2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3 * set. Known devices table current as of Jun/2012 and taken from linux.
4 * See drivers/mtd/devices/m25p80.c.
6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8 * Copyright (C) 2012 PetaLogix
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 or
13 * (at your option) a later version of the License.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
26 #include "sysemu/block-backend.h"
27 #include "sysemu/blockdev.h"
28 #include "hw/ssi/ssi.h"
29 #include "qemu/bitops.h"
31 #include "qemu/error-report.h"
32 #include "qapi/error.h"
34 #ifndef M25P80_ERR_DEBUG
35 #define M25P80_ERR_DEBUG 0
38 #define DB_PRINT_L(level, ...) do { \
39 if (M25P80_ERR_DEBUG > (level)) { \
40 fprintf(stderr, ": %s: ", __func__); \
41 fprintf(stderr, ## __VA_ARGS__); \
45 /* Fields for FlashPartInfo->flags */
47 /* erase capabilities */
50 /* set to allow the page program command to write 0s back to 1. Useful for
51 * modelling EEPROM with SPI flash command set
55 /* 16 MiB max in 3 byte address mode */
56 #define MAX_3BYTES_SIZE 0x1000000
58 #define SPI_NOR_MAX_ID_LEN 6
60 typedef struct FlashPartInfo
{
61 const char *part_name
;
63 * This array stores the ID bytes.
64 * The first three bytes are the JEDIC ID.
65 * JEDEC ID zero means "no ID" (mostly older chips).
67 uint8_t id
[SPI_NOR_MAX_ID_LEN
];
69 /* there is confusion between manufacturers as to what a sector is. In this
70 * device model, a "sector" is the size that is erased by the ERASE_SECTOR
71 * command (opcode 0xd8).
79 /* adapted from linux */
80 /* Used when the "_ext_id" is two bytes at most */
81 #define INFO(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
82 .part_name = _part_name,\
84 ((_jedec_id) >> 16) & 0xff,\
85 ((_jedec_id) >> 8) & 0xff,\
87 ((_ext_id) >> 8) & 0xff,\
90 .id_len = (!(_jedec_id) ? 0 : (3 + ((_ext_id) ? 2 : 0))),\
91 .sector_size = (_sector_size),\
92 .n_sectors = (_n_sectors),\
96 #define INFO6(_part_name, _jedec_id, _ext_id, _sector_size, _n_sectors, _flags)\
97 .part_name = _part_name,\
99 ((_jedec_id) >> 16) & 0xff,\
100 ((_jedec_id) >> 8) & 0xff,\
102 ((_ext_id) >> 16) & 0xff,\
103 ((_ext_id) >> 8) & 0xff,\
107 .sector_size = (_sector_size),\
108 .n_sectors = (_n_sectors),\
112 #define JEDEC_NUMONYX 0x20
113 #define JEDEC_WINBOND 0xEF
114 #define JEDEC_SPANSION 0x01
116 /* Numonyx (Micron) Configuration register macros */
117 #define VCFG_DUMMY 0x1
118 #define VCFG_WRAP_SEQUENTIAL 0x2
119 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
120 #define NVCFG_XIP_MODE_MASK (7 << 9)
121 #define VCFG_XIP_MODE_ENABLED (1 << 3)
122 #define CFG_DUMMY_CLK_LEN 4
123 #define NVCFG_DUMMY_CLK_POS 12
124 #define VCFG_DUMMY_CLK_POS 4
125 #define EVCFG_OUT_DRIVER_STRENGHT_DEF 7
126 #define EVCFG_VPP_ACCELERATOR (1 << 3)
127 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
128 #define NVCFG_DUAL_IO_MASK (1 << 2)
129 #define EVCFG_DUAL_IO_ENABLED (1 << 6)
130 #define NVCFG_QUAD_IO_MASK (1 << 3)
131 #define EVCFG_QUAD_IO_ENABLED (1 << 7)
132 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
133 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
135 /* Numonyx (Micron) Flag Status Register macros */
136 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
137 #define FSR_FLASH_READY (1 << 7)
139 /* Spansion configuration registers macros. */
140 #define SPANSION_QUAD_CFG_POS 0
141 #define SPANSION_QUAD_CFG_LEN 1
142 #define SPANSION_DUMMY_CLK_POS 0
143 #define SPANSION_DUMMY_CLK_LEN 4
144 #define SPANSION_ADDR_LEN_POS 7
145 #define SPANSION_ADDR_LEN_LEN 1
148 * Spansion read mode command length in bytes,
149 * the mode is currently not supported.
