4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu/atomic.h"
25 #include "qemu/option.h"
26 #include "qemu/config-file.h"
27 #include "sysemu/sysemu.h"
29 #include "hw/pci/msi.h"
30 #include "exec/gdbstub.h"
31 #include "sysemu/kvm.h"
32 #include "qemu/bswap.h"
33 #include "exec/memory.h"
34 #include "exec/address-spaces.h"
35 #include "qemu/event_notifier.h"
38 /* This check must be after config-host.h is included */
40 #include <sys/eventfd.h>
43 #ifdef CONFIG_VALGRIND_H
44 #include <valgrind/memcheck.h>
47 /* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
48 #define PAGE_SIZE TARGET_PAGE_SIZE
53 #define DPRINTF(fmt, ...) \
54 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
56 #define DPRINTF(fmt, ...) \
60 #define KVM_MSI_HASHTAB_SIZE 256
62 typedef struct KVMSlot
65 ram_addr_t memory_size
;
71 typedef struct kvm_dirty_log KVMDirtyLog
;
79 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
80 bool coalesced_flush_in_progress
;
81 int broken_set_mem_region
;
84 int robust_singlestep
;
86 #ifdef KVM_CAP_SET_GUEST_DEBUG
87 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
93 /* The man page (and posix) say ioctl numbers are signed int, but
94 * they're not. Linux, glibc and *BSD all treat ioctl numbers as
95 * unsigned, and treating them as signed here can break things */
96 unsigned irq_set_ioctl
;
97 #ifdef KVM_CAP_IRQ_ROUTING
98 struct kvm_irq_routing
*irq_routes
;
99 int nr_allocated_irq_routes
;
100 uint32_t *used_gsi_bitmap
;
101 unsigned int gsi_count
;
102 QTAILQ_HEAD(msi_hashtab
, KVMMSIRoute
) msi_hashtab
[KVM_MSI_HASHTAB_SIZE
];
108 bool kvm_kernel_irqchip
;
109 bool kvm_async_interrupts_allowed
;
110 bool kvm_halt_in_kernel_allowed
;
111 bool kvm_irqfds_allowed
;
112 bool kvm_msi_via_irqfd_allowed
;
113 bool kvm_gsi_routing_allowed
;
115 bool kvm_readonly_mem_allowed
;
117 static const KVMCapabilityInfo kvm_required_capabilites
[] = {
118 KVM_CAP_INFO(USER_MEMORY
),
119 KVM_CAP_INFO(DESTROY_MEMORY_REGION_WORKS
),
123 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
127 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
128 if (s
->slots
[i
].memory_size
== 0) {
133 fprintf(stderr
, "%s: no free slot available\n", __func__
);
137 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
143 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
144 KVMSlot
*mem
= &s
->slots
[i
];
146 if (start_addr
== mem
->start_addr
&&
147 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
156 * Find overlapping slot with lowest start address
158 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
162 KVMSlot
*found
= NULL
;
165 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
166 KVMSlot
*mem
= &s
->slots
[i
];
168 if (mem
->memory_size
== 0 ||
169 (found
&& found
->start_addr
< mem
->start_addr
)) {
173 if (end_addr
> mem
->start_addr
&&
174 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
182 int kvm_physical_memory_addr_from_host(KVMState
*s
, void *ram
,
187 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
188 KVMSlot
*mem
= &s
->slots
[i
];
190 if (ram
>= mem
->ram
&& ram
< mem
->ram
+ mem
->memory_size
) {
191 *phys_addr
= mem
->start_addr
+ (ram
- mem
->ram
);
199 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
201 struct kvm_userspace_memory_region mem
;
203 mem
.slot
= slot
->slot
;
204 mem
.guest_phys_addr
= slot
->start_addr
;
205 mem
.userspace_addr
= (unsigned long)slot
->ram
;
206 mem
.flags
= slot
->flags
;
207 if (s
->migration_log
) {
208 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
211 if (slot
->memory_size
&& mem
.flags
& KVM_MEM_READONLY
) {
212 /* Set the slot size to 0 before setting the slot to the desired
213 * value. This is needed based on KVM commit 75d61fbc. */
215 kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
217 mem
.memory_size
= slot
->memory_size
;
218 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
221 static void kvm_reset_vcpu(void *opaque
)
223 CPUState
*cpu
= opaque
;
225 kvm_arch_reset_vcpu(cpu
);
228 int kvm_init_vcpu(CPUState
*cpu
)
230 KVMState
*s
= kvm_state
;
234 DPRINTF("kvm_init_vcpu\n");
236 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, (void *)kvm_arch_vcpu_id(cpu
));
238 DPRINTF("kvm_create_vcpu failed\n");
244 cpu
->kvm_vcpu_dirty
= true;
246 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
249 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
253 cpu
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
255 if (cpu
->kvm_run
== MAP_FAILED
) {
257 DPRINTF("mmap'ing vcpu state failed\n");
261 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
) {
262 s
->coalesced_mmio_ring
=
263 (void *)cpu
->kvm_run
+ s
->coalesced_mmio
* PAGE_SIZE
;
266 ret
= kvm_arch_init_vcpu(cpu
);
268 qemu_register_reset(kvm_reset_vcpu
, cpu
);
269 kvm_arch_reset_vcpu(cpu
);
276 * dirty pages logging control
279 static int kvm_mem_flags(KVMState
*s
, bool log_dirty
, bool readonly
)
282 flags
= log_dirty
? KVM_MEM_LOG_DIRTY_PAGES
: 0;
283 if (readonly
&& kvm_readonly_mem_allowed
) {
284 flags
|= KVM_MEM_READONLY
;
289 static int kvm_slot_dirty_pages_log_change(KVMSlot
*mem
, bool log_dirty
)
291 KVMState
*s
= kvm_state
;
292 int flags
, mask
= KVM_MEM_LOG_DIRTY_PAGES
;
295 old_flags
= mem
->flags
;
297 flags
= (mem
->flags
& ~mask
) | kvm_mem_flags(s
, log_dirty
, false);
300 /* If nothing changed effectively, no need to issue ioctl */
301 if (s
->migration_log
) {
302 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
305 if (flags
== old_flags
) {
309 return kvm_set_user_memory_region(s
, mem
);
312 static int kvm_dirty_pages_log_change(hwaddr phys_addr
,
313 ram_addr_t size
, bool log_dirty
)
315 KVMState
*s
= kvm_state
;
316 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
319 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
320 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
321 (hwaddr
)(phys_addr
+ size
- 1));
324 return kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
327 static void kvm_log_start(MemoryListener
*listener
,
328 MemoryRegionSection
*section
)
332 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
333 int128_get64(section
->size
), true);
339 static void kvm_log_stop(MemoryListener
*listener
,
340 MemoryRegionSection
*section
)
344 r
= kvm_dirty_pages_log_change(section
->offset_within_address_space
,
345 int128_get64(section
->size
), false);
351 static int kvm_set_migration_log(int enable
)
353 KVMState
*s
= kvm_state
;
357 s
->migration_log
= enable
;
359 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
362 if (!mem
->memory_size
) {
365 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
368 err
= kvm_set_user_memory_region(s
, mem
);
376 /* get kvm's dirty pages bitmap and update qemu's */
377 static int kvm_get_dirty_pages_log_range(MemoryRegionSection
*section
,
378 unsigned long *bitmap
)
381 unsigned long page_number
, c
;
383 unsigned int pages
= int128_get64(section
->size
) / getpagesize();
384 unsigned int len
= (pages
+ HOST_LONG_BITS
- 1) / HOST_LONG_BITS
;
385 unsigned long hpratio
= getpagesize() / TARGET_PAGE_SIZE
;
388 * bitmap-traveling is faster than memory-traveling (for addr...)
