
;
2660 qemu_bh_schedule(iocb
->bh
);
2666 nvme_copy_cb(iocb
, ret
);
2669 static void nvme_copy_in_cb(void *opaque
, int ret
)
2671 NvmeCopyAIOCB
*iocb
= opaque
;
2672 NvmeRequest
*req
= iocb
->req
;
2673 NvmeNamespace
*ns
= req
->ns
;
2674 NvmeCopySourceRange
*range
;
2681 } else if (iocb
->ret
< 0) {
2686 nvme_copy_in_completed_cb(iocb
, 0);
2690 range
= &iocb
->ranges
[iocb
->idx
];
2691 slba
= le64_to_cpu(range
->slba
);
2692 nlb
= le32_to_cpu(range
->nlb
) + 1;
2694 qemu_iovec_reset(&iocb
->iov
);
2695 qemu_iovec_add(&iocb
->iov
, iocb
->bounce
+ nvme_l2b(ns
, nlb
),
2698 iocb
->aiocb
= blk_aio_preadv(ns
->blkconf
.blk
, nvme_moff(ns
, slba
),
2699 &iocb
->iov
, 0, nvme_copy_in_completed_cb
,
2704 nvme_copy_cb(iocb
, iocb
->ret
);
2707 static void nvme_copy_cb(void *opaque
, int ret
)
2709 NvmeCopyAIOCB
*iocb
= opaque
;
2710 NvmeRequest
*req
= iocb
->req
;
2711 NvmeNamespace
*ns
= req
->ns
;
2712 NvmeCopySourceRange
*range
;
2721 } else if (iocb
->ret
< 0) {
2725 if (iocb
->idx
== iocb
->nr
) {
2729 range
= &iocb
->ranges
[iocb
->idx
];
2730 slba
= le64_to_cpu(range
->slba
);
2731 nlb
= le32_to_cpu(range
->nlb
) + 1;
2732 len
= nvme_l2b(ns
, nlb
);
2734 trace_pci_nvme_copy_source_range(slba
, nlb
);
2736 if (nlb
> le16_to_cpu(ns
->id_ns
.mssrl
)) {
2737 status
= NVME_CMD_SIZE_LIMIT
| NVME_DNR
;
2741 status
= nvme_check_bounds(ns
, slba
, nlb
);
2746 if (NVME_ERR_REC_DULBE(ns
->features
.err_rec
)) {
2747 status
= nvme_check_dulbe(ns
, slba
, nlb
);
2753 if (ns
->params
.zoned
) {
2754 status
= nvme_check_zone_read(ns
, slba
, nlb
);
2760 qemu_iovec_reset(&iocb
->iov
);
2761 qemu_iovec_add(&iocb
->iov
, iocb
->bounce
, len
);
2763 iocb
->aiocb
= blk_aio_preadv(ns
->blkconf
.blk
, nvme_l2b(ns
, slba
),
2764 &iocb
->iov
, 0, nvme_copy_in_cb
, iocb
);
2768 req
->status
= status
;
2772 qemu_bh_schedule(iocb
->bh
);
2777 static uint16_t nvme_copy(NvmeCtrl
*n
, NvmeRequest
*req
)
2779 NvmeNamespace
*ns
= req
->ns
;
2780 NvmeCopyCmd
*copy
= (NvmeCopyCmd
*)&req
->cmd
;
2781 NvmeCopyAIOCB
*iocb
= blk_aio_get(&nvme_copy_aiocb_info
, ns
->blkconf
.blk
,
2783 uint16_t nr
= copy
->nr
+ 1;
2784 uint8_t format
= copy
->control
[0] & 0xf;
2785 uint16_t prinfor
= ((copy
->control
[0] >> 4) & 0xf);
2786 uint16_t prinfow
= ((copy
->control
[2] >> 2) & 0xf);
2790 trace_pci_nvme_copy(nvme_cid(req
), nvme_nsid(ns
), nr
, format
);
2792 iocb
->ranges
= NULL
;
2795 if (NVME_ID_NS_DPS_TYPE(ns
->id_ns
.dps
) &&
2796 ((prinfor
& NVME_PRINFO_PRACT
) != (prinfow
& NVME_PRINFO_PRACT
))) {
2797 status
= NVME_INVALID_FIELD
| NVME_DNR
;
2801 if (!(n
->id_ctrl
.ocfs
& (1 << format
))) {
2802 trace_pci_nvme_err_copy_invalid_format(format
);
2803 status
= NVME_INVALID_FIELD
| NVME_DNR
;
2807 if (nr
> ns
->id_ns
.msrc
+ 1) {
2808 status
= NVME_CMD_SIZE_LIMIT
| NVME_DNR
;
2812 iocb
->ranges
= g_new(NvmeCopySourceRange
, nr
);
2814 status
= nvme_h2c(n
, (uint8_t *)iocb
->ranges
,
2815 sizeof(NvmeCopySourceRange
) * nr
, req
);
2820 iocb
->slba
= le64_to_cpu(copy
->sdlba
);
2822 if (ns
->params
.zoned
) {
2823 iocb
->zone
= nvme_get_zone_by_slba(ns
, iocb
->slba
);
2825 status
= NVME_LBA_RANGE
| NVME_DNR
;
2829 status
= nvme_zrm_auto(n
, ns
, iocb
->zone
);
2836 iocb
->bh
= qemu_bh_new(nvme_copy_bh
, iocb
);
2840 iocb
->reftag
= le32_to_cpu(copy
->reftag
);
2841 iocb
->bounce
= g_malloc_n(le16_to_cpu(ns
->id_ns
.mssrl
),
2842 ns
->lbasz
+ ns
->lbaf
.ms
);
2844 qemu_iovec_init(&iocb
->iov
, 1);
2846 block_acct_start(blk_get_stats(ns
->blkconf
.blk
), &iocb
->acct
.read
, 0,
2848 block_acct_start(blk_get_stats(ns
->blkconf
.blk
), &iocb
->acct
.write
, 0,
2851 req
->aiocb
= &iocb
->common
;
2852 nvme_copy_cb(iocb
, 0);
2854 return NVME_NO_COMPLETE
;
2857 g_free(iocb
->ranges
);
2858 qemu_aio_unref(iocb
);
2862 static uint16_t nvme_compare(NvmeCtrl
*n
, NvmeRequest
*req
)
2864 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
2865 NvmeNamespace
*ns
= req
->ns
;
2866 BlockBackend
*blk
= ns
->blkconf
.blk
;
2867 uint64_t slba
= le64_to_cpu(rw
->slba
);
2868 uint32_t nlb
= le16_to_cpu(rw
->nlb
) + 1;
2869 uint8_t prinfo
= NVME_RW_PRINFO(le16_to_cpu(rw
->control
));
2870 size_t data_len
= nvme_l2b(ns
, nlb
);
2871 size_t len
= data_len
;
2872 int64_t offset
= nvme_l2b(ns
, slba
);
2873 struct nvme_compare_ctx
*ctx
= NULL
;
2876 trace_pci_nvme_compare(nvme_cid(req
), nvme_nsid(ns
), slba
, nlb
);
2878 if (NVME_ID_NS_DPS_TYPE(ns
->id_ns
.dps
) && (prinfo
& NVME_PRINFO_PRACT
)) {
2879 return NVME_INVALID_PROT_INFO
| NVME_DNR
;
2882 if (nvme_ns_ext(ns
)) {
2883 len
+= nvme_m2b(ns
, nlb
);
2886 status
= nvme_check_mdts(n
, len
);
2891 status
= nvme_check_bounds(ns
, slba
, nlb
);
2896 if (NVME_ERR_REC_DULBE(ns
->features
.err_rec
)) {
2897 status
= nvme_check_dulbe(ns
, slba
, nlb
);
2903 status
= nvme_map_dptr(n
, &req
->sg
, len
, &req
->cmd
);
2908 ctx
= g_new(struct nvme_compare_ctx
, 1);
2909 ctx
->data
.bounce
= g_malloc(data_len
);
2913 qemu_iovec_init(&ctx
->data
.iov
, 1);
2914 qemu_iovec_add(&ctx
->data
.iov
, ctx
->data
.bounce
, data_len
);
2916 block_acct_start(blk_get_stats(blk
), &req
->acct
, data_len
,
2918 req
->aiocb
= blk_aio_preadv(blk
, offset
, &ctx
->data
.iov
, 0,
2919 nvme_compare_data_cb
, req
);
2921 return NVME_NO_COMPLETE
;
2924 typedef struct NvmeFlushAIOCB
{
2936 static void nvme_flush_cancel(BlockAIOCB
*acb
)
2938 NvmeFlushAIOCB
*iocb
= container_of(acb
, NvmeFlushAIOCB
, common
);
2940 iocb
->ret
= -ECANCELED
;
2943 blk_aio_cancel_async(iocb
->aiocb
);
2947 static const AIOCBInfo nvme_flush_aiocb_info
= {
2948 .aiocb_size
= sizeof(NvmeFlushAIOCB
),
2949 .cancel_async
= nvme_flush_cancel
,
2950 .get_aio_context
= nvme_get_aio_context
,
2953 static void nvme_flush_ns_cb(void *opaque
, int ret
)
2955 NvmeFlushAIOCB
*iocb
= opaque
;
2956 NvmeNamespace
*ns
= iocb
->ns
;
2961 } else if (iocb
->ret
< 0) {
2966 trace_pci_nvme_flush_ns(iocb
->nsid
);
2969 iocb
->aiocb
= blk_aio_flush(ns
->blkconf
.blk
, nvme_flush_ns_cb
, iocb
);
2975 qemu_bh_schedule(iocb
->bh
);
2978 static void nvme_flush_bh(void *opaque
)
2980 NvmeFlushAIOCB
*iocb
= opaque
;
2981 NvmeRequest
*req
= iocb
->req
;
2982 NvmeCtrl
*n
= nvme_ctrl(req
);
2985 if (iocb
->ret
< 0) {
2989 if (iocb
->broadcast
) {
2990 for (i
= iocb
->nsid
+ 1; i
<= NVME_MAX_NAMESPACES
; i
++) {
2991 iocb
->ns
= nvme_ns(n
, i
);
3003 nvme_flush_ns_cb(iocb
, 0);
3007 qemu_bh_delete(iocb
->bh
);
3010 iocb
->common
.cb(iocb
->common
.opaque
, iocb
->ret
);
3012 qemu_aio_unref(iocb
);
3017 static uint16_t nvme_flush(NvmeCtrl
*n
, NvmeRequest
*req
)
3019 NvmeFlushAIOCB
*iocb
;
3020 uint32_t nsid
= le32_to_cpu(req
->cmd
.nsid
);
3023 iocb
= qemu_aio_get(&nvme_flush_aiocb_info
, NULL
, nvme_misc_cb
, req
);
3026 iocb
->bh
= qemu_bh_new(nvme_flush_bh
, iocb
);
3030 iocb
->broadcast
= (nsid
== NVME_NSID_BROADCAST
);
3032 if (!iocb
->broadcast
) {
3033 if (!nvme_nsid_valid(n
, nsid
)) {
3034 status
= NVME_INVALID_NSID
| NVME_DNR
;
3038 iocb
->ns
= nvme_ns(n
, nsid
);
3040 status
= NVME_INVALID_FIELD
| NVME_DNR
;
3047 req
->aiocb
= &iocb
->common
;
3048 qemu_bh_schedule(iocb
->bh
);
3050 return NVME_NO_COMPLETE
;
3053 qemu_bh_delete(iocb
->bh
);
3055 qemu_aio_unref(iocb
);
3060 static uint16_t nvme_read(NvmeCtrl
*n
, NvmeRequest
*req
)
3062 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
3063 NvmeNamespace
*ns
= req
->ns
;
3064 uint64_t slba
= le64_to_cpu(rw
->slba
);
3065 uint32_t nlb
= (uint32_t)le16_to_cpu(rw
->nlb
) + 1;
3066 uint8_t prinfo
= NVME_RW_PRINFO(le16_to_cpu(rw
->control
));
3067 uint64_t data_size
= nvme_l2b(ns
, nlb
);
3068 uint64_t mapped_size
= data_size
;
3069 uint64_t data_offset
;
3070 BlockBackend
*blk
= ns
->blkconf
.blk
;
3073 if (nvme_ns_ext(ns
)) {
3074 mapped_size
+= nvme_m2b(ns
, nlb
);
3076 if (NVME_ID_NS_DPS_TYPE(ns
->id_ns
.dps
)) {
3077 bool pract
= prinfo
& NVME_PRINFO_PRACT
;
3079 if (pract
&& ns
->lbaf
.ms
== 8) {
3080 mapped_size
= data_size
;
3085 trace_pci_nvme_read(nvme_cid(req
), nvme_nsid(ns
), nlb
, mapped_size
, slba
);
3087 status
= nvme_check_mdts(n
, mapped_size
);
3092 status
= nvme_check_bounds(ns
, slba
, nlb
);
3097 if (ns
->params
.zoned
) {
3098 status
= nvme_check_zone_read(ns
, slba
, nlb
);
3100 trace_pci_nvme_err_zone_read_not_ok(slba
, nlb
, status
);
3105 if (NVME_ERR_REC_DULBE(ns
->features
.err_rec
)) {
3106 status
= nvme_check_dulbe(ns
, slba
, nlb
);
3112 if (NVME_ID_NS_DPS_TYPE(ns
->id_ns
.dps
)) {
3113 return nvme_dif_rw(n
, req
);
3116 status
= nvme_map_data(n
, nlb
, req
);
3121 data_offset
= nvme_l2b(ns
, slba
);
3123 block_acct_start(blk_get_stats(blk
), &req
->acct
, data_size
,
3125 nvme_blk_read(blk
, data_offset
, nvme_rw_cb
, req
);
3126 return NVME_NO_COMPLETE
;
3129 block_acct_invalid(blk_get_stats(blk
), BLOCK_ACCT_READ
);
3130 return status
| NVME_DNR
;
3133 static uint16_t nvme_do_write(NvmeCtrl
*n
, NvmeRequest
*req
, bool append
,
3136 NvmeRwCmd
*rw
= (NvmeRwCmd
*)&req
->cmd
;
3137 NvmeNamespace
*ns
= req
->ns
;
3138 uint64_t slba
= le64_to_cpu(rw
->slba
);
3139 uint32_t nlb
= (uint32_t)le16_to_cpu(rw
->nlb
) + 1;
3140 uint16_t ctrl
= le16_to_cpu(rw
->control
);
3141 uint8_t prinfo
= NVME_RW_PRINFO(ctrl
);
3142 uint64_t data_size
= nvme_l2b(ns
, nlb
);
3143 uint64_t mapped_size
= data_size
;
3144 uint64_t data_offset
;
3146 NvmeZonedResult
*res
= (NvmeZonedResult
*)&req
->cqe
;
3147 BlockBackend
*blk
= ns
->blkconf
.blk
;
3150 if (nvme_ns_ext(ns
)) {
3151 mapped_size
+= nvme_m2b(ns
, nlb
);
3153 if (NVME_ID_NS_DPS_TYPE(ns
->id_ns
.dps
)) {
3154 bool pract
= prinfo
& NVME_PRINFO_PRACT
;
3156 if (pract
&& ns
->lbaf
.ms
== 8) {
3157 mapped_size
-= nvme_m2b(ns
, nlb
);
3162 trace_pci_nvme_write(nvme_cid(req
), nvme_io_opc_str(rw
->opcode
),
3163 nvme_nsid(ns
), nlb
, mapped_size
, slba
);
3166 status
= nvme_check_mdts(n
, mapped_size
);
3172 status
= nvme_check_bounds(ns
, slba
, nlb
);
3177 if (ns
->params
.zoned
) {
3178 zone
= nvme_get_zone_by_slba(ns
, slba
);
3182 bool piremap
= !!(ctrl
& NVME_RW_PIREMAP
);
3184 if (unlikely(slba
!= zone
->d
.zslba
)) {
3185 trace_pci_nvme_err_append_not_at_start(slba
, zone
->d
.zslba
);
3186 status
= NVME_INVALID_FIELD
;
3190 if (n
->params
.zasl
&&
3191 data_size
> (uint64_t)n
->page_size
<< n
->params
.zasl
) {
3192 trace_pci_nvme_err_zasl(data_size
);
3193 return NVME_INVALID_FIELD
| NVME_DNR
;
3197 rw
->slba
= cpu_to_le64(slba
);
3198 res
->slba
= cpu_to_le64(slba
);
3200 switch (NVME_ID_NS_DPS_TYPE(ns
->id_ns
.dps
)) {
3201 case NVME_ID_NS_DPS_TYPE_1
:
3203 return NVME_INVALID_PROT_INFO
| NVME_DNR
;
3208 case NVME_ID_NS_DPS_TYPE_2
:
3210 uint32_t reftag
= le32_to_cpu(rw
->reftag
);
3211 rw
->reftag
= cpu_to_le32(reftag
+ (slba
- zone
->d
.zslba
));
3216 case NVME_ID_NS_DPS_TYPE_3
:
3218 return NVME_INVALID_PROT_INFO
| NVME_DNR
;
3225 status
= nvme_check_zone_write(ns
, zone
, slba
, nlb
);
3230 status
= nvme_zrm_auto(n
, ns
, zone
);
3238 data_offset
= nvme_l2b(ns
, slba
);
3240 if (NVME_ID_NS_DPS_TYPE(ns
->id_ns
.dps
)) {
3241 return nvme_dif_rw(n
, req
);
3245 status
= nvme_map_data(n
, nlb
, req
);
3250 block_acct_start(blk_get_stats(blk
), &req
->acct
, data_size
,
3252 nvme_blk_write(blk
, data_offset
, nvme_rw_cb
, req
);
3254 req
->aiocb
= blk_aio_pwrite_zeroes(blk
, data_offset
, data_size
,
3255 BDRV_REQ_MAY_UNMAP
, nvme_rw_cb
,
3259 return NVME_NO_COMPLETE
;
3262 block_acct_invalid(blk_get_stats(blk
), BLOCK_ACCT_WRITE
);
3263 return status
| NVME_DNR
;
3266 static inline uint16_t nvme_write(NvmeCtrl
*n
, NvmeRequest
*req
)
3268 return nvme_do_write(n
, req
, false, false);
3271 static inline uint16_t nvme_write_zeroes(NvmeCtrl
*n
, NvmeRequest
*req
)
3273 return nvme_do_write(n
, req
, false, true);
3276 static inline uint16_t nvme_zone_append(NvmeCtrl
*n
, NvmeRequest
*req
)
3278 return nvme_do_write(n
, req
, true, false);
3281 static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace
*ns
, NvmeCmd
*c
,
3282 uint64_t *slba
, uint32_t *zone_idx
)
3284 uint32_t dw10
= le32_to_cpu(c
->cdw10
);
3285 uint32_t dw11
= le32_to_cpu(c
->cdw11
);
3287 if (!ns
->params
.zoned
) {
3288 trace_pci_nvme_err_invalid_opc(c
->opcode
);
3289 return NVME_INVALID_OPCODE
| NVME_DNR
;
3292 *slba
= ((uint64_t)dw11
) << 32 | dw10
;
3293 if (unlikely(*slba
>= ns
->id_ns
.nsze
)) {
3294 trace_pci_nvme_err_invalid_lba_range(*slba
, 0, ns
->id_ns
.nsze
);
3296 return NVME_LBA_RANGE
| NVME_DNR
;
3299 *zone_idx
= nvme_zone_idx(ns
