2 * QEMU NE2000 emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
29 /* debug NE2000 card */
30 //#define DEBUG_NE2000
32 #define MAX_ETH_FRAME_SIZE 1514
34 #define E8390_CMD 0x00 /* The command register (for all pages) */
35 /* Page 0 register offsets. */
36 #define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
37 #define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
38 #define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
39 #define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
40 #define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
41 #define EN0_TSR 0x04 /* Transmit status reg RD */
42 #define EN0_TPSR 0x04 /* Transmit starting page WR */
43 #define EN0_NCR 0x05 /* Number of collision reg RD */
44 #define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
45 #define EN0_FIFO 0x06 /* FIFO RD */
46 #define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
47 #define EN0_ISR 0x07 /* Interrupt status reg RD WR */
48 #define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
49 #define EN0_RSARLO 0x08 /* Remote start address reg 0 */
50 #define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
51 #define EN0_RSARHI 0x09 /* Remote start address reg 1 */
52 #define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
53 #define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */
54 #define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
55 #define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */
56 #define EN0_RSR 0x0c /* rx status reg RD */
57 #define EN0_RXCR 0x0c /* RX configuration reg WR */
58 #define EN0_TXCR 0x0d /* TX configuration reg WR */
59 #define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
60 #define EN0_DCFG 0x0e /* Data configuration reg WR */
61 #define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
62 #define EN0_IMR 0x0f /* Interrupt mask reg WR */
63 #define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
66 #define EN1_CURPAG 0x17
69 #define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */
70 #define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */
72 #define EN3_CONFIG0 0x33
73 #define EN3_CONFIG1 0x34
74 #define EN3_CONFIG2 0x35
75 #define EN3_CONFIG3 0x36
77 /* Register accessed at EN_CMD, the 8390 base addr. */
78 #define E8390_STOP 0x01 /* Stop and reset the chip */
79 #define E8390_START 0x02 /* Start the chip, clear reset */
80 #define E8390_TRANS 0x04 /* Transmit a frame */
81 #define E8390_RREAD 0x08 /* Remote read */
82 #define E8390_RWRITE 0x10 /* Remote write */
83 #define E8390_NODMA 0x20 /* Remote DMA */
84 #define E8390_PAGE0 0x00 /* Select page chip registers */
85 #define E8390_PAGE1 0x40 /* using the two high-order bits */
86 #define E8390_PAGE2 0x80 /* Page 3 is invalid. */
88 /* Bits in EN0_ISR - Interrupt status register */
89 #define ENISR_RX 0x01 /* Receiver, no error */
90 #define ENISR_TX 0x02 /* Transmitter, no error */
91 #define ENISR_RX_ERR 0x04 /* Receiver, with error */
92 #define ENISR_TX_ERR 0x08 /* Transmitter, with error */
93 #define ENISR_OVER 0x10 /* Receiver overwrote the ring */
94 #define ENISR_COUNTERS 0x20 /* Counters need emptying */
95 #define ENISR_RDC 0x40 /* remote dma complete */
96 #define ENISR_RESET 0x80 /* Reset completed */
97 #define ENISR_ALL 0x3f /* Interrupts we will enable */