389 * especially when most of the memory is not dirty.
391 for (i
= 0; i
< len
; i
++) {
392 if (bitmap
[i
] != 0) {
393 c
= leul_to_cpu(bitmap
[i
]);
397 page_number
= (i
* HOST_LONG_BITS
+ j
) * hpratio
;
398 addr1
= page_number
* TARGET_PAGE_SIZE
;
399 addr
= section
->offset_within_region
+ addr1
;
400 memory_region_set_dirty(section
->mr
, addr
,
401 TARGET_PAGE_SIZE
* hpratio
);
408 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
411 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
412 * This function updates qemu's dirty bitmap using
413 * memory_region_set_dirty(). This means all bits are set
416 * @start_add: start of logged region.
417 * @end_addr: end of logged region.
419 static int kvm_physical_sync_dirty_bitmap(MemoryRegionSection
*section
)
421 KVMState
*s
= kvm_state
;
422 unsigned long size
, allocated_size
= 0;
426 hwaddr start_addr
= section
->offset_within_address_space
;
427 hwaddr end_addr
= start_addr
+ int128_get64(section
->size
);
429 d
.dirty_bitmap
= NULL
;
430 while (start_addr
< end_addr
) {
431 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
436 /* XXX bad kernel interface alert
437 * For dirty bitmap, kernel allocates array of size aligned to
438 * bits-per-long. But for case when the kernel is 64bits and
439 * the userspace is 32bits, userspace can't align to the same
440 * bits-per-long, since sizeof(long) is different between kernel
441 * and user space. This way, userspace will provide buffer which
442 * may be 4 bytes less than the kernel will use, resulting in
443 * userspace memory corruption (which is not detectable by valgrind
444 * too, in most cases).
445 * So for now, let's align to 64 instead of HOST_LONG_BITS here, in
446 * a hope that sizeof(long) wont become >8 any time soon.
448 size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
),
449 /*HOST_LONG_BITS*/ 64) / 8;
450 if (!d
.dirty_bitmap
) {
451 d
.dirty_bitmap
= g_malloc(size
);
452 } else if (size
> allocated_size
) {
453 d
.dirty_bitmap
= g_realloc(d
.dirty_bitmap
, size
);
455 allocated_size
= size
;
456 memset(d
.dirty_bitmap
, 0, allocated_size
);
460 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
461 DPRINTF("ioctl failed %d\n", errno
);
466 kvm_get_dirty_pages_log_range(section
, d
.dirty_bitmap
);
467 start_addr
= mem
->start_addr
+ mem
->memory_size
;
469 g_free(d
.dirty_bitmap
);
474 static void kvm_coalesce_mmio_region(MemoryListener
*listener
,
475 MemoryRegionSection
*secion
,
476 hwaddr start
, hwaddr size
)
478 KVMState
*s
= kvm_state
;
480 if (s
->coalesced_mmio
) {
481 struct kvm_coalesced_mmio_zone zone
;
487 (void)kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
491 static void kvm_uncoalesce_mmio_region(MemoryListener
*listener
,
492 MemoryRegionSection
*secion
,
493 hwaddr start
, hwaddr size
)
495 KVMState
*s
= kvm_state
;
497 if (s
->coalesced_mmio
) {
498 struct kvm_coalesced_mmio_zone zone
;
504 (void)kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
508 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
512 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
520 static int kvm_set_ioeventfd_mmio(int fd
, uint32_t addr
, uint32_t val
,
521 bool assign
, uint32_t size
, bool datamatch
)
524 struct kvm_ioeventfd iofd
;
526 iofd
.datamatch
= datamatch
? val
: 0;
532 if (!kvm_enabled()) {
537 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
540 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
543 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
552 static int kvm_set_ioeventfd_pio(int fd
, uint16_t addr
, uint16_t val
,
553 bool assign
, uint32_t size
, bool datamatch
)
555 struct kvm_ioeventfd kick
= {
556 .datamatch
= datamatch
? val
: 0,
558 .flags
= KVM_IOEVENTFD_FLAG_PIO
,
563 if (!kvm_enabled()) {
567 kick
.flags
|= KVM_IOEVENTFD_FLAG_DATAMATCH
;
570 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
572 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);
580 static int kvm_check_many_ioeventfds(void)
582 /* Userspace can use ioeventfd for io notification. This requires a host
583 * that supports eventfd(2) and an I/O thread; since eventfd does not
584 * support SIGIO it cannot interrupt the vcpu.
