2 * OneNAND flash memories emulation.
4 * Copyright (C) 2008 Nokia Corporation
5 * Written by Andrzej Zaborowski <andrew@openedhand.com>
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as
9 * published by the Free Software Foundation; either version 2 or
10 * (at your option) version 3 of the License.
12 * This program is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License along
18 * with this program; if not, see <http://www.gnu.org/licenses/>.
21 #include "qemu-common.h"
27 /* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
31 #define BLOCK_SHIFT (PAGE_SHIFT + 6)
36 target_phys_addr_t base
;
39 BlockDriverState
*bdrv
;
40 BlockDriverState
*bdrv_cur
;
73 ONEN_BUF_DEST_BLOCK
= 2,
74 ONEN_BUF_DEST_PAGE
= 3,
79 ONEN_ERR_CMD
= 1 << 10,
80 ONEN_ERR_ERASE
= 1 << 11,
81 ONEN_ERR_PROG
= 1 << 12,
82 ONEN_ERR_LOAD
= 1 << 13,
86 ONEN_INT_RESET
= 1 << 4,
87 ONEN_INT_ERASE
= 1 << 5,
88 ONEN_INT_PROG
= 1 << 6,
89 ONEN_INT_LOAD
= 1 << 7,
94 ONEN_LOCK_LOCKTIGHTEN
= 1 << 0,
95 ONEN_LOCK_LOCKED
= 1 << 1,
96 ONEN_LOCK_UNLOCKED
= 1 << 2,
99 void onenand_base_update(void *opaque
, target_phys_addr_t
new)
101 OneNANDState
*s
= (OneNANDState
*) opaque
;
105 /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
106 * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
107 * write boot commands. Also take note of the BWPS bit. */
108 cpu_register_physical_memory(s
->base
+ (0x0000 << s
->shift
),
109 0x0200 << s
->shift
, s
->iomemtype
);
110 cpu_register_physical_memory(s
->base
+ (0x0200 << s
->shift
),
112 (s
->ram
+(0x0200 << s
->shift
)) | IO_MEM_RAM
);
114 cpu_register_physical_memory_offset(s
->base
+ (0xc000 << s
->shift
),
115 0x4000 << s
->shift
, s
->iomemtype
, (0xc000 << s
->shift
));
118 void onenand_base_unmap(void *opaque
)
120 OneNANDState
*s
= (OneNANDState
*) opaque
;
122 cpu_register_physical_memory(s
->base
,
123 0x10000 << s
->shift
, IO_MEM_UNASSIGNED
);
126 static void onenand_intr_update(OneNANDState
*s
)
128 qemu_set_irq(s
->intr
, ((s
->intstatus
>> 15) ^ (~s
->config
[0] >> 6)) & 1);
131 /* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
132 static void onenand_reset(OneNANDState
*s
, int cold
)
134 memset(&s
->addr
, 0, sizeof(s
->addr
));
138 s
->config
[0] = 0x40c0;
139 s
->config
[1] = 0x0000;
140 onenand_intr_update(s
);
141 qemu_irq_raise(s
->rdy
);
143 s
->intstatus
= cold
? 0x8080 : 0x8010;
146 s
->wpstatus
= 0x0002;
149 s
->bdrv_cur
= s
->bdrv
;
150 s
->current
= s
->image
;
151 s
->secs_cur
= s
->secs
;
154 /* Lock the whole flash */
155 memset(s
->blockwp
, ONEN_LOCK_LOCKED
, s
->blocks
);
157 if (s
->bdrv
&& bdrv_read(s
->bdrv
, 0, s
->boot
[0], 8) < 0)
158 hw_error("%s: Loading the BootRAM failed.\n", __FUNCTION__
);
162 static inline int onenand_load_main(OneNANDState
*s
, int sec
, int secn
,
166 return bdrv_read(s
->bdrv_cur
, sec
, dest
, secn
) < 0;
167 else if (sec
+ secn
> s
->secs_cur
)
170 memcpy(dest
, s
->current
+ (sec
<< 9), secn
<< 9);
175 static inline int onenand_prog_main(OneNANDState
*s
, int sec
, int secn
,
179 return bdrv_write(s
->bdrv_cur
, sec
, src
, secn
) < 0;
180 else if (sec