, *slba
);
3300 assert(*zone_idx
< ns
->num_zones
);
3302 return NVME_SUCCESS
;
3305 typedef uint16_t (*op_handler_t
)(NvmeNamespace
*, NvmeZone
*, NvmeZoneState
,
3308 enum NvmeZoneProcessingMask
{
3309 NVME_PROC_CURRENT_ZONE
= 0,
3310 NVME_PROC_OPENED_ZONES
= 1 << 0,
3311 NVME_PROC_CLOSED_ZONES
= 1 << 1,
3312 NVME_PROC_READ_ONLY_ZONES
= 1 << 2,
3313 NVME_PROC_FULL_ZONES
= 1 << 3,
3316 static uint16_t nvme_open_zone(NvmeNamespace
*ns
, NvmeZone
*zone
,
3317 NvmeZoneState state
, NvmeRequest
*req
)
3319 return nvme_zrm_open(nvme_ctrl(req
), ns
, zone
);
3322 static uint16_t nvme_close_zone(NvmeNamespace
*ns
, NvmeZone
*zone
,
3323 NvmeZoneState state
, NvmeRequest
*req
)
3325 return nvme_zrm_close(ns
, zone
);
3328 static uint16_t nvme_finish_zone(NvmeNamespace
*ns
, NvmeZone
*zone
,
3329 NvmeZoneState state
, NvmeRequest
*req
)
3331 return nvme_zrm_finish(ns
, zone
);
3334 static uint16_t nvme_offline_zone(NvmeNamespace
*ns
, NvmeZone
*zone
,
3335 NvmeZoneState state
, NvmeRequest
*req
)
3338 case NVME_ZONE_STATE_READ_ONLY
:
3339 nvme_assign_zone_state(ns
, zone
, NVME_ZONE_STATE_OFFLINE
);
3341 case NVME_ZONE_STATE_OFFLINE
:
3342 return NVME_SUCCESS
;
3344 return NVME_ZONE_INVAL_TRANSITION
;
3348 static uint16_t nvme_set_zd_ext(NvmeNamespace
*ns
, NvmeZone
*zone
)
3351 uint8_t state
= nvme_get_zone_state(zone
);
3353 if (state
== NVME_ZONE_STATE_EMPTY
) {
3354 status
= nvme_aor_check(ns
, 1, 0);
3358 nvme_aor_inc_active(ns
);
3359 zone
->d
.za
|= NVME_ZA_ZD_EXT_VALID
;
3360 nvme_assign_zone_state(ns
, zone
, NVME_ZONE_STATE_CLOSED
);
3361 return NVME_SUCCESS
;
3364 return NVME_ZONE_INVAL_TRANSITION
;
3367 static uint16_t nvme_bulk_proc_zone(NvmeNamespace
*ns
, NvmeZone
*zone
,
3368 enum NvmeZoneProcessingMask proc_mask
,
3369 op_handler_t op_hndlr
, NvmeRequest
*req
)
3371 uint16_t status
= NVME_SUCCESS
;
3372 NvmeZoneState zs
= nvme_get_zone_state(zone
);
3376 case NVME_ZONE_STATE_IMPLICITLY_OPEN
:
3377 case NVME_ZONE_STATE_EXPLICITLY_OPEN
:
3378 proc_zone
= proc_mask
& NVME_PROC_OPENED_ZONES
;
3380 case NVME_ZONE_STATE_CLOSED
:
3381 proc_zone
= proc_mask
& NVME_PROC_CLOSED_ZONES
;
3383 case NVME_ZONE_STATE_READ_ONLY
:
3384 proc_zone
= proc_mask
& NVME_PROC_READ_ONLY_ZONES
;
3386 case NVME_ZONE_STATE_FULL
:
3387 proc_zone
= proc_mask
& NVME_PROC_FULL_ZONES
;
3394 status
= op_hndlr(ns
, zone
, zs
, req
);
3400 static uint16_t nvme_do_zone_op(NvmeNamespace
*ns
, NvmeZone
*zone
,
3401 enum NvmeZoneProcessingMask proc_mask
,
3402 op_handler_t op_hndlr
, NvmeRequest
*req
)
3405 uint16_t status
= NVME_SUCCESS
;
3409 status
= op_hndlr(ns
, zone
, nvme_get_zone_state(zone
), req
);
3411 if (proc_mask
& NVME_PROC_CLOSED_ZONES
) {
3412 QTAILQ_FOREACH_SAFE(zone
, &ns
->closed_zones
, entry
, next
) {
3413 status
= nvme_bulk_proc_zone(ns
, zone
, proc_mask
, op_hndlr
,
3415 if (status
&& status
!= NVME_NO_COMPLETE
) {
3420 if (proc_mask
& NVME_PROC_OPENED_ZONES
) {
3421 QTAILQ_FOREACH_SAFE(zone
, &ns
->imp_open_zones
, entry
, next
) {
3422 status
= nvme_bulk_proc_zone(ns
, zone
, proc_mask
, op_hndlr
,
3424 if (status
&& status
!= NVME_NO_COMPLETE
) {
3429 QTAILQ_FOREACH_SAFE(zone
, &ns
->exp_open_zones
, entry
, next
) {
3430 status
= nvme_bulk_proc_zone(ns
, zone
, proc_mask
, op_hndlr
,
3432 if (status
&& status
!= NVME_NO_COMPLETE
) {
3437 if (proc_mask
& NVME_PROC_FULL_ZONES
) {
3438 QTAILQ_FOREACH_SAFE(zone
, &ns
->full_zones
, entry
, next
) {
3439 status
= nvme_bulk_proc_zone(ns
, zone
, proc_mask
, op_hndlr
,
3441 if (status
&& status
!= NVME_NO_COMPLETE
) {
3447 if (proc_mask
& NVME_PROC_READ_ONLY_ZONES
) {
3448 for (i
= 0; i
< ns
->num_zones
; i
++, zone
++) {
3449 status
= nvme_bulk_proc_zone(ns
, zone
, proc_mask
, op_hndlr
,
3451 if (status
&& status
!= NVME_NO_COMPLETE
) {
3462 typedef struct NvmeZoneResetAIOCB
{
3472 } NvmeZoneResetAIOCB
;
3474 static void nvme_zone_reset_cancel(BlockAIOCB
*aiocb
)
3476 NvmeZoneResetAIOCB
*iocb
= container_of(aiocb
, NvmeZoneResetAIOCB
, common
);
3477 NvmeRequest
*req
= iocb
->req
;
3478 NvmeNamespace
*ns
= req
->ns
;
3480 iocb
->idx
= ns
->num_zones
;
3482 iocb
->ret
= -ECANCELED
;
3485 blk_aio_cancel_async(iocb
->aiocb
);
3490 static const AIOCBInfo nvme_zone_reset_aiocb_info
= {
3491 .aiocb_size
= sizeof(NvmeZoneResetAIOCB
),
3492 .cancel_async
= nvme_zone_reset_cancel
,
3495 static void nvme_zone_reset_bh(void *opaque
)
3497 NvmeZoneResetAIOCB
*iocb
= opaque
;
3499 iocb
->common
.cb(iocb
->common
.opaque
, iocb
->ret
);
3501 qemu_bh_delete(iocb
->bh
);
3503 qemu_aio_unref(iocb
);
3506 static void nvme_zone_reset_cb(void *opaque
, int ret
);
3508 static void nvme_zone_reset_epilogue_cb(void *opaque
, int ret
)
3510 NvmeZoneResetAIOCB
*iocb
= opaque
;
3511 NvmeRequest
*req
= iocb
->req
;
3512 NvmeNamespace
*ns
= req
->ns
;
3517 nvme_zone_reset_cb(iocb
, ret
);
3522 nvme_zone_reset_cb(iocb
, 0);
3526 moff
= nvme_moff(ns
, iocb
->zone
->d
.zslba
);
3527 count
= nvme_m2b(ns
, ns
->zone_size
);
3529 iocb
->aiocb
= blk_aio_pwrite_zeroes(ns
->blkconf
.blk
, moff
, count
,
3531 nvme_zone_reset_cb
, iocb
);
3535 static void nvme_zone_reset_cb(void *opaque
, int ret
)
3537 NvmeZoneResetAIOCB
*iocb
= opaque
;
3538 NvmeRequest
*req
= iocb
->req
;
3539 NvmeNamespace
*ns
= req
->ns
;
3547 nvme_zrm_reset(ns
, iocb
->zone
);
3554 while (iocb
->idx
< ns
->num_zones
) {
3555 NvmeZone
*zone
= &ns
->zone_array
[iocb
->idx
++];
3557 switch (nvme_get_zone_state(zone
)) {
3558 case NVME_ZONE_STATE_EMPTY
:
3565 case NVME_ZONE_STATE_EXPLICITLY_OPEN
:
3566 case NVME_ZONE_STATE_IMPLICITLY_OPEN
:
3567 case NVME_ZONE_STATE_CLOSED
:
3568 case NVME_ZONE_STATE_FULL
:
3576 trace_pci_nvme_zns_zone_reset(zone
->d
.zslba
);
3578 iocb
->aiocb
= blk_aio_pwrite_zeroes(ns
->blkconf
.blk
,
3579 nvme_l2b(ns
, zone
->d
.zslba
),
3580 nvme_l2b(ns
, ns
->zone_size
),
3582 nvme_zone_reset_epilogue_cb
,
3590 qemu_bh_schedule(iocb
->bh
);
3594 static uint16_t nvme_zone_mgmt_send(NvmeCtrl
*n
, NvmeRequest
*req
)
3596 NvmeCmd
*cmd
= (NvmeCmd
*)&req
->cmd
;
3597 NvmeNamespace
*ns
= req
->ns
;
3599 NvmeZoneResetAIOCB
*iocb
;
3601 uint32_t dw13
= le32_to_cpu(cmd
->cdw13
);
3603 uint32_t zone_idx
= 0;
3607 enum NvmeZoneProcessingMask proc_mask
= NVME_PROC_CURRENT_ZONE
;
3609 action
= dw13
& 0xff;
3610 all
= !!(dw13
& 0x100);
3612 req
->status
= NVME_SUCCESS
;
3615 status
= nvme_get_mgmt_zone_slba_idx(ns
, cmd
, &slba
, &zone_idx
);
3621 zone
= &ns
->zone_array
[zone_idx
];
3622 if (slba
!= zone
->d
.zslba
) {
3623 trace_pci_nvme_err_unaligned_zone_cmd(action
, slba
, zone
->d
.zslba
);
3624 return NVME_INVALID_FIELD
| NVME_DNR
;
3629 case NVME_ZONE_ACTION_OPEN
:
3631 proc_mask
= NVME_PROC_CLOSED_ZONES
;
3633 trace_pci_nvme_open_zone(slba
, zone_idx
, all
);
3634 status
= nvme_do_zone_op(ns
, zone
, proc_mask
, nvme_open_zone
, req
);
3637 case NVME_ZONE_ACTION_CLOSE
:
3639 proc_mask
= NVME_PROC_OPENED_ZONES
;
3641 trace_pci_nvme_close_zone(slba
, zone_idx
, all
);
3642 status
= nvme_do_zone_op(ns
, zone
, proc_mask
, nvme_close_zone
, req
);
3645 case NVME_ZONE_ACTION_FINISH
:
3647 proc_mask
= NVME_PROC_OPENED_ZONES
| NVME_PROC_CLOSED_ZONES
;
3649 trace_pci_nvme_finish_zone(slba
, zone_idx
, all
);
3650 status
= nvme_do_zone_op(ns
, zone
, proc_mask
, nvme_finish_zone
, req
);
3653 case NVME_ZONE_ACTION_RESET
:
3654 trace_pci_nvme_reset_zone(slba
, zone_idx
, all
);
3656 iocb
= blk_aio_get(&nvme_zone_reset_aiocb_info
, ns
->blkconf
.blk
,
3660 iocb
->bh
= qemu_bh_new(nvme_zone_reset_bh
, iocb
);
3663 iocb
->idx
= zone_idx
;
3666 req
->aiocb
= &iocb
->common
;
3667 nvme_zone_reset_cb(iocb
, 0);
3669 return NVME_NO_COMPLETE
;
3671 case NVME_ZONE_ACTION_OFFLINE
:
3673 proc_mask
= NVME_PROC_READ_ONLY_ZONES
;
3675 trace_pci_nvme_offline_zone(slba
, zone_idx
, all
);
3676 status
= nvme_do_zone_op(ns
, zone
, proc_mask
, nvme_offline_zone
, req
);
3679 case NVME_ZONE_ACTION_SET_ZD_EXT
:
3680 trace_pci_nvme_set_descriptor_extension(slba
, zone_idx
);
3681 if (all
|| !ns
->params
.zd_extension_size
) {
3682 return NVME_INVALID_FIELD
| NVME_DNR
;
3684 zd_ext
= nvme_get_zd_extension(ns
, zone_idx
);
3685 status
= nvme_h2c(n
, zd_ext
, ns
->params
.zd_extension_size
, req
);
3687 trace_pci_nvme_err_zd_extension_map_error(zone_idx
);
3691 status
= nvme_set_zd_ext(ns
, zone
);
3692 if (status
== NVME_SUCCESS
) {
3693 trace_pci_nvme_zd_extension_set(zone_idx
);
3699 trace_pci_nvme_err_invalid_mgmt_action(action
);
3700 status
= NVME_INVALID_FIELD
;
3703 if (status
== NVME_ZONE_INVAL_TRANSITION
) {
3704 trace_pci_nvme_err_invalid_zone_state_transition(action
, slba
,
3714 static bool nvme_zone_matches_filter(uint32_t zafs
, NvmeZone
*zl
)
3716 NvmeZoneState zs
= nvme_get_zone_state(zl
);
3719 case NVME_ZONE_REPORT_ALL
:
3721 case NVME_ZONE_REPORT_EMPTY
:
3722 return zs
== NVME_ZONE_STATE_EMPTY
;
3723 case NVME_ZONE_REPORT_IMPLICITLY_OPEN
:
3724 return zs
== NVME_ZONE_STATE_IMPLICITLY_OPEN
;
3725 case NVME_ZONE_REPORT_EXPLICITLY_OPEN
:
3726 return zs
== NVME_ZONE_STATE_EXPLICITLY_OPEN
;
3727 case NVME_ZONE_REPORT_CLOSED
:
3728 return zs
== NVME_ZONE_STATE_CLOSED
;
3729 case NVME_ZONE_REPORT_FULL
:
3730 return zs
== NVME_ZONE_STATE_FULL
;
3731 case NVME_ZONE_REPORT_READ_ONLY
:
3732 return zs
== NVME_ZONE_STATE_READ_ONLY
;
3733 case NVME_ZONE_REPORT_OFFLINE
:
3734 return zs
== NVME_ZONE_STATE_OFFLINE
;
3740 static uint16_t nvme_zone_mgmt_recv(NvmeCtrl
*n
, NvmeRequest
*req
)
3742 NvmeCmd
*cmd
= (NvmeCmd
*)&req
->cmd
;
3743 NvmeNamespace
*ns
= req
->ns
;
3744 /* cdw12 is zero-based number of dwords to return. Convert to bytes */
3745 uint32_t data_size
= (le32_to_cpu(cmd
->cdw12
) + 1) << 2;
3746 uint32_t dw13
= le32_to_cpu(cmd
->cdw13
);
3747 uint32_t zone_idx
, zra
, zrasf
, partial
;
3748 uint64_t max_zones
, nr_zones
= 0;
3753 NvmeZoneReportHeader
*header
;
3755 size_t zone_entry_sz
;
3758 req
->status
= NVME_SUCCESS
;
3760 status
= nvme_get_mgmt_zone_slba_idx(ns
, cmd
, &slba
, &zone_idx
);
3766 if (zra
!= NVME_ZONE_REPORT
&& zra
!= NVME_ZONE_REPORT_EXTENDED
) {
3767 return NVME_INVALID_FIELD
| NVME_DNR
;
3769 if (zra
== NVME_ZONE_REPORT_EXTENDED
&& !ns
->params
.zd_extension_size
) {
3770 return NVME_INVALID_FIELD
| NVME_DNR
;
3773 zrasf
= (dw13
>> 8) & 0xff;
3774 if (zrasf
> NVME_ZONE_REPORT_OFFLINE
) {
3775 return NVME_INVALID_FIELD
| NVME_DNR
;
3778 if (data_size
< sizeof(NvmeZoneReportHeader
)) {
3779 return NVME_INVALID_FIELD
| NVME_DNR
;
3782 status
= nvme_check_mdts(n
, data_size
);
3787 partial
= (dw13
>> 16) & 0x01;
3789 zone_entry_sz
= sizeof(NvmeZoneDescr
);
3790 if (zra
== NVME_ZONE_REPORT_EXTENDED
) {
3791 zone_entry_sz
+= ns
->params
.zd_extension_size
;
3794 max_zones
= (data_size
- sizeof(NvmeZoneReportHeader
)) / zone_entry_sz
;
3795 buf
= g_malloc0(data_size
);
3797 zone
= &ns
->zone_array
[zone_idx
];
3798 for (i
= zone_idx
; i
< ns
->num_zones
; i
++) {
3799 if (partial
&& nr_zones
>= max_zones
) {
3802 if (nvme_zone_matches_filter(zrasf
, zone
++)) {
3806 header
= (NvmeZoneReportHeader
*)buf
;
3807 header
->nr_zones
= cpu_to_le64(nr_zones
);
3809 buf_p
= buf
+ sizeof(NvmeZoneReportHeader
);
3810 for (; zone_idx
< ns
->num_zones
&& max_zones
> 0; zone_idx
++) {
3811 zone
= &ns
->zone_array
[zone_idx
];
3812 if (nvme_zone_matches_filter(zrasf
, zone
)) {
3813 z
= (NvmeZoneDescr
*)buf_p
;
3814 buf_p
+= sizeof(NvmeZoneDescr
);
3818 z
->zcap
= cpu_to_le64(zone
->d
.zcap
);
3819 z
->zslba
= cpu_to_le64(zone
->d
.zslba
);
3822 if (nvme_wp_is_valid(zone
)) {
3823 z
->wp
= cpu_to_le64(zone
->d
.wp
);
3825 z
->wp
= cpu_to_le64(~0ULL);
3828 if (zra
== NVME_ZONE_REPORT_EXTENDED
) {
3829 if (zone
->d
.za
& NVME_ZA_ZD_EXT_VALID
) {
3830 memcpy(buf_p
, nvme_get_zd_extension(ns
, zone_idx
),
3831 ns
->params
.zd_extension_size
);
3833 buf_p
+= ns
->params
.zd_extension_size
;
3840 status
= nvme_c2h(n
, (uint8_t *)buf
, data_size
, req
);
3847 static uint16_t nvme_io_cmd(NvmeCtrl
*n
, NvmeRequest
*req
)
3850 uint32_t nsid
= le32_to_cpu(req
->cmd
.nsid
);
3852 trace_pci_nvme_io_cmd(nvme_cid(req
), nsid
, nvme_sqid(req
),
3853 req
->cmd
.opcode
, nvme_io_opc_str(req
->cmd
.opcode
));
3855 if (!nvme_nsid_valid(n
, nsid
)) {
3856 return NVME_INVALID_NSID
| NVME_DNR
;
3860 * In the base NVM command set, Flush may apply to all namespaces
3861 * (indicated by NSID being set to FFFFFFFFh). But if that feature is used
3862 * along with TP 4056 (Namespace Types), it may be pretty screwed up.