586 * Older kernels have a 6 device limit on the KVM io bus. Find out so we
587 * can avoid creating too many ioeventfds.
589 #if defined(CONFIG_EVENTFD)
592 for (i
= 0; i
< ARRAY_SIZE(ioeventfds
); i
++) {
593 ioeventfds
[i
] = eventfd(0, EFD_CLOEXEC
);
594 if (ioeventfds
[i
] < 0) {
597 ret
= kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, true, 2, true);
599 close(ioeventfds
[i
]);
604 /* Decide whether many devices are supported or not */
605 ret
= i
== ARRAY_SIZE(ioeventfds
);
608 kvm_set_ioeventfd_pio(ioeventfds
[i
], 0, i
, false, 2, true);
609 close(ioeventfds
[i
]);
617 static const KVMCapabilityInfo
*
618 kvm_check_extension_list(KVMState
*s
, const KVMCapabilityInfo
*list
)
621 if (!kvm_check_extension(s
, list
->value
)) {
629 static void kvm_set_phys_mem(MemoryRegionSection
*section
, bool add
)
631 KVMState
*s
= kvm_state
;
634 MemoryRegion
*mr
= section
->mr
;
635 bool log_dirty
= memory_region_is_logging(mr
);
636 bool writeable
= !mr
->readonly
&& !mr
->rom_device
;
637 bool readonly_flag
= mr
->readonly
|| memory_region_is_romd(mr
);
638 hwaddr start_addr
= section
->offset_within_address_space
;
639 ram_addr_t size
= int128_get64(section
->size
);
643 /* kvm works in page size chunks, but the function may be called
644 with sub-page size and unaligned start address. */
645 delta
= TARGET_PAGE_ALIGN(size
) - size
;
651 size
&= TARGET_PAGE_MASK
;
652 if (!size
|| (start_addr
& ~TARGET_PAGE_MASK
)) {
656 if (!memory_region_is_ram(mr
)) {
657 if (writeable
|| !kvm_readonly_mem_allowed
) {
659 } else if (!mr
->romd_mode
) {
660 /* If the memory device is not in romd_mode, then we actually want
661 * to remove the kvm memory slot so all accesses will trap. */
666 ram
= memory_region_get_ram_ptr(mr
) + section
->offset_within_region
+ delta
;
669 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
674 if (add
&& start_addr
>= mem
->start_addr
&&
675 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
676 (ram
- start_addr
== mem
->ram
- mem
->start_addr
)) {
677 /* The new slot fits into the existing one and comes with
678 * identical parameters - update flags and done. */
679 kvm_slot_dirty_pages_log_change(mem
, log_dirty
);
685 if (mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
686 kvm_physical_sync_dirty_bitmap(section
);
689 /* unregister the overlapping slot */
690 mem
->memory_size
= 0;
691 err
= kvm_set_user_memory_region(s
, mem
);
693 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
694 __func__
, strerror(-err
));
698 /* Workaround for older KVM versions: we can't join slots, even not by
699 * unregistering the previous ones and then registering the larger
700 * slot. We have to maintain the existing fragmentation. Sigh.
702 * This workaround assumes that the new slot starts at the same
703 * address as the first existing one. If not or if some overlapping
704 * slot comes around later, we will fail (not seen in practice so far)
705 * - and actually require a recent KVM version. */
706 if (s
->broken_set_mem_region
&&
707 old
.start_addr
== start_addr
&& old
.memory_size
< size
&& add
) {
708 mem
= kvm_alloc_slot(s
);
709 mem
->memory_size
= old
.memory_size
;
710 mem
->start_addr
= old
.start_addr
;
712 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
714 err
= kvm_set_user_memory_region(s
, mem
);
716 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
721 start_addr
+= old
.memory_size
;
722 ram
+= old
.memory_size
;
723 size
-= old
.memory_size
;
727 /* register prefix slot */
728 if (old
.start_addr
< start_addr
) {
729 mem
= kvm_alloc_slot(s
);
730 mem
->memory_size
= start_addr
- old
.start_addr
;
731 mem
->start_addr
= old
.start_addr
;
733 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
735 err
= kvm_set_user_memory_region(s
, mem
);
737 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
738 __func__
, strerror(-err
));
740 fprintf(stderr
, "%s: This is probably because your kernel's " \
741 "PAGE_SIZE is too big. Please try to use 4k " \
742 "PAGE_SIZE!\n", __func__
);
748 /* register suffix slot */
749 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
750 ram_addr_t size_delta
;
752 mem
= kvm_alloc_slot(s
);
753 mem
->start_addr
= start_addr
+ size
;
754 size_delta
= mem
->start_addr
- old
.start_addr
;
755 mem
->memory_size
= old
.memory_size
- size_delta
;
756 mem
->ram
= old
.ram
+ size_delta
;
757 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
759 err
= kvm_set_user_memory_region(s
, mem
);
761 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
762 __func__
, strerror(-err
));
768 /* in case the KVM bug workaround already "consumed" the new slot */
775 mem
= kvm_alloc_slot(s
);
776 mem
->memory_size
= size
;
777 mem
->start_addr
= start_addr
;
779 mem
->flags
= kvm_mem_flags(s
, log_dirty
, readonly_flag
);
781 err
= kvm_set_user_memory_region(s
, mem
);
783 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
789 static void kvm_region_add(MemoryListener
*listener
,
790 MemoryRegionSection
*section
)
792 memory_region_ref(section
->mr
);
793 kvm_set_phys_mem(section
, true);
796 static void kvm_region_del(MemoryListener
*listener
,
797 MemoryRegionSection
*section
)
799 kvm_set_phys_mem(section
, false);
800 memory_region_unref(section
->mr
);
803 static void kvm_log_sync(MemoryListener
*listener
,
804 MemoryRegionSection
*section
)
808 r
