2 * NVDIMM ACPI Implementation
4 * Copyright(C) 2015 Intel Corporation.
7 * Xiao Guangrong <guangrong.xiao@linux.intel.com>
9 * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
10 * and the DSM specification can be found at:
11 * http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf
13 * Currently, it only supports PMEM Virtualization.
15 * This library is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU Lesser General Public
17 * License as published by the Free Software Foundation; either
18 * version 2.1 of the License, or (at your option) any later version.
20 * This library is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * Lesser General Public License for more details.
25 * You should have received a copy of the GNU Lesser General Public
26 * License along with this library; if not, see <http://www.gnu.org/licenses/>
29 #include "qemu/osdep.h"
30 #include "qemu/uuid.h"
31 #include "qapi/error.h"
32 #include "hw/acpi/acpi.h"
33 #include "hw/acpi/aml-build.h"
34 #include "hw/acpi/bios-linker-loader.h"
35 #include "hw/nvram/fw_cfg.h"
36 #include "hw/mem/nvdimm.h"
37 #include "qemu/nvdimm-utils.h"
40 * define Byte Addressable Persistent Memory (PM) Region according to
41 * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure.
43 static const uint8_t nvdimm_nfit_spa_uuid
[] =
44 UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33,
45 0x18, 0xb7, 0x8c, 0xdb);
48 * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware
49 * Interface Table (NFIT).
53 * System Physical Address Range Structure
55 * It describes the system physical address ranges occupied by NVDIMMs and
56 * the types of the regions.
58 struct NvdimmNfitSpa
{
64 uint32_t proximity_domain
;
65 uint8_t type_guid
[16];
70 typedef struct NvdimmNfitSpa NvdimmNfitSpa
;
73 * Memory Device to System Physical Address Range Mapping Structure
75 * It enables identifying each NVDIMM region and the corresponding SPA
76 * describing the memory interleave
78 struct NvdimmNfitMemDev
{
87 uint64_t region_offset
;
89 uint16_t interleave_index
;
90 uint16_t interleave_ways
;
94 typedef struct NvdimmNfitMemDev NvdimmNfitMemDev
;
96 #define ACPI_NFIT_MEM_NOT_ARMED (1 << 3)
99 * NVDIMM Control Region Structure
101 * It describes the NVDIMM and if applicable, Block Control Window.
103 struct NvdimmNfitControlRegion
{
109 uint16_t revision_id
;
110 uint16_t sub_vendor_id
;
111 uint16_t sub_device_id
;
112 uint16_t sub_revision_id
;
114 uint32_t serial_number
;
120 uint64_t status_offset
;
121 uint64_t status_size
;
123 uint8_t reserved2
[6];
125 typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion
;
128 * NVDIMM Platform Capabilities Structure
130 * Defined in section 5.2.25.9 of ACPI 6.2 Errata A, September 2017
132 struct NvdimmNfitPlatformCaps
{
137 uint32_t capabilities
;
138 uint8_t reserved2
[4];
140 typedef struct NvdimmNfitPlatformCaps NvdimmNfitPlatformCaps
;
143 * Module serial number is a unique number for each device. We use the
144 * slot id of NVDIMM device to generate this number so that each device
145 * associates with a different number.
147 * 0x123456 is a magic number we arbitrarily chose.
149 static uint32_t nvdimm_slot_to_sn(int slot
)
151 return 0x123456 + slot
;
155 * handle is used to uniquely associate nfit_memdev structure with NVDIMM
156 * ACPI device - nfit_memdev.nfit_handle matches with the value returned
157 * by ACPI device _ADR method.
159 * We generate the handle with the slot id of NVDIMM device and reserve
160 * 0 for NVDIMM root device.
162 static uint32_t nvdimm_slot_to_handle(int slot
)
168 * index uniquely identifies the structure, 0 is reserved which indicates
169 * that the structure is not valid or the associated structure is not
172 * Each NVDIMM device needs two indexes, one for nfit_spa and another for
173 * nfit_dc which are generated by the slot id of NVDIMM device.
175 static uint16_t nvdimm_slot_to_spa_index(int slot
)
177 return (slot
+ 1) << 1;
180 /* See the comments of nvdimm_slot_to_spa_index(). */
181 static uint32_t nvdimm_slot_to_dcr_index(int slot
)
183 return nvdimm_slot_to_spa_index(slot
) + 1;
186 static NVDIMMDevice
*nvdimm_get_device_by_handle(uint32_t handle
)
188 NVDIMMDevice
*nvdimm
= NULL
;
189 GSList
*list
, *device_list
= nvdimm_get_device_list();
191 for (list
= device_list
; list
; list
= list
->next
) {
192 NVDIMMDevice
*nvd
= list
->data
;
193 int slot
= object_property_get_int(OBJECT(nvd
), PC_DIMM_SLOT_PROP
,
196 if (nvdimm_slot_to_handle(slot
) == handle
) {
202 g_slist_free(device_list
);
206 /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */
208 nvdimm_build_structure_spa(GArray
*structures
, DeviceState
*dev
)
210 NvdimmNfitSpa
*nfit_spa
;
211 uint64_t addr
= object_property_get_uint(OBJECT(dev
), PC_DIMM_ADDR_PROP
,
213 uint64_t size
= object_property_get_uint(OBJECT(dev
), PC_DIMM_SIZE_PROP
,
215 uint32_t node
= object_property_get_uint(OBJECT(dev
), PC_DIMM_NODE_PROP
,
217 int slot
= object_property_get_int(OBJECT(dev
), PC_DIMM_SLOT_PROP
,
220 nfit_spa
= acpi_data_push(structures
, sizeof(*nfit_spa
));
222 nfit_spa
->type
= cpu_to_le16(0 /* System Physical Address Range
224 nfit_spa
->length
= cpu_to_le16(sizeof(*nfit_spa
));
225 nfit_spa
->spa_index
= cpu_to_le16(nvdimm_slot_to_spa_index(slot
));
228 * Control region is strict as all the device info, such as SN, index,
229 * is associated with slot id.