+ secn
> s
->secs_cur
)
183 memcpy(s
->current
+ (sec
<< 9), src
, secn
<< 9);
188 static inline int onenand_load_spare(OneNANDState
*s
, int sec
, int secn
,
194 if (bdrv_read(s
->bdrv_cur
, s
->secs_cur
+ (sec
>> 5), buf
, 1) < 0)
196 memcpy(dest
, buf
+ ((sec
& 31) << 4), secn
<< 4);
197 } else if (sec
+ secn
> s
->secs_cur
)
200 memcpy(dest
, s
->current
+ (s
->secs_cur
<< 9) + (sec
<< 4), secn
<< 4);
205 static inline int onenand_prog_spare(OneNANDState
*s
, int sec
, int secn
,
211 if (bdrv_read(s
->bdrv_cur
, s
->secs_cur
+ (sec
>> 5), buf
, 1) < 0)
213 memcpy(buf
+ ((sec
& 31) << 4), src
, secn
<< 4);
214 return bdrv_write(s
->bdrv_cur
, s
->secs_cur
+ (sec
>> 5), buf
, 1) < 0;
215 } else if (sec
+ secn
> s
->secs_cur
)
218 memcpy(s
->current
+ (s
->secs_cur
<< 9) + (sec
<< 4), src
, secn
<< 4);
223 static inline int onenand_erase(OneNANDState
*s
, int sec
, int num
)
228 memset(buf
, 0xff, sizeof(buf
));
229 for (; num
> 0; num
--, sec
++) {
230 if (onenand_prog_main(s
, sec
, 1, buf
))
232 if (onenand_prog_spare(s
, sec
, 1, buf
))
239 static void onenand_command(OneNANDState
*s
, int cmd
)
244 #define SETADDR(block, page) \
245 sec = (s->addr[page] & 3) + \
246 ((((s->addr[page] >> 2) & 0x3f) + \
247 (((s->addr[block] & 0xfff) | \
248 (s->addr[block] >> 15 ? \
249 s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
251 buf = (s->bufaddr & 8) ? \
252 s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0]; \
253 buf += (s->bufaddr & 3) << 9;
255 buf = (s->bufaddr & 8) ? \
256 s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1]; \
257 buf += (s->bufaddr & 3) << 4;
260 case 0x00: /* Load single/multiple sector data unit into buffer */
261 SETADDR(ONEN_BUF_BLOCK
, ONEN_BUF_PAGE
)
264 if (onenand_load_main(s
, sec
, s
->count
, buf
))
265 s
->status
|= ONEN_ERR_CMD
| ONEN_ERR_LOAD
;
269 if (onenand_load_spare(s
, sec
, s
->count
, buf
))
270 s
->status
|= ONEN_ERR_CMD
| ONEN_ERR_LOAD
;
273 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
274 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
275 * then we need two split the read/write into two chunks.
277 s
->intstatus
|= ONEN_INT
| ONEN_INT_LOAD
;
279 case 0x13: /* Load single/multiple spare sector into buffer */
280 SETADDR(ONEN_BUF_BLOCK
, ONEN_BUF_PAGE
)
283 if (onenand_load_spare(s
, sec
, s
->count
, buf
))
284 s
->status
|= ONEN_ERR_CMD
| ONEN_ERR_LOAD
;
286 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
287 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
288 * then we need two split the read/write into two chunks.
290 s
->intstatus
|= ONEN_INT
| ONEN_INT_LOAD
;
292 case 0x80: /* Program single/multiple sector data unit from buffer */
293 SETADDR(ONEN_BUF_BLOCK
, ONEN_BUF_PAGE
)
296 if (onenand_prog_main(s
, sec
, s
->count
, buf
))
297 s
->status
|= ONEN_ERR_CMD
| ONEN_ERR_PROG
;
301 if (onenand_prog_spare(s
, sec
, s
->count
, buf
))
302 s
->status
|= ONEN_ERR_CMD
| ONEN_ERR_PROG
;
305 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
306 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
307 * then we need two split the read/write into two chunks.
