irq: introduce qemu_irq_proxy()
[qemu.git] / hw / mips_malta.c
blob0110daa1a359199857d289737011ba7b8a018497
1 /*
2 * QEMU Malta board support
4 * Copyright (c) 2006 Aurelien Jarno
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
25 #include "hw.h"
26 #include "pc.h"
27 #include "fdc.h"
28 #include "net.h"
29 #include "boards.h"
30 #include "smbus.h"
31 #include "block.h"
32 #include "flash.h"
33 #include "mips.h"
34 #include "mips_cpudevs.h"
35 #include "pci.h"
36 #include "usb-uhci.h"
37 #include "vmware_vga.h"
38 #include "qemu-char.h"
39 #include "sysemu.h"
40 #include "arch_init.h"
41 #include "boards.h"
42 #include "qemu-log.h"
43 #include "mips-bios.h"
44 #include "ide.h"
45 #include "loader.h"
46 #include "elf.h"
47 #include "mc146818rtc.h"
48 #include "blockdev.h"
49 #include "exec-memory.h"
51 //#define DEBUG_BOARD_INIT
53 #define ENVP_ADDR 0x80002000l
54 #define ENVP_NB_ENTRIES 16
55 #define ENVP_ENTRY_SIZE 256
57 #define MAX_IDE_BUS 2
59 typedef struct {
60 MemoryRegion iomem;
61 MemoryRegion iomem_lo; /* 0 - 0x900 */
62 MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
63 uint32_t leds;
64 uint32_t brk;
65 uint32_t gpout;
66 uint32_t i2cin;
67 uint32_t i2coe;
68 uint32_t i2cout;
69 uint32_t i2csel;
70 CharDriverState *display;
71 char display_text[9];
72 SerialState *uart;
73 } MaltaFPGAState;
75 static ISADevice *pit;
77 static struct _loaderparams {
78 int ram_size;
79 const char *kernel_filename;
80 const char *kernel_cmdline;
81 const char *initrd_filename;
82 } loaderparams;
84 /* Malta FPGA */
85 static void malta_fpga_update_display(void *opaque)
87 char leds_text[9];
88 int i;
89 MaltaFPGAState *s = opaque;
91 for (i = 7 ; i >= 0 ; i--) {
92 if (s->leds & (1 << i))
93 leds_text[i] = '#';
94 else
95 leds_text[i] = ' ';
97 leds_text[8] = '\0';
99 qemu_chr_fe_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
100 qemu_chr_fe_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
104 * EEPROM 24C01 / 24C02 emulation.
106 * Emulation for serial EEPROMs:
107 * 24C01 - 1024 bit (128 x 8)
108 * 24C02 - 2048 bit (256 x 8)
110 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
113 //~ #define DEBUG
115 #if defined(DEBUG)
116 # define logout(fmt, ...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
117 #else
118 # define logout(fmt, ...) ((void)0)
119 #endif
121 struct _eeprom24c0x_t {
122 uint8_t tick;
123 uint8_t address;
124 uint8_t command;
125 uint8_t ack;
126 uint8_t scl;
127 uint8_t sda;
128 uint8_t data;
129 //~ uint16_t size;
130 uint8_t contents[256];
133 typedef struct _eeprom24c0x_t eeprom24c0x_t;
135 static eeprom24c0x_t eeprom = {
136 .contents = {
137 /* 00000000: */ 0x80,0x08,0x04,0x0D,0x0A,0x01,0x40,0x00,
138 /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
139 /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x0E,0x00,
140 /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0x40,
141 /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
142 /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
143 /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
144 /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
145 /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
146 /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
147 /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
148 /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
149 /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
150 /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
151 /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
152 /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
156 static uint8_t eeprom24c0x_read(void)
158 logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