3864 * If NSID is indeed set to FFFFFFFFh, we simply cannot associate the
3865 * opcode with a specific command since we cannot determine a unique I/O
3866 * command set. Opcode 0h could have any other meaning than something
3867 * equivalent to flushing and say it DOES have completely different
3868 * semantics in some other command set - does an NSID of FFFFFFFFh then
3869 * mean "for all namespaces, apply whatever command set specific command
3870 * that uses the 0h opcode?" Or does it mean "for all namespaces, apply
3871 * whatever command that uses the 0h opcode if, and only if, it allows NSID
3874 * Anyway (and luckily), for now, we do not care about this since the
3875 * device only supports namespace types that includes the NVM Flush command
3876 * (NVM and Zoned), so always do an NVM Flush.
3878 if (req
->cmd
.opcode
== NVME_CMD_FLUSH
) {
3879 return nvme_flush(n
, req
);
3882 ns
= nvme_ns(n
, nsid
);
3883 if (unlikely(!ns
)) {
3884 return NVME_INVALID_FIELD
| NVME_DNR
;
3887 if (!(ns
->iocs
[req
->cmd
.opcode
] & NVME_CMD_EFF_CSUPP
)) {
3888 trace_pci_nvme_err_invalid_opc(req
->cmd
.opcode
);
3889 return NVME_INVALID_OPCODE
| NVME_DNR
;
3896 if (NVME_CMD_FLAGS_FUSE(req
->cmd
.flags
)) {
3897 return NVME_INVALID_FIELD
;
3902 switch (req
->cmd
.opcode
) {
3903 case NVME_CMD_WRITE_ZEROES
:
3904 return nvme_write_zeroes(n
, req
);
3905 case NVME_CMD_ZONE_APPEND
:
3906 return nvme_zone_append(n
, req
);
3907 case NVME_CMD_WRITE
:
3908 return nvme_write(n
, req
);
3910 return nvme_read(n
, req
);
3911 case NVME_CMD_COMPARE
:
3912 return nvme_compare(n
, req
);
3914 return nvme_dsm(n
, req
);
3915 case NVME_CMD_VERIFY
:
3916 return nvme_verify(n
, req
);
3918 return nvme_copy(n
, req
);
3919 case NVME_CMD_ZONE_MGMT_SEND
:
3920 return nvme_zone_mgmt_send(n
, req
);
3921 case NVME_CMD_ZONE_MGMT_RECV
:
3922 return nvme_zone_mgmt_recv(n
, req
);
3927 return NVME_INVALID_OPCODE
| NVME_DNR
;
3930 static void nvme_free_sq(NvmeSQueue
*sq
, NvmeCtrl
*n
)
3932 n
->sq
[sq
->sqid
] = NULL
;
3933 timer_free(sq
->timer
);
3940 static uint16_t nvme_del_sq(NvmeCtrl
*n
, NvmeRequest
*req
)
3942 NvmeDeleteQ
*c
= (NvmeDeleteQ
*)&req
->cmd
;
3943 NvmeRequest
*r
, *next
;
3946 uint16_t qid
= le16_to_cpu(c
->qid
);
3948 if (unlikely(!qid
|| nvme_check_sqid(n
, qid
))) {
3949 trace_pci_nvme_err_invalid_del_sq(qid
);
3950 return NVME_INVALID_QID
| NVME_DNR
;
3953 trace_pci_nvme_del_sq(qid
);
3956 while (!QTAILQ_EMPTY(&sq
->out_req_list
)) {
3957 r
= QTAILQ_FIRST(&sq
->out_req_list
);
3959 blk_aio_cancel(r
->aiocb
);
3962 assert(QTAILQ_EMPTY(&sq
->out_req_list
));
3964 if (!nvme_check_cqid(n
, sq
->cqid
)) {
3965 cq
= n
->cq
[sq
->cqid
];
3966 QTAILQ_REMOVE(&cq
->sq_list
, sq
, entry
);
3969 QTAILQ_FOREACH_SAFE(r
, &cq
->req_list
, entry
, next
) {
3971 QTAILQ_REMOVE(&cq
->req_list
, r
, entry
);
3972 QTAILQ_INSERT_TAIL(&sq
->req_list
, r
, entry
);
3977 nvme_free_sq(sq
, n
);
3978 return NVME_SUCCESS
;
3981 static void nvme_init_sq(NvmeSQueue
*sq
, NvmeCtrl
*n
, uint64_t dma_addr
,
3982 uint16_t sqid
, uint16_t cqid
, uint16_t size
)
3988 sq
->dma_addr
= dma_addr
;
3992 sq
->head
= sq
->tail
= 0;
3993 sq
->io_req
= g_new0(NvmeRequest
, sq
->size
);
3995 QTAILQ_INIT(&sq
->req_list
);
3996 QTAILQ_INIT(&sq
->out_req_list
);
3997 for (i
= 0; i
< sq
->size
; i
++) {
3998 sq
->io_req
[i
].sq
= sq
;
3999 QTAILQ_INSERT_TAIL(&(sq
->req_list
), &sq
->io_req
[i
], entry
);
4001 sq
->timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, nvme_process_sq
, sq
);
4003 assert(n
->cq
[cqid
]);
4005 QTAILQ_INSERT_TAIL(&(cq
->sq_list
), sq
, entry
);
4009 static uint16_t nvme_create_sq(NvmeCtrl
*n
, NvmeRequest
*req
)
4012 NvmeCreateSq
*c
= (NvmeCreateSq
*)&req
->cmd
;
4014 uint16_t cqid
= le16_to_cpu(c
->cqid
);
4015 uint16_t sqid
= le16_to_cpu(c
->sqid
);
4016 uint16_t qsize
= le16_to_cpu(c
->qsize
);
4017 uint16_t qflags
= le16_to_cpu(c
->sq_flags
);
4018 uint64_t prp1
= le64_to_cpu(c
->prp1
);
4020 trace_pci_nvme_create_sq(prp1
, sqid
, cqid
, qsize
, qflags
);
4022 if (unlikely(!cqid
|| nvme_check_cqid(n
, cqid
))) {
4023 trace_pci_nvme_err_invalid_create_sq_cqid(cqid
);
4024 return NVME_INVALID_CQID
| NVME_DNR
;
4026 if (unlikely(!sqid
|| sqid
> n
->params
.max_ioqpairs
||
4027 n
->sq
[sqid
] != NULL
)) {
4028 trace_pci_nvme_err_invalid_create_sq_sqid(sqid
);
4029 return NVME_INVALID_QID
| NVME_DNR
;
4031 if (unlikely(!qsize
|| qsize
> NVME_CAP_MQES(ldq_le_p(&n
->bar
.cap
)))) {
4032 trace_pci_nvme_err_invalid_create_sq_size(qsize
);
4033 return NVME_MAX_QSIZE_EXCEEDED
| NVME_DNR
;
4035 if (unlikely(prp1
& (n
->page_size
- 1))) {
4036 trace_pci_nvme_err_invalid_create_sq_addr(prp1
);
4037 return NVME_INVALID_PRP_OFFSET
| NVME_DNR
;
4039 if (unlikely(!(NVME_SQ_FLAGS_PC(qflags
)))) {
4040 trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags
));
4041 return NVME_INVALID_FIELD
| NVME_DNR
;
4043 sq
= g_malloc0(sizeof(*sq
));
4044 nvme_init_sq(sq
, n
, prp1
, sqid
, cqid
, qsize
+ 1);
4045 return NVME_SUCCESS
;
4049 uint64_t units_read
;
4050 uint64_t units_written
;
4051 uint64_t read_commands
;
4052 uint64_t write_commands
;
4055 static void nvme_set_blk_stats(NvmeNamespace
*ns
, struct nvme_stats
*stats
)
4057 BlockAcctStats
*s
= blk_get_stats(ns
->blkconf
.blk
);
4059 stats
->units_read
+= s
->nr_bytes
[BLOCK_ACCT_READ
] >> BDRV_SECTOR_BITS
;
4060 stats
->units_written
+= s
->nr_bytes
[BLOCK_ACCT_WRITE
] >> BDRV_SECTOR_BITS
;
4061 stats
->read_commands
+= s
->nr_ops
[BLOCK_ACCT_READ
];
4062 stats
->write_commands
+= s
->nr_ops
[BLOCK_ACCT_WRITE
];
4065 static uint16_t nvme_smart_info(NvmeCtrl
*n
, uint8_t rae
, uint32_t buf_len
,
4066 uint64_t off
, NvmeRequest
*req
)
4068 uint32_t nsid
= le32_to_cpu(req
->cmd
.nsid
);
4069 struct nvme_stats stats
= { 0 };
4070 NvmeSmartLog smart
= { 0 };
4075 if (off
>= sizeof(smart
)) {
4076 return NVME_INVALID_FIELD
| NVME_DNR
;
4079 if (nsid
!= 0xffffffff) {
4080 ns
= nvme_ns(n
, nsid
);
4082 return NVME_INVALID_NSID
| NVME_DNR
;
4084 nvme_set_blk_stats(ns
, &stats
);
4088 for (i
= 1; i
<= NVME_MAX_NAMESPACES
; i
++) {
4093 nvme_set_blk_stats(ns
, &stats
);
4097 trans_len
= MIN(sizeof(smart
) - off
, buf_len
);
4098 smart
.critical_warning
= n
->smart_critical_warning
;
4100 smart
.data_units_read
[0] = cpu_to_le64(DIV_ROUND_UP(stats
.units_read
,
4102 smart
.data_units_written
[0] = cpu_to_le64(DIV_ROUND_UP(stats
.units_written
,
4104 smart
.host_read_commands
[0] = cpu_to_le64(stats
.read_commands
);
4105 smart
.host_write_commands
[0] = cpu_to_le64(stats
.write_commands
);
4107 smart
.temperature
= cpu_to_le16(n
->temperature
);
4109 if ((n
->temperature
>= n
->features
.temp_thresh_hi
) ||
4110 (n
->temperature
<= n
->features
.temp_thresh_low
)) {
4111 smart
.critical_warning
|= NVME_SMART_TEMPERATURE
;
4114 current_ms
= qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL
);
4115 smart
.power_on_hours
[0] =
4116 cpu_to_le64((((current_ms
- n
->starttime_ms
) / 1000) / 60) / 60);
4119 nvme_clear_events(n
, NVME_AER_TYPE_SMART
);
4122 return nvme_c2h(n
, (uint8_t *) &smart
+ off
, trans_len
, req
);
4125 static uint16_t nvme_fw_log_info(NvmeCtrl
*n
, uint32_t buf_len
, uint64_t off
,
4129 NvmeFwSlotInfoLog fw_log
= {
4133 if (off
>= sizeof(fw_log
)) {
4134 return NVME_INVALID_FIELD
| NVME_DNR
;
4137 strpadcpy((char *)&fw_log
.frs1
, sizeof(fw_log
.frs1
), "1.0", ' ');
4138 trans_len
= MIN(sizeof(fw_log
) - off
, buf_len
);
4140 return nvme_c2h(n
, (uint8_t *) &fw_log
+ off
, trans_len
, req
);
4143 static uint16_t nvme_error_info(NvmeCtrl
*n
, uint8_t rae
, uint32_t buf_len
,
4144 uint64_t off
, NvmeRequest
*req
)
4147 NvmeErrorLog errlog
;
4149 if (off
>= sizeof(errlog
)) {
4150 return NVME_INVALID_FIELD
| NVME_DNR
;
4154 nvme_clear_events(n
, NVME_AER_TYPE_ERROR
);
4157 memset(&errlog
, 0x0, sizeof(errlog
));
4158 trans_len
= MIN(sizeof(errlog
) - off
, buf_len
);
4160 return nvme_c2h(n
, (uint8_t *)&errlog
, trans_len
, req
);
4163 static uint16_t nvme_changed_nslist(NvmeCtrl
*n
, uint8_t rae
, uint32_t buf_len
,
4164 uint64_t off
, NvmeRequest
*req
)
4166 uint32_t nslist
[1024];
4171 memset(nslist
, 0x0, sizeof(nslist
));
4172 trans_len
= MIN(sizeof(nslist
) - off
, buf_len
);
4174 while ((nsid
= find_first_bit(n
->changed_nsids
, NVME_CHANGED_NSID_SIZE
)) !=
4175 NVME_CHANGED_NSID_SIZE
) {
4177 * If more than 1024 namespaces, the first entry in the log page should
4178 * be set to FFFFFFFFh and the others to 0 as spec.
4180 if (i
== ARRAY_SIZE(nslist
)) {
4181 memset(nslist
, 0x0, sizeof(nslist
));
4182 nslist
[0] = 0xffffffff;
4187 clear_bit(nsid
, n
->changed_nsids
);
4191 * Remove all the remaining list entries in case returns directly due to
4192 * more than 1024 namespaces.
