4 * Software developer's manual:
5 * http://download.intel.com/design/network/manuals/8254x_GBe_SDM.pdf
7 * Nir Peleg, Tutis Systems Ltd. for Qumranet Inc.
8 * Copyright (c) 2008 Qumranet
9 * Based on work done by:
10 * Copyright (c) 2007 Dan Aloni
11 * Copyright (c) 2004 Antony T Curtis
13 * This library is free software; you can redistribute it and/or
14 * modify it under the terms of the GNU Lesser General Public
15 * License as published by the Free Software Foundation; either
16 * version 2 of the License, or (at your option) any later version.
18 * This library is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
21 * Lesser General Public License for more details.
23 * You should have received a copy of the GNU Lesser General Public
24 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
31 #include "net/checksum.h"
41 DEBUG_GENERAL
, DEBUG_IO
, DEBUG_MMIO
, DEBUG_INTERRUPT
,
42 DEBUG_RX
, DEBUG_TX
, DEBUG_MDIC
, DEBUG_EEPROM
,
43 DEBUG_UNKNOWN
, DEBUG_TXSUM
, DEBUG_TXERR
, DEBUG_RXERR
,
44 DEBUG_RXFILTER
, DEBUG_NOTYET
,
46 #define DBGBIT(x) (1<<DEBUG_##x)
47 static int debugflags
= DBGBIT(TXERR
) | DBGBIT(GENERAL
);
49 #define DBGOUT(what, fmt, ...) do { \
50 if (debugflags & DBGBIT(what)) \
51 fprintf(stderr, "e1000: " fmt, ## __VA_ARGS__); \
54 #define DBGOUT(what, fmt, ...) do {} while (0)
57 #define IOPORT_SIZE 0x40
58 #define PNPMMIO_SIZE 0x20000
59 #define MIN_BUF_SIZE 60 /* Min. octets in an ethernet frame sans FCS */
63 * E1000_DEV_ID_82540EM works with Windows and Linux
64 * E1000_DEV_ID_82573L OK with windoze and Linux 2.6.22,
65 * appears to perform better than 82540EM, but breaks with Linux 2.6.18
66 * E1000_DEV_ID_82544GC_COPPER appears to work; not well tested
69 enum { E1000_DEVID
= E1000_DEV_ID_82540EM
};
72 * May need to specify additional MAC-to-PHY entries --
73 * Intel's Windows driver refuses to initialize unless they match
76 PHY_ID2_INIT
= E1000_DEVID
== E1000_DEV_ID_82573L
? 0xcc2 :
77 E1000_DEVID
== E1000_DEV_ID_82544GC_COPPER
? 0xc30 :
78 /* default to E1000_DEV_ID_82540EM */ 0xc20
81 typedef struct E1000State_st
{
88 uint32_t mac_reg
[0x8000];
89 uint16_t phy_reg
[0x20];
90 uint16_t eeprom_data
[64];
93 uint32_t rxbuf_min_shift
;
96 unsigned char header
[256];
97 unsigned char vlan_header
[4];
98 /* Fields vlan and data must not be reordered or separated. */
99 unsigned char vlan
[4];
100 unsigned char data
[0x10000];
102 unsigned char sum_needed
;
103 unsigned char vlan_needed
;
117 char cptse
; // current packet tse bit
121 uint32_t val_in
; // shifted in from guest driver
129 #define defreg(x) x = (E1000_##x>>2)
131 defreg(CTRL