231 nfit_spa
->flags
= cpu_to_le16(1 /* Control region is strictly for
232 management during hot add/online
234 2 /* Data in Proximity Domain field is
238 nfit_spa
->proximity_domain
= cpu_to_le32(node
);
239 /* the region reported as PMEM. */
240 memcpy(nfit_spa
->type_guid
, nvdimm_nfit_spa_uuid
,
241 sizeof(nvdimm_nfit_spa_uuid
));
243 nfit_spa
->spa_base
= cpu_to_le64(addr
);
244 nfit_spa
->spa_length
= cpu_to_le64(size
);
246 /* It is the PMEM and can be cached as writeback. */
247 nfit_spa
->mem_attr
= cpu_to_le64(0x8ULL
/* EFI_MEMORY_WB */ |
248 0x8000ULL
/* EFI_MEMORY_NV */);
252 * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping
256 nvdimm_build_structure_memdev(GArray
*structures
, DeviceState
*dev
)
258 NvdimmNfitMemDev
*nfit_memdev
;
259 NVDIMMDevice
*nvdimm
= NVDIMM(OBJECT(dev
));
260 uint64_t size
= object_property_get_uint(OBJECT(dev
), PC_DIMM_SIZE_PROP
,
262 int slot
= object_property_get_int(OBJECT(dev
), PC_DIMM_SLOT_PROP
,
264 uint32_t handle
= nvdimm_slot_to_handle(slot
);
266 nfit_memdev
= acpi_data_push(structures
, sizeof(*nfit_memdev
));
268 nfit_memdev
->type
= cpu_to_le16(1 /* Memory Device to System Address
269 Range Map Structure*/);
270 nfit_memdev
->length
= cpu_to_le16(sizeof(*nfit_memdev
));
271 nfit_memdev
->nfit_handle
= cpu_to_le32(handle
);
274 * associate memory device with System Physical Address Range
277 nfit_memdev
->spa_index
= cpu_to_le16(nvdimm_slot_to_spa_index(slot
));
278 /* associate memory device with Control Region Structure. */
279 nfit_memdev
->dcr_index
= cpu_to_le16(nvdimm_slot_to_dcr_index(slot
));
281 /* The memory region on the device. */
282 nfit_memdev
->region_len
= cpu_to_le64(size
);
283 /* The device address starts from 0. */
284 nfit_memdev
->region_dpa
= cpu_to_le64(0);
286 /* Only one interleave for PMEM. */
287 nfit_memdev
->interleave_ways
= cpu_to_le16(1);
289 if (nvdimm
->unarmed
) {
290 nfit_memdev
->flags
|= cpu_to_le16(ACPI_NFIT_MEM_NOT_ARMED
);
295 * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure.
297 static void nvdimm_build_structure_dcr(GArray
*structures
, DeviceState
*dev
)
299 NvdimmNfitControlRegion
*nfit_dcr
;
300 int slot
= object_property_get_int(OBJECT(dev
), PC_DIMM_SLOT_PROP
,
302 uint32_t sn
= nvdimm_slot_to_sn(slot
);
304 nfit_dcr
= acpi_data_push(structures
, sizeof(*nfit_dcr
));
306 nfit_dcr
->type
= cpu_to_le16(4 /* NVDIMM Control Region Structure */);
307 nfit_dcr
->length
= cpu_to_le16(sizeof(*nfit_dcr
));
308 nfit_dcr
->dcr_index
= cpu_to_le16(nvdimm_slot_to_dcr_index(slot
));
311 nfit_dcr
->vendor_id
= cpu_to_le16(0x8086);
312 nfit_dcr
->device_id
= cpu_to_le16(1);
314 /* The _DSM method is following Intel's DSM specification. */
315 nfit_dcr
->revision_id
= cpu_to_le16(1 /* Current Revision supported
316 in ACPI 6.0 is 1. */);
317 nfit_dcr
->serial_number
= cpu_to_le32(sn
);
318 nfit_dcr
->fic
= cpu_to_le16(0x301 /* Format Interface Code:
319 Byte addressable, no energy backed.
320 See ACPI 6.2, sect 5.2.25.6 and
321 JEDEC Annex L Release 3. */);
325 * ACPI 6.2 Errata A: 5.2.25.9 NVDIMM Platform Capabilities Structure
328 nvdimm_build_structure_caps(GArray
*structures
, uint32_t capabilities
)
330 NvdimmNfitPlatformCaps
*nfit_caps
;
332 nfit_caps
= acpi_data_push(structures
, sizeof(*nfit_caps
));
334 nfit_caps
->type
= cpu_to_le16(7 /* NVDIMM Platform Capabilities */);
335 nfit_caps
->length
= cpu_to_le16(sizeof(*nfit_caps
));
336 nfit_caps
->highest_cap
= 31 - clz32(capabilities
);
337 nfit_caps
->capabilities
= cpu_to_le32(capabilities
);
340 static GArray
*nvdimm_build_device_structure(NVDIMMState
*state
)
342 GSList
*device_list
, *list
= nvdimm_get_device_list();
343 GArray
*structures
= g_array_new(false, true /* clear */, 1);
345 for (device_list
= list
; device_list
; device_list
= device_list
->next
) {
346 DeviceState
*dev
= device_list
->data
;
348 /* build System Physical Address Range Structure. */
349 nvdimm_build_structure_spa(structures
, dev
);
352 * build Memory Device to System Physical Address Range Mapping
355 nvdimm_build_structure_memdev(structures
, dev
);
357 /* build NVDIMM Control Region Structure. */
358 nvdimm_build_structure_dcr(structures
, dev
);
362 if (state
->persistence
) {
363 nvdimm_build_structure_caps(structures
, state
->persistence
);
369 static void nvdimm_init_fit_buffer(NvdimmFitBuffer
*fit_buf
)
371 fit_buf
->fit
= g_array_new(false, true /* clear */, 1);
374 static void nvdimm_build_fit_buffer(NVDIMMState
*state
)
376 NvdimmFitBuffer
*fit_buf
= &state
->fit_buf
;
378 g_array_free(fit_buf
->fit
, true);
379 fit_buf
->fit
= nvdimm_build_device_structure(state
);
380 fit_buf
->dirty
= true;
383 void nvdimm_plug(NVDIMMState
*state
)
385 nvdimm_build_fit_buffer(state
);
389 * NVDIMM Firmware Interface Table
392 * It provides information that allows OSPM to enumerate NVDIMM present in
393 * the platform and associate system physical address ranges created by the
396 * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT)
399 static void nvdimm_build_nfit(NVDIMMState
*state
, GArray
*table_offsets
,
400 GArray
*table_data
, BIOSLinker
*linker
,
401 const char *oem_id
, const char *oem_table_id
)
403 NvdimmFitBuffer
*fit_buf
= &state
->fit_buf
;
404 AcpiTable table
= { .sig
= "NFIT", .rev
= 1,
405 .oem_id
= oem_id
, .oem_table_id
= oem_table_id
};
407 acpi_add_table(table_offsets
, table_data
);
409 acpi_table_begin(&table
, table_data
);
411 build_append_int_noprefix(table_data
, 0, 4);
412 /* NVDIMM device structures. */
413 g_array_append_vals(table_data
, fit_buf
->fit
->data
, fit_buf
->fit
->len
);
414 acpi_table_end(linker
, &table
);
417 #define NVDIMM_DSM_MEMORY_SIZE 4096
423 /* the remaining size in the page is used by arg3. */
428 typedef struct NvdimmDsmIn NvdimmDsmIn
;
429 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn
) != NVDIMM_DSM_MEMORY_SIZE
);
431 struct NvdimmDsmOut
{
432 /* the size of buffer filled by QEMU. */
436 typedef struct NvdimmDsmOut NvdimmDsmOut
;
437 QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut
) != NVDIMM_DSM_MEMORY_SIZE
);
439 struct NvdimmDsmFunc0Out
{
440 /* the size of buffer filled by QEMU. */
442 uint32_t supported_func
;
444 typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out
;
446 struct NvdimmDsmFuncNoPayloadOut
{
447 /* the size of buffer filled by QEMU. */
449 uint32_t func_ret_status
;
451 typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut
;
453 struct NvdimmFuncGetLabelSizeOut
{
454 /* the size of buffer filled by QEMU. */
456 uint32_t func_ret_status
; /* return status code. */
457 uint32_t label_size
; /* the size of label data area. */
459 * Maximum size of the namespace label data length supported by
460 * the platform in Get/Set Namespace Label Data functions.