4194 if (nslist
[0] == 0xffffffff) {
4195 bitmap_zero(n
->changed_nsids
, NVME_CHANGED_NSID_SIZE
);
4199 nvme_clear_events(n
, NVME_AER_TYPE_NOTICE
);
4202 return nvme_c2h(n
, ((uint8_t *)nslist
) + off
, trans_len
, req
);
4205 static uint16_t nvme_cmd_effects(NvmeCtrl
*n
, uint8_t csi
, uint32_t buf_len
,
4206 uint64_t off
, NvmeRequest
*req
)
4208 NvmeEffectsLog log
= {};
4209 const uint32_t *src_iocs
= NULL
;
4212 if (off
>= sizeof(log
)) {
4213 trace_pci_nvme_err_invalid_log_page_offset(off
, sizeof(log
));
4214 return NVME_INVALID_FIELD
| NVME_DNR
;
4217 switch (NVME_CC_CSS(ldl_le_p(&n
->bar
.cc
))) {
4218 case NVME_CC_CSS_NVM
:
4219 src_iocs
= nvme_cse_iocs_nvm
;
4221 case NVME_CC_CSS_ADMIN_ONLY
:
4223 case NVME_CC_CSS_CSI
:
4226 src_iocs
= nvme_cse_iocs_nvm
;
4228 case NVME_CSI_ZONED
:
4229 src_iocs
= nvme_cse_iocs_zoned
;
4234 memcpy(log
.acs
, nvme_cse_acs
, sizeof(nvme_cse_acs
));
4237 memcpy(log
.iocs
, src_iocs
, sizeof(log
.iocs
));
4240 trans_len
= MIN(sizeof(log
) - off
, buf_len
);
4242 return nvme_c2h(n
, ((uint8_t *)&log
) + off
, trans_len
, req
);
4245 static uint16_t nvme_get_log(NvmeCtrl
*n
, NvmeRequest
*req
)
4247 NvmeCmd
*cmd
= &req
->cmd
;
4249 uint32_t dw10
= le32_to_cpu(cmd
->cdw10
);
4250 uint32_t dw11
= le32_to_cpu(cmd
->cdw11
);
4251 uint32_t dw12
= le32_to_cpu(cmd
->cdw12
);
4252 uint32_t dw13
= le32_to_cpu(cmd
->cdw13
);
4253 uint8_t lid
= dw10
& 0xff;
4254 uint8_t lsp
= (dw10
>> 8) & 0xf;
4255 uint8_t rae
= (dw10
>> 15) & 0x1;
4256 uint8_t csi
= le32_to_cpu(cmd
->cdw14
) >> 24;
4257 uint32_t numdl
, numdu
;
4258 uint64_t off
, lpol
, lpou
;
4262 numdl
= (dw10
>> 16);
4263 numdu
= (dw11
& 0xffff);
4267 len
= (((numdu
<< 16) | numdl
) + 1) << 2;
4268 off
= (lpou
<< 32ULL) | lpol
;
4271 return NVME_INVALID_FIELD
| NVME_DNR
;
4274 trace_pci_nvme_get_log(nvme_cid(req
), lid
, lsp
, rae
, len
, off
);
4276 status
= nvme_check_mdts(n
, len
);
4282 case NVME_LOG_ERROR_INFO
:
4283 return nvme_error_info(n
, rae
, len
, off
, req
);
4284 case NVME_LOG_SMART_INFO
:
4285 return nvme_smart_info(n
, rae
, len
, off
, req
);
4286 case NVME_LOG_FW_SLOT_INFO
:
4287 return nvme_fw_log_info(n
, len
, off
, req
);
4288 case NVME_LOG_CHANGED_NSLIST
:
4289 return nvme_changed_nslist(n
, rae
, len
, off
, req
);
4290 case NVME_LOG_CMD_EFFECTS
:
4291 return nvme_cmd_effects(n
, csi
, len
, off
, req
);
4293 trace_pci_nvme_err_invalid_log_page(nvme_cid(req
), lid
);
4294 return NVME_INVALID_FIELD
| NVME_DNR
;
4298 static void nvme_free_cq(NvmeCQueue
*cq
, NvmeCtrl
*n
)
4300 n
->cq
[cq
->cqid
] = NULL
;
4301 timer_free(cq
->timer
);
4302 if (msix_enabled(&n
->parent_obj
)) {
4303 msix_vector_unuse(&n
->parent_obj
, cq
->vector
);
4310 static uint16_t nvme_del_cq(NvmeCtrl
*n
, NvmeRequest
*req
)
4312 NvmeDeleteQ
*c
= (NvmeDeleteQ
*)&req
->cmd
;
4314 uint16_t qid
= le16_to_cpu(c
->qid
);
4316 if (unlikely(!qid
|| nvme_check_cqid(n
, qid
))) {
4317 trace_pci_nvme_err_invalid_del_cq_cqid(qid
);
4318 return NVME_INVALID_CQID
| NVME_DNR
;
4322 if (unlikely(!QTAILQ_EMPTY(&cq
->sq_list
))) {
4323 trace_pci_nvme_err_invalid_del_cq_notempty(qid
);
4324 return NVME_INVALID_QUEUE_DEL
;
4327 if (cq
->irq_enabled
&& cq
->tail
!= cq
->head
) {
4331 nvme_irq_deassert(n
, cq
);
4332 trace_pci_nvme_del_cq(qid
);
4333 nvme_free_cq(cq
, n
);
4334 return NVME_SUCCESS
;
4337 static void nvme_init_cq(NvmeCQueue
*cq
, NvmeCtrl
*n
, uint64_t dma_addr
,
4338 uint16_t cqid
, uint16_t vector
, uint16_t size
,
4339 uint16_t irq_enabled
)
4343 if (msix_enabled(&n
->parent_obj
)) {
4344 ret
= msix_vector_use(&n
->parent_obj
, vector
);
4350 cq
->dma_addr
= dma_addr
;
4352 cq
->irq_enabled
= irq_enabled
;
4353 cq
->vector
= vector
;
4354 cq
->head
= cq
->tail
= 0;
4355 QTAILQ_INIT(&cq
->req_list
);
4356 QTAILQ_INIT(&cq
->sq_list
);
4358 cq
->timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, nvme_post_cqes
, cq
);
4361 static uint16_t nvme_create_cq(NvmeCtrl
*n
, NvmeRequest
*req
)
4364 NvmeCreateCq
*c
= (NvmeCreateCq
*)&req
->cmd
;
4365 uint16_t cqid
= le16_to_cpu(c
->cqid
);
4366 uint16_t vector
= le16_to_cpu(c
->irq_vector
);
4367 uint16_t qsize
= le16_to_cpu(c
->qsize
);
4368 uint16_t qflags
= le16_to_cpu(c
->cq_flags
);
4369 uint64_t prp1
= le64_to_cpu(c
->prp1
);
4371 trace_pci_nvme_create_cq(prp1
, cqid
, vector
, qsize
, qflags
,
4372 NVME_CQ_FLAGS_IEN(qflags
) != 0);
4374 if (unlikely(!cqid
|| cqid
> n
->params
.max_ioqpairs
||
4375 n
->cq
[cqid
] != NULL
)) {
4376 trace_pci_nvme_err_invalid_create_cq_cqid(cqid
);
4377 return NVME_INVALID_QID
| NVME_DNR
;
4379 if (unlikely(!qsize
|| qsize
> NVME_CAP_MQES(ldq_le_p(&n
->bar
.cap
)))) {
4380 trace_pci_nvme_err_invalid_create_cq_size(qsize
);
4381 return NVME_MAX_QSIZE_EXCEEDED
| NVME_DNR
;
4383 if (unlikely(prp1
& (n
->page_size
- 1))) {
4384 trace_pci_nvme_err_invalid_create_cq_addr(prp1
);
4385 return NVME_INVALID_PRP_OFFSET
| NVME_DNR
;
4387 if (unlikely(!msix_enabled(&n
->parent_obj
) && vector
)) {
4388 trace_pci_nvme_err_invalid_create_cq_vector(vector
);
4389 return NVME_INVALID_IRQ_VECTOR
| NVME_DNR
;
4391 if (unlikely(vector
>= n
->params
.msix_qsize
)) {
4392 trace_pci_nvme_err_invalid_create_cq_vector(vector
);
4393 return NVME_INVALID_IRQ_VECTOR
| NVME_DNR
;
4395 if (unlikely(!(NVME_CQ_FLAGS_PC(qflags
)))) {
4396 trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags
));
4397 return NVME_INVALID_FIELD
| NVME_DNR
;
4400 cq
= g_malloc0(sizeof(*cq
));
4401 nvme_init_cq(cq
, n
, prp1
, cqid
, vector
, qsize
+ 1,
4402 NVME_CQ_FLAGS_IEN(qflags
));
4405 * It is only required to set qs_created when creating a completion queue;
4406 * creating a submission queue without a matching completion queue will
4409 n
->qs_created
= true;
4410 return NVME_SUCCESS
;
4413 static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl
*n
, NvmeRequest
*req
)
4415 uint8_t id
[NVME_IDENTIFY_DATA_SIZE
] = {};
4417 return nvme_c2h(n
, id
, sizeof(id
), req
);
4420 static uint16_t nvme_identify_ctrl(NvmeCtrl
*n
, NvmeRequest
*req
)
4422 trace_pci_nvme_identify_ctrl();
4424 return nvme_c2h(n
, (uint8_t *)&n
->id_ctrl
, sizeof(n
->id_ctrl
), req
);
4427 static uint16_t nvme_identify_ctrl_csi(NvmeCtrl
*n
, NvmeRequest
*req
)
4429 NvmeIdentify
*c
= (NvmeIdentify
*)&req
->cmd
;
4430 uint8_t id
[NVME_IDENTIFY_DATA_SIZE
] = {};
4431 NvmeIdCtrlNvm
*id_nvm
= (NvmeIdCtrlNvm
*)&id
;
4433 trace_pci_nvme_identify_ctrl_csi(c
->csi
);
4437 id_nvm
->vsl
= n
->params
.vsl
;
4438 id_nvm
->dmrsl
= cpu_to_le32(n
->dmrsl
);
4441 case NVME_CSI_ZONED
:
4442 ((NvmeIdCtrlZoned
*)&id
)->zasl
= n
->params
.zasl
;
4446 return NVME_INVALID_FIELD
| NVME_DNR
;
4449 return nvme_c2h(n
, id
, sizeof(id
), req
);
4452 static uint16_t nvme_identify_ns(NvmeCtrl
*n
, NvmeRequest
*req
, bool active
)
4455 NvmeIdentify
*c
= (NvmeIdentify
*)&req
->cmd
;
4456 uint32_t nsid
= le32_to_cpu(c
->nsid
);
4458 trace_pci_nvme_identify_ns(nsid
);
4460 if (!nvme_nsid_valid(n
, nsid
) || nsid
== NVME_NSID_BROADCAST
) {
4461 return NVME_INVALID_NSID
| NVME_DNR
;
4464 ns
= nvme_ns(n
, nsid
);
4465 if (unlikely(!ns
)) {
4467 ns
= nvme_subsys_ns(n
->subsys
, nsid
);
4469 return nvme_rpt_empty_id_struct(n
, req
);
4472 return nvme_rpt_empty_id_struct(n
, req
);
4476 if (active
|| ns
->csi
== NVME_CSI_NVM
) {
4477 return nvme_c2h(n
, (uint8_t *)&ns
->id_ns
, sizeof(NvmeIdNs
), req
);
4480 return NVME_INVALID_CMD_SET
| NVME_DNR
;
4483 static uint16_t nvme_identify_ctrl_list(NvmeCtrl
*n
, NvmeRequest
*req
,
4486 NvmeIdentify
*c
= (NvmeIdentify
*)&req
->cmd
;
4487 uint32_t nsid
= le32_to_cpu(c
->nsid
);
4488 uint16_t min_id
= le16_to_cpu(c
->ctrlid
);
4489 uint16_t list
[NVME_CONTROLLER_LIST_SIZE
] = {};
4490 uint16_t *ids
= &list
[1];
4493 int cntlid
, nr_ids
= 0;
4495 trace_pci_nvme_identify_ctrl_list(c
->cns
, min_id
);
4498 return NVME_INVALID_FIELD
| NVME_DNR
;
4502 if (nsid
== NVME_NSID_BROADCAST
) {
4503 return NVME_INVALID_FIELD
| NVME_DNR
;
4506 ns
= nvme_subsys_ns(n
->subsys
, nsid
);
4508 return NVME_INVALID_FIELD
| NVME_DNR
;
4512 for (cntlid
= min_id
; cntlid
< ARRAY_SIZE(n
->subsys
->ctrls
); cntlid
++) {
4513 ctrl
= nvme_subsys_ctrl(n
->subsys
, cntlid
);
4518 if (attached
&& !nvme_ns(ctrl
, nsid
)) {
4522 ids
[nr_ids
++] = cntlid
;
4527 return nvme_c2h(n
, (uint8_t *)list
, sizeof(list
), req
);
4530 static uint16_t nvme_identify_ns_csi(NvmeCtrl
*n
, NvmeRequest
*req
,
4534 NvmeIdentify
*c
= (NvmeIdentify
*)&req
->cmd
;
4535 uint32_t nsid
= le32_to_cpu(c
->nsid
);
4537 trace_pci_nvme_identify_ns_csi(nsid
, c
->csi
);
4539 if (!nvme_nsid_valid(n
, nsid
) || nsid
== NVME_NSID_BROADCAST
) {
4540 return NVME_INVALID_NSID
| NVME_DNR
;
4543 ns
= nvme_ns(n
, nsid
);
4544 if (unlikely(!ns
)) {
4546 ns
= nvme_subsys_ns(n
->subsys
, nsid
);
4548 return nvme_rpt_empty_id_struct(n
, req
);
4551 return nvme_rpt_empty_id_struct(n
, req
);
4555 if (c
->csi
== NVME_CSI_NVM
) {
4556 return nvme_rpt_empty_id_struct(n
, req
);
4557 } else if (c
->csi
== NVME_CSI_ZONED
&& ns
->csi
== NVME_CSI_ZONED
) {
4558 return nvme_c2h(n
, (uint8_t *)ns
->id_ns_zoned
, sizeof(NvmeIdNsZoned
),
4562 return NVME_INVALID_FIELD
| NVME_DNR
;
4565 static uint16_t nvme_identify_nslist(NvmeCtrl
*n
, NvmeRequest
*req
,
4569 NvmeIdentify
*c
= (NvmeIdentify
*)&req
->cmd
;
4570 uint32_t min_nsid
= le32_to_cpu(c
->nsid
);
4571 uint8_t list
[NVME_IDENTIFY_DATA_SIZE
] = {};
4572 static const int data_len
= sizeof(list
);
4573 uint32_t *list_ptr
= (uint32_t *)list
;
4576 trace_pci_nvme_identify_nslist(min_nsid
);
4579 * Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values
4580 * since the Active Namespace ID List should return namespaces with ids
4581 * *higher* than the NSID specified in the command. This is also specified
4582 * in the spec (NVM Express v1.3d, Section 5.15.4).
4584 if (min_nsid
>= NVME_NSID_BROADCAST
- 1) {
4585 return NVME_INVALID_NSID
| NVME_DNR
;
4588 for (i
= 1; i
<= NVME_MAX_NAMESPACES
; i
++) {
4592 ns
= nvme_subsys_ns(n
->subsys
, i
);
4600 if (ns
->params
.nsid
<= min_nsid
) {
4603 list_ptr
[j
++] = cpu_to_le32(ns
->params
.nsid
);
4604 if (j
== data_len
/ sizeof(uint32_t)) {
4609 return nvme_c2h(n
, list
, data_len
, req
);
4612 static uint16_t nvme_identify_nslist_csi(NvmeCtrl
*n
, NvmeRequest
*req
,
4616 NvmeIdentify
*c
= (NvmeIdentify
*)&req
->cmd
;
4617 uint32_t min_nsid
= le32_to_cpu(c
->nsid
);
4618 uint8_t list
[NVME_IDENTIFY_DATA_SIZE
] = {};
4619 static const int data_len
= sizeof(list
);
4620 uint32_t *list_ptr
= (uint32_t *)list
;
4623 trace_pci_nvme_identify_nslist_csi(min_nsid
, c
->csi
);
4626 * Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid.
4628 if (min_nsid
>= NVME_NSID_BROADCAST
- 1) {
4629 return NVME_INVALID_NSID
| NVME_DNR
;
4632 if (c
->csi
!= NVME_CSI_NVM
&& c
->csi
!= NVME_CSI_ZONED
) {
4633 return NVME_INVALID_FIELD
| NVME_DNR
;
4636 for (i
= 1; i
<= NVME_MAX_NAMESPACES
; i
++) {
4640 ns
= nvme_subsys_ns(n
->subsys
, i
);
4648 if (ns
->params
.nsid
<= min_nsid
|| c
->csi
!= ns
->csi
) {
4651 list_ptr
[j
++] = cpu_to_le32(ns
->params
.nsid
);
4652 if (j
== data_len
/ sizeof(uint32_t)) {
4657 return nvme_c2h(n
, list
, data_len
, req
);
4660 static uint16_t nvme_identify_ns_descr_list(NvmeCtrl
*n
, NvmeRequest
*req
)
4663 NvmeIdentify
*c
= (NvmeIdentify
*)&req
->cmd
;
4664 uint32_t nsid
= le32_to_cpu(c
->nsid
);
4665 uint8_t list
[NVME_IDENTIFY_DATA_SIZE
] = {};
4666 uint8_t *pos
= list
;
4669 uint8_t v
[NVME_NIDL_UUID
];
4670 } QEMU_PACKED uuid
= {};
4674 } QEMU_PACKED eui64
= {};
4678 } QEMU_PACKED csi
= {};
4680 trace_pci_nvme_identify_ns_descr_list(nsid
);
4682 if (!nvme_nsid_valid(n
, nsid
) || nsid
== NVME_NSID_BROADCAST
) {
4683 return NVME_INVALID_NSID
| NVME_DNR
;
4686 ns
= nvme_ns(n
, nsid
);
4687 if (unlikely(!ns
)) {
4688 return NVME_INVALID_FIELD
| NVME_DNR
;
4692 * If the EUI-64 field is 0 and the NGUID field is 0, the namespace must
4693 * provide a valid Namespace UUID in the Namespace Identification Descriptor
4694 * data structure. QEMU does not yet support setting NGUID.