), defreg(EECD
), defreg(EERD
), defreg(GPRC
),
132 defreg(GPTC
), defreg(ICR
), defreg(ICS
), defreg(IMC
),
133 defreg(IMS
), defreg(LEDCTL
), defreg(MANC
), defreg(MDIC
),
134 defreg(MPC
), defreg(PBA
), defreg(RCTL
), defreg(RDBAH
),
135 defreg(RDBAL
), defreg(RDH
), defreg(RDLEN
), defreg(RDT
),
136 defreg(STATUS
), defreg(SWSM
), defreg(TCTL
), defreg(TDBAH
),
137 defreg(TDBAL
), defreg(TDH
), defreg(TDLEN
), defreg(TDT
),
138 defreg(TORH
), defreg(TORL
), defreg(TOTH
), defreg(TOTL
),
139 defreg(TPR
), defreg(TPT
), defreg(TXDCTL
), defreg(WUFC
),
140 defreg(RA
), defreg(MTA
), defreg(CRCERRS
),defreg(VFTA
),
144 enum { PHY_R
= 1, PHY_W
= 2, PHY_RW
= PHY_R
| PHY_W
};
145 static const char phy_regcap
[0x20] = {
146 [PHY_STATUS
] = PHY_R
, [M88E1000_EXT_PHY_SPEC_CTRL
] = PHY_RW
,
147 [PHY_ID1
] = PHY_R
, [M88E1000_PHY_SPEC_CTRL
] = PHY_RW
,
148 [PHY_CTRL
] = PHY_RW
, [PHY_1000T_CTRL
] = PHY_RW
,
149 [PHY_LP_ABILITY
] = PHY_R
, [PHY_1000T_STATUS
] = PHY_R
,
150 [PHY_AUTONEG_ADV
] = PHY_RW
, [M88E1000_RX_ERR_CNTR
] = PHY_R
,
151 [PHY_ID2
] = PHY_R
, [M88E1000_PHY_SPEC_STATUS
] = PHY_R
155 set_interrupt_cause(E1000State
*s
, int index
, uint32_t val
)
158 val
|= E1000_ICR_INT_ASSERTED
;
159 s
->mac_reg
[ICR
] = val
;
160 s
->mac_reg
[ICS
] = val
;
161 qemu_set_irq(s
->dev
.irq
[0], (s
->mac_reg
[IMS
] & s
->mac_reg
[ICR
]) != 0);
165 set_ics(E1000State
*s
, int index
, uint32_t val
)
167 DBGOUT(INTERRUPT
, "set_ics %x, ICR %x, IMR %x\n", val
, s
->mac_reg
[ICR
],
169 set_interrupt_cause(s
, 0, val
| s
->mac_reg
[ICR
]);
173 rxbufsize(uint32_t v
)
175 v
&= E1000_RCTL_BSEX
| E1000_RCTL_SZ_16384
| E1000_RCTL_SZ_8192
|
176 E1000_RCTL_SZ_4096
| E1000_RCTL_SZ_2048
| E1000_RCTL_SZ_1024
|
177 E1000_RCTL_SZ_512
| E1000_RCTL_SZ_256
;
179 case E1000_RCTL_BSEX
| E1000_RCTL_SZ_16384
:
181 case E1000_RCTL_BSEX
| E1000_RCTL_SZ_8192
:
183 case E1000_RCTL_BSEX
| E1000_RCTL_SZ_4096
:
185 case E1000_RCTL_SZ_1024
:
187 case E1000_RCTL_SZ_512
:
189 case E1000_RCTL_SZ_256
:
196 set_ctrl(E1000State
*s
, int index
, uint32_t val
)
198 /* RST is self clearing */
199 s
->mac_reg
[CTRL
] = val
& ~E1000_CTRL_RST
;
203 set_rx_control(E1000State
*s
, int index
, uint32_t val
)
205 s
->mac_reg
[RCTL
] = val
;
206 s
->rxbuf_size
= rxbufsize(val
);
207 s
->rxbuf_min_shift
= ((val
/ E1000_RCTL_RDMTS_QUAT
) & 3) + 1;
208 DBGOUT(RX
, "RCTL: %d, mac_reg[RCTL] = 0x%x\n", s
->mac_reg
[RDT
],
213 set_mdic(E1000State
*s
, int index
, uint32_t val
)
215 uint32_t data
= val
& E1000_MDIC_DATA_MASK
;
216 uint32_t addr
= ((val
& E1000_MDIC_REG_MASK
) >> E1000_MDIC_REG_SHIFT
);
218 if ((val
& E1000_MDIC_PHY_MASK
) >> E1000_MDIC_PHY_SHIFT