= kvm_physical_sync_dirty_bitmap(section
);
814 static void kvm_log_global_start(struct MemoryListener
*listener
)
818 r
= kvm_set_migration_log(1);
822 static void kvm_log_global_stop(struct MemoryListener
*listener
)
826 r
= kvm_set_migration_log(0);
830 static void kvm_mem_ioeventfd_add(MemoryListener
*listener
,
831 MemoryRegionSection
*section
,
832 bool match_data
, uint64_t data
,
835 int fd
= event_notifier_get_fd(e
);
838 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
839 data
, true, int128_get64(section
->size
),
842 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
843 __func__
, strerror(-r
));
848 static void kvm_mem_ioeventfd_del(MemoryListener
*listener
,
849 MemoryRegionSection
*section
,
850 bool match_data
, uint64_t data
,
853 int fd
= event_notifier_get_fd(e
);
856 r
= kvm_set_ioeventfd_mmio(fd
, section
->offset_within_address_space
,
857 data
, false, int128_get64(section
->size
),
864 static void kvm_io_ioeventfd_add(MemoryListener
*listener
,
865 MemoryRegionSection
*section
,
866 bool match_data
, uint64_t data
,
869 int fd
= event_notifier_get_fd(e
);
872 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
873 data
, true, int128_get64(section
->size
),
876 fprintf(stderr
, "%s: error adding ioeventfd: %s\n",
877 __func__
, strerror(-r
));
882 static void kvm_io_ioeventfd_del(MemoryListener
*listener
,
883 MemoryRegionSection
*section
,
884 bool match_data
, uint64_t data
,
888 int fd
= event_notifier_get_fd(e
);
891 r
= kvm_set_ioeventfd_pio(fd
, section
->offset_within_address_space
,
892 data
, false, int128_get64(section
->size
),
899 static MemoryListener kvm_memory_listener
= {
900 .region_add
= kvm_region_add
,
901 .region_del
= kvm_region_del
,
902 .log_start
= kvm_log_start
,
903 .log_stop
= kvm_log_stop
,
904 .log_sync
= kvm_log_sync
,
905 .log_global_start
= kvm_log_global_start
,
906 .log_global_stop
= kvm_log_global_stop
,
907 .eventfd_add
= kvm_mem_ioeventfd_add
,
908 .eventfd_del
= kvm_mem_ioeventfd_del
,
909 .coalesced_mmio_add
= kvm_coalesce_mmio_region
,
910 .coalesced_mmio_del
= kvm_uncoalesce_mmio_region
,
914 static MemoryListener kvm_io_listener
= {
915 .eventfd_add
= kvm_io_ioeventfd_add
,
916 .eventfd_del
= kvm_io_ioeventfd_del
,
920 static void kvm_handle_interrupt(CPUState
*cpu
, int mask
)
922 cpu
->interrupt_request
|= mask
;
924 if (!qemu_cpu_is_self(cpu
)) {
929 int kvm_set_irq(KVMState
*s
, int irq
, int level
)
931 struct kvm_irq_level event
;
934 assert(kvm_async_interrupts_enabled());
938 ret
= kvm_vm_ioctl(s
, s
->irq_set_ioctl
, &event
);
940 perror("kvm_set_irq");
944 return (s
->irq_set_ioctl
== KVM_IRQ_LINE
) ? 1 : event
.status
;
947 #ifdef KVM_CAP_IRQ_ROUTING
948 typedef struct KVMMSIRoute
{
949 struct kvm_irq_routing_entry kroute
;
950 QTAILQ_ENTRY(KVMMSIRoute
) entry
;
953 static void set_gsi(KVMState
*s
, unsigned int gsi
)
955 s
->used_gsi_bitmap
[gsi
/ 32] |= 1U << (gsi
% 32);
958 static void clear_gsi(KVMState
*s
, unsigned int gsi
)
960 s
->used_gsi_bitmap
[gsi
/ 32] &= ~(1U << (gsi
% 32));
963 void kvm_init_irq_routing(KVMState
*s
)
967 gsi_count
= kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
);
969 unsigned int gsi_bits
, i
;
971 /* Round up so we can search ints using ffs */
972 gsi_bits
= ALIGN(gsi_count
, 32);
973 s
->used_gsi_bitmap
= g_malloc0(gsi_bits
/ 8);
974 s
->gsi_count
= gsi_count
;
976 /* Mark any over-allocated bits as already in use */
977 for (i
= gsi_count
; i
< gsi_bits
; i
++) {
982 s
->irq_routes
= g_malloc0(sizeof(*s
->irq_routes
));
983 s
->nr_allocated_irq_routes
= 0;
985 if (!s
->direct_msi
) {
986 for (i
= 0; i
< KVM_MSI_HASHTAB_SIZE
; i
++) {
987 QTAILQ_INIT(&s
->msi_hashtab
[i
]);
991 kvm_arch_init_irq_routing(s
);
994 void kvm_irqchip_commit_routes(KVMState
*s
)
998 s
->irq_routes
->flags
= 0;
999 ret
= kvm_vm_ioctl(s
, KVM_SET_GSI_ROUTING
, s
->irq_routes
);
1003 static void kvm_add_routing_entry(KVMState
*s
,
1004 struct kvm_irq_routing_entry
*entry
)
1006 struct kvm_irq_routing_entry
*new;
1009 if (s
->irq_routes
->nr
== s
->nr_allocated_irq_routes
) {
1010 n
= s
->nr_allocated_irq_routes
* 2;
1014 size
= sizeof(struct kvm_irq_routing
);
1015 size
+= n
* sizeof(*new);
1016 s
->irq_routes
= g_realloc(s
->irq_routes
, size
);
1017 s
->nr_allocated_irq_routes
= n
;
1019 n
= s
->irq_routes
->nr
++;
1020 new = &s
->irq_routes
->entries
[n
];
1024 set_gsi(s
, entry
->gsi
);
1027 static int kvm_update_routing_entry(KVMState
*s
,
1028 struct kvm_irq_routing_entry
*new_entry
)
1030 struct kvm_irq_routing_entry
*entry
;
1033 for (n
= 0; n
< s
->irq_routes
->nr
; n
++) {
1034 entry
= &s
->irq_routes
->entries
[n
];
1035 if (entry
->gsi
!= new_entry
->gsi
) {
1039 if(!memcmp(entry
, new_entry
, sizeof *entry
)) {
1043 *entry
= *new_entry
;
1045 kvm_irqchip_commit_routes(s
);
1053 void kvm_irqchip_add_irq_route(KVMState
*s
, int irq
, int irqchip
, int pin
)
1055 struct kvm_irq_routing_entry e
= {};
1057 assert(pin
< s
->gsi_count
);
1060 e
.type
= KVM_IRQ_ROUTING_IRQCHIP
;
1062 e
.u
.irqchip
.irqchip
= irqchip
;
1063 e
.u
.irqchip
.pin
= pin
;
1064 kvm_add_routing_entry(s
, &e
);
1067 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1069 struct kvm_irq_routing_entry
*e
;
1072 for (i
= 0; i
< s
->irq_routes
->nr
; i
++) {
1073 e
= &s
->irq_routes
->entries
[i
];
1074 if (e
->gsi
== virq
) {
1075 s
->irq_routes
->nr
--;