4696 uuid
.hdr
.nidt
= NVME_NIDT_UUID
;
4697 uuid
.hdr
.nidl
= NVME_NIDL_UUID
;
4698 memcpy(uuid
.v
, ns
->params
.uuid
.data
, NVME_NIDL_UUID
);
4699 memcpy(pos
, &uuid
, sizeof(uuid
));
4700 pos
+= sizeof(uuid
);
4702 if (ns
->params
.eui64
) {
4703 eui64
.hdr
.nidt
= NVME_NIDT_EUI64
;
4704 eui64
.hdr
.nidl
= NVME_NIDL_EUI64
;
4705 eui64
.v
= cpu_to_be64(ns
->params
.eui64
);
4706 memcpy(pos
, &eui64
, sizeof(eui64
));
4707 pos
+= sizeof(eui64
);
4710 csi
.hdr
.nidt
= NVME_NIDT_CSI
;
4711 csi
.hdr
.nidl
= NVME_NIDL_CSI
;
4713 memcpy(pos
, &csi
, sizeof(csi
));
4716 return nvme_c2h(n
, list
, sizeof(list
), req
);
4719 static uint16_t nvme_identify_cmd_set(NvmeCtrl
*n
, NvmeRequest
*req
)
4721 uint8_t list
[NVME_IDENTIFY_DATA_SIZE
] = {};
4722 static const int data_len
= sizeof(list
);
4724 trace_pci_nvme_identify_cmd_set();
4726 NVME_SET_CSI(*list
, NVME_CSI_NVM
);
4727 NVME_SET_CSI(*list
, NVME_CSI_ZONED
);
4729 return nvme_c2h(n
, list
, data_len
, req
);
4732 static uint16_t nvme_identify(NvmeCtrl
*n
, NvmeRequest
*req
)
4734 NvmeIdentify
*c
= (NvmeIdentify
*)&req
->cmd
;
4736 trace_pci_nvme_identify(nvme_cid(req
), c
->cns
, le16_to_cpu(c
->ctrlid
),
4740 case NVME_ID_CNS_NS
:
4741 return nvme_identify_ns(n
, req
, true);
4742 case NVME_ID_CNS_NS_PRESENT
:
4743 return nvme_identify_ns(n
, req
, false);
4744 case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST
:
4745 return nvme_identify_ctrl_list(n
, req
, true);
4746 case NVME_ID_CNS_CTRL_LIST
:
4747 return nvme_identify_ctrl_list(n
, req
, false);
4748 case NVME_ID_CNS_CS_NS
:
4749 return nvme_identify_ns_csi(n
, req
, true);
4750 case NVME_ID_CNS_CS_NS_PRESENT
:
4751 return nvme_identify_ns_csi(n
, req
, false);
4752 case NVME_ID_CNS_CTRL
:
4753 return nvme_identify_ctrl(n
, req
);
4754 case NVME_ID_CNS_CS_CTRL
:
4755 return nvme_identify_ctrl_csi(n
, req
);
4756 case NVME_ID_CNS_NS_ACTIVE_LIST
:
4757 return nvme_identify_nslist(n
, req
, true);
4758 case NVME_ID_CNS_NS_PRESENT_LIST
:
4759 return nvme_identify_nslist(n
, req
, false);
4760 case NVME_ID_CNS_CS_NS_ACTIVE_LIST
:
4761 return nvme_identify_nslist_csi(n
, req
, true);
4762 case NVME_ID_CNS_CS_NS_PRESENT_LIST
:
4763 return nvme_identify_nslist_csi(n
, req
, false);
4764 case NVME_ID_CNS_NS_DESCR_LIST
:
4765 return nvme_identify_ns_descr_list(n
, req
);
4766 case NVME_ID_CNS_IO_COMMAND_SET
:
4767 return nvme_identify_cmd_set(n
, req
);
4769 trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c
->cns
));
4770 return NVME_INVALID_FIELD
| NVME_DNR
;
4774 static uint16_t nvme_abort(NvmeCtrl
*n
, NvmeRequest
*req
)
4776 uint16_t sqid
= le32_to_cpu(req
->cmd
.cdw10
) & 0xffff;
4778 req
->cqe
.result
= 1;
4779 if (nvme_check_sqid(n
, sqid
)) {
4780 return NVME_INVALID_FIELD
| NVME_DNR
;
4783 return NVME_SUCCESS
;
4786 static inline void nvme_set_timestamp(NvmeCtrl
*n
, uint64_t ts
)
4788 trace_pci_nvme_setfeat_timestamp(ts
);
4790 n
->host_timestamp
= le64_to_cpu(ts
);
4791 n
->timestamp_set_qemu_clock_ms
= qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL
);
4794 static inline uint64_t nvme_get_timestamp(const NvmeCtrl
*n
)
4796 uint64_t current_time
= qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL
);
4797 uint64_t elapsed_time
= current_time
- n
->timestamp_set_qemu_clock_ms
;
4799 union nvme_timestamp
{
4801 uint64_t timestamp
:48;
4809 union nvme_timestamp ts
;
4811 ts
.timestamp
= n
->host_timestamp
+ elapsed_time
;
4813 /* If the host timestamp is non-zero, set the timestamp origin */
4814 ts
.origin
= n
->host_timestamp
? 0x01 : 0x00;
4816 trace_pci_nvme_getfeat_timestamp(ts
.all
);
4818 return cpu_to_le64(ts
.all
);
4821 static uint16_t nvme_get_feature_timestamp(NvmeCtrl
*n
, NvmeRequest
*req
)
4823 uint64_t timestamp
= nvme_get_timestamp(n
);
4825 return nvme_c2h(n
, (uint8_t *)×tamp
, sizeof(timestamp
), req
);
4828 static uint16_t nvme_get_feature(NvmeCtrl
*n
, NvmeRequest
*req
)
4830 NvmeCmd
*cmd
= &req
->cmd
;
4831 uint32_t dw10
= le32_to_cpu(cmd
->cdw10
);
4832 uint32_t dw11
= le32_to_cpu(cmd
->cdw11
);
4833 uint32_t nsid
= le32_to_cpu(cmd
->nsid
);
4835 uint8_t fid
= NVME_GETSETFEAT_FID(dw10
);
4836 NvmeGetFeatureSelect sel
= NVME_GETFEAT_SELECT(dw10
);
4841 static const uint32_t nvme_feature_default
[NVME_FID_MAX
] = {
4842 [NVME_ARBITRATION
] = NVME_ARB_AB_NOLIMIT
,
4845 trace_pci_nvme_getfeat(nvme_cid(req
), nsid
, fid
, sel
, dw11
);
4847 if (!nvme_feature_support
[fid
]) {
4848 return NVME_INVALID_FIELD
| NVME_DNR
;
4851 if (nvme_feature_cap
[fid
] & NVME_FEAT_CAP_NS
) {
4852 if (!nvme_nsid_valid(n
, nsid
) || nsid
== NVME_NSID_BROADCAST
) {
4854 * The Reservation Notification Mask and Reservation Persistence
4855 * features require a status code of Invalid Field in Command when
4856 * NSID is FFFFFFFFh. Since the device does not support those
4857 * features we can always return Invalid Namespace or Format as we
4858 * should do for all other features.
4860 return NVME_INVALID_NSID
| NVME_DNR
;
4863 if (!nvme_ns(n
, nsid
)) {
4864 return NVME_INVALID_FIELD
| NVME_DNR
;
4869 case NVME_GETFEAT_SELECT_CURRENT
:
4871 case NVME_GETFEAT_SELECT_SAVED
:
4872 /* no features are saveable by the controller; fallthrough */
4873 case NVME_GETFEAT_SELECT_DEFAULT
:
4875 case NVME_GETFEAT_SELECT_CAP
:
4876 result
= nvme_feature_cap
[fid
];
4881 case NVME_TEMPERATURE_THRESHOLD
:
4885 * The controller only implements the Composite Temperature sensor, so
4886 * return 0 for all other sensors.
4888 if (NVME_TEMP_TMPSEL(dw11
) != NVME_TEMP_TMPSEL_COMPOSITE
) {
4892 switch (NVME_TEMP_THSEL(dw11
)) {
4893 case NVME_TEMP_THSEL_OVER
:
4894 result
= n
->features
.temp_thresh_hi
;
4896 case NVME_TEMP_THSEL_UNDER
:
4897 result
= n
->features
.temp_thresh_low
;
4901 return NVME_INVALID_FIELD
| NVME_DNR
;
4902 case NVME_ERROR_RECOVERY
:
4903 if (!nvme_nsid_valid(n
, nsid
)) {
4904 return NVME_INVALID_NSID
| NVME_DNR
;
4907 ns
= nvme_ns(n
, nsid
);
4908 if (unlikely(!ns
)) {
4909 return NVME_INVALID_FIELD
| NVME_DNR
;
4912 result
= ns
->features
.err_rec
;
4914 case NVME_VOLATILE_WRITE_CACHE
:
4916 for (i
= 1; i
<= NVME_MAX_NAMESPACES
; i
++) {
4922 result
= blk_enable_write_cache(ns
->blkconf
.blk
);
4927 trace_pci_nvme_getfeat_vwcache(result
? "enabled" : "disabled");
4929 case NVME_ASYNCHRONOUS_EVENT_CONF
:
4930 result
= n
->features
.async_config
;
4932 case NVME_TIMESTAMP
:
4933 return nvme_get_feature_timestamp(n
, req
);
4940 case NVME_TEMPERATURE_THRESHOLD
:
4943 if (NVME_TEMP_TMPSEL(dw11
) != NVME_TEMP_TMPSEL_COMPOSITE
) {
4947 if (NVME_TEMP_THSEL(dw11
) == NVME_TEMP_THSEL_OVER
) {
4948 result
= NVME_TEMPERATURE_WARNING
;
4952 case NVME_NUMBER_OF_QUEUES
:
4953 result
= (n
->params
.max_ioqpairs
- 1) |
4954 ((n
->params
.max_ioqpairs
- 1) << 16);
4955 trace_pci_nvme_getfeat_numq(result
);
4957 case NVME_INTERRUPT_VECTOR_CONF
:
4959 if (iv
>= n
->params
.max_ioqpairs
+ 1) {
4960 return NVME_INVALID_FIELD
| NVME_DNR
;
4964 if (iv
== n
->admin_cq
.vector
) {
4965 result
|= NVME_INTVC_NOCOALESCING
;
4969 result
= nvme_feature_default
[fid
];
4974 req
->cqe
.result
= cpu_to_le32(result
);
4975 return NVME_SUCCESS
;
4978 static uint16_t nvme_set_feature_timestamp(NvmeCtrl
*n
, NvmeRequest
*req
)
4983 ret
= nvme_h2c(n
, (uint8_t *)×tamp
, sizeof(timestamp
), req
);
4988 nvme_set_timestamp(n
, timestamp
);
4990 return NVME_SUCCESS
;
4993 static uint16_t nvme_set_feature(NvmeCtrl
*n
, NvmeRequest
*req
)
4995 NvmeNamespace
*ns
= NULL
;
4997 NvmeCmd
*cmd
= &req
->cmd
;
4998 uint32_t dw10
= le32_to_cpu(cmd
->cdw10
);
4999 uint32_t dw11
= le32_to_cpu(cmd
->cdw11
);
5000 uint32_t nsid
= le32_to_cpu(cmd
->nsid
);
5001 uint8_t fid
= NVME_GETSETFEAT_FID(dw10
);
5002 uint8_t save
= NVME_SETFEAT_SAVE(dw10
);
5005 trace_pci_nvme_setfeat(nvme_cid(req
), nsid
, fid
, save
, dw11
);
5007 if (save
&& !(nvme_feature_cap
[fid
] & NVME_FEAT_CAP_SAVE
)) {
5008 return NVME_FID_NOT_SAVEABLE
| NVME_DNR
;
5011 if (!nvme_feature_support
[fid
]) {
5012 return NVME_INVALID_FIELD
| NVME_DNR
;
5015 if (nvme_feature_cap
[fid
] & NVME_FEAT_CAP_NS
) {
5016 if (nsid
!= NVME_NSID_BROADCAST
) {
5017 if (!nvme_nsid_valid(n
, nsid
)) {
5018 return NVME_INVALID_NSID
| NVME_DNR
;
5021 ns
= nvme_ns(n
, nsid
);
5022 if (unlikely(!ns
)) {
5023 return NVME_INVALID_FIELD
| NVME_DNR
;
5026 } else if (nsid
&& nsid
!= NVME_NSID_BROADCAST
) {
5027 if (!nvme_nsid_valid(n
, nsid
)) {
5028 return NVME_INVALID_NSID
| NVME_DNR
;
5031 return NVME_FEAT_NOT_NS_SPEC
| NVME_DNR
;
5034 if (!(nvme_feature_cap
[fid
] & NVME_FEAT_CAP_CHANGE
)) {
5035 return NVME_FEAT_NOT_CHANGEABLE
| NVME_DNR
;
5039 case NVME_TEMPERATURE_THRESHOLD
:
5040 if (NVME_TEMP_TMPSEL(dw11
) != NVME_TEMP_TMPSEL_COMPOSITE
) {
5044 switch (NVME_TEMP_THSEL(dw11
)) {
5045 case NVME_TEMP_THSEL_OVER
:
5046 n
->features
.temp_thresh_hi
= NVME_TEMP_TMPTH(dw11
);
5048 case NVME_TEMP_THSEL_UNDER
:
5049 n
->features
.temp_thresh_low
= NVME_TEMP_TMPTH(dw11
);
5052 return NVME_INVALID_FIELD
| NVME_DNR
;
5055 if ((n
->temperature
>= n
->features
.temp_thresh_hi
) ||
5056 (n
->temperature
<= n
->features
.temp_thresh_low
)) {
5057 nvme_smart_event(n
, NVME_AER_INFO_SMART_TEMP_THRESH
);
5061 case NVME_ERROR_RECOVERY
:
5062 if (nsid
== NVME_NSID_BROADCAST
) {
5063 for (i
= 1; i
<= NVME_MAX_NAMESPACES
; i
++) {
5070 if (NVME_ID_NS_NSFEAT_DULBE(ns
->id_ns
.nsfeat
)) {
5071 ns
->features
.err_rec
= dw11
;
5079 if (NVME_ID_NS_NSFEAT_DULBE(ns
->id_ns
.nsfeat
)) {
5080 ns
->features
.err_rec
= dw11
;
5083 case NVME_VOLATILE_WRITE_CACHE
:
5084 for (i
= 1; i
<= NVME_MAX_NAMESPACES
; i
++) {
5090 if (!(dw11
& 0x1) && blk_enable_write_cache(ns
->blkconf
.blk
)) {
5091 blk_flush(ns
->blkconf
.blk
);
5094 blk_set_enable_write_cache(ns
->blkconf
.blk
, dw11
& 1);
5099 case NVME_NUMBER_OF_QUEUES
:
5100 if (n
->qs_created
) {
5101 return NVME_CMD_SEQ_ERROR
| NVME_DNR
;
5105 * NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR
5108 if ((dw11
& 0xffff) == 0xffff || ((dw11
>> 16) & 0xffff) == 0xffff) {
5109 return NVME_INVALID_FIELD
| NVME_DNR
;
5112 trace_pci_nvme_setfeat_numq((dw11
& 0xffff) + 1,
5113 ((dw11
>> 16) & 0xffff) + 1,
5114 n
->params
.max_ioqpairs
,
5115 n
->params
.max_ioqpairs
);
5116 req
->cqe
.result
= cpu_to_le32((n
->params
.max_ioqpairs
- 1) |
5117 ((n
->params
.max_ioqpairs
- 1) << 16));
5119 case NVME_ASYNCHRONOUS_EVENT_CONF
:
5120 n
->features
.async_config
= dw11
;
5122 case NVME_TIMESTAMP
:
5123 return nvme_set_feature_timestamp(n
, req
);
5124 case NVME_COMMAND_SET_PROFILE
:
5126 trace_pci_nvme_err_invalid_iocsci(dw11
& 0x1ff);
5127 return NVME_CMD_SET_CMB_REJECTED
| NVME_DNR
;
5131 return NVME_FEAT_NOT_CHANGEABLE
| NVME_DNR
;
5133 return NVME_SUCCESS
;
5136 static uint16_t nvme_aer(NvmeCtrl
*n
, NvmeRequest
*req
)
5138 trace_pci_nvme_aer(nvme_cid(req
));
5140 if (n
->outstanding_aers
> n
->params
.aerl
) {
5141 trace_pci_nvme_aer_aerl_exceeded();
5142 return NVME_AER_LIMIT_EXCEEDED
;
5145 n
->aer_reqs
[n
->outstanding_aers
] = req
;
5146 n
->outstanding_aers
++;
5148 if (!QTAILQ_EMPTY(&n
->aer_queue
)) {
5149 nvme_process_aers(n
);
5152 return NVME_NO_COMPLETE
;
5155 static void nvme_update_dmrsl(NvmeCtrl
*n
)
5159 for (nsid
= 1; nsid
<= NVME_MAX_NAMESPACES
; nsid
++) {
5160 NvmeNamespace
*ns
= nvme_ns(n
, nsid
);
5165 n
->dmrsl
= MIN_NON_ZERO(n
->dmrsl
,
5166 BDRV_REQUEST_MAX_BYTES
/ nvme_l2b(ns
, 1));
5170 static void nvme_select_iocs_ns(NvmeCtrl
*n
, NvmeNamespace
*ns
)
5172 uint32_t cc
= ldl_le_p(&n
->bar
.cc
);
5174 ns
->iocs
= nvme_cse_iocs_none
;
5177 if (NVME_CC_CSS(cc
) != NVME_CC_CSS_ADMIN_ONLY
) {
5178 ns
->iocs
= nvme_cse_iocs_nvm
;
5181 case NVME_CSI_ZONED
:
5182 if (NVME_CC_CSS(cc
) == NVME_CC_CSS_CSI
) {
5183 ns
->iocs
= nvme_cse_iocs_zoned
;
5184 } else if (NVME_CC_CSS(cc
) == NVME_CC_CSS_NVM
) {
5185 ns
->iocs
= nvme_cse_iocs_nvm
;
5191 static uint16_t nvme_ns_attachment(NvmeCtrl
*n
, NvmeRequest
*req
)
5195 uint16_t list
[NVME_CONTROLLER_LIST_SIZE
] = {};
5196 uint32_t nsid
= le32_to_cpu(req
->cmd
.nsid
);
5197 uint32_t dw10
= le32_to_cpu(req
->cmd
.cdw10
);
5198 uint8_t sel
= dw10
& 0xf;
5199 uint16_t *nr_ids
= &list
[0];
5200 uint16_t *ids
= &list
[1];
5204 trace_pci_nvme_ns_attachment(nvme_cid(req
), dw10
& 0xf);
5206 if (!nvme_nsid_valid(n
, nsid
)) {
5207 return NVME_INVALID_NSID
| NVME_DNR
;
5210 ns
= nvme_subsys_ns(n
->subsys
, nsid
);
5212 return NVME_INVALID_FIELD
| NVME_DNR
;
5215 ret
= nvme_h2c(n
, (uint8_t *)list
, 4096, req
);
5221 return NVME_NS_CTRL_LIST_INVALID
| NVME_DNR
;
5224 *nr_ids
= MIN(*nr_ids
, NVME_CONTROLLER_LIST_SIZE
- 1);
5225 for (i
= 0; i
< *nr_ids
; i
++) {
5226 ctrl
= nvme_subsys_ctrl(n
->subsys
, ids
[i
]);
5228 return NVME_NS_CTRL_LIST_INVALID
| NVME_DNR
;
5232 case NVME_NS_ATTACHMENT_ATTACH
:
5233 if (nvme_ns(ctrl
, nsid
)) {
5234 return NVME_NS_ALREADY_ATTACHED
| NVME_DNR
;
5237 if (ns
->attached
&& !ns
->params
.shared
) {
5238 return NVME_NS_PRIVATE
| NVME_DNR
;
5241 nvme_attach_ns(ctrl
, ns
);
5242 nvme_select_iocs_ns(ctrl
, ns
);
5246 case NVME_NS_ATTACHMENT_DETACH
:
5247 if (!nvme_ns(ctrl
, nsid
)) {
5248 return NVME_NS_NOT_ATTACHED
| NVME_DNR
;
5251 ctrl
->namespaces
[nsid
] = NULL
;
5254 nvme_update_dmrsl(ctrl
);
5259 return NVME_INVALID_FIELD
| NVME_DNR
;
5263 * Add namespace id to the changed namespace id list for event clearing
5264 * via Get Log Page command.