464 typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut
;
465 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut
) > NVDIMM_DSM_MEMORY_SIZE
);
467 struct NvdimmFuncGetLabelDataIn
{
468 uint32_t offset
; /* the offset in the namespace label data area. */
469 uint32_t length
; /* the size of data is to be read via the function. */
471 typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn
;
472 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn
) +
473 offsetof(NvdimmDsmIn
, arg3
) > NVDIMM_DSM_MEMORY_SIZE
);
475 struct NvdimmFuncGetLabelDataOut
{
476 /* the size of buffer filled by QEMU. */
478 uint32_t func_ret_status
; /* return status code. */
479 uint8_t out_buf
[]; /* the data got via Get Namesapce Label function. */
481 typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut
;
482 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut
) > NVDIMM_DSM_MEMORY_SIZE
);
484 struct NvdimmFuncSetLabelDataIn
{
485 uint32_t offset
; /* the offset in the namespace label data area. */
486 uint32_t length
; /* the size of data is to be written via the function. */
487 uint8_t in_buf
[]; /* the data written to label data area. */
489 typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn
;
490 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn
) +
491 offsetof(NvdimmDsmIn
, arg3
) > NVDIMM_DSM_MEMORY_SIZE
);
493 struct NvdimmFuncReadFITIn
{
494 uint32_t offset
; /* the offset into FIT buffer. */
496 typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn
;
497 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn
) +
498 offsetof(NvdimmDsmIn
, arg3
) > NVDIMM_DSM_MEMORY_SIZE
);
500 struct NvdimmFuncReadFITOut
{
501 /* the size of buffer filled by QEMU. */
503 uint32_t func_ret_status
; /* return status code. */
504 uint8_t fit
[]; /* the FIT data. */
506 typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut
;
507 QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut
) > NVDIMM_DSM_MEMORY_SIZE
);
510 nvdimm_dsm_function0(uint32_t supported_func
, hwaddr dsm_mem_addr
)
512 NvdimmDsmFunc0Out func0
= {
513 .len
= cpu_to_le32(sizeof(func0
)),
514 .supported_func
= cpu_to_le32(supported_func
),
516 cpu_physical_memory_write(dsm_mem_addr
, &func0
, sizeof(func0
));
520 nvdimm_dsm_no_payload(uint32_t func_ret_status
, hwaddr dsm_mem_addr
)
522 NvdimmDsmFuncNoPayloadOut out
= {
523 .len
= cpu_to_le32(sizeof(out
)),
524 .func_ret_status
= cpu_to_le32(func_ret_status
),
526 cpu_physical_memory_write(dsm_mem_addr
, &out
, sizeof(out
));
529 #define NVDIMM_DSM_RET_STATUS_SUCCESS 0 /* Success */
530 #define NVDIMM_DSM_RET_STATUS_UNSUPPORT 1 /* Not Supported */
531 #define NVDIMM_DSM_RET_STATUS_NOMEMDEV 2 /* Non-Existing Memory Device */
532 #define NVDIMM_DSM_RET_STATUS_INVALID 3 /* Invalid Input Parameters */
533 #define NVDIMM_DSM_RET_STATUS_FIT_CHANGED 0x100 /* FIT Changed */
535 #define NVDIMM_QEMU_RSVD_HANDLE_ROOT 0x10000
537 /* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */
538 static void nvdimm_dsm_func_read_fit(NVDIMMState
*state
, NvdimmDsmIn
*in
,
541 NvdimmFitBuffer
*fit_buf
= &state
->fit_buf
;
542 NvdimmFuncReadFITIn
*read_fit
;
543 NvdimmFuncReadFITOut
*read_fit_out
;
545 uint32_t read_len
= 0, func_ret_status
;
548 read_fit
= (NvdimmFuncReadFITIn
*)in
->arg3
;
549 read_fit
->offset
= le32_to_cpu(read_fit
->offset
);
553 nvdimm_debug("Read FIT: offset 0x%x FIT size 0x%x Dirty %s.\n",
554 read_fit
->offset
, fit
->len
, fit_buf
->dirty
? "Yes" : "No");
556 if (read_fit
->offset
> fit
->len
) {
557 func_ret_status
= NVDIMM_DSM_RET_STATUS_INVALID
;
561 /* It is the first time to read FIT. */
562 if (!read_fit
->offset
) {
563 fit_buf
->dirty
= false;
564 } else if (fit_buf
->dirty
) { /* FIT has been changed during RFIT. */
565 func_ret_status
= NVDIMM_DSM_RET_STATUS_FIT_CHANGED
;
569 func_ret_status
= NVDIMM_DSM_RET_STATUS_SUCCESS
;
570 read_len
= MIN(fit
->len
- read_fit
->offset
,
571 NVDIMM_DSM_MEMORY_SIZE
- sizeof(NvdimmFuncReadFITOut
));
574 size
= sizeof(NvdimmFuncReadFITOut
) + read_len
;
575 read_fit_out
= g_malloc(size
);
577 read_fit_out
->len
= cpu_to_le32(size
);
578 read_fit_out
->func_ret_status
= cpu_to_le32(func_ret_status
);
579 memcpy(read_fit_out
->fit
, fit
->data
+ read_fit
->offset
, read_len
);
581 cpu_physical_memory_write(dsm_mem_addr
, read_fit_out
, size
);
583 g_free(read_fit_out
);
587 nvdimm_dsm_handle_reserved_root_method(NVDIMMState
*state
,
588 NvdimmDsmIn
*in
, hwaddr dsm_mem_addr
)
590 switch (in
->function
) {
592 nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr
);
594 case 0x1 /* Read FIT */:
595 nvdimm_dsm_func_read_fit(state
, in
, dsm_mem_addr
);
599 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT
, dsm_mem_addr
);
602 static void nvdimm_dsm_root(NvdimmDsmIn
*in
, hwaddr dsm_mem_addr
)
605 * function 0 is called to inquire which functions are supported by
609 nvdimm_dsm_function0(0 /* No function supported other than
610 function 0 */, dsm_mem_addr
);
614 /* No function except function 0 is supported yet. */
615 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT
, dsm_mem_addr
);
619 * the max transfer size is the max size transferred by both a
620 * 'Get Namespace Label Data' function and a 'Set Namespace Label Data'
623 static uint32_t nvdimm_get_max_xfer_label_size(void)
625 uint32_t max_get_size
, max_set_size
, dsm_memory_size
;
627 dsm_memory_size
= NVDIMM_DSM_MEMORY_SIZE
;
630 * the max data ACPI can read one time which is transferred by
631 * the response of 'Get Namespace Label Data' function.