1076 *e
= s
->irq_routes
->entries
[s
->irq_routes
->nr
];
1082 static unsigned int kvm_hash_msi(uint32_t data
)
1084 /* This is optimized for IA32 MSI layout. However, no other arch shall
1085 * repeat the mistake of not providing a direct MSI injection API. */
1089 static void kvm_flush_dynamic_msi_routes(KVMState
*s
)
1091 KVMMSIRoute
*route
, *next
;
1094 for (hash
= 0; hash
< KVM_MSI_HASHTAB_SIZE
; hash
++) {
1095 QTAILQ_FOREACH_SAFE(route
, &s
->msi_hashtab
[hash
], entry
, next
) {
1096 kvm_irqchip_release_virq(s
, route
->kroute
.gsi
);
1097 QTAILQ_REMOVE(&s
->msi_hashtab
[hash
], route
, entry
);
1103 static int kvm_irqchip_get_virq(KVMState
*s
)
1105 uint32_t *word
= s
->used_gsi_bitmap
;
1106 int max_words
= ALIGN(s
->gsi_count
, 32) / 32;
1111 /* Return the lowest unused GSI in the bitmap */
1112 for (i
= 0; i
< max_words
; i
++) {
1113 bit
= ffs(~word
[i
]);
1118 return bit
- 1 + i
* 32;
1120 if (!s
->direct_msi
&& retry
) {
1122 kvm_flush_dynamic_msi_routes(s
);
1129 static KVMMSIRoute
*kvm_lookup_msi_route(KVMState
*s
, MSIMessage msg
)
1131 unsigned int hash
= kvm_hash_msi(msg
.data
);
1134 QTAILQ_FOREACH(route
, &s
->msi_hashtab
[hash
], entry
) {
1135 if (route
->kroute
.u
.msi
.address_lo
== (uint32_t)msg
.address
&&
1136 route
->kroute
.u
.msi
.address_hi
== (msg
.address
>> 32) &&
1137 route
->kroute
.u
.msi
.data
== le32_to_cpu(msg
.data
)) {
1144 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1149 if (s
->direct_msi
) {
1150 msi
.address_lo
= (uint32_t)msg
.address
;
1151 msi
.address_hi
= msg
.address
>> 32;
1152 msi
.data
= le32_to_cpu(msg
.data
);
1154 memset(msi
.pad
, 0, sizeof(msi
.pad
));
1156 return kvm_vm_ioctl(s
, KVM_SIGNAL_MSI
, &msi
);
1159 route
= kvm_lookup_msi_route(s
, msg
);
1163 virq
= kvm_irqchip_get_virq(s
);
1168 route
= g_malloc0(sizeof(KVMMSIRoute
));
1169 route
->kroute
.gsi
= virq
;
1170 route
->kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1171 route
->kroute
.flags
= 0;
1172 route
->kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1173 route
->kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1174 route
->kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1176 kvm_add_routing_entry(s
, &route
->kroute
);
1177 kvm_irqchip_commit_routes(s
);
1179 QTAILQ_INSERT_TAIL(&s
->msi_hashtab
[kvm_hash_msi(msg
.data
)], route
,
1183 assert(route
->kroute
.type
== KVM_IRQ_ROUTING_MSI
);
1185 return kvm_set_irq(s
, route
->kroute
.gsi
, 1);
1188 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1190 struct kvm_irq_routing_entry kroute
= {};
1193 if (!kvm_gsi_routing_enabled()) {
1197 virq
= kvm_irqchip_get_virq(s
);
1203 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1205 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1206 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1207 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1209 kvm_add_routing_entry(s
, &kroute
);
1210 kvm_irqchip_commit_routes(s
);
1215 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1217 struct kvm_irq_routing_entry kroute
= {};
1219 if (!kvm_irqchip_in_kernel()) {
1224 kroute
.type
= KVM_IRQ_ROUTING_MSI
;
1226 kroute
.u
.msi
.address_lo
= (uint32_t)msg
.address
;
1227 kroute
.u
.msi
.address_hi
= msg
.address
>> 32;
1228 kroute
.u
.msi
.data
= le32_to_cpu(msg
.data
);
1230 return kvm_update_routing_entry(s
, &kroute
);
1233 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int rfd
, int virq
,
1236 struct kvm_irqfd irqfd
= {
1239 .flags
= assign
? 0 : KVM_IRQFD_FLAG_DEASSIGN
,
1243 irqfd
.flags
|= KVM_IRQFD_FLAG_RESAMPLE
;
1244 irqfd
.resamplefd
= rfd
;
1247 if (!kvm_irqfds_enabled()) {
1251 return kvm_vm_ioctl(s
, KVM_IRQFD
, &irqfd
);
1254 #else /* !KVM_CAP_IRQ_ROUTING */
1256 void kvm_init_irq_routing(KVMState
*s
)
1260 void kvm_irqchip_release_virq(KVMState
*s
, int virq
)
1264 int kvm_irqchip_send_msi(KVMState
*s
, MSIMessage msg
)
1269 int kvm_irqchip_add_msi_route(KVMState
*s
, MSIMessage msg
)
1274 static int kvm_irqchip_assign_irqfd(KVMState
*s
, int fd
, int virq
, bool assign
)
1279 int kvm_irqchip_update_msi_route(KVMState
*s
, int virq
, MSIMessage msg
)
1283 #endif /* !KVM_CAP_IRQ_ROUTING */
1285 int kvm_irqchip_add_irqfd_notifier(KVMState
*s
, EventNotifier
*n
,
1286 EventNotifier
*rn
, int virq
)
1288 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
),
1289 rn
? event_notifier_get_fd(rn
) : -1, virq
, true);
1292 int kvm_irqchip_remove_irqfd_notifier(KVMState
*s
, EventNotifier
*n
, int virq
)
1294 return kvm_irqchip_assign_irqfd(s
, event_notifier_get_fd(n
), -1, virq
,
1298 static int kvm_irqchip_create(KVMState
*s
)
1302 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "kernel_irqchip", true) ||
1303 !kvm_check_extension(s
, KVM_CAP_IRQCHIP
)) {
1307 ret
= kvm_vm_ioctl(s
, KVM_CREATE_IRQCHIP
);
1309 fprintf(stderr
, "Create kernel irqchip failed\n");
1313 kvm_kernel_irqchip
= true;
1314 /* If we have an in-kernel IRQ chip then we must have asynchronous
1315 * interrupt delivery (though the reverse is not necessarily true)
1317 kvm_async_interrupts_allowed
= true;
1318 kvm_halt_in_kernel_allowed
= true;
1320 kvm_init_irq_routing(s
);
1325 static int kvm_max_vcpus(KVMState
*s
)
1329 /* Find number of supported CPUs using the recommended
1330 * procedure from the kernel API documentation to cope with
1331 * older kernels that may be missing capabilities.