152 #define SPANSION_CONTINUOUS_READ_MODE_CMD_LEN 1
153 #define WINBOND_CONTINUOUS_READ_MODE_CMD_LEN 1
155 static const FlashPartInfo known_devices
[] = {
156 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
157 { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K
) },
158 { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K
) },
160 { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K
) },
161 { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K
) },
162 { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K
) },
164 { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K
) },
165 { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K
) },
166 { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K
) },
167 { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K
) },
169 { INFO("at45db081d", 0x1f2500, 0, 64 << 10, 16, ER_4K
) },
171 /* Atmel EEPROMS - it is assumed, that don't care bit in command
172 * is set to 0. Block protection is not supported.
174 { INFO("at25128a-nonjedec", 0x0, 0, 1, 131072, EEPROM
) },
175 { INFO("at25256a-nonjedec", 0x0, 0, 1, 262144, EEPROM
) },
178 { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K
) },
179 { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) },
180 { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) },
181 { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) },
182 { INFO("en25q64", 0x1c3017, 0, 64 << 10, 128, ER_4K
) },
185 { INFO("gd25q32", 0xc84016, 0, 64 << 10, 64, ER_4K
) },
186 { INFO("gd25q64", 0xc84017, 0, 64 << 10, 128, ER_4K
) },
188 /* Intel/Numonyx -- xxxs33b */
189 { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) },
190 { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) },
191 { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) },
192 { INFO("n25q064", 0x20ba17, 0, 64 << 10, 128, 0) },
195 { INFO("mx25l2005a", 0xc22012, 0, 64 << 10, 4, ER_4K
) },
196 { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K
) },
197 { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) },
198 { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K
) },
199 { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) },
200 { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) },
201 { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) },
202 { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) },
203 { INFO("mx25l25635e", 0xc22019, 0, 64 << 10, 512, 0) },
204 { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) },
205 { INFO("mx66u51235f", 0xc2253a, 0, 64 << 10, 1024, ER_4K
| ER_32K
) },
206 { INFO("mx66u1g45g", 0xc2253b, 0, 64 << 10, 2048, ER_4K
| ER_32K
) },
207 { INFO("mx66l1g45g", 0xc2201b, 0, 64 << 10, 2048, ER_4K
| ER_32K
) },
210 { INFO("n25q032a11", 0x20bb16, 0, 64 << 10, 64, ER_4K
) },
211 { INFO("n25q032a13", 0x20ba16, 0, 64 << 10, 64, ER_4K
) },
212 { INFO("n25q064a11", 0x20bb17, 0, 64 << 10, 128, ER_4K
) },
213 { INFO("n25q064a13", 0x20ba17, 0, 64 << 10, 128, ER_4K
) },
214 { INFO("n25q128a11", 0x20bb18, 0, 64 << 10, 256, ER_4K
) },
215 { INFO("n25q128a13", 0x20ba18, 0, 64 << 10, 256, ER_4K
) },
216 { INFO("n25q256a11", 0x20bb19, 0, 64 << 10, 512, ER_4K
) },
217 { INFO("n25q256a13", 0x20ba19, 0, 64 << 10, 512, ER_4K
) },
218 { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) },
219 { INFO("n25q256a", 0x20ba19, 0, 64 << 10, 512, ER_4K
) },
220 { INFO("n25q512a", 0x20ba20, 0, 64 << 10, 1024, ER_4K
) },
221 { INFO("mt25ql01g", 0x20ba21, 0, 64 << 10, 2048, ER_4K
) },
222 { INFO("mt25qu01g", 0x20bb21, 0, 64 << 10, 2048, ER_4K
) },
224 /* Spansion -- single (large) sector size only, at least
225 * for the chips listed here (without boot sectors).