159 eeprom.tick, eeprom.scl, eeprom.sda, eeprom.data);
160 return eeprom.sda;
163 static void eeprom24c0x_write(int scl, int sda)
165 if (eeprom.scl && scl && (eeprom.sda != sda)) {
166 logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
167 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda, sda ? "stop" : "start");
168 if (!sda) {
169 eeprom.tick = 1;
170 eeprom.command = 0;
172 } else if (eeprom.tick == 0 && !eeprom.ack) {
173 /* Waiting for start. */
174 logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
175 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
176 } else if (!eeprom.scl && scl) {
177 logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
178 eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
179 if (eeprom.ack) {
180 logout("\ti2c ack bit = 0\n");
181 sda = 0;
182 eeprom.ack = 0;
183 } else if (eeprom.sda == sda) {
184 uint8_t bit = (sda != 0);
185 logout("\ti2c bit = %d\n", bit);
186 if (eeprom.tick < 9) {
187 eeprom.command <<= 1;
188 eeprom.command += bit;
189 eeprom.tick++;
190 if (eeprom.tick == 9) {
191 logout("\tcommand 0x%04x, %s\n", eeprom.command, bit ? "read" : "write");
192 eeprom.ack = 1;
194 } else if (eeprom.tick < 17) {
195 if (eeprom.command & 1) {
196 sda = ((eeprom.data & 0x80) != 0);
198 eeprom.address <<= 1;
199 eeprom.address += bit;
200 eeprom.tick++;
201 eeprom.data <<= 1;
202 if (eeprom.tick == 17) {
203 eeprom.data = eeprom.contents[eeprom.address];
204 logout("\taddress 0x%04x, data 0x%02x\n", eeprom.address, eeprom.data);
205 eeprom.ack = 1;
206 eeprom.tick = 0;
208 } else if (eeprom.tick >= 17) {
209 sda = 0;
211 } else {
212 logout("\tsda changed with raising scl\n");
214 } else {
215 logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
217 eeprom.scl = scl;
218 eeprom.sda = sda;
221 static uint64_t malta_fpga_read(void *opaque, target_phys_addr_t addr,
222 unsigned size)
224 MaltaFPGAState *s = opaque;
225 uint32_t val = 0;
226 uint32_t saddr;
228 saddr = (addr & 0xfffff);
230 switch (saddr) {
232 /* SWITCH Register */
233 case 0x00200:
234 val = 0x00000000; /* All switches closed */
235 break;
237 /* STATUS Register */
238 case 0x00208:
239 #ifdef TARGET_WORDS_BIGENDIAN
240 val = 0x00000012;
241 #else
242 val = 0x00000010;
243 #endif
244 break;
246 /* JMPRS Register */
247 case 0x00210:
248 val = 0x00;
249 break;
251 /* LEDBAR Register */
252 case 0x00408:
253 val = s->leds;
254 break;
256 /* BRKRES Register */
257 case 0x00508:
258 val = s->brk;
259 break;
261 /* UART Registers are handled directly by the serial device */
263 /* GPOUT Register */
264 case 0x00a00:
265 val = s->gpout;
266 break;
268 /* XXX: implement a real I2C controller */
270 /* GPINP Register */
271 case 0x00a08:
272 /* IN = OUT until a real I2C control is implemented */
273 if (s->i2csel)
274 val = s->i2cout;
275 else
276 val = 0x00;
277 break;
279 /* I2CINP Register */
280 case 0x00b00:
281 val = ((s->i2cin & ~1) | eeprom24c0x_read());
282 break;
284 /* I2COE Register */
285 case 0x00b08:
286 val = s->i2coe;
287 break;
289 /* I2COUT Register */
290 case 0x00b10:
291 val = s->i2cout;
292 break;
294 /* I2CSEL Register */
295 case 0x00b18:
296 val = s->i2csel;
297 break;
299 default:
300 #if 0
301 printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
302 addr);
303 #endif
304 break;
306 return val;
309 static void malta_fpga_write(void *opaque, target_phys_addr_t addr,
310 uint64_t val, unsigned size)
312 MaltaFPGAState *s = opaque;
313 uint32_t saddr;
315 saddr = (addr & 0xfffff);
317 switch (saddr) {
319 /* SWITCH Register */
320 case 0x00200:
321 break;
323 /* JMPRS Register */
324 case 0x00210:
325 break;
327 /* LEDBAR Register */
328 /* XXX: implement a 8-LED array */
329 case 0x00408:
330 s->leds = val & 0xff;
331 break;
333 /* ASCIIWORD Register */
334 case 0x00410:
335 snprintf(s->display_text, 9, "%08X", (uint32_t)val);
336 malta_fpga_update_display(s);
337 break;
339 /* ASCIIPOS0 to ASCIIPOS7 Registers */
340 case 0x00418:
341 case 0x00420:
342 case 0x00428:
343 case 0x00430:
344 case 0x00438:
345 case 0x00440:
346 case 0x00448:
347 case 0x00450:
348 s->display_text[(saddr - 0x00418) >> 3] = (char) val;
349 malta_fpga_update_display(s);
350 break;
352 /* SOFTRES Register */
353 case 0x00500:
354 if (val == 0x42)
355 qemu_system_reset_request ();
356 break;
358 /* BRKRES Register */
359 case 0x00508:
360 s->brk = val & 0xff;
361 break;
363 /* UART Registers are handled directly by the serial device */
365 /* GPOUT Register */
366 case 0x00a00:
367 s->gpout = val & 0xff;
368 break;
370 /* I2COE Register */
371 case 0x00b08:
372 s->i2coe = val & 0x03;
373 break;
375 /* I2COUT Register */
376 case 0x00b10:
377 eeprom24c0x_write(val & 0x02, val & 0x01);
378 s->i2cout = val;
379 break;
381 /* I2CSEL Register */
382 case 0x00b18:
383 s->i2csel = val & 0x01;
384 break;
386 default:
387 #if 0
388 printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
389 addr);
390 #endif
391 break;
395 static const MemoryRegionOps malta_fpga_ops = {
396 .read = malta_fpga_read,
397 .write = malta_fpga_write,
398 .endianness = DEVICE_NATIVE_ENDIAN,
401 static void malta_fpga_reset(void *opaque)
403 MaltaFPGAState *s = opaque;
405 s->leds = 0x00;
406 s->brk = 0x0a;
407 s->gpout = 0x00;
408 s->i2cin = 0x3;
409 s->i2coe = 0x0;
410 s->i2cout = 0x3;
411 s->i2csel = 0x1;
413 s->display_text[8] = '\0';
414 snprintf(s->display_text, 9, " ");
417 static void malta_fpga_led_init(CharDriverState *chr)
419 qemu_chr_fe_printf(chr, "\e[HMalta LEDBAR\r\n");
420 qemu_chr_fe_printf(chr, "+--------+\r\n");
421 qemu_chr_fe_printf(chr, "+ +\r\n");
422 qemu_chr_fe_printf(chr, "+--------+\r\n");
423 qemu_chr_fe_printf(chr, "\n");
424 qemu_chr_fe_printf(chr, "Malta ASCII\r\n");
425 qemu_chr_fe_printf(chr, "+--------+\r\n");
426 qemu_chr_fe_printf(chr, "+ +\r\n");
427 qemu_chr_fe_printf(chr, "+--------+\r\n");
430 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
431 target_phys_addr_t base, qemu_irq uart_irq, CharDriverState *uart_chr)
433 MaltaFPGAState *s;
435 s = (MaltaFPGAState *)g_malloc0(sizeof(MaltaFPGAState));
437 memory_region_init_io(&s->iomem, &malta_fpga_ops, s,
438 "malta-fpga", 0x100000);
439 memory_region_init_alias(&s->iomem_lo, "malta-fpga",
440 &s->iomem, 0, 0x900);
441 memory_region_init_alias(&s->iomem_hi, "malta-fpga",
442 &s->iomem, 0xa00, 0x10000-0xa00);
444 memory_region_add_subregion(address_space, base, &s->iomem_lo);
445 memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
447 s->display = qemu_chr_new("fpga", "vc:320x200", malta_fpga_led_init);
449 #ifdef TARGET_WORDS_BIGENDIAN
450 s->uart = serial_mm_init(base + 0x900, 3, uart_irq, 230400, uart_chr, 1, 1);
451 #else
452 s->uart = serial_mm_init(base + 0x900, 3, uart_irq, 230400, uart_chr, 1, 0);
453 #endif
455 malta_fpga_reset(s);
456 qemu_register_reset(malta_fpga_reset, s);
458 return s;
461 /* Network support */
462 static void network_init(void)
464 int i;
466 for(i = 0; i < nb_nics; i++) {
467 NICInfo *nd = &nd_table[i];
468 const char *default_devaddr = NULL;
470 if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
471 /* The malta board has a PCNet card using PCI SLOT 11 */
472 default_devaddr = "0b";
474 pci_nic_init_nofail(nd, "pcnet", default_devaddr);
478 /* ROM and pseudo bootloader
480 The following code implements a very very simple bootloader. It first
481 loads the registers a0 to a3 to the values expected by the OS, and
482 then jump at the kernel address.