!= 1) // phy #
219 val
= s
->mac_reg
[MDIC
] | E1000_MDIC_ERROR
;
220 else if (val
& E1000_MDIC_OP_READ
) {
221 DBGOUT(MDIC
, "MDIC read reg 0x%x\n", addr
);
222 if (!(phy_regcap
[addr
] & PHY_R
)) {
223 DBGOUT(MDIC
, "MDIC read reg %x unhandled\n", addr
);
224 val
|= E1000_MDIC_ERROR
;
226 val
= (val
^ data
) | s
->phy_reg
[addr
];
227 } else if (val
& E1000_MDIC_OP_WRITE
) {
228 DBGOUT(MDIC
, "MDIC write reg 0x%x, value 0x%x\n", addr
, data
);
229 if (!(phy_regcap
[addr
] & PHY_W
)) {
230 DBGOUT(MDIC
, "MDIC write reg %x unhandled\n", addr
);
231 val
|= E1000_MDIC_ERROR
;
233 s
->phy_reg
[addr
] = data
;
235 s
->mac_reg
[MDIC
] = val
| E1000_MDIC_READY
;
236 set_ics(s
, 0, E1000_ICR_MDAC
);
240 get_eecd(E1000State
*s
, int index
)
242 uint32_t ret
= E1000_EECD_PRES
|E1000_EECD_GNT
| s
->eecd_state
.old_eecd
;
244 DBGOUT(EEPROM
, "reading eeprom bit %d (reading %d)\n",
245 s
->eecd_state
.bitnum_out
, s
->eecd_state
.reading
);
246 if (!s
->eecd_state
.reading
||
247 ((s
->eeprom_data
[(s
->eecd_state
.bitnum_out
>> 4) & 0x3f] >>
248 ((s
->eecd_state
.bitnum_out
& 0xf) ^ 0xf))) & 1)
249 ret
|= E1000_EECD_DO
;
254 set_eecd(E1000State
*s
, int index
, uint32_t val
)
256 uint32_t oldval
= s
->eecd_state
.old_eecd
;
258 s
->eecd_state
.old_eecd
= val
& (E1000_EECD_SK
| E1000_EECD_CS
|
259 E1000_EECD_DI
|E1000_EECD_FWE_MASK
|E1000_EECD_REQ
);
260 if (!(E1000_EECD_CS
& val
)) // CS inactive; nothing to do
262 if (E1000_EECD_CS
& (val
^ oldval
)) { // CS rise edge; reset state
263 s
->eecd_state
.val_in
= 0;
264 s
->eecd_state
.bitnum_in
= 0;
265 s
->eecd_state
.bitnum_out
= 0;
266 s
->eecd_state
.reading
= 0;
268 if (!(E1000_EECD_SK
& (val
^ oldval
))) // no clock edge
270 if (!(E1000_EECD_SK
& val
)) { // falling edge
271 s
->eecd_state
.bitnum_out
++;
274 s
->eecd_state
.val_in
<<= 1;
275 if (val
& E1000_EECD_DI
)
276 s
->eecd_state
.val_in
|= 1;
277 if (++s
->eecd_state
.bitnum_in
== 9 && !s
->eecd_state
.reading
) {
278 s
->eecd_state
.bitnum_out
= ((s
->eecd_state
.val_in
& 0x3f)<<4)-1;
279 s
->eecd_state
.reading
= (((s
->eecd_state
.val_in
>> 6) & 7) ==
280 EEPROM_READ_OPCODE_MICROWIRE
);
282 DBGOUT(EEPROM
, "eeprom bitnum in %d out %d, reading %d\n",
283 s
->eecd_state
.bitnum_in
, s
->eecd_state
.bitnum_out
,
284 s
->eecd_state
.reading
);
288 flash_eerd_read(E1000State
*s
, int x
)
290 unsigned int index
, r
= s
->mac_reg
[EERD
] & ~E1000_EEPROM_RW_REG_START
;
292 if ((s
->mac_reg
[EERD
] & E1000_EEPROM_RW_REG_START
) == 0)
293 return (s
->mac_reg
[EERD
]);
295 if ((index
= r
>> E1000_EEPROM_RW_ADDR_SHIFT
) > EEPROM_CHECKSUM_REG
)
296 return (E1000_EEPROM_RW_REG_DONE
