unbreak usb pass-through on linux.
[qemu.git] / hw / ne2000.c
blob87f1e59d8513d054809c4a38e660907cb1c60f46
1 /*
2 * QEMU NE2000 emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "pci.h"
26 #include "net.h"
27 #include "ne2000.h"
29 /* debug NE2000 card */
30 //#define DEBUG_NE2000
32 #define MAX_ETH_FRAME_SIZE 1514
34 #define E8390_CMD 0x00 /* The command register (for all pages) */
35 /* Page 0 register offsets. */
36 #define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
37 #define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
38 #define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
39 #define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
40 #define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
41 #define EN0_TSR 0x04 /* Transmit status reg RD */
42 #define EN0_TPSR 0x04 /* Transmit starting page WR */
43 #define EN0_NCR 0x05 /* Number of collision reg RD */
44 #define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
45 #define EN0_FIFO 0x06 /* FIFO RD */
46 #define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
47 #define EN0_ISR 0x07 /* Interrupt status reg RD WR */
48 #define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
49 #define EN0_RSARLO 0x08 /* Remote start address reg 0 */
50 #define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
51 #define EN0_RSARHI 0x09 /* Remote start address reg 1 */
52 #define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
53 #define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */
54 #define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
55 #define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */
56 #define EN0_RSR 0x0c /* rx status reg RD */
57 #define EN0_RXCR 0x0c /* RX configuration reg WR */
58 #define EN0_TXCR 0x0d /* TX configuration reg WR */
59 #define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
60 #define EN0_DCFG 0x0e /* Data configuration reg WR */
61 #define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
62 #define EN0_IMR 0x0f /* Interrupt mask reg WR */
63 #define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
65 #define EN1_PHYS 0x11
66 #define EN1_CURPAG 0x17
67 #define EN1_MULT 0x18
69 #define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */
70 #define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */
72 #define EN3_CONFIG0 0x33
73 #define EN3_CONFIG1 0x34
74 #define EN3_CONFIG2 0x35
75 #define EN3_CONFIG3 0x36
77 /* Register accessed at EN_CMD, the 8390 base addr. */
78 #define E8390_STOP 0x01 /* Stop and reset the chip */
79 #define E8390_START 0x02 /* Start the chip, clear reset */
80 #define E8390_TRANS 0x04 /* Transmit a frame */
81 #define E8390_RREAD 0x08 /* Remote read */
82 #define E8390_RWRITE 0x10 /* Remote write */
83 #define E8390_NODMA 0x20 /* Remote DMA */
84 #define E8390_PAGE0 0x00 /* Select page chip registers */
85 #define E8390_PAGE1 0x40 /* using the two high-order bits */
86 #define E8390_PAGE2 0x80 /* Page 3 is invalid. */
88 /* Bits in EN0_ISR - Interrupt status register */
89 #define ENISR_RX 0x01 /* Receiver, no error */
90 #define ENISR_TX 0x02 /* Transmitter, no error */
91 #define ENISR_RX_ERR 0x04 /* Receiver, with error */
92 #define ENISR_TX_ERR 0x08 /* Transmitter, with error */
93 #define ENISR_OVER 0x10 /* Receiver overwrote the ring */
94 #define ENISR_COUNTERS 0x20 /* Counters need emptying */