227 { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K
) },
228 { INFO("s25sl064p", 0x010216, 0x4d00, 64 << 10, 128, ER_4K
) },
229 { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) },
230 { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) },
231 { INFO6("s25fl512s", 0x010220, 0x4d0080, 256 << 10, 256, 0) },
232 { INFO6("s70fl01gs", 0x010221, 0x4d0080, 256 << 10, 512, 0) },
233 { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) },
234 { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) },
235 { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) },
236 { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) },
237 { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) },
238 { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) },
239 { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) },
240 { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) },
241 { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) },
242 { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K
| ER_32K
) },
243 { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K
| ER_32K
) },
245 /* Spansion -- boot sectors support */
246 { INFO6("s25fs512s", 0x010220, 0x4d0081, 256 << 10, 256, 0) },
247 { INFO6("s70fs01gs", 0x010221, 0x4d0081, 256 << 10, 512, 0) },
249 /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
250 { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K
) },
251 { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K
) },
252 { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K
) },
253 { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K
) },
254 { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K
) },
255 { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K
) },
256 { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K
) },
257 { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K
) },
258 { INFO("sst25wf080", 0xbf2505, 0, 64 << 10, 16, ER_4K
) },
260 /* ST Microelectronics -- newer production may have feature updates */
261 { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) },
262 { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) },
263 { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) },
264 { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) },
265 { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) },
266 { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) },
267 { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) },
268 { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) },
269 { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) },
270 { INFO("n25q032", 0x20ba16, 0, 64 << 10, 64, 0) },
272 { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) },
273 { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) },
274 { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) },
276 { INFO("m25pe20", 0x208012, 0, 64 << 10, 4, 0) },
277 { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) },
278 { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K
) },
280 { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K
) },
281 { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K
) },
282 { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K
) },
283 { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) },
285 /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
286 { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K
) },
287 { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K
) },
288 { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K
) },
289 { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K
) },
290 { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K
) },
291 { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K
) },
292 { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K
) },
293 { INFO("w25q32dw", 0xef6016, 0, 64 << 10, 64, ER_4K
) },
294 { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K
) },
295 { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K
) },
296 { INFO("w25q80", 0xef5014, 0, 64 << 10, 16, ER_4K
) },
297 { INFO("w25q80bl", 0xef4014, 0, 64 << 10, 16, ER_4K
) },
298 { INFO("w25q256", 0xef4019, 0, 64 << 10, 512, ER_4K
) },
336 ERASE4_SECTOR
= 0xdc,
338 EN_4BYTE_ADDR
= 0xB7,
339 EX_4BYTE_ADDR
= 0xE9,
341 EXTEND_ADDR_READ
= 0xC8,
342 EXTEND_ADDR_WRITE
= 0xC5,
348 * Micron: 0x35 - enable QPI
349 * Spansion: 0x35 - read control register
368 STATE_COLLECTING_DATA
,
369 STATE_COLLECTING_VAR_LEN_DATA
,
381 #define M25P80_INTERNAL_DATA_BUFFER_SZ 16
383 typedef struct Flash
{
393 uint8_t data
[M25P80_INTERNAL_DATA_BUFFER_SZ
];
396 uint8_t needed_bytes
;
397 uint8_t cmd_in_progress
;
399 uint32_t nonvolatile_cfg
;
400 /* Configuration register for Macronix */
401 uint32_t volatile_cfg
;
402 uint32_t enh_volatile_cfg
;
403 /* Spansion cfg registers. */
404 uint8_t spansion_cr1nv
;
405 uint8_t spansion_cr2nv
;
406 uint8_t spansion_cr3nv
;
407 uint8_t spansion_cr4nv
;
408 uint8_t spansion_cr1v
;
409 uint8_t spansion_cr2v
;
410 uint8_t spansion_cr3v
;
411 uint8_t spansion_cr4v
;
413 bool four_bytes_address_mode
;
420 const FlashPartInfo
*pi
;
424 typedef struct M25P80Class
{
425 SSISlaveClass parent_class
;
429 #define TYPE_M25P80 "m25p80-generic"
430 #define M25P80(obj) \
431 OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
432 #define M25P80_CLASS(klass) \
433 OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
434 #define M25P80_GET_CLASS(obj) \
435 OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
437 static inline Manufacturer
get_man(Flash
*s
)
439 switch (s
->pi
->id
[0]) {
453 static void blk_sync_complete(void *opaque
, int ret
)
455 QEMUIOVector
*iov
= opaque
;
457 qemu_iovec_destroy(iov
);
460 /* do nothing. Masters do not directly interact with the backing store,
461 * only the working copy so no mutexing required.