484 The bootloader should pass the locations of the kernel arguments and
485 environment variables tables. Those tables contain the 32-bit address
486 of NULL terminated strings. The environment variables table should be
487 terminated by a NULL address.
489 For a simpler implementation, the number of kernel arguments is fixed
490 to two (the name of the kernel and the command line), and the two
491 tables are actually the same one.
493 The registers a0 to a3 should contain the following values:
494 a0 - number of kernel arguments
495 a1 - 32-bit address of the kernel arguments table
496 a2 - 32-bit address of the environment variables table
497 a3 - RAM size in bytes
500 static void write_bootloader (CPUState *env, uint8_t *base,
501 int64_t kernel_entry)
503 uint32_t *p;
505 /* Small bootloader */
506 p = (uint32_t *)base;
507 stl_raw(p++, 0x0bf00160); /* j 0x1fc00580 */
508 stl_raw(p++, 0x00000000); /* nop */
510 /* YAMON service vector */
511 stl_raw(base + 0x500, 0xbfc00580); /* start: */
512 stl_raw(base + 0x504, 0xbfc0083c); /* print_count: */
513 stl_raw(base + 0x520, 0xbfc00580); /* start: */
514 stl_raw(base + 0x52c, 0xbfc00800); /* flush_cache: */
515 stl_raw(base + 0x534, 0xbfc00808); /* print: */
516 stl_raw(base + 0x538, 0xbfc00800); /* reg_cpu_isr: */
517 stl_raw(base + 0x53c, 0xbfc00800); /* unred_cpu_isr: */
518 stl_raw(base + 0x540, 0xbfc00800); /* reg_ic_isr: */
519 stl_raw(base + 0x544, 0xbfc00800); /* unred_ic_isr: */
520 stl_raw(base + 0x548, 0xbfc00800); /* reg_esr: */
521 stl_raw(base + 0x54c, 0xbfc00800); /* unreg_esr: */
522 stl_raw(base + 0x550, 0xbfc00800); /* getchar: */
523 stl_raw(base + 0x554, 0xbfc00800); /* syscon_read: */
526 /* Second part of the bootloader */
527 p = (uint32_t *) (base + 0x580);
528 stl_raw(p++, 0x24040002); /* addiu a0, zero, 2 */
529 stl_raw(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
530 stl_raw(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff)); /* ori sp, sp, low(ENVP_ADDR) */
531 stl_raw(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff)); /* lui a1, high(ENVP_ADDR) */
532 stl_raw(p++, 0x34a50000 | (ENVP_ADDR & 0xffff)); /* ori a1, a1, low(ENVP_ADDR) */
533 stl_raw(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
534 stl_raw(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff)); /* ori a2, a2, low(ENVP_ADDR + 8) */
535 stl_raw(p++, 0x3c070000 | (loaderparams.ram_size >> 16)); /* lui a3, high(ram_size) */
536 stl_raw(p++, 0x34e70000 | (loaderparams.ram_size & 0xffff)); /* ori a3, a3, low(ram_size) */
538 /* Load BAR registers as done by YAMON */
539 stl_raw(p++, 0x3c09b400); /* lui t1, 0xb400 */
541 #ifdef TARGET_WORDS_BIGENDIAN
542 stl_raw(p++, 0x3c08df00); /* lui t0, 0xdf00 */
543 #else
544 stl_raw(p++, 0x340800df); /* ori t0, r0, 0x00df */
545 #endif
546 stl_raw(p++, 0xad280068); /* sw t0, 0x0068(t1) */
548 stl_raw(p++, 0x3c09bbe0); /* lui t1, 0xbbe0 */
550 #ifdef TARGET_WORDS_BIGENDIAN
551 stl_raw(p++, 0x3c08c000); /* lui t0, 0xc000 */
552 #else
553 stl_raw(p++, 0x340800c0); /* ori t0, r0, 0x00c0 */
554 #endif
555 stl_raw(p++, 0xad280048); /* sw t0, 0x0048(t1) */
556 #ifdef TARGET_WORDS_BIGENDIAN
557 stl_raw(p++, 0x3c084000); /* lui t0, 0x4000 */
558 #else