633 max_get_size
= dsm_memory_size
- sizeof(NvdimmFuncGetLabelDataOut
);
636 * the max data ACPI can write one time which is transferred by
637 * 'Set Namespace Label Data' function.
639 max_set_size
= dsm_memory_size
- offsetof(NvdimmDsmIn
, arg3
) -
640 sizeof(NvdimmFuncSetLabelDataIn
);
642 return MIN(max_get_size
, max_set_size
);
646 * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4).
648 * It gets the size of Namespace Label data area and the max data size
649 * that Get/Set Namespace Label Data functions can transfer.
651 static void nvdimm_dsm_label_size(NVDIMMDevice
*nvdimm
, hwaddr dsm_mem_addr
)
653 NvdimmFuncGetLabelSizeOut label_size_out
= {
654 .len
= cpu_to_le32(sizeof(label_size_out
)),
656 uint32_t label_size
, mxfer
;
658 label_size
= nvdimm
->label_size
;
659 mxfer
= nvdimm_get_max_xfer_label_size();
661 nvdimm_debug("label_size 0x%x, max_xfer 0x%x.\n", label_size
, mxfer
);
663 label_size_out
.func_ret_status
= cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS
);
664 label_size_out
.label_size
= cpu_to_le32(label_size
);
665 label_size_out
.max_xfer
= cpu_to_le32(mxfer
);
667 cpu_physical_memory_write(dsm_mem_addr
, &label_size_out
,
668 sizeof(label_size_out
));
671 static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice
*nvdimm
,
672 uint32_t offset
, uint32_t length
)
674 uint32_t ret
= NVDIMM_DSM_RET_STATUS_INVALID
;
676 if (offset
+ length
< offset
) {
677 nvdimm_debug("offset 0x%x + length 0x%x is overflow.\n", offset
,
682 if (nvdimm
->label_size
< offset
+ length
) {
683 nvdimm_debug("position 0x%x is beyond label data (len = %" PRIx64
").\n",
684 offset
+ length
, nvdimm
->label_size
);
688 if (length
> nvdimm_get_max_xfer_label_size()) {
689 nvdimm_debug("length (0x%x) is larger than max_xfer (0x%x).\n",
690 length
, nvdimm_get_max_xfer_label_size());
694 return NVDIMM_DSM_RET_STATUS_SUCCESS
;
698 * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5).
700 static void nvdimm_dsm_get_label_data(NVDIMMDevice
*nvdimm
, NvdimmDsmIn
*in
,
703 NVDIMMClass
*nvc
= NVDIMM_GET_CLASS(nvdimm
);
704 NvdimmFuncGetLabelDataIn
*get_label_data
;
705 NvdimmFuncGetLabelDataOut
*get_label_data_out
;
709 get_label_data
= (NvdimmFuncGetLabelDataIn
*)in
->arg3
;
710 get_label_data
->offset
= le32_to_cpu(get_label_data
->offset
);
711 get_label_data
->length
= le32_to_cpu(get_label_data
->length
);
713 nvdimm_debug("Read Label Data: offset 0x%x length 0x%x.\n",
714 get_label_data
->offset
, get_label_data
->length
);
716 status
= nvdimm_rw_label_data_check(nvdimm
, get_label_data
->offset
,
717 get_label_data
->length
);
718 if (status
!= NVDIMM_DSM_RET_STATUS_SUCCESS
) {
719 nvdimm_dsm_no_payload(status
, dsm_mem_addr
);
723 size
= sizeof(*get_label_data_out
) + get_label_data
->length
;
724 assert(size
<= NVDIMM_DSM_MEMORY_SIZE
);
725 get_label_data_out
= g_malloc(size
);
727 get_label_data_out
->len
= cpu_to_le32(size
);
728 get_label_data_out
->func_ret_status
=
729 cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS
);
730 nvc
->read_label_data(nvdimm
, get_label_data_out
->out_buf
,
731 get_label_data
->length
, get_label_data
->offset
);
733 cpu_physical_memory_write(dsm_mem_addr
, get_label_data_out
, size
);
734 g_free(get_label_data_out
);
738 * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6).