5266 if (!test_and_set_bit(nsid
, ctrl
->changed_nsids
)) {
5267 nvme_enqueue_event(ctrl
, NVME_AER_TYPE_NOTICE
,
5268 NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED
,
5269 NVME_LOG_CHANGED_NSLIST
);
5273 return NVME_SUCCESS
;
5276 typedef struct NvmeFormatAIOCB
{
5289 static void nvme_format_bh(void *opaque
);
5291 static void nvme_format_cancel(BlockAIOCB
*aiocb
)
5293 NvmeFormatAIOCB
*iocb
= container_of(aiocb
, NvmeFormatAIOCB
, common
);
5296 blk_aio_cancel_async(iocb
->aiocb
);
5300 static const AIOCBInfo nvme_format_aiocb_info
= {
5301 .aiocb_size
= sizeof(NvmeFormatAIOCB
),
5302 .cancel_async
= nvme_format_cancel
,
5303 .get_aio_context
= nvme_get_aio_context
,
5306 static void nvme_format_set(NvmeNamespace
*ns
, NvmeCmd
*cmd
)
5308 uint32_t dw10
= le32_to_cpu(cmd
->cdw10
);
5309 uint8_t lbaf
= dw10
& 0xf;
5310 uint8_t pi
= (dw10
>> 5) & 0x7;
5311 uint8_t mset
= (dw10
>> 4) & 0x1;
5312 uint8_t pil
= (dw10
>> 8) & 0x1;
5314 trace_pci_nvme_format_set(ns
->params
.nsid
, lbaf
, mset
, pi
, pil
);
5316 ns
->id_ns
.dps
= (pil
<< 3) | pi
;
5317 ns
->id_ns
.flbas
= lbaf
| (mset
<< 4);
5319 nvme_ns_init_format(ns
);
5322 static void nvme_format_ns_cb(void *opaque
, int ret
)
5324 NvmeFormatAIOCB
*iocb
= opaque
;
5325 NvmeRequest
*req
= iocb
->req
;
5326 NvmeNamespace
*ns
= iocb
->ns
;
5336 if (iocb
->offset
< ns
->size
) {
5337 bytes
= MIN(BDRV_REQUEST_MAX_BYTES
, ns
->size
- iocb
->offset
);
5339 iocb
->aiocb
= blk_aio_pwrite_zeroes(ns
->blkconf
.blk
, iocb
->offset
,
5340 bytes
, BDRV_REQ_MAY_UNMAP
,
5341 nvme_format_ns_cb
, iocb
);
5343 iocb
->offset
+= bytes
;
5347 nvme_format_set(ns
, &req
->cmd
);
5354 qemu_bh_schedule(iocb
->bh
);
5357 static uint16_t nvme_format_check(NvmeNamespace
*ns
, uint8_t lbaf
, uint8_t pi
)
5359 if (ns
->params
.zoned
) {
5360 return NVME_INVALID_FORMAT
| NVME_DNR
;
5363 if (lbaf
> ns
->id_ns
.nlbaf
) {
5364 return NVME_INVALID_FORMAT
| NVME_DNR
;
5367 if (pi
&& (ns
->id_ns
.lbaf
[lbaf
].ms
< sizeof(NvmeDifTuple
))) {
5368 return NVME_INVALID_FORMAT
| NVME_DNR
;
5371 if (pi
&& pi
> NVME_ID_NS_DPS_TYPE_3
) {
5372 return NVME_INVALID_FIELD
| NVME_DNR
;
5375 return NVME_SUCCESS
;
5378 static void nvme_format_bh(void *opaque
)
5380 NvmeFormatAIOCB
*iocb
= opaque
;
5381 NvmeRequest
*req
= iocb
->req
;
5382 NvmeCtrl
*n
= nvme_ctrl(req
);
5383 uint32_t dw10
= le32_to_cpu(req
->cmd
.cdw10
);
5384 uint8_t lbaf
= dw10
& 0xf;
5385 uint8_t pi
= (dw10
>> 5) & 0x7;
5389 if (iocb
->ret
< 0) {
5393 if (iocb
->broadcast
) {
5394 for (i
= iocb
->nsid
+ 1; i
<= NVME_MAX_NAMESPACES
; i
++) {
5395 iocb
->ns
= nvme_ns(n
, i
);
5407 status
= nvme_format_check(iocb
->ns
, lbaf
, pi
);
5409 req
->status
= status
;
5413 iocb
->ns
->status
= NVME_FORMAT_IN_PROGRESS
;
5414 nvme_format_ns_cb(iocb
, 0);
5418 qemu_bh_delete(iocb
->bh
);
5421 iocb
->common
.cb(iocb
->common
.opaque
, iocb
->ret
);
5423 qemu_aio_unref(iocb
);
5426 static uint16_t nvme_format(NvmeCtrl
*n
, NvmeRequest
*req
)
5428 NvmeFormatAIOCB
*iocb
;
5429 uint32_t nsid
= le32_to_cpu(req
->cmd
.nsid
);
5432 iocb
= qemu_aio_get(&nvme_format_aiocb_info
, NULL
, nvme_misc_cb
, req
);
5435 iocb
->bh
= qemu_bh_new(nvme_format_bh
, iocb
);
5439 iocb
->broadcast
= (nsid
== NVME_NSID_BROADCAST
);
5442 if (!iocb
->broadcast
) {
5443 if (!nvme_nsid_valid(n
, nsid
)) {
5444 status
= NVME_INVALID_NSID
| NVME_DNR
;
5448 iocb
->ns
= nvme_ns(n
, nsid
);
5450 status
= NVME_INVALID_FIELD
| NVME_DNR
;
5455 req
->aiocb
= &iocb
->common
;
5456 qemu_bh_schedule(iocb
->bh
);
5458 return NVME_NO_COMPLETE
;
5461 qemu_bh_delete(iocb
->bh
);
5463 qemu_aio_unref(iocb
);
5467 static uint16_t nvme_admin_cmd(NvmeCtrl
*n
, NvmeRequest
*req
)
5469 trace_pci_nvme_admin_cmd(nvme_cid(req
), nvme_sqid(req
), req
->cmd
.opcode
,
5470 nvme_adm_opc_str(req
->cmd
.opcode
));
5472 if (!(nvme_cse_acs
[req
->cmd
.opcode
] & NVME_CMD_EFF_CSUPP
)) {
5473 trace_pci_nvme_err_invalid_admin_opc(req
->cmd
.opcode
);
5474 return NVME_INVALID_OPCODE
| NVME_DNR
;
5477 /* SGLs shall not be used for Admin commands in NVMe over PCIe */
5478 if (NVME_CMD_FLAGS_PSDT(req
->cmd
.flags
) != NVME_PSDT_PRP
) {
5479 return NVME_INVALID_FIELD
| NVME_DNR
;
5482 if (NVME_CMD_FLAGS_FUSE(req
->cmd
.flags
)) {
5483 return NVME_INVALID_FIELD
;
5486 switch (req
->cmd
.opcode
) {
5487 case NVME_ADM_CMD_DELETE_SQ
:
5488 return nvme_del_sq(n
, req
);
5489 case NVME_ADM_CMD_CREATE_SQ
:
5490 return nvme_create_sq(n
, req
);
5491 case NVME_ADM_CMD_GET_LOG_PAGE
:
5492 return nvme_get_log(n
, req
);
5493 case NVME_ADM_CMD_DELETE_CQ
:
5494 return nvme_del_cq(n
, req
);
5495 case NVME_ADM_CMD_CREATE_CQ
:
5496 return nvme_create_cq(n
, req
);
5497 case NVME_ADM_CMD_IDENTIFY
:
5498 return nvme_identify(n
, req
);
5499 case NVME_ADM_CMD_ABORT
:
5500 return nvme_abort(n
, req
);
5501 case NVME_ADM_CMD_SET_FEATURES
:
5502 return nvme_set_feature(n
, req
);
5503 case NVME_ADM_CMD_GET_FEATURES
:
5504 return nvme_get_feature(n
, req
);
5505 case NVME_ADM_CMD_ASYNC_EV_REQ
:
5506 return nvme_aer(n
, req
);
5507 case NVME_ADM_CMD_NS_ATTACHMENT
:
5508 return nvme_ns_attachment(n
, req
);
5509 case NVME_ADM_CMD_FORMAT_NVM
:
5510 return nvme_format(n
, req
);
5515 return NVME_INVALID_OPCODE
| NVME_DNR
;
5518 static void nvme_process_sq(void *opaque
)
5520 NvmeSQueue
*sq
= opaque
;
5521 NvmeCtrl
*n
= sq
->ctrl
;
5522 NvmeCQueue
*cq
= n
->cq
[sq
->cqid
];
5529 while (!(nvme_sq_empty(sq
) || QTAILQ_EMPTY(&sq
->req_list
))) {
5530 addr
= sq
->dma_addr
+ sq
->head
* n
->sqe_size
;
5531 if (nvme_addr_read(n
, addr
, (void *)&cmd
, sizeof(cmd
))) {
5532 trace_pci_nvme_err_addr_read(addr
);
5533 trace_pci_nvme_err_cfs();
5534 stl_le_p(&n
->bar
.csts
, NVME_CSTS_FAILED
);
5537 nvme_inc_sq_head(sq
);
5539 req
= QTAILQ_FIRST(&sq
->req_list
);
5540 QTAILQ_REMOVE(&sq
->req_list
, req
, entry
);
5541 QTAILQ_INSERT_TAIL(&sq
->out_req_list
, req
, entry
);
5542 nvme_req_clear(req
);
5543 req
->cqe
.cid
= cmd
.cid
;
5544 memcpy(&req
->cmd
, &cmd
, sizeof(NvmeCmd
));
5546 status
= sq
->sqid
? nvme_io_cmd(n
, req
) :
5547 nvme_admin_cmd(n
, req
);
5548 if (status
!= NVME_NO_COMPLETE
) {
5549 req
->status
= status
;
5550 nvme_enqueue_req_completion(cq
, req
);
5555 static void nvme_ctrl_reset(NvmeCtrl
*n
)
5560 for (i
= 1; i
<= NVME_MAX_NAMESPACES
; i
++) {
5569 for (i
= 0; i
< n
->params
.max_ioqpairs
+ 1; i
++) {
5570 if (n
->sq
[i
] != NULL
) {
5571 nvme_free_sq(n
->sq
[i
], n
);
5574 for (i
= 0; i
< n
->params
.max_ioqpairs
+ 1; i
++) {
5575 if (n
->cq
[i
] != NULL
) {
5576 nvme_free_cq(n
->cq
[i
], n
);
5580 while (!QTAILQ_EMPTY(&n
->aer_queue
)) {
5581 NvmeAsyncEvent
*event
= QTAILQ_FIRST(&n
->aer_queue
);
5582 QTAILQ_REMOVE(&n
->aer_queue
, event
, entry
);
5587 n
->outstanding_aers
= 0;
5588 n
->qs_created
= false;
5591 static void nvme_ctrl_shutdown(NvmeCtrl
*n
)
5597 memory_region_msync(&n
->pmr
.dev
->mr
, 0, n
->pmr
.dev
->size
);
5600 for (i
= 1; i
<= NVME_MAX_NAMESPACES
; i
++) {
5606 nvme_ns_shutdown(ns
);
5610 static void nvme_select_iocs(NvmeCtrl
*n
)
5615 for (i
= 1; i
<= NVME_MAX_NAMESPACES
; i
++) {
5621 nvme_select_iocs_ns(n
, ns
);
5625 static int nvme_start_ctrl(NvmeCtrl
*n
)
5627 uint64_t cap
= ldq_le_p(&n
->bar
.cap
);
5628 uint32_t cc
= ldl_le_p(&n
->bar
.cc
);
5629 uint32_t aqa
= ldl_le_p(&n
->bar
.aqa
);
5630 uint64_t asq
= ldq_le_p(&n
->bar
.asq
);
5631 uint64_t acq
= ldq_le_p(&n
->bar
.acq
);
5632 uint32_t page_bits
= NVME_CC_MPS(cc
) + 12;
5633 uint32_t page_size
= 1 << page_bits
;
5635 if (unlikely(n
->cq
[0])) {
5636 trace_pci_nvme_err_startfail_cq();
5639 if (unlikely(n
->sq
[0])) {
5640 trace_pci_nvme_err_startfail_sq();
5643 if (unlikely(asq
& (page_size
- 1))) {
5644 trace_pci_nvme_err_startfail_asq_misaligned(asq
);
5647 if (unlikely(acq
& (page_size
- 1))) {
5648 trace_pci_nvme_err_startfail_acq_misaligned(acq
);
5651 if (unlikely(!(NVME_CAP_CSS(cap
) & (1 << NVME_CC_CSS(cc
))))) {
5652 trace_pci_nvme_err_startfail_css(NVME_CC_CSS(cc
));
5655 if (unlikely(NVME_CC_MPS(cc
) < NVME_CAP_MPSMIN(cap
))) {
5656 trace_pci_nvme_err_startfail_page_too_small(
5658 NVME_CAP_MPSMIN(cap
));
5661 if (unlikely(NVME_CC_MPS(cc
) >
5662 NVME_CAP_MPSMAX(cap
))) {
5663 trace_pci_nvme_err_startfail_page_too_large(
5665 NVME_CAP_MPSMAX(cap
));
5668 if (unlikely(NVME_CC_IOCQES(cc
) <
5669 NVME_CTRL_CQES_MIN(n
->id_ctrl
.cqes
))) {
5670 trace_pci_nvme_err_startfail_cqent_too_small(
5672 NVME_CTRL_CQES_MIN(cap
));
5675 if (unlikely(NVME_CC_IOCQES(cc
) >
5676 NVME_CTRL_CQES_MAX(n
->id_ctrl
.cqes
))) {
5677 trace_pci_nvme_err_startfail_cqent_too_large(
5679 NVME_CTRL_CQES_MAX(cap
));
5682 if (unlikely(NVME_CC_IOSQES(cc
) <
5683 NVME_CTRL_SQES_MIN(n
->id_ctrl
.sqes
))) {
5684 trace_pci_nvme_err_startfail_sqent_too_small(
5686 NVME_CTRL_SQES_MIN(cap
));
5689 if (unlikely(NVME_CC_IOSQES(cc
) >
5690 NVME_CTRL_SQES_MAX(n
->id_ctrl
.sqes
))) {
5691 trace_pci_nvme_err_startfail_sqent_too_large(
5693 NVME_CTRL_SQES_MAX(cap
));
5696 if (unlikely(!NVME_AQA_ASQS(aqa
))) {
5697 trace_pci_nvme_err_startfail_asqent_sz_zero();
5700 if (unlikely(!NVME_AQA_ACQS(aqa
))) {
5701 trace_pci_nvme_err_startfail_acqent_sz_zero();
5705 n
->page_bits
= page_bits
;
5706 n
->page_size
= page_size
;
5707 n
->max_prp_ents
= n
->page_size
/ sizeof(uint64_t);
5708 n
->cqe_size
= 1 << NVME_CC_IOCQES(cc
);
5709 n
->sqe_size
= 1 << NVME_CC_IOSQES(cc
);
5710 nvme_init_cq(&n
->admin_cq
, n
, acq
, 0, 0, NVME_AQA_ACQS(aqa
) + 1, 1);
5711 nvme_init_sq(&n
->admin_sq
, n
, asq
, 0, 0, NVME_AQA_ASQS(aqa
) + 1);
5713 nvme_set_timestamp(n
, 0ULL);
5715 QTAILQ_INIT(&n
->aer_queue
);
5717 nvme_select_iocs(n
);
5722 static void nvme_cmb_enable_regs(NvmeCtrl
*n
)
5724 uint32_t cmbloc
= ldl_le_p(&n
->bar
.cmbloc
);
5725 uint32_t cmbsz
= ldl_le_p(&n
->bar
.cmbsz
);
5727 NVME_CMBLOC_SET_CDPCILS(cmbloc
, 1);
5728 NVME_CMBLOC_SET_CDPMLS(cmbloc
, 1);
5729 NVME_CMBLOC_SET_BIR(cmbloc
, NVME_CMB_BIR
);
5730 stl_le_p(&n
->bar
.cmbloc
, cmbloc
);
5732 NVME_CMBSZ_SET_SQS(cmbsz
, 1);
5733 NVME_CMBSZ_SET_CQS(cmbsz
, 0);
5734 NVME_CMBSZ_SET_LISTS(cmbsz
, 1);
5735 NVME_CMBSZ_SET_RDS(cmbsz
, 1);
5736 NVME_CMBSZ_SET_WDS(cmbsz
, 1);
5737 NVME_CMBSZ_SET_SZU(cmbsz
, 2); /* MBs */
5738 NVME_CMBSZ_SET_SZ(cmbsz
, n
->params
.cmb_size_mb
);
5739 stl_le_p(&n
->bar
.cmbsz
, cmbsz
);
5742 static void nvme_write_bar(NvmeCtrl
*n
, hwaddr offset
, uint64_t data
,
5745 uint64_t cap
= ldq_le_p(&n
->bar
.cap
);
5746 uint32_t cc
= ldl_le_p(&n
->bar
.cc
);
5747 uint32_t intms
= ldl_le_p(&n
->bar
.intms
);
5748 uint32_t csts
= ldl_le_p(&n
->bar
.csts
);
5749 uint32_t pmrsts
= ldl_le_p(&n
->bar
.pmrsts
);
5751 if (unlikely(offset
& (sizeof(uint32_t) - 1))) {
5752 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32
,
5753 "MMIO write not 32-bit aligned,"
5754 " offset=0x%"PRIx64
"", offset
);
5755 /* should be ignored, fall through for now */
5758 if (unlikely(size
< sizeof(uint32_t))) {
5759 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall
,
5760 "MMIO write smaller than 32-bits,"
5761 " offset=0x%"PRIx64
", size=%u",
5763 /* should be ignored, fall through for now */
5767 case NVME_REG_INTMS
:
5768 if (unlikely(msix_enabled(&(n
->parent_obj
)))) {
5769 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix
,
5770 "undefined access to interrupt mask set"
5771 " when MSI-X is enabled");
5772 /* should be ignored, fall through for now */
5775 stl_le_p(&n
->bar
.intms
, intms
);
5776 n
->bar
.intmc
= n
->bar
.intms
;
5777 trace_pci_nvme_mmio_intm_set(data
& 0xffffffff, intms
);
5780 case NVME_REG_INTMC
:
5781 if (unlikely(msix_enabled(&(n
->parent_obj
)))) {
5782 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix
,
5783 "undefined access to interrupt mask clr"
5784 " when MSI-X is enabled");
5785 /* should be ignored, fall through for now */
5788 stl_le_p(&n
->bar
.intms
, intms
);
5789 n
->bar
.intmc
= n
->bar
.intms
;
5790 trace_pci_nvme_mmio_intm_clr(data
& 0xffffffff, intms
);
5794 trace_pci_nvme_mmio_cfg(data
& 0xffffffff);
5796 /* Windows first sends data, then sends enable bit */
5797 if (!NVME_CC_EN(data
) && !NVME_CC_EN(cc
) &&
5798 !NVME_CC_SHN(data
) && !NVME_CC_SHN(cc
))
5803 if (NVME_CC_EN(data