559 stl_raw(p++, 0x34080040); /* ori t0, r0, 0x0040 */
560 #endif
561 stl_raw(p++, 0xad280050); /* sw t0, 0x0050(t1) */
563 #ifdef TARGET_WORDS_BIGENDIAN
564 stl_raw(p++, 0x3c088000); /* lui t0, 0x8000 */
565 #else
566 stl_raw(p++, 0x34080080); /* ori t0, r0, 0x0080 */
567 #endif
568 stl_raw(p++, 0xad280058); /* sw t0, 0x0058(t1) */
569 #ifdef TARGET_WORDS_BIGENDIAN
570 stl_raw(p++, 0x3c083f00); /* lui t0, 0x3f00 */
571 #else
572 stl_raw(p++, 0x3408003f); /* ori t0, r0, 0x003f */
573 #endif
574 stl_raw(p++, 0xad280060); /* sw t0, 0x0060(t1) */
576 #ifdef TARGET_WORDS_BIGENDIAN
577 stl_raw(p++, 0x3c08c100); /* lui t0, 0xc100 */
578 #else
579 stl_raw(p++, 0x340800c1); /* ori t0, r0, 0x00c1 */
580 #endif
581 stl_raw(p++, 0xad280080); /* sw t0, 0x0080(t1) */
582 #ifdef TARGET_WORDS_BIGENDIAN
583 stl_raw(p++, 0x3c085e00); /* lui t0, 0x5e00 */
584 #else
585 stl_raw(p++, 0x3408005e); /* ori t0, r0, 0x005e */
586 #endif
587 stl_raw(p++, 0xad280088); /* sw t0, 0x0088(t1) */
589 /* Jump to kernel code */
590 stl_raw(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff)); /* lui ra, high(kernel_entry) */
591 stl_raw(p++, 0x37ff0000 | (kernel_entry & 0xffff)); /* ori ra, ra, low(kernel_entry) */
592 stl_raw(p++, 0x03e00008); /* jr ra */
593 stl_raw(p++, 0x00000000); /* nop */
595 /* YAMON subroutines */
596 p = (uint32_t *) (base + 0x800);
597 stl_raw(p++, 0x03e00008); /* jr ra */
598 stl_raw(p++, 0x24020000); /* li v0,0 */
599 /* 808 YAMON print */
600 stl_raw(p++, 0x03e06821); /* move t5,ra */
601 stl_raw(p++, 0x00805821); /* move t3,a0 */
602 stl_raw(p++, 0x00a05021); /* move t2,a1 */
603 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
604 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
605 stl_raw(p++, 0x10800005); /* beqz a0,834 */
606 stl_raw(p++, 0x00000000); /* nop */
607 stl_raw(p++, 0x0ff0021c); /* jal 870 */
608 stl_raw(p++, 0x00000000); /* nop */
609 stl_raw(p++, 0x08000205); /* j 814 */
610 stl_raw(p++, 0x00000000); /* nop */
611 stl_raw(p++, 0x01a00008); /* jr t5 */
612 stl_raw(p++, 0x01602021); /* move a0,t3 */
613 /* 0x83c YAMON print_count */
614 stl_raw(p++, 0x03e06821); /* move t5,ra */
615 stl_raw(p++, 0x00805821); /* move t3,a0 */
616 stl_raw(p++, 0x00a05021); /* move t2,a1 */
617 stl_raw(p++, 0x00c06021); /* move t4,a2 */
618 stl_raw(p++, 0x91440000); /* lbu a0,0(t2) */
619 stl_raw(p++, 0x0ff0021c); /* jal 870 */
620 stl_raw(p++, 0x00000000); /* nop */
621 stl_raw(p++, 0x254a0001); /* addiu t2,t2,1 */
622 stl_raw(p++, 0x258cffff); /* addiu t4,t4,-1 */
623 stl_raw(p++, 0x1580fffa); /* bnez t4,84c */
624 stl_raw(p++, 0x00000000); /* nop */
625 stl_raw(p++, 0x01a00008); /* jr t5 */
626 stl_raw(p++, 0x01602021); /* move a0,t3 */
627 /* 0x870 */
628 stl_raw(p++, 0x3c08b800); /* lui t0,0xb400 */
629 stl_raw(p++, 0x350803f8); /* ori t0,t0,0x3f8 */
630 stl_raw(p++, 0x91090005); /* lbu t1,5(t0) */
631 stl_raw(p++, 0x00000000); /* nop */
632 stl_raw(p++, 0x31290040); /* andi t1,t1,0x40 */
633 stl_raw(p++, 0x1120fffc); /* beqz t1,878 <outch+0x8> */
634 stl_raw(p++, 0x00000000); /* nop */
635 stl_raw(p++, 0x03e00008); /* jr ra */
636 stl_raw(p++, 0xa1040000); /* sb a0,0(t0) */
640 static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t* prom_buf, int index,
641 const char *string, ...)