740 static void nvdimm_dsm_set_label_data(NVDIMMDevice
*nvdimm
, NvdimmDsmIn
*in
,
743 NVDIMMClass
*nvc
= NVDIMM_GET_CLASS(nvdimm
);
744 NvdimmFuncSetLabelDataIn
*set_label_data
;
747 set_label_data
= (NvdimmFuncSetLabelDataIn
*)in
->arg3
;
749 set_label_data
->offset
= le32_to_cpu(set_label_data
->offset
);
750 set_label_data
->length
= le32_to_cpu(set_label_data
->length
);
752 nvdimm_debug("Write Label Data: offset 0x%x length 0x%x.\n",
753 set_label_data
->offset
, set_label_data
->length
);
755 status
= nvdimm_rw_label_data_check(nvdimm
, set_label_data
->offset
,
756 set_label_data
->length
);
757 if (status
!= NVDIMM_DSM_RET_STATUS_SUCCESS
) {
758 nvdimm_dsm_no_payload(status
, dsm_mem_addr
);
762 assert(offsetof(NvdimmDsmIn
, arg3
) + sizeof(*set_label_data
) +
763 set_label_data
->length
<= NVDIMM_DSM_MEMORY_SIZE
);
765 nvc
->write_label_data(nvdimm
, set_label_data
->in_buf
,
766 set_label_data
->length
, set_label_data
->offset
);
767 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_SUCCESS
, dsm_mem_addr
);
770 static void nvdimm_dsm_device(NvdimmDsmIn
*in
, hwaddr dsm_mem_addr
)
772 NVDIMMDevice
*nvdimm
= nvdimm_get_device_by_handle(in
->handle
);
774 /* See the comments in nvdimm_dsm_root(). */
776 uint32_t supported_func
= 0;
778 if (nvdimm
&& nvdimm
->label_size
) {
779 supported_func
|= 0x1 /* Bit 0 indicates whether there is
780 support for any functions other
781 than function 0. */ |
782 1 << 4 /* Get Namespace Label Size */ |
783 1 << 5 /* Get Namespace Label Data */ |
784 1 << 6 /* Set Namespace Label Data */;
786 nvdimm_dsm_function0(supported_func
, dsm_mem_addr
);
791 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_NOMEMDEV
,
796 /* Encode DSM function according to DSM Spec Rev1. */
797 switch (in
->function
) {
798 case 4 /* Get Namespace Label Size */:
799 if (nvdimm
->label_size
) {
800 nvdimm_dsm_label_size(nvdimm
, dsm_mem_addr
);
804 case 5 /* Get Namespace Label Data */:
805 if (nvdimm
->label_size
) {
806 nvdimm_dsm_get_label_data(nvdimm
, in
, dsm_mem_addr
);
810 case 0x6 /* Set Namespace Label Data */:
811 if (nvdimm
->label_size
) {
812 nvdimm_dsm_set_label_data(nvdimm
, in
, dsm_mem_addr
);
818 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT
, dsm_mem_addr
);
822 nvdimm_dsm_read(void *opaque
, hwaddr addr
, unsigned size
)
824 nvdimm_debug("BUG: we never read _DSM IO Port.\n");
829 nvdimm_dsm_write(void *opaque
, hwaddr addr
, uint64_t val
, unsigned size
)
831 NVDIMMState
*state
= opaque
;
833 hwaddr dsm_mem_addr
= val
;
835 nvdimm_debug("dsm memory address 0x%" HWADDR_PRIx
".\n", dsm_mem_addr
);
838 * The DSM memory is mapped to guest address space so an evil guest
839 * can change its content while we are doing DSM emulation. Avoid
840 * this by copying DSM memory to QEMU local memory.
842 in
= g_new(NvdimmDsmIn
, 1);
843 cpu_physical_memory_read(dsm_mem_addr
, in
, sizeof(*in
));
845 in
->revision
= le32_to_cpu(in
->revision
);
846 in
->function
= le32_to_cpu(in
->function
);
847 in
->handle
= le32_to_cpu(in
->handle
);
849 nvdimm_debug("Revision 0x%x Handler 0x%x Function 0x%x.\n", in
->revision
,
850 in
->handle
, in
->function
);
852 if (in
->revision
!= 0x1 /* Currently we only support DSM Spec Rev1. */) {
853 nvdimm_debug("Revision 0x%x is not supported, expect 0x%x.\n",
855 nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT
, dsm_mem_addr
);
859 if (in
->handle
== NVDIMM_QEMU_RSVD_HANDLE_ROOT
) {
860 nvdimm_dsm_handle_reserved_root_method(state
, in
, dsm_mem_addr
);
864 /* Handle 0 is reserved for NVDIMM Root Device. */
866 nvdimm_dsm_root(in
, dsm_mem_addr
);
870 nvdimm_dsm_device(in
, dsm_mem_addr
);
876 static const MemoryRegionOps nvdimm_dsm_ops
= {
877 .read
= nvdimm_dsm_read
,
878 .write
= nvdimm_dsm_write
,
879 .endianness
= DEVICE_LITTLE_ENDIAN
,
881 .min_access_size
= 4,
882 .max_access_size
= 4,
886 void nvdimm_acpi_plug_cb(HotplugHandler
*hotplug_dev
, DeviceState
*dev
)
888 if (dev
->hotplugged
) {
889 acpi_send_event(DEVICE(hotplug_dev
), ACPI_NVDIMM_HOTPLUG_STATUS
);
893 void nvdimm_init_acpi_state(NVDIMMState
*state
, MemoryRegion
*io
,
894 struct AcpiGenericAddress dsm_io
,
895 FWCfgState
*fw_cfg
, Object
*owner
)
897 state
->dsm_io
= dsm_io
;
898 memory_region_init_io(&state
->io_mr
, owner
, &nvdimm_dsm_ops
, state
,
899 "nvdimm-acpi-io", dsm_io
.bit_width
>> 3);
900 memory_region_add_subregion(io
, dsm_io
.address
, &state
->io_mr
);
902 state
->dsm_mem
= g_array_new(false, true /* clear */, 1);
903 acpi_data_push(state
->dsm_mem
, sizeof(NvdimmDsmIn
));
904 fw_cfg_add_file(fw_cfg
, NVDIMM_DSM_MEM_FILE
, state
->dsm_mem
->data
,
905 state
->dsm_mem
->len
);
907 nvdimm_init_fit_buffer(&state
->fit_buf
);
910 #define NVDIMM_COMMON_DSM "NCAL"
911 #define NVDIMM_ACPI_MEM_ADDR "MEMA"
913 #define NVDIMM_DSM_MEMORY "NRAM"
914 #define NVDIMM_DSM_IOPORT "NPIO"
916 #define NVDIMM_DSM_NOTIFY "NTFI"
917 #define NVDIMM_DSM_HANDLE "HDLE"
918 #define NVDIMM_DSM_REVISION "REVS"
919 #define NVDIMM_DSM_FUNCTION "FUNC"
920 #define NVDIMM_DSM_ARG3 "FARG"
922 #define NVDIMM_DSM_OUT_BUF_SIZE "RLEN"
923 #define NVDIMM_DSM_OUT_BUF "ODAT"
925 #define NVDIMM_DSM_RFIT_STATUS "RSTA"
927 #define NVDIMM_QEMU_RSVD_UUID "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62"
929 static void nvdimm_build_common_dsm(Aml
*dev
,
930 NVDIMMState
*nvdimm_state
)
932 Aml
*method
, *ifctx
, *function
, *handle
, *uuid
, *dsm_mem
, *elsectx2
;
933 Aml
*elsectx
, *unsupport
, *unpatched
, *expected_uuid
, *uuid_invalid
;
934 Aml
*pckg
, *pckg_index
, *pckg_buf
, *field
, *dsm_out_buf
, *dsm_out_buf_size
;
935 Aml
*whilectx
, *offset
;
936 uint8_t byte_list
[1];
939 method
= aml_method(NVDIMM_COMMON_DSM
, 5, AML_SERIALIZED
);
941 function
= aml_arg(2);
943 dsm_mem
= aml_local(6);
944 dsm_out_buf
= aml_local(7);
946 aml_append(method
, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR
), dsm_mem
));
948 if (nvdimm_state
->dsm_io
.space_id
== AML_AS_SYSTEM_IO
) {
951 rs
= AML_SYSTEM_MEMORY
;
954 /* map DSM memory and IO into ACPI namespace. */
955 aml_append(method
, aml_operation_region(NVDIMM_DSM_IOPORT
, rs
,
956 aml_int(nvdimm_state
->dsm_io
.address
),
957 nvdimm_state
->dsm_io
.bit_width
>> 3));
958 aml_append(method
, aml_operation_region(NVDIMM_DSM_MEMORY
,
959 AML_SYSTEM_MEMORY
, dsm_mem
, sizeof(NvdimmDsmIn
)));
963 * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to
964 * emulate the access.