99 /* Bits in received packet status byte and EN0_RSR*/
100 #define ENRSR_RXOK 0x01 /* Received a good packet */
101 #define ENRSR_CRC 0x02 /* CRC error */
102 #define ENRSR_FAE 0x04 /* frame alignment error */
103 #define ENRSR_FO 0x08 /* FIFO overrun */
104 #define ENRSR_MPA 0x10 /* missed pkt */
105 #define ENRSR_PHY 0x20 /* physical/multicast address */
106 #define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
107 #define ENRSR_DEF 0x80 /* deferring */
109 /* Transmitted packet status, EN0_TSR. */
110 #define ENTSR_PTX 0x01 /* Packet transmitted without error */
111 #define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
112 #define ENTSR_COL 0x04 /* The transmit collided at least once. */
113 #define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
114 #define ENTSR_CRS 0x10 /* The carrier sense was lost. */
115 #define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
116 #define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
117 #define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
119 typedef struct PCINE2000State
{
124 void ne2000_reset(NE2000State
*s
)
128 s
->isr
= ENISR_RESET
;
129 memcpy(s
->mem
, s
->macaddr
, 6);
133 /* duplicate prom data */
134 for(i
= 15;i
>= 0; i
--) {
135 s
->mem
[2 * i
] = s
->mem
[i
];
136 s
->mem
[2 * i
+ 1] = s
->mem
[i
];
140 static void ne2000_update_irq(NE2000State
*s
)
143 isr
= (s
->isr
& s
->imr
) & 0x7f;
144 #if defined(DEBUG_NE2000)
145 printf("NE2000: Set IRQ to %d (%02x %02x)\n",
146 isr
? 1 : 0, s
->isr
, s
->imr
);
148 qemu_set_irq(s
->irq
, (isr
!= 0));
151 #define POLYNOMIAL 0x04c11db6
155 static int compute_mcast_idx(const uint8_t *ep
)
162 for (i
= 0; i
< 6; i
++) {
164 for (j
= 0; j
< 8; j
++) {
165 carry
= ((crc
& 0x80000000L
) ? 1 : 0) ^ (b
& 0x01);
169 crc
= ((crc
^ POLYNOMIAL
) | carry
);
175 static int ne2000_buffer_full(NE2000State
*s
)
177 int avail
, index
, boundary
;
179 index
= s
->curpag
<< 8;
180 boundary
= s
->boundary
<< 8;
181 if (index
< boundary
)
182 avail
= boundary
- index
;
184 avail
= (s
->stop
- s
->start
) - (index
- boundary
);
185 if (avail
< (MAX_ETH_FRAME_SIZE
+ 4))
190 int ne2000_can_receive(VLANClientState
*vc
)
192 NE2000State
*s
= vc
->opaque
;
194 if (s
->cmd
& E8390_STOP
)
196 return !ne2000_buffer_full(s
);
199 #define MIN_BUF_SIZE 60
201 ssize_t
ne2000_receive(VLANClientState
*vc
, const uint8_t *buf
, size_t size_
)
203 NE2000State
*s
= vc
->opaque
;
206 unsigned int total_len
, next
, avail
, len
, index
, mcast_idx
;
208 static const uint8_t broadcast_macaddr
[6] =
209 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
211 #if defined(DEBUG_NE2000)
212 printf("NE2000: received len=%d\n", size
);
215 if (s
->cmd
& E8390_STOP
|| ne2000_buffer_full(s
))
218 /* XXX: check this */
219 if (s
->rxcr
& 0x10) {
220 /* promiscuous: receive all */
222 if (!memcmp(buf
, broadcast_macaddr
, 6)) {
223 /* broadcast address */
224 if (!(s
->rxcr
& 0x04))
226 } else if (buf
[0] & 0x01) {
228 if (!(s
->rxcr
& 0x08))
230 mcast_idx
= compute_mcast_idx(buf
);
231 if (!(s
->mult
[mcast_idx
>> 3] & (1 << (mcast_idx
& 7))))
233 } else if (s
->mem
[0] == buf
[0] &&
234 s
->mem
[2] == buf
[1] &&
235 s
->mem
[4] == buf
[2] &&
236 s
->mem
[6] == buf
[3] &&
237 s
->mem
[8] == buf
[4] &&
238 s
->mem
[10] == buf
[5]) {
246 /* if too small buffer, then expand it */
247 if (size