) && !NVME_CC_EN(cc
)) {
5806 /* flush CC since nvme_start_ctrl() needs the value */
5807 stl_le_p(&n
->bar
.cc
, cc
);
5808 if (unlikely(nvme_start_ctrl(n
))) {
5809 trace_pci_nvme_err_startfail();
5810 csts
= NVME_CSTS_FAILED
;
5812 trace_pci_nvme_mmio_start_success();
5813 csts
= NVME_CSTS_READY
;
5815 } else if (!NVME_CC_EN(data
) && NVME_CC_EN(cc
)) {
5816 trace_pci_nvme_mmio_stopped();
5819 csts
&= ~NVME_CSTS_READY
;
5822 if (NVME_CC_SHN(data
) && !(NVME_CC_SHN(cc
))) {
5823 trace_pci_nvme_mmio_shutdown_set();
5824 nvme_ctrl_shutdown(n
);
5826 csts
|= NVME_CSTS_SHST_COMPLETE
;
5827 } else if (!NVME_CC_SHN(data
) && NVME_CC_SHN(cc
)) {
5828 trace_pci_nvme_mmio_shutdown_cleared();
5829 csts
&= ~NVME_CSTS_SHST_COMPLETE
;
5833 stl_le_p(&n
->bar
.cc
, cc
);
5834 stl_le_p(&n
->bar
.csts
, csts
);
5838 if (data
& (1 << 4)) {
5839 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported
,
5840 "attempted to W1C CSTS.NSSRO"
5841 " but CAP.NSSRS is zero (not supported)");
5842 } else if (data
!= 0) {
5843 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts
,
5844 "attempted to set a read only bit"
5845 " of controller status");
5849 if (data
== 0x4e564d65) {
5850 trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
5852 /* The spec says that writes of other values have no effect */
5857 stl_le_p(&n
->bar
.aqa
, data
);
5858 trace_pci_nvme_mmio_aqattr(data
& 0xffffffff);
5861 stn_le_p(&n
->bar
.asq
, size
, data
);
5862 trace_pci_nvme_mmio_asqaddr(data
);
5864 case NVME_REG_ASQ
+ 4:
5865 stl_le_p((uint8_t *)&n
->bar
.asq
+ 4, data
);
5866 trace_pci_nvme_mmio_asqaddr_hi(data
, ldq_le_p(&n
->bar
.asq
));
5869 trace_pci_nvme_mmio_acqaddr(data
);
5870 stn_le_p(&n
->bar
.acq
, size
, data
);
5872 case NVME_REG_ACQ
+ 4:
5873 stl_le_p((uint8_t *)&n
->bar
.acq
+ 4, data
);
5874 trace_pci_nvme_mmio_acqaddr_hi(data
, ldq_le_p(&n
->bar
.acq
));
5876 case NVME_REG_CMBLOC
:
5877 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved
,
5878 "invalid write to reserved CMBLOC"
5879 " when CMBSZ is zero, ignored");
5881 case NVME_REG_CMBSZ
:
5882 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly
,
5883 "invalid write to read only CMBSZ, ignored");
5885 case NVME_REG_CMBMSC
:
5886 if (!NVME_CAP_CMBS(cap
)) {
5890 stn_le_p(&n
->bar
.cmbmsc
, size
, data
);
5891 n
->cmb
.cmse
= false;
5893 if (NVME_CMBMSC_CRE(data
)) {
5894 nvme_cmb_enable_regs(n
);
5896 if (NVME_CMBMSC_CMSE(data
)) {
5897 uint64_t cmbmsc
= ldq_le_p(&n
->bar
.cmbmsc
);
5898 hwaddr cba
= NVME_CMBMSC_CBA(cmbmsc
) << CMBMSC_CBA_SHIFT
;
5899 if (cba
+ int128_get64(n
->cmb
.mem
.size
) < cba
) {
5900 uint32_t cmbsts
= ldl_le_p(&n
->bar
.cmbsts
);
5901 NVME_CMBSTS_SET_CBAI(cmbsts
, 1);
5902 stl_le_p(&n
->bar
.cmbsts
, cmbsts
);
5915 case NVME_REG_CMBMSC
+ 4:
5916 stl_le_p((uint8_t *)&n
->bar
.cmbmsc
+ 4, data
);
5919 case NVME_REG_PMRCAP
:
5920 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly
,
5921 "invalid write to PMRCAP register, ignored");
5923 case NVME_REG_PMRCTL
:
5924 if (!NVME_CAP_PMRS(cap
)) {
5928 stl_le_p(&n
->bar
.pmrctl
, data
);
5929 if (NVME_PMRCTL_EN(data
)) {
5930 memory_region_set_enabled(&n
->pmr
.dev
->mr
, true);
5933 memory_region_set_enabled(&n
->pmr
.dev
->mr
, false);
5934 NVME_PMRSTS_SET_NRDY(pmrsts
, 1);
5935 n
->pmr
.cmse
= false;
5937 stl_le_p(&n
->bar
.pmrsts
, pmrsts
);
5939 case NVME_REG_PMRSTS
:
5940 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly
,
5941 "invalid write to PMRSTS register, ignored");
5943 case NVME_REG_PMREBS
:
5944 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly
,
5945 "invalid write to PMREBS register, ignored");
5947 case NVME_REG_PMRSWTP
:
5948 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly
,
5949 "invalid write to PMRSWTP register, ignored");
5951 case NVME_REG_PMRMSCL
:
5952 if (!NVME_CAP_PMRS(cap
)) {
5956 stl_le_p(&n
->bar
.pmrmscl
, data
);
5957 n
->pmr
.cmse
= false;
5959 if (NVME_PMRMSCL_CMSE(data
)) {
5960 uint64_t pmrmscu
= ldl_le_p(&n
->bar
.pmrmscu
);
5961 hwaddr cba
= pmrmscu
<< 32 |
5962 (NVME_PMRMSCL_CBA(data
) << PMRMSCL_CBA_SHIFT
);
5963 if (cba
+ int128_get64(n
->pmr
.dev
->mr
.size
) < cba
) {
5964 NVME_PMRSTS_SET_CBAI(pmrsts
, 1);
5965 stl_le_p(&n
->bar
.pmrsts
, pmrsts
);
5974 case NVME_REG_PMRMSCU
:
5975 if (!NVME_CAP_PMRS(cap
)) {
5979 stl_le_p(&n
->bar
.pmrmscu
, data
);
5982 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid
,
5983 "invalid MMIO write,"
5984 " offset=0x%"PRIx64
", data=%"PRIx64
"",
5990 static uint64_t nvme_mmio_read(void *opaque
, hwaddr addr
, unsigned size
)
5992 NvmeCtrl
*n
= (NvmeCtrl
*)opaque
;
5993 uint8_t *ptr
= (uint8_t *)&n
->bar
;
5995 trace_pci_nvme_mmio_read(addr
, size
);
5997 if (unlikely(addr
& (sizeof(uint32_t) - 1))) {
5998 NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32
,
5999 "MMIO read not 32-bit aligned,"
6000 " offset=0x%"PRIx64
"", addr
);
6001 /* should RAZ, fall through for now */
6002 } else if (unlikely(size
< sizeof(uint32_t))) {
6003 NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall
,
6004 "MMIO read smaller than 32-bits,"
6005 " offset=0x%"PRIx64
"", addr
);
6006 /* should RAZ, fall through for now */
6009 if (addr
> sizeof(n
->bar
) - size
) {
6010 NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs
,
6011 "MMIO read beyond last register,"
6012 " offset=0x%"PRIx64
", returning 0", addr
);
6018 * When PMRWBM bit 1 is set then read from
6019 * from PMRSTS should ensure prior writes
6020 * made it to persistent media
6022 if (addr
== NVME_REG_PMRSTS
&&
6023 (NVME_PMRCAP_PMRWBM(ldl_le_p(&n
->bar
.pmrcap
)) & 0x02)) {
6024 memory_region_msync(&n
->pmr
.dev
->mr
, 0, n
->pmr
.dev
->size
);
6027 return ldn_le_p(ptr
+ addr
, size
);
6030 static void nvme_process_db(NvmeCtrl
*n
, hwaddr addr
, int val
)
6034 if (unlikely(addr
& ((1 << 2) - 1))) {
6035 NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned
,
6036 "doorbell write not 32-bit aligned,"
6037 " offset=0x%"PRIx64
", ignoring", addr
);
6041 if (((addr
- 0x1000) >> 2) & 1) {
6042 /* Completion queue doorbell write */
6044 uint16_t new_head
= val
& 0xffff;
6048 qid
= (addr
- (0x1000 + (1 << 2))) >> 3;
6049 if (unlikely(nvme_check_cqid(n
, qid
))) {
6050 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq
,
6051 "completion queue doorbell write"
6052 " for nonexistent queue,"
6053 " sqid=%"PRIu32
", ignoring", qid
);
6056 * NVM Express v1.3d, Section 4.1 state: "If host software writes
6057 * an invalid value to the Submission Queue Tail Doorbell or
6058 * Completion Queue Head Doorbell regiter and an Asynchronous Event
6059 * Request command is outstanding, then an asynchronous event is
6060 * posted to the Admin Completion Queue with a status code of
6061 * Invalid Doorbell Write Value."
6063 * Also note that the spec includes the "Invalid Doorbell Register"
6064 * status code, but nowhere does it specify when to use it.
6065 * However, it seems reasonable to use it here in a similar
6068 if (n
->outstanding_aers
) {
6069 nvme_enqueue_event(n
, NVME_AER_TYPE_ERROR
,
6070 NVME_AER_INFO_ERR_INVALID_DB_REGISTER
,
6071 NVME_LOG_ERROR_INFO
);
6078 if (unlikely(new_head
>= cq
->size
)) {
6079 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead
,
6080 "completion queue doorbell write value"
6081 " beyond queue size, sqid=%"PRIu32
","
6082 " new_head=%"PRIu16
", ignoring",
6085 if (n
->outstanding_aers
) {
6086 nvme_enqueue_event(n
, NVME_AER_TYPE_ERROR
,
6087 NVME_AER_INFO_ERR_INVALID_DB_VALUE
,
6088 NVME_LOG_ERROR_INFO
);
6094 trace_pci_nvme_mmio_doorbell_cq(cq
->cqid
, new_head
);
6096 start_sqs
= nvme_cq_full(cq
) ? 1 : 0;
6097 cq
->head
= new_head
;
6100 QTAILQ_FOREACH(sq
, &cq
->sq_list
, entry
) {
6101 timer_mod(sq
->timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + 500);
6103 timer_mod(cq
->timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + 500);
6106 if (cq
->tail
== cq
->head
) {
6107 if (cq
->irq_enabled
) {
6111 nvme_irq_deassert(n
, cq
);
6114 /* Submission queue doorbell write */
6116 uint16_t new_tail
= val
& 0xffff;
6119 qid
= (addr
- 0x1000) >> 3;
6120 if (unlikely(nvme_check_sqid(n
, qid
))) {
6121 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq
,
6122 "submission queue doorbell write"
6123 " for nonexistent queue,"
6124 " sqid=%"PRIu32
", ignoring", qid
);
6126 if (n
->outstanding_aers
) {
6127 nvme_enqueue_event(n
, NVME_AER_TYPE_ERROR
,
6128 NVME_AER_INFO_ERR_INVALID_DB_REGISTER
,
6129 NVME_LOG_ERROR_INFO
);
6136 if (unlikely(new_tail
>= sq
->size
)) {
6137 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail
,
6138 "submission queue doorbell write value"
6139 " beyond queue size, sqid=%"PRIu32
","
6140 " new_tail=%"PRIu16
", ignoring",
6143 if (n
->outstanding_aers
) {
6144 nvme_enqueue_event(n
, NVME_AER_TYPE_ERROR
,
6145 NVME_AER_INFO_ERR_INVALID_DB_VALUE
,
6146 NVME_LOG_ERROR_INFO
);
6152 trace_pci_nvme_mmio_doorbell_sq(sq
->sqid
, new_tail
);
6154 sq
->tail
= new_tail
;
6155 timer_mod(sq
->timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) + 500);
6159 static void nvme_mmio_write(void *opaque
, hwaddr addr
, uint64_t data
,
6162 NvmeCtrl
*n
= (NvmeCtrl
*)opaque
;
6164 trace_pci_nvme_mmio_write(addr
, data
, size
);
6166 if (addr
< sizeof(n
->bar
)) {
6167 nvme_write_bar(n
, addr
, data
, size
);
6169 nvme_process_db(n
, addr
, data
);
6173 static const MemoryRegionOps nvme_mmio_ops
= {
6174 .read
= nvme_mmio_read
,
6175 .write
= nvme_mmio_write
,
6176 .endianness
= DEVICE_LITTLE_ENDIAN
,
6178 .min_access_size
= 2,
6179 .max_access_size
= 8,
6183 static void nvme_cmb_write(void *opaque
, hwaddr addr
, uint64_t data
,
6186 NvmeCtrl
*n
= (NvmeCtrl
*)opaque
;
6187 stn_le_p(&n
->cmb
.buf
[addr
], size
, data
);
6190 static uint64_t nvme_cmb_read(void *opaque
, hwaddr addr
, unsigned size
)
6192 NvmeCtrl
*n
= (NvmeCtrl
*)opaque
;
6193 return ldn_le_p(&n
->cmb
.buf
[addr
], size
);
6196 static const MemoryRegionOps nvme_cmb_ops
= {
6197 .read
= nvme_cmb_read
,
6198 .write
= nvme_cmb_write
,
6199 .endianness
= DEVICE_LITTLE_ENDIAN
,
6201 .min_access_size
= 1,
6202 .max_access_size
= 8,
6206 static void nvme_check_constraints(NvmeCtrl
*n
, Error
**errp
)
6208 NvmeParams
*params
= &n
->params
;
6210 if (params
->num_queues
) {
6211 warn_report("num_queues is deprecated; please use max_ioqpairs "
6214 params
->max_ioqpairs
= params
->num_queues
- 1;
6217 if (n
->namespace.blkconf
.blk
&& n
->subsys
) {
6218 error_setg(errp
, "subsystem support is unavailable with legacy "
6219 "namespace ('drive' property)");
6223 if (params
->max_ioqpairs
< 1 ||
6224 params
->max_ioqpairs
> NVME_MAX_IOQPAIRS
) {
6225 error_setg(errp
, "max_ioqpairs must be between 1 and %d",
6230 if (params
->msix_qsize
< 1 ||
6231 params
->msix_qsize
> PCI_MSIX_FLAGS_QSIZE
+ 1) {
6232 error_setg(errp
, "msix_qsize must be between 1 and %d",
6233 PCI_MSIX_FLAGS_QSIZE
+ 1);
6237 if (!params
->serial
) {
6238 error_setg(errp
, "serial property not set");
6243 if (host_memory_backend_is_mapped(n
->pmr
.dev
)) {
6244 error_setg(errp
, "can't use already busy memdev: %s",
6245 object_get_canonical_path_component(OBJECT(n
->pmr
.dev
)));
6249 if (!is_power_of_2(n
->pmr
.dev
->size
)) {
6250 error_setg(errp
, "pmr backend size needs to be power of 2 in size");
6254 host_memory_backend_set_mapped(n
->pmr
.dev
, true);
6257 if (n
->params
.zasl
> n
->params
.mdts
) {
6258 error_setg(errp
, "zoned.zasl (Zone Append Size Limit) must be less "
6259 "than or equal to mdts (Maximum Data Transfer Size)");
6263 if (!n
->params
.vsl
) {
6264 error_setg(errp
, "vsl must be non-zero");
6269 static void nvme_init_state(NvmeCtrl
*n
)
6271 /* add one to max_ioqpairs to account for the admin queue pair */
6272 n
->reg_size
= pow2ceil(sizeof(NvmeBar
) +
6273 2 * (n
->params
.max_ioqpairs
+ 1) * NVME_DB_SIZE
);
6274 n
->sq
= g_new0(NvmeSQueue
*, n
->params
.max_ioqpairs
+ 1);
6275 n
->cq
= g_new0(NvmeCQueue
*, n
->params
.max_ioqpairs
+ 1);
6276 n
->temperature
= NVME_TEMPERATURE
;
6277 n
->features
.temp_thresh_hi
= NVME_TEMPERATURE_WARNING
;
6278 n
->starttime_ms
= qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL
);
6279 n
->aer_reqs