| r
);
298 return ((s
->eeprom_data
[index
] << E1000_EEPROM_RW_REG_DATA
) |
299 E1000_EEPROM_RW_REG_DONE
| r
);
303 putsum(uint8_t *data
, uint32_t n
, uint32_t sloc
, uint32_t css
, uint32_t cse
)
310 sum
= net_checksum_add(n
-css
, data
+css
);
311 cpu_to_be16wu((uint16_t *)(data
+ sloc
),
312 net_checksum_finish(sum
));
317 vlan_enabled(E1000State
*s
)
319 return ((s
->mac_reg
[CTRL
] & E1000_CTRL_VME
) != 0);
323 vlan_rx_filter_enabled(E1000State
*s
)
325 return ((s
->mac_reg
[RCTL
] & E1000_RCTL_VFE
) != 0);
329 is_vlan_packet(E1000State
*s
, const uint8_t *buf
)
331 return (be16_to_cpup((uint16_t *)(buf
+ 12)) ==
332 le16_to_cpup((uint16_t *)(s
->mac_reg
+ VET
)));
336 is_vlan_txd(uint32_t txd_lower
)
338 return ((txd_lower
& E1000_TXD_CMD_VLE
) != 0);
341 /* FCS aka Ethernet CRC-32. We don't get it from backends and can't
342 * fill it in, just pad descriptor length by 4 bytes unless guest
343 * told us to strip it off the packet. */
345 fcs_len(E1000State
*s
)
347 return (s
->mac_reg
[RCTL
] & E1000_RCTL_SECRC
) ? 0 : 4;
351 xmit_seg(E1000State
*s
)
354 unsigned int frames
= s
->tx
.tso_frames
, css
, sofar
, n
;
355 struct e1000_tx
*tp
= &s
->tx
;
357 if (tp
->tse
&& tp
->cptse
) {
359 DBGOUT(TXSUM
, "frames %d size %d ipcss %d\n",
360 frames
, tp
->size
, css
);
361 if (tp
->ip
) { // IPv4
362 cpu_to_be16wu((uint16_t *)(tp
->data
+css
+2),
364 cpu_to_be16wu((uint16_t *)(tp
->data
+css
+4),
365 be16_to_cpup((uint16_t *)(tp
->data
+css
+4))+frames
);
367 cpu_to_be16wu((uint16_t *)(tp
->data
+css
+4),
370 len
= tp
->size
- css
;
371 DBGOUT(TXSUM
, "tcp %d tucss %d len %d\n", tp
->tcp
, css
, len
);
373 sofar
= frames
* tp
->mss
;
374 cpu_to_be32wu((uint32_t *)(tp
->data
+css
+4), // seq
375 be32_to_cpupu((uint32_t *)(tp
->data
+css
+4))+sofar
);
376 if (tp
->paylen
- sofar
> tp
->mss
)
377 tp
->data
[css
+ 13] &= ~9; // PSH, FIN
379 cpu_to_be16wu((uint16_t *)(tp
->data
+css
+4), len
);
380 if (tp
->sum_needed
& E1000_TXD_POPTS_TXSM
) {
382 // add pseudo-header length before checksum calculation
383 sp
= (uint16_t *)(tp
->data
+ tp
->tucso
);
384 phsum
= be16_to_cpup(sp
) + len
;
385 phsum
= (phsum
>> 16) + (phsum
& 0xffff);
386 cpu_to_be16wu(sp
, phsum
);
391 if (tp
->sum_needed
& E1000_TXD_POPTS_TXSM
)
392 putsum(tp
->data
, tp
->size
, tp
->tucso
, tp
->tucss
, tp
->tucse
);
393 if (tp
->sum_needed
& E1000_TXD_POPTS_IXSM
)
394 putsum(tp
->data
, tp
->size
, tp
->ipcso
, tp
->ipcss
, tp
->ipcse
);
395 if (tp
->vlan_needed
) {
396 memmove(tp
->vlan
, tp
->data
, 4);
397 memmove(tp
->data
, tp
->data
+ 4, 8);
398 memcpy(tp
->data
+ 8, tp
->vlan_header
, 4);