465 static void flash_sync_page(Flash
*s
, int page
)
469 if (!s
->blk
|| blk_is_read_only(s
->blk
)) {
473 iov
= g_new(QEMUIOVector
, 1);
474 qemu_iovec_init(iov
, 1);
475 qemu_iovec_add(iov
, s
->storage
+ page
* s
->pi
->page_size
,
477 blk_aio_pwritev(s
->blk
, page
* s
->pi
->page_size
, iov
, 0,
478 blk_sync_complete
, iov
);
481 static inline void flash_sync_area(Flash
*s
, int64_t off
, int64_t len
)
485 if (!s
->blk
|| blk_is_read_only(s
->blk
)) {
489 assert(!(len
% BDRV_SECTOR_SIZE
));
490 iov
= g_new(QEMUIOVector
, 1);
491 qemu_iovec_init(iov
, 1);
492 qemu_iovec_add(iov
, s
->storage
+ off
, len
);
493 blk_aio_pwritev(s
->blk
, off
, iov
, 0, blk_sync_complete
, iov
);
496 static void flash_erase(Flash
*s
, int offset
, FlashCMD cmd
)
499 uint8_t capa_to_assert
= 0;
505 capa_to_assert
= ER_4K
;
510 capa_to_assert
= ER_32K
;
514 len
= s
->pi
->sector_size
;
523 DB_PRINT_L(0, "offset = %#x, len = %d\n", offset
, len
);
524 if ((s
->pi
->flags
& capa_to_assert
) != capa_to_assert
) {
525 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: %d erase size not supported by"
529 if (!s
->write_enable
) {
530 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: erase with write protect!\n");
533 memset(s
->storage
+ offset
, 0xff, len
);
534 flash_sync_area(s
, offset
, len
);
537 static inline void flash_sync_dirty(Flash
*s
, int64_t newpage
)
539 if (s
->dirty_page
>= 0 && s
->dirty_page
!= newpage
) {
540 flash_sync_page(s
, s
->dirty_page
);
541 s
->dirty_page
= newpage
;
546 void flash_write8(Flash
*s
, uint32_t addr
, uint8_t data
)
548 uint32_t page
= addr
/ s
->pi
->page_size
;
549 uint8_t prev
= s
->storage
[s
->cur_addr
];
551 if (!s
->write_enable
) {
552 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: write with write protect!\n");
555 if ((prev
^ data
) & data
) {
556 DB_PRINT_L(1, "programming zero to one! addr=%" PRIx32
" %" PRIx8
557 " -> %" PRIx8
"\n", addr
, prev
, data
);
560 if (s
->pi
->flags
& EEPROM
) {
561 s
->storage
[s
->cur_addr
] = data
;
563 s
->storage
[s
->cur_addr
] &= data
;
566 flash_sync_dirty(s
, page
);
567 s
->dirty_page
= page
;
570 static inline int get_addr_length(Flash
*s
)
572 /* check if eeprom is in use */
573 if (s
->pi
->flags
== EEPROM
) {
577 switch (s
->cmd_in_progress
) {
591 return s
->four_bytes_address_mode
? 4 : 3;
595 static void complete_collecting_data(Flash
*s
)
599 n
= get_addr_length(s
);
600 s
->cur_addr
= (n
== 3 ? s
->ear
: 0);
601 for (i
= 0; i
< n
; ++i
) {
603 s
->cur_addr
|= s
->data
[i
];
606 s
->cur_addr
&= s
->size
- 1;
608 s
->state
= STATE_IDLE
;
610 switch (s
->cmd_in_progress
) {
616 s
->state
= STATE_PAGE_PROGRAM
;
630 s
->state
= STATE_READ
;
638 flash_erase(s
, s
->cur_addr
, s
->cmd_in_progress
);
641 switch (get_man(s
)) {
643 s
->quad_enable
= !!(s
->data
[1] & 0x02);
646 s
->quad_enable
= extract32(s
->data
[0], 6, 1);
648 s