643 va_list ap;
644 int32_t table_addr;
646 if (index >= ENVP_NB_ENTRIES)
647 return;
649 if (string == NULL) {
650 prom_buf[index] = 0;
651 return;
654 table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
655 prom_buf[index] = tswap32(ENVP_ADDR + table_addr);
657 va_start(ap, string);
658 vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
659 va_end(ap);
662 /* Kernel */
663 static int64_t load_kernel (void)
665 int64_t kernel_entry, kernel_high;
666 long initrd_size;
667 ram_addr_t initrd_offset;
668 int big_endian;
669 uint32_t *prom_buf;
670 long prom_size;
671 int prom_index = 0;
673 #ifdef TARGET_WORDS_BIGENDIAN
674 big_endian = 1;
675 #else
676 big_endian = 0;
677 #endif
679 if (load_elf(loaderparams.kernel_filename, cpu_mips_kseg0_to_phys, NULL,
680 (uint64_t *)&kernel_entry, NULL, (uint64_t *)&kernel_high,
681 big_endian, ELF_MACHINE, 1) < 0) {
682 fprintf(stderr, "qemu: could not load kernel '%s'\n",
683 loaderparams.kernel_filename);
684 exit(1);
687 /* load initrd */
688 initrd_size = 0;
689 initrd_offset = 0;
690 if (loaderparams.initrd_filename) {
691 initrd_size = get_image_size (loaderparams.initrd_filename);
692 if (initrd_size > 0) {
693 initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK;
694 if (initrd_offset + initrd_size > ram_size) {
695 fprintf(stderr,
696 "qemu: memory too small for initial ram disk '%s'\n",
697 loaderparams.initrd_filename);
698 exit(1);
700 initrd_size = load_image_targphys(loaderparams.initrd_filename,
701 initrd_offset,
702 ram_size - initrd_offset);
704 if (initrd_size == (target_ulong) -1) {
705 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
706 loaderparams.initrd_filename);
707 exit(1);
711 /* Setup prom parameters. */
712 prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
713 prom_buf = g_malloc(prom_size);
715 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
716 if (initrd_size > 0) {
717 prom_set(prom_buf, prom_index++, "rd_start=0x%" PRIx64 " rd_size=%li %s",
718 cpu_mips_phys_to_kseg0(NULL, initrd_offset), initrd_size,
719 loaderparams.kernel_cmdline);
720 } else {
721 prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
724 prom_set(prom_buf, prom_index++, "memsize");
725 prom_set(prom_buf, prom_index++, "%i", loaderparams.ram_size);
726 prom_set(prom_buf, prom_index++, "modetty0");
727 prom_set(prom_buf, prom_index++, "38400n8r");
728 prom_set(prom_buf, prom_index++, NULL);
730 rom_add_blob_fixed("prom", prom_buf, prom_size,
731 cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR));
733 return kernel_entry;
736 static void malta_mips_config(CPUState *env)
738 env->mvp->CP0_MVPConf0 |= ((smp_cpus - 1) << CP0MVPC0_PVPE) |
739 ((smp_cpus * env->nr_threads - 1) << CP0MVPC0_PTC);
742 static void main_cpu_reset(void *opaque)
744 CPUState *env = opaque;
745 cpu_reset(env);
747 /* The bootloader does not need to be rewritten as it is located in a
748 read only location. The kernel location and the arguments table
749 location does not change. */
750 if (loaderparams.kernel_filename) {
751 env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
754 malta_mips_config(env);
757 static void cpu_request_exit(void *opaque, int irq, int level)
759 CPUState *env = cpu_single_env;
761 if (env && level) {
762 cpu_exit(env);
766 static
767 void mips_malta_init (ram_addr_t ram_size,
768 const char *boot_device,
769 const char *kernel_filename, const char *kernel_cmdline,
770 const char *initrd_filename, const char *cpu_model)