1333 ret
= kvm_check_extension(s
, KVM_CAP_MAX_VCPUS
);
1337 ret
= kvm_check_extension(s
, KVM_CAP_NR_VCPUS
);
1347 static const char upgrade_note
[] =
1348 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
1349 "(see http://sourceforge.net/projects/kvm).\n";
1351 const KVMCapabilityInfo
*missing_cap
;
1356 s
= g_malloc0(sizeof(KVMState
));
1359 * On systems where the kernel can support different base page
1360 * sizes, host page size may be different from TARGET_PAGE_SIZE,
1361 * even with KVM. TARGET_PAGE_SIZE is assumed to be the minimum
1362 * page size for the system though.
1364 assert(TARGET_PAGE_SIZE
<= getpagesize());
1366 #ifdef KVM_CAP_SET_GUEST_DEBUG
1367 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
1369 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
1370 s
->slots
[i
].slot
= i
;
1373 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
1375 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
1380 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
1381 if (ret
< KVM_API_VERSION
) {
1385 fprintf(stderr
, "kvm version too old\n");
1389 if (ret
> KVM_API_VERSION
) {
1391 fprintf(stderr
, "kvm version not supported\n");
1395 max_vcpus
= kvm_max_vcpus(s
);
1396 if (smp_cpus
> max_vcpus
) {
1398 fprintf(stderr
, "Number of SMP cpus requested (%d) exceeds max cpus "
1399 "supported by KVM (%d)\n", smp_cpus
, max_vcpus
);
1403 if (max_cpus
> max_vcpus
) {
1405 fprintf(stderr
, "Number of hotpluggable cpus requested (%d) exceeds max cpus "
1406 "supported by KVM (%d)\n", max_cpus
, max_vcpus
);
1410 s
->vmfd
= kvm_ioctl(s
, KVM_CREATE_VM
, 0);
1413 fprintf(stderr
, "Please add the 'switch_amode' kernel parameter to "
1414 "your host kernel command line\n");
1420 missing_cap
= kvm_check_extension_list(s
, kvm_required_capabilites
);
1423 kvm_check_extension_list(s
, kvm_arch_required_capabilities
);
1427 fprintf(stderr
, "kvm does not support %s\n%s",
1428 missing_cap
->name
, upgrade_note
);
1432 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
1434 s
->broken_set_mem_region
= 1;
1435 ret
= kvm_check_extension(s
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
1437 s
->broken_set_mem_region
= 0;
1440 #ifdef KVM_CAP_VCPU_EVENTS
1441 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
1444 s
->robust_singlestep
=
1445 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
1447 #ifdef KVM_CAP_DEBUGREGS
1448 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
1451 #ifdef KVM_CAP_XSAVE
1452 s
->xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1456 s
->xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1459 #ifdef KVM_CAP_PIT_STATE2
1460 s
->pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1463 #ifdef KVM_CAP_IRQ_ROUTING
1464 s
->direct_msi
= (kvm_check_extension(s
, KVM_CAP_SIGNAL_MSI
) > 0);
1467 s
->intx_set_mask
= kvm_check_extension(s
, KVM_CAP_PCI_2_3
);
1469 s
->irq_set_ioctl
= KVM_IRQ_LINE
;
1470 if (kvm_check_extension(s
, KVM_CAP_IRQ_INJECT_STATUS
)) {
1471 s
->irq_set_ioctl
= KVM_IRQ_LINE_STATUS
;
1474 #ifdef KVM_CAP_READONLY_MEM
1475 kvm_readonly_mem_allowed
=
1476 (kvm_check_extension(s
, KVM_CAP_READONLY_MEM
) > 0);
1479 ret
= kvm_arch_init(s
);
1484 ret
= kvm_irqchip_create(s
);
1490 memory_listener_register(&kvm_memory_listener
, &address_space_memory
);
1491 memory_listener_register(&kvm_io_listener
, &address_space_io
);
1493 s
->many_ioeventfds
= kvm_check_many_ioeventfds();
1495 cpu_interrupt_handler
= kvm_handle_interrupt
;
1511 static void kvm_handle_io(uint16_t port
, void *data
, int direction
, int size
,
1515 uint8_t *ptr
= data
;
1517 for (i
= 0; i
< count
; i
++) {
1518 address_space_rw(&address_space_io
, port
, ptr
, size
,
1519 direction
== KVM_EXIT_IO_OUT
);
1524 static int kvm_handle_internal_error(CPUState
*cpu
, struct kvm_run
*run
)
1526 fprintf(stderr
, "KVM internal error.");
1527 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
1530 fprintf(stderr
, " Suberror: %d\n", run
->internal
.suberror
);
1531 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
1532 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
1533 i
, (uint64_t)run
->internal
.data
[i
]);
1536 fprintf(stderr
, "\n");
1538 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
1539 fprintf(stderr
, "emulation failure\n");
1540 if (!kvm_arch_stop_on_emulation_error(cpu
)) {
1541 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1542 return EXCP_INTERRUPT
;
1545 /* FIXME: Should trigger a qmp message to let management know
1546 * something went wrong.