309 s
->intstatus
|= ONEN_INT
| ONEN_INT_PROG
;
311 case 0x1a: /* Program single/multiple spare area sector from buffer */
312 SETADDR(ONEN_BUF_BLOCK
, ONEN_BUF_PAGE
)
315 if (onenand_prog_spare(s
, sec
, s
->count
, buf
))
316 s
->status
|= ONEN_ERR_CMD
| ONEN_ERR_PROG
;
318 /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
319 * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
320 * then we need two split the read/write into two chunks.
322 s
->intstatus
|= ONEN_INT
| ONEN_INT_PROG
;
324 case 0x1b: /* Copy-back program */
327 SETADDR(ONEN_BUF_BLOCK
, ONEN_BUF_PAGE
)
328 if (onenand_load_main(s
, sec
, s
->count
, buf
))
329 s
->status
|= ONEN_ERR_CMD
| ONEN_ERR_PROG
;
331 SETADDR(ONEN_BUF_DEST_BLOCK
, ONEN_BUF_DEST_PAGE
)
332 if (onenand_prog_main(s
, sec
, s
->count
, buf
))
333 s
->status
|= ONEN_ERR_CMD
| ONEN_ERR_PROG
;
335 /* TODO: spare areas */
337 s
->intstatus
|= ONEN_INT
| ONEN_INT_PROG
;
340 case 0x23: /* Unlock NAND array block(s) */
341 s
->intstatus
|= ONEN_INT
;
343 /* XXX the previous (?) area should be locked automatically */
344 for (b
= s
->unladdr
[0]; b
<= s
->unladdr
[1]; b
++) {
345 if (b
>= s
->blocks
) {
346 s
->status
|= ONEN_ERR_CMD
;
349 if (s
->blockwp
[b
] == ONEN_LOCK_LOCKTIGHTEN
)
352 s
->wpstatus
= s
->blockwp
[b
] = ONEN_LOCK_UNLOCKED
;
355 case 0x27: /* Unlock All NAND array blocks */
356 s
->intstatus
|= ONEN_INT
;
358 for (b
= 0; b
< s
->blocks
; b
++) {
359 if (b
>= s
->blocks
) {
360 s
->status
|= ONEN_ERR_CMD
;
363 if (s
->blockwp
[b
] == ONEN_LOCK_LOCKTIGHTEN
)
366 s
->wpstatus
= s
->blockwp
[b
] = ONEN_LOCK_UNLOCKED
;
370 case 0x2a: /* Lock NAND array block(s) */
371 s
->intstatus
|= ONEN_INT
;
373 for (b
= s
->unladdr
[0]; b
<= s
->unladdr
[1]; b
++) {
374 if (b
>= s
->blocks
) {
375 s
->status
|= ONEN_ERR_CMD
;
378 if (s
->blockwp
[b
] == ONEN_LOCK_LOCKTIGHTEN
)
381 s
->wpstatus
= s
->blockwp
[b
] = ONEN_LOCK_LOCKED
;
384 case 0x2c: /* Lock-tight NAND array block(s) */
385 s
->intstatus
|= ONEN_INT
;
387 for (b
= s
->unladdr
[0]; b
<= s
->unladdr
[1]; b
++) {
388 if (b
>= s
->blocks
) {
389 s
->status
|= ONEN_ERR_CMD
;
392 if (s
->blockwp
[b
] == ONEN_LOCK_UNLOCKED
)
395 s
->wpstatus
= s
->blockwp
[b
] = ONEN_LOCK_LOCKTIGHTEN
;
399 case 0x71: /* Erase-Verify-Read */
400 s
->intstatus
|= ONEN_INT
;
402 case 0x95: /* Multi-block erase */
403 qemu_irq_pulse(s
->intr
);
405 case 0x94: /* Block erase */
406 sec
= ((s
->addr
[ONEN_BUF_BLOCK
] & 0xfff) |
407 (s
->addr
[ONEN_BUF_BLOCK
] >> 15 ? s
->density_mask
: 0))
408 << (BLOCK_SHIFT
- 9);
409 if (onenand_erase(s
, sec
, 1 << (BLOCK_SHIFT
- 9)))
410 s
->status
|= ONEN_ERR_CMD
| ONEN_ERR_ERASE
;
412 s
->intstatus
|= ONEN_INT
| ONEN_INT_ERASE
;
414 case 0xb0: /* Erase suspend */
416 case 0x30: /* Erase resume */
417 s
->intstatus
|= ONEN_INT
| ONEN_INT_ERASE
;
420 case 0xf0: /* Reset NAND Flash core */