->four_bytes_address_mode
= extract32(s
->data
[1], 5, 1);
654 if (s
->write_enable
) {
655 s
->write_enable
= false;
658 case EXTEND_ADDR_WRITE
:
662 s
->nonvolatile_cfg
= s
->data
[0] | (s
->data
[1] << 8);
665 s
->volatile_cfg
= s
->data
[0];
668 s
->enh_volatile_cfg
= s
->data
[0];
675 static void reset_memory(Flash
*s
)
677 s
->cmd_in_progress
= NOP
;
680 s
->four_bytes_address_mode
= false;
684 s
->state
= STATE_IDLE
;
685 s
->write_enable
= false;
686 s
->reset_enable
= false;
687 s
->quad_enable
= false;
689 switch (get_man(s
)) {
692 s
->volatile_cfg
|= VCFG_DUMMY
;
693 s
->volatile_cfg
|= VCFG_WRAP_SEQUENTIAL
;
694 if ((s
->nonvolatile_cfg
& NVCFG_XIP_MODE_MASK
)
695 != NVCFG_XIP_MODE_DISABLED
) {
696 s
->volatile_cfg
|= VCFG_XIP_MODE_ENABLED
;
698 s
->volatile_cfg
|= deposit32(s
->volatile_cfg
,
701 extract32(s
->nonvolatile_cfg
,
706 s
->enh_volatile_cfg
= 0;
707 s
->enh_volatile_cfg
|= EVCFG_OUT_DRIVER_STRENGHT_DEF
;
708 s
->enh_volatile_cfg
|= EVCFG_VPP_ACCELERATOR
;
709 s
->enh_volatile_cfg
|= EVCFG_RESET_HOLD_ENABLED
;
710 if (s
->nonvolatile_cfg
& NVCFG_DUAL_IO_MASK
) {
711 s
->enh_volatile_cfg
|= EVCFG_DUAL_IO_ENABLED
;
713 if (s
->nonvolatile_cfg
& NVCFG_QUAD_IO_MASK
) {
714 s
->enh_volatile_cfg
|= EVCFG_QUAD_IO_ENABLED
;
716 if (!(s
->nonvolatile_cfg
& NVCFG_4BYTE_ADDR_MASK
)) {
717 s
->four_bytes_address_mode
= true;
719 if (!(s
->nonvolatile_cfg
& NVCFG_LOWER_SEGMENT_MASK
)) {
720 s
->ear
= s
->size
/ MAX_3BYTES_SIZE
- 1;
724 s
->volatile_cfg
= 0x7;
727 s
->spansion_cr1v
= s
->spansion_cr1nv
;
728 s
->spansion_cr2v
= s
->spansion_cr2nv
;
729 s
->spansion_cr3v
= s
->spansion_cr3nv
;
730 s
->spansion_cr4v
= s
->spansion_cr4nv
;
731 s
->quad_enable
= extract32(s
->spansion_cr1v
,
732 SPANSION_QUAD_CFG_POS
,
733 SPANSION_QUAD_CFG_LEN
735 s
->four_bytes_address_mode
= extract32(s
->spansion_cr2v
,
736 SPANSION_ADDR_LEN_POS
,
737 SPANSION_ADDR_LEN_LEN
744 DB_PRINT_L(0, "Reset done.\n");
747 static void decode_fast_read_cmd(Flash
*s
)
749 s
->needed_bytes
= get_addr_length(s
);
750 switch (get_man(s
)) {
751 /* Dummy cycles - modeled with bytes writes instead of bits */
753 s
->needed_bytes
+= 8;
756 s
->needed_bytes
+= extract32(s
->volatile_cfg
, 4, 4);
759 if (extract32(s
->volatile_cfg
, 6, 2) == 1) {
760 s
->needed_bytes
+= 6;
762 s
->needed_bytes
+= 8;
766 s
->needed_bytes
+= extract32(s
->spansion_cr2v
,
767 SPANSION_DUMMY_CLK_POS
,
768 SPANSION_DUMMY_CLK_LEN
776 s
->state
= STATE_COLLECTING_DATA
;
779 static void decode_dio_read_cmd(Flash
*s
)
781 s
->needed_bytes
= get_addr_length(s
);
782 /* Dummy cycles modeled with bytes writes instead of bits */
783 switch (get_man(s
)) {
785 s
->needed_bytes
+= WINBOND_CONTINUOUS_READ_MODE_CMD_LEN
;
788 s
->needed_bytes
+= SPANSION_CONTINUOUS_READ_MODE_CMD_LEN
;
789 s
->needed_bytes
+= extract32(s
->spansion_cr2v
,
790 SPANSION_DUMMY_CLK_POS
,