772 char *filename;
773 pflash_t *fl;
774 MemoryRegion *system_memory = get_system_memory();
775 MemoryRegion *ram = g_new(MemoryRegion, 1);
776 MemoryRegion *bios, *bios_alias = g_new(MemoryRegion, 1);
777 target_long bios_size;
778 int64_t kernel_entry;
779 PCIBus *pci_bus;
780 CPUState *env;
781 qemu_irq *i8259;
782 qemu_irq *cpu_exit_irq;
783 int piix4_devfn;
784 i2c_bus *smbus;
785 int i;
786 DriveInfo *dinfo;
787 DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
788 DriveInfo *fd[MAX_FD];
789 int fl_idx = 0;
790 int fl_sectors = 0;
791 int be;
793 /* Make sure the first 3 serial ports are associated with a device. */
794 for(i = 0; i < 3; i++) {
795 if (!serial_hds[i]) {
796 char label[32];
797 snprintf(label, sizeof(label), "serial%d", i);
798 serial_hds[i] = qemu_chr_new(label, "null", NULL);
802 /* init CPUs */
803 if (cpu_model == NULL) {
804 #ifdef TARGET_MIPS64
805 cpu_model = "20Kc";
806 #else
807 cpu_model = "24Kf";
808 #endif
811 for (i = 0; i < smp_cpus; i++) {
812 env = cpu_init(cpu_model);
813 if (!env) {
814 fprintf(stderr, "Unable to find CPU definition\n");
815 exit(1);
817 /* Init internal devices */
818 cpu_mips_irq_init_cpu(env);
819 cpu_mips_clock_init(env);
820 qemu_register_reset(main_cpu_reset, env);
822 env = first_cpu;
824 /* allocate RAM */
825 if (ram_size > (256 << 20)) {
826 fprintf(stderr,
827 "qemu: Too much memory for this machine: %d MB, maximum 256 MB\n",
828 ((unsigned int)ram_size / (1 << 20)));
829 exit(1);
831 memory_region_init_ram(ram, NULL, "mips_malta.ram", ram_size);
832 memory_region_add_subregion(system_memory, 0, ram);
834 #ifdef TARGET_WORDS_BIGENDIAN
835 be = 1;
836 #else
837 be = 0;
838 #endif
839 /* FPGA */
840 malta_fpga_init(system_memory, 0x1f000000LL, env->irq[2], serial_hds[2]);
842 /* Load firmware in flash / BIOS unless we boot directly into a kernel. */
843 if (kernel_filename) {
844 /* Write a small bootloader to the flash location. */
845 bios = g_new(MemoryRegion, 1);
846 memory_region_init_ram(bios, NULL, "mips_malta.bios", BIOS_SIZE);
847 memory_region_set_readonly(bios, true);
848 memory_region_init_alias(bios_alias, "bios.1fc", bios, 0, BIOS_SIZE);
849 /* Map the bios at two physical locations, as on the real board. */
850 memory_region_add_subregion(system_memory, 0x1e000000LL, bios);
851 memory_region_add_subregion(system_memory, 0x1fc00000LL, bios_alias);
852 loaderparams.ram_size = ram_size;
853 loaderparams.kernel_filename = kernel_filename;
854 loaderparams.kernel_cmdline = kernel_cmdline;
855 loaderparams.initrd_filename = initrd_filename;
856 kernel_entry = load_kernel();
857 write_bootloader(env, memory_region_get_ram_ptr(bios), kernel_entry);
858 } else {
859 dinfo = drive_get(IF_PFLASH, 0, fl_idx);
860 if (dinfo) {
861 /* Load firmware from flash. */
862 bios_size = 0x400000;
863 fl_sectors = bios_size >> 16;
864 #ifdef DEBUG_BOARD_INIT
865 printf("Register parallel flash %d size " TARGET_FMT_lx " at "
866 "addr %08llx '%s' %x\n",
867 fl_idx, bios_size, 0x1e000000LL,
868 bdrv_get_device_name(dinfo->bdrv), fl_sectors);
869 #endif
870 fl = pflash_cfi01_register(0x1e000000LL,
871 NULL, "mips_malta.bios", BIOS_SIZE,
872 dinfo->bdrv, 65536, fl_sectors,
873 4, 0x0000, 0x0000, 0x0000, 0x0000, be);
874 bios = pflash_cfi01_get_memory(fl);
875 /* Map the bios at two physical locations, as on the real board. */
876 memory_region_init_alias(bios_alias, "bios.1fc",
877 bios, 0, BIOS_SIZE);