= g_new0(NvmeRequest
*, n
->params
.aerl
+ 1);
6282 static void nvme_init_cmb(NvmeCtrl
*n
, PCIDevice
*pci_dev
)
6284 uint64_t cmb_size
= n
->params
.cmb_size_mb
* MiB
;
6285 uint64_t cap
= ldq_le_p(&n
->bar
.cap
);
6287 n
->cmb
.buf
= g_malloc0(cmb_size
);
6288 memory_region_init_io(&n
->cmb
.mem
, OBJECT(n
), &nvme_cmb_ops
, n
,
6289 "nvme-cmb", cmb_size
);
6290 pci_register_bar(pci_dev
, NVME_CMB_BIR
,
6291 PCI_BASE_ADDRESS_SPACE_MEMORY
|
6292 PCI_BASE_ADDRESS_MEM_TYPE_64
|
6293 PCI_BASE_ADDRESS_MEM_PREFETCH
, &n
->cmb
.mem
);
6295 NVME_CAP_SET_CMBS(cap
, 1);
6296 stq_le_p(&n
->bar
.cap
, cap
);
6298 if (n
->params
.legacy_cmb
) {
6299 nvme_cmb_enable_regs(n
);
6304 static void nvme_init_pmr(NvmeCtrl
*n
, PCIDevice
*pci_dev
)
6306 uint32_t pmrcap
= ldl_le_p(&n
->bar
.pmrcap
);
6308 NVME_PMRCAP_SET_RDS(pmrcap
, 1);
6309 NVME_PMRCAP_SET_WDS(pmrcap
, 1);
6310 NVME_PMRCAP_SET_BIR(pmrcap
, NVME_PMR_BIR
);
6311 /* Turn on bit 1 support */
6312 NVME_PMRCAP_SET_PMRWBM(pmrcap
, 0x02);
6313 NVME_PMRCAP_SET_CMSS(pmrcap
, 1);
6314 stl_le_p(&n
->bar
.pmrcap
, pmrcap
);
6316 pci_register_bar(pci_dev
, NVME_PMR_BIR
,
6317 PCI_BASE_ADDRESS_SPACE_MEMORY
|
6318 PCI_BASE_ADDRESS_MEM_TYPE_64
|
6319 PCI_BASE_ADDRESS_MEM_PREFETCH
, &n
->pmr
.dev
->mr
);
6321 memory_region_set_enabled(&n
->pmr
.dev
->mr
, false);
6324 static int nvme_init_pci(NvmeCtrl
*n
, PCIDevice
*pci_dev
, Error
**errp
)
6326 uint8_t *pci_conf
= pci_dev
->config
;
6327 uint64_t bar_size
, msix_table_size
, msix_pba_size
;
6328 unsigned msix_table_offset
, msix_pba_offset
;
6333 pci_conf
[PCI_INTERRUPT_PIN
] = 1;
6334 pci_config_set_prog_interface(pci_conf
, 0x2);
6336 if (n
->params
.use_intel_id
) {
6337 pci_config_set_vendor_id(pci_conf
, PCI_VENDOR_ID_INTEL
);
6338 pci_config_set_device_id(pci_conf
, 0x5845);
6340 pci_config_set_vendor_id(pci_conf
, PCI_VENDOR_ID_REDHAT
);
6341 pci_config_set_device_id(pci_conf
, PCI_DEVICE_ID_REDHAT_NVME
);
6344 pci_config_set_class(pci_conf
, PCI_CLASS_STORAGE_EXPRESS
);
6345 pcie_endpoint_cap_init(pci_dev
, 0x80);
6347 bar_size
= QEMU_ALIGN_UP(n
->reg_size
, 4 * KiB
);
6348 msix_table_offset
= bar_size
;
6349 msix_table_size
= PCI_MSIX_ENTRY_SIZE
* n
->params
.msix_qsize
;
6351 bar_size
+= msix_table_size
;
6352 bar_size
= QEMU_ALIGN_UP(bar_size
, 4 * KiB
);
6353 msix_pba_offset
= bar_size
;
6354 msix_pba_size
= QEMU_ALIGN_UP(n
->params
.msix_qsize
, 64) / 8;
6356 bar_size
+= msix_pba_size
;
6357 bar_size
= pow2ceil(bar_size
);
6359 memory_region_init(&n
->bar0
, OBJECT(n
), "nvme-bar0", bar_size
);
6360 memory_region_init_io(&n
->iomem
, OBJECT(n
), &nvme_mmio_ops
, n
, "nvme",
6362 memory_region_add_subregion(&n
->bar0
, 0, &n
->iomem
);
6364 pci_register_bar(pci_dev
, 0, PCI_BASE_ADDRESS_SPACE_MEMORY
|
6365 PCI_BASE_ADDRESS_MEM_TYPE_64
, &n
->bar0
);
6366 ret
= msix_init(pci_dev
, n
->params
.msix_qsize
,
6367 &n
->bar0
, 0, msix_table_offset
,
6368 &n
->bar0
, 0, msix_pba_offset
, 0, &err
);
6370 if (ret
== -ENOTSUP
) {
6371 warn_report_err(err
);
6373 error_propagate(errp
, err
);
6378 if (n
->params
.cmb_size_mb
) {
6379 nvme_init_cmb(n
, pci_dev
);
6383 nvme_init_pmr(n
, pci_dev
);
6389 static void nvme_init_subnqn(NvmeCtrl
*n
)
6391 NvmeSubsystem
*subsys
= n
->subsys
;
6392 NvmeIdCtrl
*id
= &n
->id_ctrl
;
6395 snprintf((char *)id
->subnqn
, sizeof(id
->subnqn
),
6396 "nqn.2019-08.org.qemu:%s", n
->params
.serial
);
6398 pstrcpy((char *)id
->subnqn
, sizeof(id
->subnqn
), (char*)subsys
->subnqn
);
6402 static void nvme_init_ctrl(NvmeCtrl
*n
, PCIDevice
*pci_dev
)
6404 NvmeIdCtrl
*id
= &n
->id_ctrl
;
6405 uint8_t *pci_conf
= pci_dev
->config
;
6406 uint64_t cap
= ldq_le_p(&n
->bar
.cap
);
6408 id
->vid
= cpu_to_le16(pci_get_word(pci_conf
+ PCI_VENDOR_ID
));
6409 id
->ssvid
= cpu_to_le16(pci_get_word(pci_conf
+ PCI_SUBSYSTEM_VENDOR_ID
));
6410 strpadcpy((char *)id
->mn
, sizeof(id
->mn
), "QEMU NVMe Ctrl", ' ');
6411 strpadcpy((char *)id
->fr
, sizeof(id
->fr
), "1.0", ' ');
6412 strpadcpy((char *)id
->sn
, sizeof(id
->sn
), n
->params
.serial
, ' ');
6414 id
->cntlid
= cpu_to_le16(n
->cntlid
);
6416 id
->oaes
= cpu_to_le32(NVME_OAES_NS_ATTR
);
6420 if (n
->params
.use_intel_id
) {
6430 id
->mdts
= n
->params
.mdts
;
6431 id
->ver
= cpu_to_le32(NVME_SPEC_VER
);
6432 id
->oacs
= cpu_to_le16(NVME_OACS_NS_MGMT
| NVME_OACS_FORMAT
);
6433 id
->cntrltype
= 0x1;
6436 * Because the controller always completes the Abort command immediately,
6437 * there can never be more than one concurrently executing Abort command,
6438 * so this value is never used for anything. Note that there can easily be
6439 * many Abort commands in the queues, but they are not considered
6440 * "executing" until processed by nvme_abort.
6442 * The specification recommends a value of 3 for Abort Command Limit (four
6443 * concurrently outstanding Abort commands), so lets use that though it is
6447 id
->aerl
= n
->params
.aerl
;
6448 id
->frmw
= (NVME_NUM_FW_SLOTS
<< 1) | NVME_FRMW_SLOT1_RO
;
6449 id
->lpa
= NVME_LPA_NS_SMART
| NVME_LPA_CSE
| NVME_LPA_EXTENDED
;
6451 /* recommended default value (~70 C) */
6452 id
->wctemp
= cpu_to_le16(NVME_TEMPERATURE_WARNING
);
6453 id
->cctemp
= cpu_to_le16(NVME_TEMPERATURE_CRITICAL
);
6455 id
->sqes
= (0x6 << 4) | 0x6;
6456 id
->cqes
= (0x4 << 4) | 0x4;
6457 id
->nn
= cpu_to_le32(NVME_MAX_NAMESPACES
);
6458 id
->oncs
= cpu_to_le16(NVME_ONCS_WRITE_ZEROES
| NVME_ONCS_TIMESTAMP
|
6459 NVME_ONCS_FEATURES
| NVME_ONCS_DSM
|
6460 NVME_ONCS_COMPARE
| NVME_ONCS_COPY
);
6463 * NOTE: If this device ever supports a command set that does NOT use 0x0
6464 * as a Flush-equivalent operation, support for the broadcast NSID in Flush
6465 * should probably be removed.
6467 * See comment in nvme_io_cmd.
6469 id
->vwc
= NVME_VWC_NSID_BROADCAST_SUPPORT
| NVME_VWC_PRESENT
;
6471 id
->ocfs
= cpu_to_le16(NVME_OCFS_COPY_FORMAT_0
);
6472 id
->sgls
= cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN
|
6473 NVME_CTRL_SGLS_BITBUCKET
);
6475 nvme_init_subnqn(n
);
6477 id
->psd
[0].mp
= cpu_to_le16(0x9c4);
6478 id
->psd
[0].enlat
= cpu_to_le32(0x10);
6479 id
->psd
[0].exlat
= cpu_to_le32(0x4);
6482 id
->cmic
|= NVME_CMIC_MULTI_CTRL
;
6485 NVME_CAP_SET_MQES(cap
, 0x7ff);
6486 NVME_CAP_SET_CQR(cap
, 1);
6487 NVME_CAP_SET_TO(cap
, 0xf);
6488 NVME_CAP_SET_CSS(cap
, NVME_CAP_CSS_NVM
);
6489 NVME_CAP_SET_CSS(cap
, NVME_CAP_CSS_CSI_SUPP
);
6490 NVME_CAP_SET_CSS(cap
, NVME_CAP_CSS_ADMIN_ONLY
);
6491 NVME_CAP_SET_MPSMAX(cap
, 4);
6492 NVME_CAP_SET_CMBS(cap
, n
->params
.cmb_size_mb
? 1 : 0);
6493 NVME_CAP_SET_PMRS(cap
, n
->pmr
.dev
? 1 : 0);
6494 stq_le_p(&n
->bar
.cap
, cap
);
6496 stl_le_p(&n
->bar
.vs
, NVME_SPEC_VER
);
6497 n
->bar
.intmc
= n
->bar
.intms
= 0;
6500 static int nvme_init_subsys(NvmeCtrl
*n
, Error
**errp
)
6508 cntlid
= nvme_subsys_register_ctrl(n
, errp
);
6518 void nvme_attach_ns(NvmeCtrl
*n
, NvmeNamespace
*ns
)
6520 uint32_t nsid
= ns
->params
.nsid
;
6521 assert(nsid
&& nsid
<= NVME_MAX_NAMESPACES
);
6523 n
->namespaces
[nsid
] = ns
;
6526 n
->dmrsl
= MIN_NON_ZERO(n
->dmrsl
,
6527 BDRV_REQUEST_MAX_BYTES
/ nvme_l2b(ns
, 1));
6530 static void nvme_realize(PCIDevice
*pci_dev
, Error
**errp
)
6532 NvmeCtrl
*n
= NVME(pci_dev
);
6534 Error
*local_err
= NULL
;
6536 nvme_check_constraints(n
, &local_err
);
6538 error_propagate(errp
, local_err
);
6542 qbus_init(&n
->bus
, sizeof(NvmeBus
), TYPE_NVME_BUS
,
6543 &pci_dev
->qdev
, n
->parent_obj
.qdev
.id
);
6546 if (nvme_init_pci(n
, pci_dev
, errp
)) {
6550 if (nvme_init_subsys(n
, errp
)) {
6551 error_propagate(errp
, local_err
);
6554 nvme_init_ctrl(n
, pci_dev
);
6556 /* setup a namespace if the controller drive property was given */
6557 if (n
->namespace.blkconf
.blk
) {
6559 ns
->params
.nsid
= 1;
6561 if (nvme_ns_setup(ns
, errp
)) {
6565 nvme_attach_ns(n
, ns
);
6569 static void nvme_exit(PCIDevice
*pci_dev
)
6571 NvmeCtrl
*n
= NVME(pci_dev
);
6578 for (i
= 1; i
<= NVME_MAX_NAMESPACES
; i
++) {
6585 nvme_subsys_unregister_ctrl(n
->subsys
, n
);
6590 g_free(n
->aer_reqs
);
6592 if (n
->params
.cmb_size_mb
) {
6597 host_memory_backend_set_mapped(n
->pmr
.dev
, false);
6599 msix_uninit(pci_dev
, &n
->bar0
, &n
->bar0
);
6600 memory_region_del_subregion(&n
->bar0
, &n
->iomem
);
6603 static Property nvme_props
[] = {
6604 DEFINE_BLOCK_PROPERTIES(NvmeCtrl
, namespace.blkconf
),
6605 DEFINE_PROP_LINK("pmrdev", NvmeCtrl
, pmr
.dev
, TYPE_MEMORY_BACKEND
,
6606 HostMemoryBackend
*),
6607 DEFINE_PROP_LINK("subsys", NvmeCtrl
, subsys
, TYPE_NVME_SUBSYS
,
6609 DEFINE_PROP_STRING("serial", NvmeCtrl
, params
.serial
),
6610 DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl
, params
.cmb_size_mb
, 0),
6611 DEFINE_PROP_UINT32("num_queues", NvmeCtrl
, params
.num_queues
, 0),
6612 DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl
, params
.max_ioqpairs
, 64),
6613 DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl
, params
.msix_qsize
, 65),
6614 DEFINE_PROP_UINT8("aerl", NvmeCtrl
, params
.aerl
, 3),
6615 DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl
, params
.aer_max_queued
, 64),
6616 DEFINE_PROP_UINT8("mdts", NvmeCtrl
, params
.mdts
, 7),
6617 DEFINE_PROP_UINT8("vsl", NvmeCtrl
, params
.vsl
, 7),
6618 DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl
, params
.use_intel_id
, false),
6619 DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl
, params
.legacy_cmb
, false),
6620 DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl
, params
.zasl
, 0),
6621 DEFINE_PROP_BOOL("zoned.auto_transition", NvmeCtrl
,
6622 params
.auto_transition_zones
, true),
6623 DEFINE_PROP_END_OF_LIST(),
6626 static void nvme_get_smart_warning(Object
*obj
, Visitor
*v
, const char *name
,
6627 void *opaque
, Error
**errp
)
6629 NvmeCtrl
*n
= NVME(obj
);
6630 uint8_t value
= n
->smart_critical_warning
;
6632 visit_type_uint8(v
, name
, &value
, errp
);
6635 static void nvme_set_smart_warning(Object
*obj
, Visitor
*v
, const char *name
,
6636 void *opaque
, Error
**errp
)
6638 NvmeCtrl
*n
= NVME(obj
);
6639 uint8_t value
, old_value
, cap
= 0, index
, event
;
6641 if (!visit_type_uint8(v
, name
, &value
, errp
)) {
6645 cap
= NVME_SMART_SPARE
| NVME_SMART_TEMPERATURE
| NVME_SMART_RELIABILITY
6646 | NVME_SMART_MEDIA_READ_ONLY
| NVME_SMART_FAILED_VOLATILE_MEDIA
;
6647 if (NVME_CAP_PMRS(ldq_le_p(&n
->bar
.cap
))) {
6648 cap
|= NVME_SMART_PMR_UNRELIABLE
;
6651 if ((value
& cap
) != value
) {
6652 error_setg(errp
, "unsupported smart critical warning bits: 0x%x",
6657 old_value
= n
->smart_critical_warning
;
6658 n
->smart_critical_warning
= value
;
6660 /* only inject new bits of smart critical warning */
6661 for (index
= 0; index
< NVME_SMART_WARN_MAX
; index
++) {
6663 if (value
& ~old_value
& event
)
6664 nvme_smart_event(n
, event
);
6668 static const VMStateDescription nvme_vmstate
= {
6673 static void nvme_class_init(ObjectClass
*oc
, void *data
)
6675 DeviceClass
*dc
= DEVICE_CLASS(oc
);
6676 PCIDeviceClass
*pc
= PCI_DEVICE_CLASS(oc
);
6678 pc
->realize
= nvme_realize
;
6679 pc
->exit
= nvme_exit
;
6680 pc
->class_id
= PCI_CLASS_STORAGE_EXPRESS
;
6683 set_bit(DEVICE_CATEGORY_STORAGE
, dc
->categories
);
6684 dc
->desc
= "Non-Volatile Memory Express";
6685 device_class_set_props(dc
, nvme_props
);
6686 dc
->vmsd
= &nvme_vmstate
;
6689 static void nvme_instance_init(Object
*obj
)
6691 NvmeCtrl
*n
= NVME(obj
);
6693 device_add_bootindex_property(obj
, &n
->namespace.blkconf
.bootindex
,
6694 "bootindex", "/namespace@1,0",
6697 object_property_add(obj
, "smart_critical_warning", "uint8",
6698 nvme_get_smart_warning
,
6699 nvme_set_smart_warning
, NULL
, NULL
);
6702 static const TypeInfo nvme_info
= {
6704 .parent
= TYPE_PCI_DEVICE
,
6705 .instance_size
= sizeof(NvmeCtrl
),
6706 .instance_init
= nvme_instance_init
,
6707 .class_init
= nvme_class_init
,
6708 .interfaces
= (InterfaceInfo
[]) {
6709 { INTERFACE_PCIE_DEVICE
},
6714 static const TypeInfo nvme_bus_info
= {
6715 .name
= TYPE_NVME_BUS
,
6717 .instance_size
= sizeof(NvmeBus
),
6720 static void nvme_register_types(void)
6722 type_register_static(&nvme_info
);
6723 type_register_static(&nvme_bus_info
);
6726 type_init(nvme_register_types
)