95 #define ENISR_RDC 0x40 /* remote dma complete */
96 #define ENISR_RESET 0x80 /* Reset completed */
97 #define ENISR_ALL 0x3f /* Interrupts we will enable */
99 /* Bits in received packet status byte and EN0_RSR*/
100 #define ENRSR_RXOK 0x01 /* Received a good packet */
101 #define ENRSR_CRC 0x02 /* CRC error */
102 #define ENRSR_FAE 0x04 /* frame alignment error */
103 #define ENRSR_FO 0x08 /* FIFO overrun */
104 #define ENRSR_MPA 0x10 /* missed pkt */
105 #define ENRSR_PHY 0x20 /* physical/multicast address */
106 #define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
107 #define ENRSR_DEF 0x80 /* deferring */
109 /* Transmitted packet status, EN0_TSR. */
110 #define ENTSR_PTX 0x01 /* Packet transmitted without error */
111 #define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
112 #define ENTSR_COL 0x04 /* The transmit collided at least once. */
113 #define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
114 #define ENTSR_CRS 0x10 /* The carrier sense was lost. */
115 #define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
116 #define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
117 #define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
119 typedef struct PCINE2000State {
120 PCIDevice dev;
121 NE2000State ne2000;
122 } PCINE2000State;
124 void ne2000_reset(NE2000State *s)
126 int i;
128 s->isr = ENISR_RESET;
129 memcpy(s->mem, s->macaddr, 6);
130 s->mem[14] = 0x57;
131 s->mem[15] = 0x57;
133 /* duplicate prom data */
134 for(i = 15;i >= 0; i--) {
135 s->mem[2 * i] = s->mem[i];
136 s->mem[2 * i + 1] = s->mem[i];
140 static void ne2000_update_irq(NE2000State *s)
142 int isr;
143 isr = (s->isr & s->imr) & 0x7f;
144 #if defined(DEBUG_NE2000)
145 printf("NE2000: Set IRQ to %d (%02x %02x)\n",
146 isr ? 1 : 0, s->isr, s->imr);
147 #endif
148 qemu_set_irq(s->irq, (isr != 0));
151 #define POLYNOMIAL 0x04c11db6
153 /* From FreeBSD */
154 /* XXX: optimize */
155 static int compute_mcast_idx(const uint8_t *ep)
157 uint32_t crc;
158 int carry, i, j;
159 uint8_t b;
161 crc = 0xffffffff;
162 for (i = 0; i < 6; i++) {
163 b = *ep++;
164 for (j = 0; j < 8; j++) {
165 carry = ((crc & 0x80000000L) ? 1 : 0) ^ (b & 0x01);
166 crc <<= 1;
167 b >>= 1;
168 if (carry)
169 crc = ((crc ^ POLYNOMIAL) | carry);
172 return (crc >> 26);
175 static int ne2000_buffer_full(NE2000State *s)
177 int avail, index, boundary;
179 index = s->curpag << 8;
180 boundary = s->boundary << 8;
181 if (index < boundary)
182 avail = boundary - index;
183 else
184 avail = (s->stop - s->start) - (index - boundary);
185 if (avail < (MAX_ETH_FRAME_SIZE + 4))
186 return 1;
187 return 0;
190 int ne2000_can_receive(VLANClientState *vc)
192 NE2000State *s = vc->opaque;
194 if (s->cmd & E8390_STOP)
195 return 1;
196 return !ne2000_buffer_full(s);
199 #define MIN_BUF_SIZE 60
201 ssize_t ne2000_receive(VLANClientState *vc, const uint8_t *buf, size_t size_)
203 NE2000State *s = vc->opaque;
204 int size = size_;
205 uint8_t *p;
206 unsigned int total_len, next, avail, len, index, mcast_idx;
207 uint8_t buf1[60];
208 static const uint8_t broadcast_macaddr[6] =
209 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
211 #if defined(DEBUG_NE2000)
212 printf("NE2000: received len=%d\n", size);
213 #endif
215 if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
216 return -1;
218 /* XXX: check this */
219 if (s->rxcr & 0x10) {
220 /* promiscuous: receive all */