399 qemu_send_packet(&s
->nic
->nc
, tp
->vlan
, tp
->size
+ 4);
401 qemu_send_packet(&s
->nic
->nc
, tp
->data
, tp
->size
);
404 n
= s
->mac_reg
[TOTL
];
405 if ((s
->mac_reg
[TOTL
] += s
->tx
.size
) < n
)
410 process_tx_desc(E1000State
*s
, struct e1000_tx_desc
*dp
)
412 uint32_t txd_lower
= le32_to_cpu(dp
->lower
.data
);
413 uint32_t dtype
= txd_lower
& (E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
);
414 unsigned int split_size
= txd_lower
& 0xffff, bytes
, sz
, op
;
415 unsigned int msh
= 0xfffff, hdr
= 0;
417 struct e1000_context_desc
*xp
= (struct e1000_context_desc
*)dp
;
418 struct e1000_tx
*tp
= &s
->tx
;
420 if (dtype
== E1000_TXD_CMD_DEXT
) { // context descriptor
421 op
= le32_to_cpu(xp
->cmd_and_length
);
422 tp
->ipcss
= xp
->lower_setup
.ip_fields
.ipcss
;
423 tp
->ipcso
= xp
->lower_setup
.ip_fields
.ipcso
;
424 tp
->ipcse
= le16_to_cpu(xp
->lower_setup
.ip_fields
.ipcse
);
425 tp
->tucss
= xp
->upper_setup
.tcp_fields
.tucss
;
426 tp
->tucso
= xp
->upper_setup
.tcp_fields
.tucso
;
427 tp
->tucse
= le16_to_cpu(xp
->upper_setup
.tcp_fields
.tucse
);
428 tp
->paylen
= op
& 0xfffff;
429 tp
->hdr_len
= xp
->tcp_seg_setup
.fields
.hdr_len
;
430 tp
->mss
= le16_to_cpu(xp
->tcp_seg_setup
.fields
.mss
);
431 tp
->ip
= (op
& E1000_TXD_CMD_IP
) ? 1 : 0;
432 tp
->tcp
= (op
& E1000_TXD_CMD_TCP
) ? 1 : 0;
433 tp
->tse
= (op
& E1000_TXD_CMD_TSE
) ? 1 : 0;
435 if (tp
->tucso
== 0) { // this is probably wrong
436 DBGOUT(TXSUM
, "TCP/UDP: cso 0!\n");
437 tp
->tucso
= tp
->tucss
+ (tp
->tcp
? 16 : 6);
440 } else if (dtype
== (E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
)) {
443 tp
->sum_needed
= le32_to_cpu(dp
->upper
.data
) >> 8;
445 tp
->cptse
= ( txd_lower
& E1000_TXD_CMD_TSE
) ? 1 : 0;
451 if (vlan_enabled(s
) && is_vlan_txd(txd_lower
) &&
452 (tp
->cptse
|| txd_lower
& E1000_TXD_CMD_EOP
)) {
454 cpu_to_be16wu((uint16_t *)(tp
->vlan_header
),
455 le16_to_cpup((uint16_t *)(s
->mac_reg
+ VET
)));
456 cpu_to_be16wu((uint16_t *)(tp
->vlan_header
+ 2),
457 le16_to_cpu(dp
->upper
.fields
.special
));
460 addr
= le64_to_cpu(dp
->buffer_addr
);
461 if (tp
->tse
&& tp
->cptse
) {
466 if (tp
->size
+ bytes
> msh
)
467 bytes
= msh
- tp
->size
;
468 cpu_physical_memory_read(addr
, tp
->data
+ tp
->size
, bytes
);
469 if ((sz
= tp
->size
+ bytes
) >= hdr
&& tp
->size
< hdr
)
470 memmove(tp
->header
, tp
->data
, hdr
);
475 memmove(tp
->data
, tp
->header
, hdr
);
478 } while (split_size
-= bytes
);
479 } else if (!tp
->tse
&& tp
->cptse
) {
480 // context descriptor TSE is not set, while data descriptor TSE is set
481 DBGOUT(TXERR
, "TCP segmentaion Error\n");