966 * It is the IO port so that accessing them will cause VM-exit, the
967 * control will be transferred to QEMU.
969 field
= aml_field(NVDIMM_DSM_IOPORT
, AML_DWORD_ACC
, AML_NOLOCK
,
971 aml_append(field
, aml_named_field(NVDIMM_DSM_NOTIFY
,
972 nvdimm_state
->dsm_io
.bit_width
));
973 aml_append(method
, field
);
977 * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call
978 * happens on NVDIMM Root Device.
979 * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call.
980 * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call.
981 * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package
982 * containing function-specific arguments.
984 * They are RAM mapping on host so that these accesses never cause
987 field
= aml_field(NVDIMM_DSM_MEMORY
, AML_DWORD_ACC
, AML_NOLOCK
,
989 aml_append(field
, aml_named_field(NVDIMM_DSM_HANDLE
,
990 sizeof(typeof_field(NvdimmDsmIn
, handle
)) * BITS_PER_BYTE
));
991 aml_append(field
, aml_named_field(NVDIMM_DSM_REVISION
,
992 sizeof(typeof_field(NvdimmDsmIn
, revision
)) * BITS_PER_BYTE
));
993 aml_append(field
, aml_named_field(NVDIMM_DSM_FUNCTION
,
994 sizeof(typeof_field(NvdimmDsmIn
, function
)) * BITS_PER_BYTE
));
995 aml_append(field
, aml_named_field(NVDIMM_DSM_ARG3
,
996 (sizeof(NvdimmDsmIn
) - offsetof(NvdimmDsmIn
, arg3
)) * BITS_PER_BYTE
));
997 aml_append(method
, field
);
1001 * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU.
1002 * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result.
1004 * Since the page is reused by both input and out, the input data
1005 * will be lost after storing new result into ODAT so we should fetch
1006 * all the input data before writing the result.
1008 field
= aml_field(NVDIMM_DSM_MEMORY
, AML_DWORD_ACC
, AML_NOLOCK
,
1010 aml_append(field
, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE
,
1011 sizeof(typeof_field(NvdimmDsmOut
, len
)) * BITS_PER_BYTE
));
1012 aml_append(field
, aml_named_field(NVDIMM_DSM_OUT_BUF
,
1013 (sizeof(NvdimmDsmOut
) - offsetof(NvdimmDsmOut
, data
)) * BITS_PER_BYTE
));
1014 aml_append(method
, field
);
1017 * do not support any method if DSM memory address has not been
1020 unpatched
= aml_equal(dsm_mem
, aml_int(0x0));
1022 expected_uuid
= aml_local(0);
1024 ifctx
= aml_if(aml_equal(handle
, aml_int(0x0)));
1025 aml_append(ifctx
, aml_store(
1026 aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA")
1027 /* UUID for NVDIMM Root Device */, expected_uuid
));
1028 aml_append(method
, ifctx
);
1029 elsectx
= aml_else();
1030 ifctx
= aml_if(aml_equal(handle
, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT
)));
1031 aml_append(ifctx
, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID
1032 /* UUID for QEMU internal use */), expected_uuid
));
1033 aml_append(elsectx
, ifctx
);
1034 elsectx2
= aml_else();
1035 aml_append(elsectx2
, aml_store(
1036 aml_touuid("4309AC30-0D11-11E4-9191-0800200C9A66")
1037 /* UUID for NVDIMM Devices */, expected_uuid
));
1038 aml_append(elsectx
, elsectx2
);
1039 aml_append(method
, elsectx
);
1041 uuid_invalid
= aml_lnot(aml_equal(uuid
, expected_uuid
));
1043 unsupport
= aml_if(aml_or(unpatched
, uuid_invalid
, NULL
));
1046 * function 0 is called to inquire what functions are supported by
1049 ifctx
= aml_if(aml_equal(function
, aml_int(0)));
1050 byte_list
[0] = 0 /* No function Supported */;
1051 aml_append(ifctx
, aml_return(aml_buffer(1, byte_list
)));
1052 aml_append(unsupport
, ifctx
);
1054 /* No function is supported yet. */
1055 byte_list
[0] = NVDIMM_DSM_RET_STATUS_UNSUPPORT
;
1056 aml_append(unsupport
, aml_return(aml_buffer(1, byte_list
)));
1057 aml_append(method
, unsupport
);
1060 * The HDLE indicates the DSM function is issued from which device,
1061 * it reserves 0 for root device and is the handle for NVDIMM devices.
1062 * See the comments in nvdimm_slot_to_handle().
1064 aml_append(method
, aml_store(handle
, aml_name(NVDIMM_DSM_HANDLE
)));
1065 aml_append(method
, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION
)));
1066 aml_append(method
, aml_store(function
, aml_name(NVDIMM_DSM_FUNCTION
)));
1069 * The fourth parameter (Arg3) of _DSM is a package which contains
1070 * a buffer, the layout of the buffer is specified by UUID (Arg0),
1071 * Revision ID (Arg1) and Function Index (Arg2) which are documented
1075 ifctx
= aml_if(aml_and(aml_equal(aml_object_type(pckg
),
1076 aml_int(4 /* Package */)) /* It is a Package? */,
1077 aml_equal(aml_sizeof(pckg
), aml_int(1)) /* 1 element? */,
1080 pckg_index
= aml_local(2);
1081 pckg_buf
= aml_local(3);
1082 aml_append(ifctx
, aml_store(aml_index(pckg
, aml_int(0)), pckg_index
));
1083 aml_append(ifctx
, aml_store(aml_derefof(pckg_index
), pckg_buf
));
1084 aml_append(ifctx
, aml_store(pckg_buf
, aml_name(NVDIMM_DSM_ARG3
)));
1085 aml_append(method
, ifctx
);
1088 * tell QEMU about the real address of DSM memory, then QEMU
1089 * gets the control and fills the result in DSM memory.