221 } else {
222 if (!memcmp(buf, broadcast_macaddr, 6)) {
223 /* broadcast address */
224 if (!(s->rxcr & 0x04))
225 return size;
226 } else if (buf[0] & 0x01) {
227 /* multicast */
228 if (!(s->rxcr & 0x08))
229 return size;
230 mcast_idx = compute_mcast_idx(buf);
231 if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
232 return size;
233 } else if (s->mem[0] == buf[0] &&
234 s->mem[2] == buf[1] &&
235 s->mem[4] == buf[2] &&
236 s->mem[6] == buf[3] &&
237 s->mem[8] == buf[4] &&
238 s->mem[10] == buf[5]) {
239 /* match */
240 } else {
241 return size;
246 /* if too small buffer, then expand it */
247 if (size < MIN_BUF_SIZE) {
248 memcpy(buf1, buf, size);
249 memset(buf1 + size, 0, MIN_BUF_SIZE - size);
250 buf = buf1;
251 size = MIN_BUF_SIZE;
254 index = s->curpag << 8;
255 /* 4 bytes for header */
256 total_len = size + 4;
257 /* address for next packet (4 bytes for CRC) */
258 next = index + ((total_len + 4 + 255) & ~0xff);
259 if (next >= s->stop)
260 next -= (s->stop - s->start);
261 /* prepare packet header */
262 p = s->mem + index;
263 s->rsr = ENRSR_RXOK; /* receive status */
264 /* XXX: check this */
265 if (buf[0] & 0x01)
266 s->rsr |= ENRSR_PHY;
267 p[0] = s->rsr;
268 p[1] = next >> 8;
269 p[2] = total_len;
270 p[3] = total_len >> 8;
271 index += 4;
273 /* write packet data */
274 while (size > 0) {
275 if (index <= s->stop)
276 avail = s->stop - index;
277 else
278 avail = 0;
279 len = size;
280 if (len > avail)
281 len = avail;
282 memcpy(s->mem + index, buf, len);
283 buf += len;
284 index += len;
285 if (index == s->stop)
286 index = s->start;
287 size -= len;
289 s->curpag = next >> 8;
291 /* now we can signal we have received something */
292 s->isr |= ENISR_RX;
293 ne2000_update_irq(s);
295 return size_;
298 void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
300 NE2000State *s = opaque;
301 int offset, page, index;
303 addr &= 0xf;
304 #ifdef DEBUG_NE2000
305 printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
306 #endif
307 if (addr == E8390_CMD) {
308 /* control register */
309 s->cmd = val;
310 if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
311 s->isr &= ~ENISR_RESET;
312 /* test specific case: zero length transfer */
313 if ((val & (E8390_RREAD | E8390_RWRITE)) &&
314 s->rcnt == 0) {
315 s->isr |= ENISR_RDC;
316 ne2000_update_irq(s);
318 if (val & E8390_TRANS) {
319 index = (s->tpsr << 8);
320 /* XXX: next 2 lines are a hack to make netware 3.11 work */
321 if (index >= NE2000_PMEM_END)
322 index -= NE2000_PMEM_SIZE;
323 /* fail safe: check range on the transmitted length */
324 if (index + s->tcnt <= NE2000_PMEM_END) {
325 qemu_send_packet(s->vc, s->mem + index, s->tcnt);
327 /* signal end of transfer */
328 s->tsr = ENTSR_PTX;
329 s->isr |= ENISR_TX;
330 s->cmd &= ~E8390_TRANS;
331 ne2000_update_irq(s);
334 } else {
335 page = s->cmd >> 6;
336 offset = addr | (page << 4);
337 switch(offset) {
338 case EN0_STARTPG:
339 s->start = val << 8;
340 break;
341 case EN0_STOPPG:
342 s->stop = val << 8;
343 break;
344 case EN0_BOUNDARY:
345 s->boundary = val;
346 break;
347 case EN0_IMR:
348 s->imr = val;
349 ne2000_update_irq(s);
350 break;
351 case EN0_TPSR:
352 s->tpsr = val;
353 break;
354 case EN0_TCNTLO:
355 s->tcnt = (s->tcnt & 0xff00) | val;
356 break;
357 case EN0_TCNTHI:
358 s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
359 break;