1551 void kvm_flush_coalesced_mmio_buffer(void)
1553 KVMState
*s
= kvm_state
;
1555 if (s
->coalesced_flush_in_progress
) {
1559 s
->coalesced_flush_in_progress
= true;
1561 if (s
->coalesced_mmio_ring
) {
1562 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
1563 while (ring
->first
!= ring
->last
) {
1564 struct kvm_coalesced_mmio
*ent
;
1566 ent
= &ring
->coalesced_mmio
[ring
->first
];
1568 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
1570 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
1574 s
->coalesced_flush_in_progress
= false;
1577 static void do_kvm_cpu_synchronize_state(void *arg
)
1579 CPUState
*cpu
= arg
;
1581 if (!cpu
->kvm_vcpu_dirty
) {
1582 kvm_arch_get_registers(cpu
);
1583 cpu
->kvm_vcpu_dirty
= true;
1587 void kvm_cpu_synchronize_state(CPUState
*cpu
)
1589 if (!cpu
->kvm_vcpu_dirty
) {
1590 run_on_cpu(cpu
, do_kvm_cpu_synchronize_state
, cpu
);
1594 void kvm_cpu_synchronize_post_reset(CPUState
*cpu
)
1596 kvm_arch_put_registers(cpu
, KVM_PUT_RESET_STATE
);
1597 cpu
->kvm_vcpu_dirty
= false;
1600 void kvm_cpu_synchronize_post_init(CPUState
*cpu
)
1602 kvm_arch_put_registers(cpu
, KVM_PUT_FULL_STATE
);
1603 cpu
->kvm_vcpu_dirty
= false;
1606 int kvm_cpu_exec(CPUState
*cpu
)
1608 struct kvm_run
*run
= cpu
->kvm_run
;
1611 DPRINTF("kvm_cpu_exec()\n");
1613 if (kvm_arch_process_async_events(cpu
)) {
1614 cpu
->exit_request
= 0;
1619 if (cpu
->kvm_vcpu_dirty
) {
1620 kvm_arch_put_registers(cpu
, KVM_PUT_RUNTIME_STATE
);
1621 cpu
->kvm_vcpu_dirty
= false;
1624 kvm_arch_pre_run(cpu
, run
);
1625 if (cpu
->exit_request
) {
1626 DPRINTF("interrupt exit requested\n");
1628 * KVM requires us to reenter the kernel after IO exits to complete
1629 * instruction emulation. This self-signal will ensure that we
1632 qemu_cpu_kick_self();
1634 qemu_mutex_unlock_iothread();
1636 run_ret
= kvm_vcpu_ioctl(cpu
, KVM_RUN
, 0);
1638 qemu_mutex_lock_iothread();
1639 kvm_arch_post_run(cpu
, run
);
1642 if (run_ret
== -EINTR
|| run_ret
== -EAGAIN
) {
1643 DPRINTF("io window exit\n");
1644 ret
= EXCP_INTERRUPT
;
1647 fprintf(stderr
, "error: kvm run failed %s\n",
1648 strerror(-run_ret
));
1652 trace_kvm_run_exit(cpu
->cpu_index
, run
->exit_reason
);
1653 switch (run
->exit_reason
) {
1655 DPRINTF("handle_io\n");
1656 kvm_handle_io(run
->io
.port
,
1657 (uint8_t *)run
+ run
->io
.data_offset
,
1664 DPRINTF("handle_mmio\n");
1665 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
1668 run
->mmio
.is_write
);
1671 case KVM_EXIT_IRQ_WINDOW_OPEN
:
1672 DPRINTF("irq_window_open\n");
1673 ret
= EXCP_INTERRUPT
;
1675 case KVM_EXIT_SHUTDOWN
:
1676 DPRINTF("shutdown\n");
1677 qemu_system_reset_request();
1678 ret
= EXCP_INTERRUPT
;
1680 case KVM_EXIT_UNKNOWN
:
1681 fprintf(stderr
, "KVM: unknown exit, hardware reason %" PRIx64
"\n",
1682 (uint64_t)run
->hw
.hardware_exit_reason
);
1685 case KVM_EXIT_INTERNAL_ERROR
:
1686 ret
= kvm_handle_internal_error(cpu
, run
);
1689 DPRINTF("kvm_arch_handle_exit\n");
1690 ret
= kvm_arch_handle_exit(cpu
, run
);
1696 cpu_dump_state(cpu
, stderr
, fprintf
, CPU_DUMP_CODE
);
1697 vm_stop(RUN_STATE_INTERNAL_ERROR
);
1700 cpu
->exit_request
= 0;
1704 int kvm_ioctl(KVMState
*s
, int type
, ...)
1711 arg
= va_arg(ap
, void *);
1714 trace_kvm_ioctl(type
, arg
);
1715 ret
= ioctl(s
->fd
, type
, arg
);
1722 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
1729 arg
= va_arg(ap
, void *);
1732 trace_kvm_vm_ioctl(type
, arg
);
1733 ret
= ioctl(s
->vmfd
, type
, arg
);
1740 int kvm_vcpu_ioctl(CPUState
*cpu
, int type
, ...)