< MIN_BUF_SIZE
) {
248 memcpy(buf1
, buf
, size
);
249 memset(buf1
+ size
, 0, MIN_BUF_SIZE
- size
);
254 index
= s
->curpag
<< 8;
255 /* 4 bytes for header */
256 total_len
= size
+ 4;
257 /* address for next packet (4 bytes for CRC) */
258 next
= index
+ ((total_len
+ 4 + 255) & ~0xff);
260 next
-= (s
->stop
- s
->start
);
261 /* prepare packet header */
263 s
->rsr
= ENRSR_RXOK
; /* receive status */
264 /* XXX: check this */
270 p
[3] = total_len
>> 8;
273 /* write packet data */
275 if (index
<= s
->stop
)
276 avail
= s
->stop
- index
;
282 memcpy(s
->mem
+ index
, buf
, len
);
285 if (index
== s
->stop
)
289 s
->curpag
= next
>> 8;
291 /* now we can signal we have received something */
293 ne2000_update_irq(s
);
298 void ne2000_ioport_write(void *opaque
, uint32_t addr
, uint32_t val
)
300 NE2000State
*s
= opaque
;
301 int offset
, page
, index
;
305 printf("NE2000: write addr=0x%x val=0x%02x\n", addr
, val
);
307 if (addr
== E8390_CMD
) {
308 /* control register */
310 if (!(val
& E8390_STOP
)) { /* START bit makes no sense on RTL8029... */
311 s
->isr
&= ~ENISR_RESET
;
312 /* test specific case: zero length transfer */
313 if ((val
& (E8390_RREAD
| E8390_RWRITE
)) &&
316 ne2000_update_irq(s
);
318 if (val
& E8390_TRANS
) {
319 index
= (s
->tpsr
<< 8);
320 /* XXX: next 2 lines are a hack to make netware 3.11 work */
321 if (index
>= NE2000_PMEM_END
)
322 index
-= NE2000_PMEM_SIZE
;
323 /* fail safe: check range on the transmitted length */
324 if (index
+ s
->tcnt
<= NE2000_PMEM_END
) {
325 qemu_send_packet(s
->vc
, s
->mem
+ index
, s
->tcnt
);
327 /* signal end of transfer */
330 s
->cmd
&= ~E8390_TRANS
;
331 ne2000_update_irq(s
);
336 offset
= addr
| (page
<< 4);
349 ne2000_update_irq(s
);
355 s
->tcnt
= (s
->tcnt
& 0xff00) | val
;
358 s
->tcnt
= (s
->tcnt
& 0x00ff) | (val
<< 8);
361 s
->rsar
= (s
->rsar
& 0xff00) | val
;
364 s
->rsar
= (s
->rsar
& 0x00ff) | (val
<< 8);
367 s
->rcnt
= (s
->rcnt
& 0xff00) | val
;
370 s
->rcnt
= (s
->rcnt
& 0x00ff) | (val
<< 8);
379 s
->isr
&= ~(val
& 0x7f);
380 ne2000_update_irq(s
);
382 case EN1_PHYS
... EN1_PHYS
+ 5:
383 s
->phys
[offset
- EN1_PHYS
] = val
;
388 case EN1_MULT
... EN1_MULT
+ 7:
389 s
->mult
[offset
- EN1_MULT
] = val
;
395 uint32_t ne2000_ioport_read(void *opaque
, uint32_t addr
)
397 NE2000State
*s
= opaque
;
398 int offset
, page
, ret
;
401 if (addr
== E8390_CMD
) {
405 offset
= addr
| (page
<< 4);
417 ret
= s
->rsar
& 0x00ff;
422 case EN1_PHYS
... EN1_PHYS
+ 5:
423 ret
= s
->phys
[offset
- EN1_PHYS
];
428 case EN1_MULT
... EN1_MULT
+ 7:
429 ret
= s
->mult
[offset
- EN1_MULT
];
447 ret
= 0; /* 10baseT media */
450 ret
= 0x40; /* 10baseT active */
453 ret
= 0x40; /* Full duplex */
461 printf("NE2000: read addr=0x%x val=%02x\n", addr
, ret
);
466 static inline void ne2000_mem_writeb(NE2000State
*s
, uint32_t addr
,
470 (addr
>= NE2000_PMEM_START
&& addr
< NE2000_MEM_SIZE
)) {
475 static inline void ne2000_mem_writew(NE2000State
*s
, uint32_t addr
,
478 addr
&= ~1; /* XXX: check exact behaviour if not even */
480 (addr
>= NE2000_PMEM_START
&& addr
< NE2000_MEM_SIZE
)) {
481 *(uint16_t *)(s
->mem
+ addr
) = cpu_to_le16(val
);
485 static inline void ne2000_mem_writel(NE2000State
*s
, uint32_t addr
,
488 addr
&= ~1; /* XXX: check exact behaviour if not even */
490 (addr
>= NE2000_PMEM_START
&& addr