1091 aml_append(method
, aml_store(dsm_mem
, aml_name(NVDIMM_DSM_NOTIFY
)));
1093 dsm_out_buf_size
= aml_local(1);
1094 /* RLEN is not included in the payload returned to guest. */
1095 aml_append(method
, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE
),
1096 aml_int(4), dsm_out_buf_size
));
1099 * As per ACPI spec 6.3, Table 19-419 Object Conversion Rules, if
1100 * the Buffer Field <= to the size of an Integer (in bits), it will
1101 * be treated as an integer. Moreover, the integer size depends on
1102 * DSDT tables revision number. If revision number is < 2, integer
1103 * size is 32 bits, otherwise it is 64 bits.
1104 * Because of this CreateField() canot be used if RLEN < Integer Size.
1106 * Also please note that APCI ASL operator SizeOf() doesn't support
1107 * Integer and there isn't any other way to figure out the Integer
1108 * size. Hence we assume 8 byte as Integer size and if RLEN < 8 bytes,
1109 * build dsm_out_buf byte by byte.
1111 ifctx
= aml_if(aml_lless(dsm_out_buf_size
, aml_int(8)));
1112 offset
= aml_local(2);
1113 aml_append(ifctx
, aml_store(aml_int(0), offset
));
1114 aml_append(ifctx
, aml_name_decl("TBUF", aml_buffer(1, NULL
)));
1115 aml_append(ifctx
, aml_store(aml_buffer(0, NULL
), dsm_out_buf
));
1117 whilectx
= aml_while(aml_lless(offset
, dsm_out_buf_size
));
1118 /* Copy 1 byte at offset from ODAT to temporary buffer(TBUF). */
1119 aml_append(whilectx
, aml_store(aml_derefof(aml_index(
1120 aml_name(NVDIMM_DSM_OUT_BUF
), offset
)),
1121 aml_index(aml_name("TBUF"), aml_int(0))));
1122 aml_append(whilectx
, aml_concatenate(dsm_out_buf
, aml_name("TBUF"),
1124 aml_append(whilectx
, aml_increment(offset
));
1125 aml_append(ifctx
, whilectx
);
1127 aml_append(ifctx
, aml_return(dsm_out_buf
));
1128 aml_append(method
, ifctx
);
1130 /* If RLEN >= Integer size, just use CreateField() operator */
1131 aml_append(method
, aml_store(aml_shiftleft(dsm_out_buf_size
, aml_int(3)),
1133 aml_append(method
, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF
),
1134 aml_int(0), dsm_out_buf_size
, "OBUF"));
1135 aml_append(method
, aml_return(aml_name("OBUF")));
1137 aml_append(dev
, method
);
1140 static void nvdimm_build_device_dsm(Aml
*dev
, uint32_t handle
)
1144 method
= aml_method("_DSM", 4, AML_NOTSERIALIZED
);
1145 aml_append(method
, aml_return(aml_call5(NVDIMM_COMMON_DSM
, aml_arg(0),
1146 aml_arg(1), aml_arg(2), aml_arg(3),
1148 aml_append(dev
, method
);
1151 static void nvdimm_build_fit(Aml
*dev
)
1153 Aml
*method
, *pkg
, *buf
, *buf_size
, *offset
, *call_result
;
1154 Aml
*whilectx
, *ifcond
, *ifctx
, *elsectx
, *fit
;
1157 buf_size
= aml_local(1);
1160 aml_append(dev
, aml_name_decl(NVDIMM_DSM_RFIT_STATUS
, aml_int(0)));
1162 /* build helper function, RFIT. */
1163 method
= aml_method("RFIT", 1, AML_SERIALIZED
);
1164 aml_append(method
, aml_name_decl("OFST", aml_int(0)));
1166 /* prepare input package. */
1167 pkg
= aml_package(1);
1168 aml_append(method
, aml_store(aml_arg(0), aml_name("OFST")));
1169 aml_append(pkg
, aml_name("OFST"));
1171 /* call Read_FIT function. */
1172 call_result
= aml_call5(NVDIMM_COMMON_DSM
,
1173 aml_touuid(NVDIMM_QEMU_RSVD_UUID
),
1174 aml_int(1) /* Revision 1 */,
1175 aml_int(0x1) /* Read FIT */,
1176 pkg
, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT
));
1177 aml_append(method
, aml_store(call_result
, buf
));
1179 /* handle _DSM result. */
1180 aml_append(method
, aml_create_dword_field(buf
,
1181 aml_int(0) /* offset at byte 0 */, "STAU"));
1183 aml_append(method
, aml_store(aml_name("STAU"),
1184 aml_name(NVDIMM_DSM_RFIT_STATUS
)));
1186 /* if something is wrong during _DSM. */
1187 ifcond
= aml_equal(aml_int(NVDIMM_DSM_RET_STATUS_SUCCESS
),
1189 ifctx
= aml_if(aml_lnot(ifcond
));
1190 aml_append(ifctx
, aml_return(aml_buffer(0, NULL
)));
1191 aml_append(method
, ifctx
);
1193 aml_append(method
, aml_store(aml_sizeof(buf
), buf_size
));
1194 aml_append(method
, aml_subtract(buf_size
,
1195 aml_int(4) /* the size of "STAU" */,
1198 /* if we read the end of fit. */
1199 ifctx
= aml_if(aml_equal(buf_size
, aml_int(0)));
1200 aml_append(ifctx
, aml_return(aml_buffer(0, NULL
)));
1201 aml_append(method
, ifctx
);
1203 aml_append(method
, aml_create_field(buf
,
1204 aml_int(4 * BITS_PER_BYTE
), /* offset at byte 4.*/
1205 aml_shiftleft(buf_size
, aml_int(3)), "BUFF"));
1206 aml_append(method
, aml_return(aml_name("BUFF")));
1207 aml_append(dev
, method
);
1210 method
= aml_method("_FIT", 0, AML_SERIALIZED
);
1211 offset
= aml_local(3);
1213 aml_append(method
, aml_store(aml_buffer(0, NULL
), fit
));
1214 aml_append(method
, aml_store(aml_int(0), offset
));
1216 whilectx
= aml_while(aml_int(1));
1217 aml_append(whilectx
, aml_store(aml_call1("RFIT", offset
), buf
));
1218 aml_append(whilectx
, aml_store(aml_sizeof(buf
), buf_size
));