483 cpu_physical_memory_read(addr
, tp
->data
+ tp
->size
, split_size
);
484 tp
->size
+= split_size
;
487 if (!(txd_lower
& E1000_TXD_CMD_EOP
))
489 if (!(tp
->tse
&& tp
->cptse
&& tp
->size
< hdr
))
499 txdesc_writeback(target_phys_addr_t base
, struct e1000_tx_desc
*dp
)
501 uint32_t txd_upper
, txd_lower
= le32_to_cpu(dp
->lower
.data
);
503 if (!(txd_lower
& (E1000_TXD_CMD_RS
|E1000_TXD_CMD_RPS
)))
505 txd_upper
= (le32_to_cpu(dp
->upper
.data
) | E1000_TXD_STAT_DD
) &
506 ~(E1000_TXD_STAT_EC
| E1000_TXD_STAT_LC
| E1000_TXD_STAT_TU
);
507 dp
->upper
.data
= cpu_to_le32(txd_upper
);
508 cpu_physical_memory_write(base
+ ((char *)&dp
->upper
- (char *)dp
),
509 (void *)&dp
->upper
, sizeof(dp
->upper
));
510 return E1000_ICR_TXDW
;
513 static uint64_t tx_desc_base(E1000State
*s
)
515 uint64_t bah
= s
->mac_reg
[TDBAH
];
516 uint64_t bal
= s
->mac_reg
[TDBAL
] & ~0xf;
518 return (bah
<< 32) + bal
;
522 start_xmit(E1000State
*s
)
524 target_phys_addr_t base
;
525 struct e1000_tx_desc desc
;
526 uint32_t tdh_start
= s
->mac_reg
[TDH
], cause
= E1000_ICS_TXQE
;
528 if (!(s
->mac_reg
[TCTL
] & E1000_TCTL_EN
)) {
529 DBGOUT(TX
, "tx disabled\n");
533 while (s
->mac_reg
[TDH
] != s
->mac_reg
[TDT
]) {
534 base
= tx_desc_base(s
) +
535 sizeof(struct e1000_tx_desc
) * s
->mac_reg
[TDH
];
536 cpu_physical_memory_read(base
, (void *)&desc
, sizeof(desc
));
538 DBGOUT(TX
, "index %d: %p : %x %x\n", s
->mac_reg
[TDH
],
539 (void *)(intptr_t)desc
.buffer_addr
, desc
.lower
.data
,
542 process_tx_desc(s
, &desc
);
543 cause
|= txdesc_writeback(base
, &desc
);
545 if (++s
->mac_reg
[TDH
] * sizeof(desc
) >= s
->mac_reg
[TDLEN
])
548 * the following could happen only if guest sw assigns
549 * bogus values to TDT/TDLEN.
550 * there's nothing too intelligent we could do about this.
552 if (s
->mac_reg
[TDH
] == tdh_start
) {
553 DBGOUT(TXERR
, "TDH wraparound @%x, TDT %x, TDLEN %x\n",
554 tdh_start
, s
->mac_reg
[TDT
], s
->mac_reg
[TDLEN
]);
558 set_ics(s
, 0, cause
);
562 receive_filter(E1000State
*s
, const uint8_t *buf
, int size
)
564 static const uint8_t bcast
[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
565 static const int mta_shift
[] = {4, 3, 2, 0};
566 uint32_t f
, rctl
= s
->mac_reg
[RCTL
], ra
[2], *rp
;
568 if (is_vlan_packet(s
, buf
) && vlan_rx_filter_enabled(s
)) {
569 uint16_t vid
= be16_to_cpup((uint16_t *)(buf
+ 14));
570 uint32_t vfta
= le32_to_cpup((uint32_t *)(s
->mac_reg
+ VFTA
) +
571 ((vid
>> 5) & 0x7f));
572 if ((vfta
& (1 << (vid
& 0x1f))) == 0)
576 if (rctl
& E1000_RCTL_UPE
) // promiscuous
579 if ((buf
[0] & 1) && (rctl
& E1000_RCTL_MPE
)) // promiscuous mcast