< NE2000_MEM_SIZE
)) {
491 cpu_to_le32wu((uint32_t *)(s
->mem
+ addr
), val
);
495 static inline uint32_t ne2000_mem_readb(NE2000State
*s
, uint32_t addr
)
498 (addr
>= NE2000_PMEM_START
&& addr
< NE2000_MEM_SIZE
)) {
505 static inline uint32_t ne2000_mem_readw(NE2000State
*s
, uint32_t addr
)
507 addr
&= ~1; /* XXX: check exact behaviour if not even */
509 (addr
>= NE2000_PMEM_START
&& addr
< NE2000_MEM_SIZE
)) {
510 return le16_to_cpu(*(uint16_t *)(s
->mem
+ addr
));
516 static inline uint32_t ne2000_mem_readl(NE2000State
*s
, uint32_t addr
)
518 addr
&= ~1; /* XXX: check exact behaviour if not even */
520 (addr
>= NE2000_PMEM_START
&& addr
< NE2000_MEM_SIZE
)) {
521 return le32_to_cpupu((uint32_t *)(s
->mem
+ addr
));
527 static inline void ne2000_dma_update(NE2000State
*s
, int len
)
531 /* XXX: check what to do if rsar > stop */
532 if (s
->rsar
== s
->stop
)
535 if (s
->rcnt
<= len
) {
537 /* signal end of transfer */
539 ne2000_update_irq(s
);
545 void ne2000_asic_ioport_write(void *opaque
, uint32_t addr
, uint32_t val
)
547 NE2000State
*s
= opaque
;
550 printf("NE2000: asic write val=0x%04x\n", val
);
554 if (s
->dcfg
& 0x01) {
556 ne2000_mem_writew(s
, s
->rsar
, val
);
557 ne2000_dma_update(s
, 2);
560 ne2000_mem_writeb(s
, s
->rsar
, val
);
561 ne2000_dma_update(s
, 1);
565 uint32_t ne2000_asic_ioport_read(void *opaque
, uint32_t addr
)
567 NE2000State
*s
= opaque
;
570 if (s
->dcfg
& 0x01) {
572 ret
= ne2000_mem_readw(s
, s
->rsar
);
573 ne2000_dma_update(s
, 2);
576 ret
= ne2000_mem_readb(s
, s
->rsar
);
577 ne2000_dma_update(s
, 1);
580 printf("NE2000: asic read val=0x%04x\n", ret
);
585 static void ne2000_asic_ioport_writel(void *opaque
, uint32_t addr
, uint32_t val
)
587 NE2000State
*s
= opaque
;
590 printf("NE2000: asic writel val=0x%04x\n", val
);
595 ne2000_mem_writel(s
, s
->rsar
, val
);
596 ne2000_dma_update(s
, 4);
599 static uint32_t ne2000_asic_ioport_readl(void *opaque
, uint32_t addr
)
601 NE2000State
*s
= opaque
;
605 ret
= ne2000_mem_readl(s
, s
->rsar
);
606 ne2000_dma_update(s
, 4);
608 printf("NE2000: asic readl val=0x%04x\n", ret
);
613 void ne2000_reset_ioport_write(void *opaque
, uint32_t addr
, uint32_t val
)
615 /* nothing to do (end of reset pulse) */
618 uint32_t ne2000_reset_ioport_read(void *opaque
, uint32_t addr
)
620 NE2000State
*s
= opaque
;
625 void ne2000_save(QEMUFile
* f
, void* opaque
)
627 NE2000State
* s
= opaque
;
630 qemu_put_8s(f
, &s
->rxcr
);
632 qemu_put_8s(f
, &s
->cmd
);
633 qemu_put_be32s(f
, &s
->start
);
634 qemu_put_be32s(f
, &s
->stop
);
635 qemu_put_8s(f
, &s
->boundary
);
636 qemu_put_8s(f
, &s
->tsr
);
637 qemu_put_8s(f
, &s
->tpsr
);
638 qemu_put_be16s(f
, &s
->tcnt
);
639 qemu_put_be16s(f
, &s
->rcnt
);
640 qemu_put_be32s(f
, &s
->rsar
);
641 qemu_put_8s(f
, &s
->rsr
);
642 qemu_put_8s(f
, &s
->isr
);
643 qemu_put_8s(f
, &s
->dcfg
);
644 qemu_put_8s(f
, &s
->imr
);
645 qemu_put_buffer(f
, s
->phys
, 6);
646 qemu_put_8s(f
, &s
->curpag
);
647 qemu_put_buffer(f
, s
->mult
, 8);
649 qemu_put_be32s(f
, &tmp
); /* ignored, was irq */
650 qemu_put_buffer(f
, s
->mem
, NE2000_MEM_SIZE
);
653 int ne2000_load(QEMUFile
* f
, void* opaque
, int version_id
)
655 NE2000State
* s
= opaque
;
661 if (version_id
>= 2) {
662 qemu_get_8s(f
, &s
->rxcr
);
667 qemu_get_8s(f
, &s
->cmd
);
668 qemu_get_be32s(f
, &s