360 case EN0_RSARLO:
361 s->rsar = (s->rsar & 0xff00) | val;
362 break;
363 case EN0_RSARHI:
364 s->rsar = (s->rsar & 0x00ff) | (val << 8);
365 break;
366 case EN0_RCNTLO:
367 s->rcnt = (s->rcnt & 0xff00) | val;
368 break;
369 case EN0_RCNTHI:
370 s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
371 break;
372 case EN0_RXCR:
373 s->rxcr = val;
374 break;
375 case EN0_DCFG:
376 s->dcfg = val;
377 break;
378 case EN0_ISR:
379 s->isr &= ~(val & 0x7f);
380 ne2000_update_irq(s);
381 break;
382 case EN1_PHYS ... EN1_PHYS + 5:
383 s->phys[offset - EN1_PHYS] = val;
384 break;
385 case EN1_CURPAG:
386 s->curpag = val;
387 break;
388 case EN1_MULT ... EN1_MULT + 7:
389 s->mult[offset - EN1_MULT] = val;
390 break;
395 uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
397 NE2000State *s = opaque;
398 int offset, page, ret;
400 addr &= 0xf;
401 if (addr == E8390_CMD) {
402 ret = s->cmd;
403 } else {
404 page = s->cmd >> 6;
405 offset = addr | (page << 4);
406 switch(offset) {
407 case EN0_TSR:
408 ret = s->tsr;
409 break;
410 case EN0_BOUNDARY:
411 ret = s->boundary;
412 break;
413 case EN0_ISR:
414 ret = s->isr;
415 break;
416 case EN0_RSARLO:
417 ret = s->rsar & 0x00ff;
418 break;
419 case EN0_RSARHI:
420 ret = s->rsar >> 8;
421 break;
422 case EN1_PHYS ... EN1_PHYS + 5:
423 ret = s->phys[offset - EN1_PHYS];
424 break;
425 case EN1_CURPAG:
426 ret = s->curpag;
427 break;
428 case EN1_MULT ... EN1_MULT + 7:
429 ret = s->mult[offset - EN1_MULT];
430 break;
431 case EN0_RSR:
432 ret = s->rsr;
433 break;
434 case EN2_STARTPG:
435 ret = s->start >> 8;
436 break;
437 case EN2_STOPPG:
438 ret = s->stop >> 8;
439 break;
440 case EN0_RTL8029ID0:
441 ret = 0x50;
442 break;
443 case EN0_RTL8029ID1:
444 ret = 0x43;
445 break;
446 case EN3_CONFIG0:
447 ret = 0; /* 10baseT media */
448 break;
449 case EN3_CONFIG2:
450 ret = 0x40; /* 10baseT active */
451 break;
452 case EN3_CONFIG3:
453 ret = 0x40; /* Full duplex */
454 break;
455 default:
456 ret = 0x00;
457 break;
460 #ifdef DEBUG_NE2000
461 printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
462 #endif
463 return ret;
466 static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
467 uint32_t val)
469 if (addr < 32 ||
470 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
471 s->mem[addr] = val;
475 static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
476 uint32_t val)
478 addr &= ~1; /* XXX: check exact behaviour if not even */
479 if (addr < 32 ||
480 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
481 *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
485 static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
486 uint32_t val)
488 addr &= ~1; /* XXX: check exact behaviour if not even */
489 if (addr < 32 ||
490 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
491 cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
495 static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
497 if (addr < 32 ||
498 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
499 return s->mem[addr];
500 } else {
501 return 0xff;
505 static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
507 addr &= ~1; /* XXX: check exact behaviour if not even */
508 if (addr < 32 ||
509 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
510 return le16_to_cpu(*(uint16_t *)(s->mem + addr));
511 } else {
512 return 0xffff;
516 static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