582 if ((rctl
& E1000_RCTL_BAM
) && !memcmp(buf
, bcast
, sizeof bcast
))
585 for (rp
= s
->mac_reg
+ RA
; rp
< s
->mac_reg
+ RA
+ 32; rp
+= 2) {
586 if (!(rp
[1] & E1000_RAH_AV
))
588 ra
[0] = cpu_to_le32(rp
[0]);
589 ra
[1] = cpu_to_le32(rp
[1]);
590 if (!memcmp(buf
, (uint8_t *)ra
, 6)) {
592 "unicast match[%d]: %02x:%02x:%02x:%02x:%02x:%02x\n",
593 (int)(rp
- s
->mac_reg
- RA
)/2,
594 buf
[0], buf
[1], buf
[2], buf
[3], buf
[4], buf
[5]);
598 DBGOUT(RXFILTER
, "unicast mismatch: %02x:%02x:%02x:%02x:%02x:%02x\n",
599 buf
[0], buf
[1], buf
[2], buf
[3], buf
[4], buf
[5]);
601 f
= mta_shift
[(rctl
>> E1000_RCTL_MO_SHIFT
) & 3];
602 f
= (((buf
[5] << 8) | buf
[4]) >> f
) & 0xfff;
603 if (s
->mac_reg
[MTA
+ (f
>> 5)] & (1 << (f
& 0x1f)))
606 "dropping, inexact filter mismatch: %02x:%02x:%02x:%02x:%02x:%02x MO %d MTA[%d] %x\n",
607 buf
[0], buf
[1], buf
[2], buf
[3], buf
[4], buf
[5],
608 (rctl
>> E1000_RCTL_MO_SHIFT
) & 3, f
>> 5,
609 s
->mac_reg
[MTA
+ (f
>> 5)]);
615 e1000_set_link_status(VLANClientState
*nc
)
617 E1000State
*s
= DO_UPCAST(NICState
, nc
, nc
)->opaque
;
618 uint32_t old_status
= s
->mac_reg
[STATUS
];
621 s
->mac_reg
[STATUS
] &= ~E1000_STATUS_LU
;
622 s
->phy_reg
[PHY_STATUS
] &= ~MII_SR_LINK_STATUS
;
624 s
->mac_reg
[STATUS
] |= E1000_STATUS_LU
;
625 s
->phy_reg
[PHY_STATUS
] |= MII_SR_LINK_STATUS
;
628 if (s
->mac_reg
[STATUS
] != old_status
)
629 set_ics(s
, 0, E1000_ICR_LSC
);
632 static bool e1000_has_rxbufs(E1000State
*s
, size_t total_size
)
635 /* Fast-path short packets */
636 if (total_size
<= s
->rxbuf_size
) {
637 return s
->mac_reg
[RDH
] != s
->mac_reg
[RDT
] || !s
->check_rxov
;
639 if (s
->mac_reg
[RDH
] < s
->mac_reg
[RDT
]) {
640 bufs
= s
->mac_reg
[RDT
] - s
->mac_reg
[RDH
];
641 } else if (s
->mac_reg
[RDH
] > s
->mac_reg
[RDT
] || !s
->check_rxov
) {
642 bufs
= s
->mac_reg
[RDLEN
] / sizeof(struct e1000_rx_desc
) +
643 s
->mac_reg
[RDT
] - s
->mac_reg
[RDH
];
647 return total_size
<= bufs
* s
->rxbuf_size
;
651 e1000_can_receive(VLANClientState
*nc
)
653 E1000State
*s
= DO_UPCAST(NICState
, nc
, nc
)->opaque
;
655 return (s
->mac_reg
[RCTL
] & E1000_RCTL_EN
) && e1000_has_rxbufs(s
, 1);
658 static uint64_t rx_desc_base(E1000State
*s
)
660 uint64_t bah
= s
->mac_reg
[RDBAH
];
661 uint64_t bal
= s
->mac_reg
[RDBAL
] & ~0xf;
663 return (bah
<< 32) + bal
;
667 e1000_receive(VLANClientState
*nc
, const uint8_t *buf
, size_t size
)
669 E1000State
*s
= DO_UPCAST(NICState
, nc
, nc
)->opaque
;
670 struct e1000_rx_desc desc
;
671 target_phys_addr_t base
;
674 uint16_t vlan_special
= 0;
675 uint8_t vlan_status
= 0, vlan_offset
= 0;