791 SPANSION_DUMMY_CLK_LEN
795 s
->needed_bytes
+= extract32(s
->volatile_cfg
, 4, 4);
798 switch (extract32(s
->volatile_cfg
, 6, 2)) {
800 s
->needed_bytes
+= 6;
803 s
->needed_bytes
+= 8;
806 s
->needed_bytes
+= 4;
815 s
->state
= STATE_COLLECTING_DATA
;
818 static void decode_qio_read_cmd(Flash
*s
)
820 s
->needed_bytes
= get_addr_length(s
);
821 /* Dummy cycles modeled with bytes writes instead of bits */
822 switch (get_man(s
)) {
824 s
->needed_bytes
+= WINBOND_CONTINUOUS_READ_MODE_CMD_LEN
;
825 s
->needed_bytes
+= 4;
828 s
->needed_bytes
+= SPANSION_CONTINUOUS_READ_MODE_CMD_LEN
;
829 s
->needed_bytes
+= extract32(s
->spansion_cr2v
,
830 SPANSION_DUMMY_CLK_POS
,
831 SPANSION_DUMMY_CLK_LEN
835 s
->needed_bytes
+= extract32(s
->volatile_cfg
, 4, 4);
838 switch (extract32(s
->volatile_cfg
, 6, 2)) {
840 s
->needed_bytes
+= 4;
843 s
->needed_bytes
+= 8;
846 s
->needed_bytes
+= 6;
855 s
->state
= STATE_COLLECTING_DATA
;
858 static void decode_new_cmd(Flash
*s
, uint32_t value
)
860 s
->cmd_in_progress
= value
;
862 DB_PRINT_L(0, "decoded new command:%x\n", value
);
864 if (value
!= RESET_MEMORY
) {
865 s
->reset_enable
= false;
883 s
->needed_bytes
= get_addr_length(s
);
886 s
->state
= STATE_COLLECTING_DATA
;
895 decode_fast_read_cmd(s
);
900 decode_dio_read_cmd(s
);
905 decode_qio_read_cmd(s
);
909 if (s
->write_enable
) {
910 switch (get_man(s
)) {
913 s
->state
= STATE_COLLECTING_DATA
;
917 s
->state
= STATE_COLLECTING_VAR_LEN_DATA
;
921 s
->state
= STATE_COLLECTING_DATA
;
928 s
->write_enable
= false;
931 s
->write_enable
= true;
935 s
->data
[0] = (!!s
->write_enable
) << 1;
936 if (get_man(s
) == MAN_MACRONIX
) {
937 s
->data
[0] |= (!!s
->quad_enable
) << 6;
941 s
->state
= STATE_READING_DATA
;
945 s
->data
[0] = FSR_FLASH_READY
;
946 if (s
->four_bytes_address_mode
) {
947 s
->data
[0] |= FSR_4BYTE_ADDR_MODE_ENABLED
;
951 s
->state
= STATE_READING_DATA
;
955 DB_PRINT_L(0, "populated jedec code\n");
956 for (i
= 0; i
< s
->pi
->id_len
; i
++) {
957 s
->data
[i
] = s
->pi
->id
[i
];
960 s
->len
= s
->pi
->id_len
;
962 s
->state
= STATE_READING_DATA
;
966 s
->data
[0] = s
->volatile_cfg
& 0xFF;
967 s
->data
[0] |= (!!s
->four_bytes_address_mode
) << 5;
970 s
->state
= STATE_READING_DATA
;
974 if (s
->write_enable
) {
975 DB_PRINT_L(0, "chip erase\n");
976 flash_erase(s
, 0, BULK_ERASE
);
978 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: chip erase with write "
985 s
->four_bytes_address_mode
= true;
988 s
->four_bytes_address_mode
= false;
990 case EXTEND_ADDR_READ
:
994 s
->state
= STATE_READING_DATA
;
996 case EXTEND_ADDR_WRITE
:
997 if (s
->write_enable
) {
1001 s
->state
= STATE_COLLECTING_DATA
;
1005 s
->data
[0] = s
->nonvolatile_cfg
& 0xFF;
1006 s
->data
[1] = (s
->nonvolatile_cfg
>> 8) & 0xFF;
1009 s
->state
= STATE_READING_DATA
;
1012 if (s
->write_enable
&& get_man(s
) == MAN_NUMONYX
) {
1013 s
->needed_bytes