1221 * if fit buffer was changed during RFIT, read from the beginning
1224 ifctx
= aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS
),
1225 aml_int(NVDIMM_DSM_RET_STATUS_FIT_CHANGED
)));
1226 aml_append(ifctx
, aml_store(aml_buffer(0, NULL
), fit
));
1227 aml_append(ifctx
, aml_store(aml_int(0), offset
));
1228 aml_append(whilectx
, ifctx
);
1230 elsectx
= aml_else();
1232 /* finish fit read if no data is read out. */
1233 ifctx
= aml_if(aml_equal(buf_size
, aml_int(0)));
1234 aml_append(ifctx
, aml_return(fit
));
1235 aml_append(elsectx
, ifctx
);
1237 /* update the offset. */
1238 aml_append(elsectx
, aml_add(offset
, buf_size
, offset
));
1239 /* append the data we read out to the fit buffer. */
1240 aml_append(elsectx
, aml_concatenate(fit
, buf
, fit
));
1241 aml_append(whilectx
, elsectx
);
1242 aml_append(method
, whilectx
);
1244 aml_append(dev
, method
);
1247 static void nvdimm_build_nvdimm_devices(Aml
*root_dev
, uint32_t ram_slots
)
1251 for (slot
= 0; slot
< ram_slots
; slot
++) {
1252 uint32_t handle
= nvdimm_slot_to_handle(slot
);
1255 nvdimm_dev
= aml_device("NV%02X", slot
);
1258 * ACPI 6.0: 9.20 NVDIMM Devices:
1260 * _ADR object that is used to supply OSPM with unique address
1261 * of the NVDIMM device. This is done by returning the NFIT Device
1262 * handle that is used to identify the associated entries in ACPI
1263 * table NFIT or _FIT.
1265 aml_append(nvdimm_dev
, aml_name_decl("_ADR", aml_int(handle
)));
1267 nvdimm_build_device_dsm(nvdimm_dev
, handle
);
1268 aml_append(root_dev
, nvdimm_dev
);
1272 static void nvdimm_build_ssdt(GArray
*table_offsets
, GArray
*table_data
,
1274 NVDIMMState
*nvdimm_state
,
1275 uint32_t ram_slots
, const char *oem_id
)
1277 int mem_addr_offset
;
1278 Aml
*ssdt
, *sb_scope
, *dev
;
1279 AcpiTable table
= { .sig
= "SSDT", .rev
= 1,
1280 .oem_id
= oem_id
, .oem_table_id
= "NVDIMM" };
1282 acpi_add_table(table_offsets
, table_data
);
1284 acpi_table_begin(&table
, table_data
);
1285 ssdt
= init_aml_allocator();
1286 sb_scope
= aml_scope("\\_SB");
1288 dev
= aml_device("NVDR");
1291 * ACPI 6.0: 9.20 NVDIMM Devices:
1293 * The ACPI Name Space device uses _HID of ACPI0012 to identify the root
1294 * NVDIMM interface device. Platform firmware is required to contain one
1295 * such device in _SB scope if NVDIMMs support is exposed by platform to
1297 * For each NVDIMM present or intended to be supported by platform,
1298 * platform firmware also exposes an ACPI Namespace Device under the
1301 aml_append(dev
, aml_name_decl("_HID", aml_string("ACPI0012")));
1303 nvdimm_build_common_dsm(dev
, nvdimm_state
);
1305 /* 0 is reserved for root device. */
1306 nvdimm_build_device_dsm(dev
, 0);
1307 nvdimm_build_fit(dev
);
1309 nvdimm_build_nvdimm_devices(dev
, ram_slots
);
1311 aml_append(sb_scope
, dev
);
1312 aml_append(ssdt
, sb_scope
);
1314 /* copy AML table into ACPI tables blob and patch header there */
1315 g_array_append_vals(table_data
, ssdt
->buf
->data
, ssdt
->buf
->len
);
1316 mem_addr_offset
= build_append_named_dword(table_data
,
1317 NVDIMM_ACPI_MEM_ADDR
);
1319 bios_linker_loader_alloc(linker
,
1320 NVDIMM_DSM_MEM_FILE
, nvdimm_state
->dsm_mem
,
1321 sizeof(NvdimmDsmIn
), false /* high memory */);
1322 bios_linker_loader_add_pointer(linker
,
1323 ACPI_BUILD_TABLE_FILE
, mem_addr_offset
, sizeof(uint32_t),
1324 NVDIMM_DSM_MEM_FILE
, 0);
1325 free_aml_allocator();
1327 * must be executed as the last so that pointer patching command above
1328 * would be executed by guest before it recalculated checksum which were
1329 * scheduled by acpi_table_end()
1331 acpi_table_end(linker
, &table
);
1334 void nvdimm_build_srat(GArray
*table_data
)
1336 GSList
*device_list
, *list
= nvdimm_get_device_list();
1338 for (device_list
= list
; device_list
; device_list
= device_list
->next
) {
1339 DeviceState
*dev
= device_list
->data
;
1340 Object
*obj
= OBJECT(dev
);
1341 uint64_t addr
, size
;
1344 node
= object_property_get_int(obj
, PC_DIMM_NODE_PROP
, &error_abort
);
1345 addr
= object_property_get_uint(obj
, PC_DIMM_ADDR_PROP
, &error_abort
);
1346 size
= object_property_get_uint(obj
, PC_DIMM_SIZE_PROP
, &error_abort
);
1348 build_srat_memory(table_data
, addr
, size
, node
,
1349 MEM_AFFINITY_ENABLED
| MEM_AFFINITY_NON_VOLATILE
);
1354 void nvdimm_build_acpi(GArray
*table_offsets
, GArray
*table_data
,
1355 BIOSLinker
*linker
, NVDIMMState
*state
,
1356 uint32_t ram_slots
, const char *oem_id
,
1357 const char *oem_table_id
)
1359 GSList
*device_list
;
1361 /* no nvdimm device can be plugged. */
1366 nvdimm_build_ssdt(table_offsets
, table_data
, linker
, state
,
1369 device_list
= nvdimm_get_device_list();
1370 /* no NVDIMM device is plugged. */
1375 nvdimm_build_nfit(state
, table_offsets
, table_data
, linker
,
1376 oem_id
, oem_table_id
);
1377 g_slist_free(device_list
);