518 addr &= ~1; /* XXX: check exact behaviour if not even */
519 if (addr < 32 ||
520 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
521 return le32_to_cpupu((uint32_t *)(s->mem + addr));
522 } else {
523 return 0xffffffff;
527 static inline void ne2000_dma_update(NE2000State *s, int len)
529 s->rsar += len;
530 /* wrap */
531 /* XXX: check what to do if rsar > stop */
532 if (s->rsar == s->stop)
533 s->rsar = s->start;
535 if (s->rcnt <= len) {
536 s->rcnt = 0;
537 /* signal end of transfer */
538 s->isr |= ENISR_RDC;
539 ne2000_update_irq(s);
540 } else {
541 s->rcnt -= len;
545 void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
547 NE2000State *s = opaque;
549 #ifdef DEBUG_NE2000
550 printf("NE2000: asic write val=0x%04x\n", val);
551 #endif
552 if (s->rcnt == 0)
553 return;
554 if (s->dcfg & 0x01) {
555 /* 16 bit access */
556 ne2000_mem_writew(s, s->rsar, val);
557 ne2000_dma_update(s, 2);
558 } else {
559 /* 8 bit access */
560 ne2000_mem_writeb(s, s->rsar, val);
561 ne2000_dma_update(s, 1);
565 uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
567 NE2000State *s = opaque;
568 int ret;
570 if (s->dcfg & 0x01) {
571 /* 16 bit access */
572 ret = ne2000_mem_readw(s, s->rsar);
573 ne2000_dma_update(s, 2);
574 } else {
575 /* 8 bit access */
576 ret = ne2000_mem_readb(s, s->rsar);
577 ne2000_dma_update(s, 1);
579 #ifdef DEBUG_NE2000
580 printf("NE2000: asic read val=0x%04x\n", ret);
581 #endif
582 return ret;
585 static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
587 NE2000State *s = opaque;
589 #ifdef DEBUG_NE2000
590 printf("NE2000: asic writel val=0x%04x\n", val);
591 #endif
592 if (s->rcnt == 0)
593 return;
594 /* 32 bit access */
595 ne2000_mem_writel(s, s->rsar, val);
596 ne2000_dma_update(s, 4);
599 static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
601 NE2000State *s = opaque;
602 int ret;
604 /* 32 bit access */
605 ret = ne2000_mem_readl(s, s->rsar);
606 ne2000_dma_update(s, 4);
607 #ifdef DEBUG_NE2000
608 printf("NE2000: asic readl val=0x%04x\n", ret);
609 #endif
610 return ret;
613 void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
615 /* nothing to do (end of reset pulse) */
618 uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
620 NE2000State *s = opaque;
621 ne2000_reset(s);
622 return 0;
625 void ne2000_save(QEMUFile* f, void* opaque)
627 NE2000State* s = opaque;
628 uint32_t tmp;
630 qemu_put_8s(f, &s->rxcr);
632 qemu_put_8s(f, &s->cmd);
633 qemu_put_be32s(f, &s->start);
634 qemu_put_be32s(f, &s->stop);
635 qemu_put_8s(f, &s->boundary);
636 qemu_put_8s(f, &s->tsr);
637 qemu_put_8s(f, &s->tpsr);
638 qemu_put_be16s(f, &s->tcnt);
639 qemu_put_be16s(f, &s->rcnt);
640 qemu_put_be32s(f, &s->rsar);
641 qemu_put_8s(f, &s->rsr);
642 qemu_put_8s(f, &s->isr);
643 qemu_put_8s(f, &s->dcfg);
644 qemu_put_8s(f, &s->imr);
645 qemu_put_buffer(f, s->phys, 6);
646 qemu_put_8s(f, &s->curpag);
647 qemu_put_buffer(f, s->mult, 8);
648 tmp = 0;
649 qemu_put_be32s(f, &tmp); /* ignored, was irq */
650 qemu_put_buffer(f, s->mem, NE2000_MEM_SIZE);
653 int ne2000_load(QEMUFile* f, void* opaque, int version_id)
655 NE2000State* s = opaque;
656 uint32_t tmp;
658 if (version_id > 3)
659 return -EINVAL;
661 if (version_id >= 2) {
662 qemu_get_8s(f, &s->rxcr);
663 } else {
664 s->rxcr = 0x0c;
667 qemu_get_8s(f, &s->cmd);
668 qemu_get_be32s(f, &s->start);