878 memory_region_add_subregion(system_memory, 0x1fc00000LL,
879 bios_alias);
880 fl_idx++;
881 } else {
882 bios = g_new(MemoryRegion, 1);
883 memory_region_init_ram(bios, NULL, "mips_malta.bios", BIOS_SIZE);
884 memory_region_set_readonly(bios, true);
885 memory_region_init_alias(bios_alias, "bios.1fc",
886 bios, 0, BIOS_SIZE);
887 /* Map the bios at two physical locations, as on the real board. */
888 memory_region_add_subregion(system_memory, 0x1e000000LL, bios);
889 memory_region_add_subregion(system_memory, 0x1fc00000LL,
890 bios_alias);
891 /* Load a BIOS image. */
892 if (bios_name == NULL)
893 bios_name = BIOS_FILENAME;
894 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
895 if (filename) {
896 bios_size = load_image_targphys(filename, 0x1fc00000LL,
897 BIOS_SIZE);
898 g_free(filename);
899 } else {
900 bios_size = -1;
902 if ((bios_size < 0 || bios_size > BIOS_SIZE) && !kernel_filename) {
903 fprintf(stderr,
904 "qemu: Could not load MIPS bios '%s', and no -kernel argument was specified\n",
905 bios_name);
906 exit(1);
909 /* In little endian mode the 32bit words in the bios are swapped,
910 a neat trick which allows bi-endian firmware. */
911 #ifndef TARGET_WORDS_BIGENDIAN
913 uint32_t *addr = memory_region_get_ram_ptr(bios);
914 uint32_t *end = addr + bios_size;
915 while (addr < end) {
916 bswap32s(addr);
919 #endif
922 /* Board ID = 0x420 (Malta Board with CoreLV)
923 XXX: theoretically 0x1e000010 should map to flash and 0x1fc00010 should
924 map to the board ID. */
925 stl_p(memory_region_get_ram_ptr(bios) + 0x10, 0x00000420);
927 /* Init internal devices */
928 cpu_mips_irq_init_cpu(env);
929 cpu_mips_clock_init(env);
931 /* Interrupt controller */
932 /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
933 i8259 = i8259_init(env->irq[2]);
935 /* Northbridge */
936 pci_bus = gt64120_register(i8259);
938 /* Southbridge */
939 ide_drive_get(hd, MAX_IDE_BUS);
941 piix4_devfn = piix4_init(pci_bus, 80);
942 isa_bus_irqs(i8259);
943 pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1);
944 usb_uhci_piix4_init(pci_bus, piix4_devfn + 2);
945 smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100, isa_get_irq(9),
946 NULL, NULL, 0);
947 /* TODO: Populate SPD eeprom data. */
948 smbus_eeprom_init(smbus, 8, NULL, 0);
949 pit = pit_init(0x40, 0);
950 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
951 DMA_init(0, cpu_exit_irq);
953 /* Super I/O */
954 isa_create_simple("i8042");
956 rtc_init(2000, NULL);
957 serial_isa_init(0, serial_hds[0]);
958 serial_isa_init(1, serial_hds[1]);
959 if (parallel_hds[0])
960 parallel_init(0, parallel_hds[0]);
961 for(i = 0; i < MAX_FD; i++) {
962 fd[i] = drive_get(IF_FLOPPY, 0, i);
964 fdctrl_init_isa(fd);
966 /* Sound card */
967 audio_init(NULL, pci_bus);
969 /* Network card */
970 network_init();
972 /* Optional PCI video card */
973 if (cirrus_vga_enabled) {
974 pci_cirrus_vga_init(pci_bus);
975 } else if (vmsvga_enabled) {
976 if (!pci_vmsvga_init(pci_bus)) {
977 fprintf(stderr, "Warning: vmware_vga not available,"
978 " using standard VGA instead\n");
979 pci_vga_init(pci_bus);
981 } else if (std_vga_enabled) {
982 pci_vga_init(pci_bus);
986 static QEMUMachine mips_malta_machine = {
987 .name = "malta",
988 .desc = "MIPS Malta Core LV",
989 .init = mips_malta_init,
990 .max_cpus = 16,
991 .is_default = 1,
994 static void mips_malta_machine_init(void)
996 qemu_register_machine(&mips_malta_machine);
999 machine_init(mips_malta_machine_init);