423 case 0xf3: /* Reset OneNAND */
427 case 0x65: /* OTP Access */
428 s
->intstatus
|= ONEN_INT
;
431 s
->secs_cur
= 1 << (BLOCK_SHIFT
- 9);
432 s
->addr
[ONEN_BUF_BLOCK
] = 0;
437 s
->status
|= ONEN_ERR_CMD
;
438 s
->intstatus
|= ONEN_INT
;
439 fprintf(stderr
, "%s: unknown OneNAND command %x\n",
443 onenand_intr_update(s
);
446 static uint32_t onenand_read(void *opaque
, target_phys_addr_t addr
)
448 OneNANDState
*s
= (OneNANDState
*) opaque
;
449 int offset
= addr
>> s
->shift
;
452 case 0x0000 ... 0xc000:
453 return lduw_le_p(s
->boot
[0] + addr
);
455 case 0xf000: /* Manufacturer ID */
456 return (s
->id
>> 16) & 0xff;
457 case 0xf001: /* Device ID */
458 return (s
->id
>> 8) & 0xff;
459 /* TODO: get the following values from a real chip! */
460 case 0xf002: /* Version ID */
461 return (s
->id
>> 0) & 0xff;
462 case 0xf003: /* Data Buffer size */
463 return 1 << PAGE_SHIFT
;
464 case 0xf004: /* Boot Buffer size */
466 case 0xf005: /* Amount of buffers */
468 case 0xf006: /* Technology */
471 case 0xf100 ... 0xf107: /* Start addresses */
472 return s
->addr
[offset
- 0xf100];
474 case 0xf200: /* Start buffer */
475 return (s
->bufaddr
<< 8) | ((s
->count
- 1) & (1 << (PAGE_SHIFT
- 10)));
477 case 0xf220: /* Command */
479 case 0xf221: /* System Configuration 1 */
480 return s
->config
[0] & 0xffe0;
481 case 0xf222: /* System Configuration 2 */
484 case 0xf240: /* Controller Status */
486 case 0xf241: /* Interrupt */
488 case 0xf24c: /* Unlock Start Block Address */
489 return s
->unladdr
[0];
490 case 0xf24d: /* Unlock End Block Address */
491 return s
->unladdr
[1];
492 case 0xf24e: /* Write Protection Status */
495 case 0xff00: /* ECC Status */
497 case 0xff01: /* ECC Result of main area data */
498 case 0xff02: /* ECC Result of spare area data */
499 case 0xff03: /* ECC Result of main area data */
500 case 0xff04: /* ECC Result of spare area data */
501 hw_error("%s: imeplement ECC\n", __FUNCTION__
);
505 fprintf(stderr
, "%s: unknown OneNAND register %x\n",
506 __FUNCTION__
, offset
);
510 static void onenand_write(void *opaque
, target_phys_addr_t addr
,
513 OneNANDState
*s
= (OneNANDState
*) opaque
;
514 int offset
= addr
>> s
->shift
;
518 case 0x0000 ... 0x01ff:
519 case 0x8000 ... 0x800f:
523 if (value
== 0x0000) {
524 SETADDR(ONEN_BUF_BLOCK
, ONEN_BUF_PAGE
)
525 onenand_load_main(s
, sec
,
526 1 << (PAGE_SHIFT
- 9), s
->data
[0][0]);
527 s
->addr
[ONEN_BUF_PAGE
] += 4;
528 s
->addr
[ONEN_BUF_PAGE
] &= 0xff;
534 case 0x00f0: /* Reset OneNAND */
538 case 0x00e0: /* Load Data into Buffer */
542 case 0x0090: /* Read Identification Data */
543 memset(s
->boot
[0], 0, 3 << s
->shift
);
544 s
->boot
[0][0 << s
->shift
] = (s
->id
>> 16) & 0xff;
545 s
->boot
[0][1 << s
->shift
] = (s
->id
>> 8) & 0xff;
546 s
->boot
[0][2 << s
->shift
] = s
->wpstatus
& 0xff;