669 qemu_get_be32s(f, &s->stop);
670 qemu_get_8s(f, &s->boundary);
671 qemu_get_8s(f, &s->tsr);
672 qemu_get_8s(f, &s->tpsr);
673 qemu_get_be16s(f, &s->tcnt);
674 qemu_get_be16s(f, &s->rcnt);
675 qemu_get_be32s(f, &s->rsar);
676 qemu_get_8s(f, &s->rsr);
677 qemu_get_8s(f, &s->isr);
678 qemu_get_8s(f, &s->dcfg);
679 qemu_get_8s(f, &s->imr);
680 qemu_get_buffer(f, s->phys, 6);
681 qemu_get_8s(f, &s->curpag);
682 qemu_get_buffer(f, s->mult, 8);
683 qemu_get_be32s(f, &tmp); /* ignored */
684 qemu_get_buffer(f, s->mem, NE2000_MEM_SIZE);
686 return 0;
689 static void pci_ne2000_save(QEMUFile* f, void* opaque)
691 PCINE2000State* s = opaque;
693 pci_device_save(&s->dev, f);
694 ne2000_save(f, &s->ne2000);
697 static int pci_ne2000_load(QEMUFile* f, void* opaque, int version_id)
699 PCINE2000State* s = opaque;
700 int ret;
702 if (version_id > 3)
703 return -EINVAL;
705 if (version_id >= 3) {
706 ret = pci_device_load(&s->dev, f);
707 if (ret < 0)
708 return ret;
711 return ne2000_load(f, &s->ne2000, version_id);
714 /***********************************************************/
715 /* PCI NE2000 definitions */
717 static void ne2000_map(PCIDevice *pci_dev, int region_num,
718 uint32_t addr, uint32_t size, int type)
720 PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
721 NE2000State *s = &d->ne2000;
723 register_ioport_write(addr, 16, 1, ne2000_ioport_write, s);
724 register_ioport_read(addr, 16, 1, ne2000_ioport_read, s);
726 register_ioport_write(addr + 0x10, 1, 1, ne2000_asic_ioport_write, s);
727 register_ioport_read(addr + 0x10, 1, 1, ne2000_asic_ioport_read, s);
728 register_ioport_write(addr + 0x10, 2, 2, ne2000_asic_ioport_write, s);
729 register_ioport_read(addr + 0x10, 2, 2, ne2000_asic_ioport_read, s);
730 register_ioport_write(addr + 0x10, 4, 4, ne2000_asic_ioport_writel, s);
731 register_ioport_read(addr + 0x10, 4, 4, ne2000_asic_ioport_readl, s);
733 register_ioport_write(addr + 0x1f, 1, 1, ne2000_reset_ioport_write, s);
734 register_ioport_read(addr + 0x1f, 1, 1, ne2000_reset_ioport_read, s);
737 static void ne2000_cleanup(VLANClientState *vc)
739 NE2000State *s = vc->opaque;
741 unregister_savevm("ne2000", s);
744 static int pci_ne2000_init(PCIDevice *pci_dev)
746 PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
747 NE2000State *s;
748 uint8_t *pci_conf;
750 pci_conf = d->dev.config;
751 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REALTEK);
752 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REALTEK_8029);
753 pci_config_set_class(pci_conf, PCI_CLASS_NETWORK_ETHERNET);
754 pci_conf[PCI_HEADER_TYPE] = PCI_HEADER_TYPE_NORMAL; // header_type
755 pci_conf[0x3d] = 1; // interrupt pin 0
757 pci_register_bar(&d->dev, 0, 0x100,
758 PCI_ADDRESS_SPACE_IO, ne2000_map);
759 s = &d->ne2000;
760 s->irq = d->dev.irq[0];
761 qdev_get_macaddr(&d->dev.qdev, s->macaddr);
762 ne2000_reset(s);
763 s->vc = qdev_get_vlan_client(&d->dev.qdev,
764 ne2000_can_receive, ne2000_receive, NULL,
765 ne2000_cleanup, s);
767 qemu_format_nic_info_str(s->vc, s->macaddr);
769 register_savevm("ne2000", -1, 3, pci_ne2000_save, pci_ne2000_load, d);
770 return 0;
773 static PCIDeviceInfo ne2000_info = {
774 .qdev.name = "ne2k_pci",
775 .qdev.size = sizeof(PCINE2000State),
776 .init = pci_ne2000_init,
779 static void ne2000_register_devices(void)
781 pci_qdev_register(&ne2000_info);
784 device_init(ne2000_register_devices)