= 2;
1016 s
->state
= STATE_COLLECTING_DATA
;
1020 s
->data
[0] = s
->volatile_cfg
& 0xFF;
1023 s
->state
= STATE_READING_DATA
;
1026 if (s
->write_enable
) {
1027 s
->needed_bytes
= 1;
1030 s
->state
= STATE_COLLECTING_DATA
;
1034 s
->data
[0] = s
->enh_volatile_cfg
& 0xFF;
1037 s
->state
= STATE_READING_DATA
;
1040 if (s
->write_enable
) {
1041 s
->needed_bytes
= 1;
1044 s
->state
= STATE_COLLECTING_DATA
;
1048 s
->reset_enable
= true;
1051 if (s
->reset_enable
) {
1056 switch (get_man(s
)) {
1058 s
->data
[0] = (!!s
->quad_enable
) << 1;
1061 s
->state
= STATE_READING_DATA
;
1064 s
->quad_enable
= true;
1071 s
->quad_enable
= false;
1074 qemu_log_mask(LOG_GUEST_ERROR
, "M25P80: Unknown cmd %x\n", value
);
1079 static int m25p80_cs(SSISlave
*ss
, bool select
)
1081 Flash
*s
= M25P80(ss
);
1084 if (s
->state
== STATE_COLLECTING_VAR_LEN_DATA
) {
1085 complete_collecting_data(s
);
1089 s
->state
= STATE_IDLE
;
1090 flash_sync_dirty(s
, -1);
1093 DB_PRINT_L(0, "%sselect\n", select
? "de" : "");
1098 static uint32_t m25p80_transfer8(SSISlave
*ss
, uint32_t tx
)
1100 Flash
*s
= M25P80(ss
);
1105 case STATE_PAGE_PROGRAM
:
1106 DB_PRINT_L(1, "page program cur_addr=%#" PRIx32
" data=%" PRIx8
"\n",
1107 s
->cur_addr
, (uint8_t)tx
);
1108 flash_write8(s
, s
->cur_addr
, (uint8_t)tx
);
1109 s
->cur_addr
= (s
->cur_addr
+ 1) & (s
->size
- 1);
1113 r
= s
->storage
[s
->cur_addr
];
1114 DB_PRINT_L(1, "READ 0x%" PRIx32
"=%" PRIx8
"\n", s
->cur_addr
,
1116 s
->cur_addr
= (s
->cur_addr
+ 1) & (s
->size
- 1);
1119 case STATE_COLLECTING_DATA
:
1120 case STATE_COLLECTING_VAR_LEN_DATA
:
1122 if (s
->len
>= M25P80_INTERNAL_DATA_BUFFER_SZ
) {
1123 qemu_log_mask(LOG_GUEST_ERROR
,
1124 "M25P80: Write overrun internal data buffer. "
1125 "SPI controller (QEMU emulator or guest driver) "
1126 "is misbehaving\n");
1127 s
->len
= s
->pos
= 0;
1128 s
->state
= STATE_IDLE
;
1132 s
->data
[s
->len
] = (uint8_t)tx
;
1135 if (s
->len
== s
->needed_bytes
) {
1136 complete_collecting_data(s
);
1140 case STATE_READING_DATA
:
1142 if (s
->pos
>= M25P80_INTERNAL_DATA_BUFFER_SZ
) {
1143 qemu_log_mask(LOG_GUEST_ERROR
,
1144 "M25P80: Read overrun internal data buffer. "
1145 "SPI controller (QEMU emulator or guest driver) "
1146 "is misbehaving\n");
1147 s
->len
= s
->pos
= 0;
1148 s
->state
= STATE_IDLE
;
1152 r
= s
->data
[s
->pos
];
1154 if (s
->pos
== s
->len
) {
1156 s
->state
= STATE_IDLE
;
1162 decode_new_cmd(s
, (uint8_t)tx
);
1169 static void m25p80_realize(SSISlave
*ss
, Error
**errp
)
1171 Flash
*s
= M25P80(ss
);
1172 M25P80Class
*mc
= M25P80_GET_CLASS(s
);
1176 s
->size
= s
->pi
->sector_size
* s
->pi
->n_sectors
;
1180 DB_PRINT_L(0, "Binding to IF_MTD drive\n");
1181 s
->storage
= blk_blockalign(s
->blk
, s
->size
);
1183 if (blk_pread(s
->blk
, 0, s
->storage
, s
->size
) != s
->size
) {
1184 error_setg(errp
, "failed to read the initial flash content");