550 fprintf(stderr
, "%s: unknown OneNAND boot command %x\n",
551 __FUNCTION__
, value
);
555 case 0xf100 ... 0xf107: /* Start addresses */
556 s
->addr
[offset
- 0xf100] = value
;
559 case 0xf200: /* Start buffer */
560 s
->bufaddr
= (value
>> 8) & 0xf;
561 if (PAGE_SHIFT
== 11)
562 s
->count
= (value
& 3) ?: 4;
563 else if (PAGE_SHIFT
== 10)
564 s
->count
= (value
& 1) ?: 2;
567 case 0xf220: /* Command */
568 if (s
->intstatus
& (1 << 15))
571 onenand_command(s
, s
->command
);
573 case 0xf221: /* System Configuration 1 */
574 s
->config
[0] = value
;
575 onenand_intr_update(s
);
576 qemu_set_irq(s
->rdy
, (s
->config
[0] >> 7) & 1);
578 case 0xf222: /* System Configuration 2 */
579 s
->config
[1] = value
;
582 case 0xf241: /* Interrupt */
583 s
->intstatus
&= value
;
584 if ((1 << 15) & ~s
->intstatus
)
585 s
->status
&= ~(ONEN_ERR_CMD
| ONEN_ERR_ERASE
|
586 ONEN_ERR_PROG
| ONEN_ERR_LOAD
);
587 onenand_intr_update(s
);
589 case 0xf24c: /* Unlock Start Block Address */
590 s
->unladdr
[0] = value
& (s
->blocks
- 1);
591 /* For some reason we have to set the end address to by default
592 * be same as start because the software forgets to write anything
594 s
->unladdr
[1] = value
& (s
->blocks
- 1);
596 case 0xf24d: /* Unlock End Block Address */
597 s
->unladdr
[1] = value
& (s
->blocks
- 1);
601 fprintf(stderr
, "%s: unknown OneNAND register %x\n",
602 __FUNCTION__
, offset
);
606 static CPUReadMemoryFunc
* const onenand_readfn
[] = {
607 onenand_read
, /* TODO */
612 static CPUWriteMemoryFunc
* const onenand_writefn
[] = {
613 onenand_write
, /* TODO */
618 void *onenand_init(uint32_t id
, int regshift
, qemu_irq irq
)
620 OneNANDState
*s
= (OneNANDState
*) qemu_mallocz(sizeof(*s
));
621 DriveInfo
*dinfo
= drive_get(IF_MTD
, 0, 0);
622 uint32_t size
= 1 << (24 + ((id
>> 12) & 7));
629 s
->blocks
= size
>> BLOCK_SHIFT
;
631 s
->blockwp
= qemu_malloc(s
->blocks
);
632 s
->density_mask
= (id
& (1 << 11)) ? (1 << (6 + ((id
>> 12) & 7))) : 0;
633 s
->iomemtype
= cpu_register_io_memory(onenand_readfn
,
636 s
->image
= memset(qemu_malloc(size
+ (size
>> 5)),
637 0xff, size
+ (size
>> 5));
639 s
->bdrv
= dinfo
->bdrv
;
640 s
->otp
= memset(qemu_malloc((64 + 2) << PAGE_SHIFT
),
641 0xff, (64 + 2) << PAGE_SHIFT
);
642 s
->ram
= qemu_ram_alloc(0xc000 << s
->shift
);
643 ram
= qemu_get_ram_ptr(s
->ram
);
644 s
->boot
[0] = ram
+ (0x0000 << s
->shift
);
645 s
->boot
[1] = ram
+ (0x8000 << s
->shift
);
646 s
->data
[0][0] = ram
+ ((0x0200 + (0 << (PAGE_SHIFT
- 1))) << s
->shift
);
647 s
->data
[0][1] = ram
+ ((0x8010 + (0 << (PAGE_SHIFT
- 6))) << s
->shift
);
648 s
->data
[1][0] = ram
+ ((0x0200 + (1 << (PAGE_SHIFT
- 1))) << s
->shift
);
649 s
->data
[1][1] = ram
+ ((0x8010 + (1 << (PAGE_SHIFT
- 6))) << s
->shift
);
656 void *onenand_raw_otp(void *opaque
)
658 OneNANDState
*s
= (OneNANDState
*) opaque
;