->start
);
669 qemu_get_be32s(f
, &s
->stop
);
670 qemu_get_8s(f
, &s
->boundary
);
671 qemu_get_8s(f
, &s
->tsr
);
672 qemu_get_8s(f
, &s
->tpsr
);
673 qemu_get_be16s(f
, &s
->tcnt
);
674 qemu_get_be16s(f
, &s
->rcnt
);
675 qemu_get_be32s(f
, &s
->rsar
);
676 qemu_get_8s(f
, &s
->rsr
);
677 qemu_get_8s(f
, &s
->isr
);
678 qemu_get_8s(f
, &s
->dcfg
);
679 qemu_get_8s(f
, &s
->imr
);
680 qemu_get_buffer(f
, s
->phys
, 6);
681 qemu_get_8s(f
, &s
->curpag
);
682 qemu_get_buffer(f
, s
->mult
, 8);
683 qemu_get_be32s(f
, &tmp
); /* ignored */
684 qemu_get_buffer(f
, s
->mem
, NE2000_MEM_SIZE
);
689 static void pci_ne2000_save(QEMUFile
* f
, void* opaque
)
691 PCINE2000State
* s
= opaque
;
693 pci_device_save(&s
->dev
, f
);
694 ne2000_save(f
, &s
->ne2000
);
697 static int pci_ne2000_load(QEMUFile
* f
, void* opaque
, int version_id
)
699 PCINE2000State
* s
= opaque
;
705 if (version_id
>= 3) {
706 ret
= pci_device_load(&s
->dev
, f
);
711 return ne2000_load(f
, &s
->ne2000
, version_id
);
714 /***********************************************************/
715 /* PCI NE2000 definitions */
717 static void ne2000_map(PCIDevice
*pci_dev
, int region_num
,
718 uint32_t addr
, uint32_t size
, int type
)
720 PCINE2000State
*d
= DO_UPCAST(PCINE2000State
, dev
, pci_dev
);
721 NE2000State
*s
= &d
->ne2000
;
723 register_ioport_write(addr
, 16, 1, ne2000_ioport_write
, s
);
724 register_ioport_read(addr
, 16, 1, ne2000_ioport_read
, s
);
726 register_ioport_write(addr
+ 0x10, 1, 1, ne2000_asic_ioport_write
, s
);
727 register_ioport_read(addr
+ 0x10, 1, 1, ne2000_asic_ioport_read
, s
);
728 register_ioport_write(addr
+ 0x10, 2, 2, ne2000_asic_ioport_write
, s
);
729 register_ioport_read(addr
+ 0x10, 2, 2, ne2000_asic_ioport_read
, s
);
730 register_ioport_write(addr
+ 0x10, 4, 4, ne2000_asic_ioport_writel
, s
);
731 register_ioport_read(addr
+ 0x10, 4, 4, ne2000_asic_ioport_readl
, s
);
733 register_ioport_write(addr
+ 0x1f, 1, 1, ne2000_reset_ioport_write
, s
);
734 register_ioport_read(addr
+ 0x1f, 1, 1, ne2000_reset_ioport_read
, s
);
737 static void ne2000_cleanup(VLANClientState
*vc
)
739 NE2000State
*s
= vc
->opaque
;
741 unregister_savevm("ne2000", s
);
744 static int pci_ne2000_init(PCIDevice
*pci_dev
)
746 PCINE2000State
*d
= DO_UPCAST(PCINE2000State
, dev
, pci_dev
);
750 pci_conf
= d
->dev
.config
;
751 pci_config_set_vendor_id(pci_conf
, PCI_VENDOR_ID_REALTEK
);
752 pci_config_set_device_id(pci_conf
, PCI_DEVICE_ID_REALTEK_8029
);
753 pci_config_set_class(pci_conf
, PCI_CLASS_NETWORK_ETHERNET
);
754 pci_conf
[PCI_HEADER_TYPE
] = PCI_HEADER_TYPE_NORMAL
; // header_type
755 pci_conf
[0x3d] = 1; // interrupt pin 0
757 pci_register_bar(&d
->dev
, 0, 0x100,
758 PCI_ADDRESS_SPACE_IO
, ne2000_map
);
760 s
->irq
= d
->dev
.irq
[0];
761 qdev_get_macaddr(&d
->dev
.qdev
, s
->macaddr
);
763 s
->vc
= qdev_get_vlan_client(&d
->dev
.qdev
,
764 ne2000_can_receive
, ne2000_receive
, NULL
,
767 qemu_format_nic_info_str(s
->vc
, s
->macaddr
);
769 register_savevm("ne2000", -1, 3, pci_ne2000_save
, pci_ne2000_load
, d
);
773 static PCIDeviceInfo ne2000_info
= {
774 .qdev
.name
= "ne2k_pci",
775 .qdev
.size
= sizeof(PCINE2000State
),
776 .init
= pci_ne2000_init
,
779 static void ne2000_register_devices(void)
781 pci_qdev_register(&ne2000_info
);
784 device_init(ne2000_register_devices
)