1188 DB_PRINT_L(0, "No BDRV - binding to RAM\n");
1189 s
->storage
= blk_blockalign(NULL
, s
->size
);
1190 memset(s
->storage
, 0xFF, s
->size
);
1194 static void m25p80_reset(DeviceState
*d
)
1196 Flash
*s
= M25P80(d
);
1201 static void m25p80_pre_save(void *opaque
)
1203 flash_sync_dirty((Flash
*)opaque
, -1);
1206 static Property m25p80_properties
[] = {
1207 /* This is default value for Micron flash */
1208 DEFINE_PROP_UINT32("nonvolatile-cfg", Flash
, nonvolatile_cfg
, 0x8FFF),
1209 DEFINE_PROP_UINT8("spansion-cr1nv", Flash
, spansion_cr1nv
, 0x0),
1210 DEFINE_PROP_UINT8("spansion-cr2nv", Flash
, spansion_cr2nv
, 0x8),
1211 DEFINE_PROP_UINT8("spansion-cr3nv", Flash
, spansion_cr3nv
, 0x2),
1212 DEFINE_PROP_UINT8("spansion-cr4nv", Flash
, spansion_cr4nv
, 0x10),
1213 DEFINE_PROP_DRIVE("drive", Flash
, blk
),
1214 DEFINE_PROP_END_OF_LIST(),
1217 static const VMStateDescription vmstate_m25p80
= {
1220 .minimum_version_id
= 0,
1221 .pre_save
= m25p80_pre_save
,
1222 .fields
= (VMStateField
[]) {
1223 VMSTATE_UINT8(state
, Flash
),
1224 VMSTATE_UINT8_ARRAY(data
, Flash
, M25P80_INTERNAL_DATA_BUFFER_SZ
),
1225 VMSTATE_UINT32(len
, Flash
),
1226 VMSTATE_UINT32(pos
, Flash
),
1227 VMSTATE_UINT8(needed_bytes
, Flash
),
1228 VMSTATE_UINT8(cmd_in_progress
, Flash
),
1229 VMSTATE_UINT32(cur_addr
, Flash
),
1230 VMSTATE_BOOL(write_enable
, Flash
),
1231 VMSTATE_BOOL(reset_enable
, Flash
),
1232 VMSTATE_UINT8(ear
, Flash
),
1233 VMSTATE_BOOL(four_bytes_address_mode
, Flash
),
1234 VMSTATE_UINT32(nonvolatile_cfg
, Flash
),
1235 VMSTATE_UINT32(volatile_cfg
, Flash
),
1236 VMSTATE_UINT32(enh_volatile_cfg
, Flash
),
1237 VMSTATE_BOOL(quad_enable
, Flash
),
1238 VMSTATE_UINT8(spansion_cr1nv
, Flash
),
1239 VMSTATE_UINT8(spansion_cr2nv
, Flash
),
1240 VMSTATE_UINT8(spansion_cr3nv
, Flash
),
1241 VMSTATE_UINT8(spansion_cr4nv
, Flash
),
1242 VMSTATE_END_OF_LIST()
1246 static void m25p80_class_init(ObjectClass
*klass
, void *data
)
1248 DeviceClass
*dc
= DEVICE_CLASS(klass
);
1249 SSISlaveClass
*k
= SSI_SLAVE_CLASS(klass
);
1250 M25P80Class
*mc
= M25P80_CLASS(klass
);
1252 k
->realize
= m25p80_realize
;
1253 k
->transfer
= m25p80_transfer8
;
1254 k
->set_cs
= m25p80_cs
;
1255 k
->cs_polarity
= SSI_CS_LOW
;
1256 dc
->vmsd
= &vmstate_m25p80
;
1257 dc
->props
= m25p80_properties
;
1258 dc
->reset
= m25p80_reset
;
1262 static const TypeInfo m25p80_info
= {
1263 .name
= TYPE_M25P80
,
1264 .parent
= TYPE_SSI_SLAVE
,
1265 .instance_size
= sizeof(Flash
),
1266 .class_size
= sizeof(M25P80Class
),
1270 static void m25p80_register_types(void)
1274 type_register_static(&m25p80_info
);
1275 for (i
= 0; i
< ARRAY_SIZE(known_devices
); ++i
) {
1277 .name
= known_devices
[i
].part_name
,
1278 .parent
= TYPE_M25P80
,
1279 .class_init
= m25p80_class_init
,
1280 .class_data
= (void *)&known_devices
[i
],
1286 type_init(m25p80_register_types
)