1747 arg
= va_arg(ap
, void *);
1750 trace_kvm_vcpu_ioctl(cpu
->cpu_index
, type
, arg
);
1751 ret
= ioctl(cpu
->kvm_fd
, type
, arg
);
1758 int kvm_has_sync_mmu(void)
1760 return kvm_check_extension(kvm_state
, KVM_CAP_SYNC_MMU
);
1763 int kvm_has_vcpu_events(void)
1765 return kvm_state
->vcpu_events
;
1768 int kvm_has_robust_singlestep(void)
1770 return kvm_state
->robust_singlestep
;
1773 int kvm_has_debugregs(void)
1775 return kvm_state
->debugregs
;
1778 int kvm_has_xsave(void)
1780 return kvm_state
->xsave
;
1783 int kvm_has_xcrs(void)
1785 return kvm_state
->xcrs
;
1788 int kvm_has_pit_state2(void)
1790 return kvm_state
->pit_state2
;
1793 int kvm_has_many_ioeventfds(void)
1795 if (!kvm_enabled()) {
1798 return kvm_state
->many_ioeventfds
;
1801 int kvm_has_gsi_routing(void)
1803 #ifdef KVM_CAP_IRQ_ROUTING
1804 return kvm_check_extension(kvm_state
, KVM_CAP_IRQ_ROUTING
);
1810 int kvm_has_intx_set_mask(void)
1812 return kvm_state
->intx_set_mask
;
1815 void *kvm_ram_alloc(ram_addr_t size
)
1820 mem
= kvm_arch_ram_alloc(size
);
1825 return qemu_anon_ram_alloc(size
);
1828 void kvm_setup_guest_memory(void *start
, size_t size
)
1830 #ifdef CONFIG_VALGRIND_H
1831 VALGRIND_MAKE_MEM_DEFINED(start
, size
);
1833 if (!kvm_has_sync_mmu()) {
1834 int ret
= qemu_madvise(start
, size
, QEMU_MADV_DONTFORK
);
1837 perror("qemu_madvise");
1839 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1845 #ifdef KVM_CAP_SET_GUEST_DEBUG
1846 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*cpu
,
1849 struct kvm_sw_breakpoint
*bp
;
1851 QTAILQ_FOREACH(bp
, &cpu
->kvm_state
->kvm_sw_breakpoints
, entry
) {
1859 int kvm_sw_breakpoints_active(CPUState
*cpu
)
1861 return !QTAILQ_EMPTY(&cpu
->kvm_state
->kvm_sw_breakpoints
);
1864 struct kvm_set_guest_debug_data
{
1865 struct kvm_guest_debug dbg
;
1870 static void kvm_invoke_set_guest_debug(void *data
)
1872 struct kvm_set_guest_debug_data
*dbg_data
= data
;
1874 dbg_data
->err
= kvm_vcpu_ioctl(dbg_data
->cpu
, KVM_SET_GUEST_DEBUG
,
1878 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
1880 struct kvm_set_guest_debug_data data
;
1882 data
.dbg
.control
= reinject_trap
;
1884 if (cpu
->singlestep_enabled
) {
1885 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
1887 kvm_arch_update_guest_debug(cpu
, &data
.dbg
);
1890 run_on_cpu(cpu
, kvm_invoke_set_guest_debug
, &data
);
1894 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
1895 target_ulong len
, int type
)
1897 struct kvm_sw_breakpoint
*bp
;
1900 if (type
== GDB_BREAKPOINT_SW
) {
1901 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
1907 bp
= g_malloc(sizeof(struct kvm_sw_breakpoint
));
1914 err
= kvm_arch_insert_sw_breakpoint(cpu
, bp
);
1920 QTAILQ_INSERT_HEAD(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
1922 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
1929 err
= kvm_update_guest_debug(cpu
, 0);
1937 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
1938 target_ulong len
, int type
)
1940 struct kvm_sw_breakpoint
*bp
;
1943 if (type
== GDB_BREAKPOINT_SW
) {
1944 bp
= kvm_find_sw_breakpoint(cpu
, addr
);
1949 if (bp
->use_count
> 1) {
1954 err
= kvm_arch_remove_sw_breakpoint(cpu
, bp
);
1959 QTAILQ_REMOVE(&cpu
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
1962 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
1969 err
= kvm_update_guest_debug(cpu
, 0);
1977 void kvm_remove_all_breakpoints(CPUState
*cpu
)
1979 struct kvm_sw_breakpoint
*bp
, *next
;
1980 KVMState
*s
= cpu
->kvm_state
;
1982 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
1983 if (kvm_arch_remove_sw_breakpoint(cpu
, bp
) != 0) {
1984 /* Try harder to find a CPU that currently sees the breakpoint. */
1986 if (kvm_arch_remove_sw_breakpoint(cpu
, bp
) == 0) {
1991 QTAILQ_REMOVE(&s
->kvm_sw_breakpoints
, bp
, entry
);
1994 kvm_arch_remove_all_hw_breakpoints();
1997 kvm_update_guest_debug(cpu
, 0);
2001 #else /* !KVM_CAP_SET_GUEST_DEBUG */
2003 int kvm_update_guest_debug(CPUState
*cpu
, unsigned long reinject_trap
)
2008 int kvm_insert_breakpoint(CPUState
*cpu
, target_ulong addr
,
2009 target_ulong len
, int type
)
2014 int kvm_remove_breakpoint(CPUState
*cpu
, target_ulong addr
,
2015 target_ulong len
, int type
)
2020 void kvm_remove_all_breakpoints(CPUState
*cpu
)
2023 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
2025 int kvm_set_signal_mask(CPUState
*cpu
, const sigset_t
*sigset
)
2027 struct kvm_signal_mask
*sigmask
;
2031 return kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, NULL
);
2034 sigmask
= g_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
2037 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
2038 r
= kvm_vcpu_ioctl(cpu
, KVM_SET_SIGNAL_MASK
, sigmask
);
2043 int kvm_on_sigbus_vcpu(CPUState
*cpu
, int code
, void *addr
)
2045 return kvm_arch_on_sigbus_vcpu(cpu
, code
, addr
);
2048 int kvm_on_sigbus(int code
, void *addr
)
2050 return kvm_arch_on_sigbus(code
, addr
);