676 uint8_t min_buf
[MIN_BUF_SIZE
];
681 if (!(s
->mac_reg
[RCTL
] & E1000_RCTL_EN
))
684 /* Pad to minimum Ethernet frame length */
685 if (size
< sizeof(min_buf
)) {
686 memcpy(min_buf
, buf
, size
);
687 memset(&min_buf
[size
], 0, sizeof(min_buf
) - size
);
689 size
= sizeof(min_buf
);
692 if (!receive_filter(s
, buf
, size
))
695 if (vlan_enabled(s
) && is_vlan_packet(s
, buf
)) {
696 vlan_special
= cpu_to_le16(be16_to_cpup((uint16_t *)(buf
+ 14)));
697 memmove((uint8_t *)buf
+ 4, buf
, 12);
698 vlan_status
= E1000_RXD_STAT_VP
;
703 rdh_start
= s
->mac_reg
[RDH
];
705 total_size
= size
+ fcs_len(s
);
706 if (!e1000_has_rxbufs(s
, total_size
)) {
707 set_ics(s
, 0, E1000_ICS_RXO
);
711 desc_size
= total_size
- desc_offset
;
712 if (desc_size
> s
->rxbuf_size
) {
713 desc_size
= s
->rxbuf_size
;
715 base
= rx_desc_base(s
) + sizeof(desc
) * s
->mac_reg
[RDH
];
716 cpu_physical_memory_read(base
, (void *)&desc
, sizeof(desc
));
717 desc
.special
= vlan_special
;
718 desc
.status
|= (vlan_status
| E1000_RXD_STAT_DD
);
719 if (desc
.buffer_addr
) {
720 if (desc_offset
< size
) {
721 size_t copy_size
= size
- desc_offset
;
722 if (copy_size
> s
->rxbuf_size
) {
723 copy_size
= s
->rxbuf_size
;
725 cpu_physical_memory_write(le64_to_cpu(desc
.buffer_addr
),
726 (void *)(buf
+ desc_offset
+ vlan_offset
),
729 desc_offset
+= desc_size
;
730 desc
.length
= cpu_to_le16(desc_size
);
731 if (desc_offset
>= total_size
) {
732 desc
.status
|= E1000_RXD_STAT_EOP
| E1000_RXD_STAT_IXSM
;
734 /* Guest zeroing out status is not a hardware requirement.
735 Clear EOP in case guest didn't do it. */
736 desc
.status
&= ~E1000_RXD_STAT_EOP
;
738 } else { // as per intel docs; skip descriptors with null buf addr
739 DBGOUT(RX
, "Null RX descriptor!!\n");
741 cpu_physical_memory_write(base
, (void *)&desc
, sizeof(desc
));
743 if (++s
->mac_reg
[RDH
] * sizeof(desc
) >= s
->mac_reg
[RDLEN
])
746 /* see comment in start_xmit; same here */
747 if (s
->mac_reg
[RDH
] == rdh_start
) {
748 DBGOUT(RXERR
, "RDH wraparound @%x, RDT %x, RDLEN %x\n",
749 rdh_start
, s
->mac_reg
[RDT
], s
->mac_reg
[RDLEN
]);
750 set_ics(s
, 0, E1000_ICS_RXO
);
753 } while (desc_offset
< total_size
);
757 /* TOR - Total Octets Received:
758 * This register includes bytes received in a packet from the <Destination
759 * Address> field through the <CRC> field, inclusively.
761 n
= s
->mac_reg
[TORL
] + size
+ /* Always include FCS length. */ 4;
762 if (n
< s
->mac_reg
[TORL
])
764 s
->mac_reg
[TORL
] = n
;
767 if ((rdt
= s
->mac_reg
[RDT
]) < s
->mac_reg
[RDH
])
768 rdt
+= s
->mac_reg
[RDLEN
] / sizeof(desc
);
769 if (((rdt
- s
->mac_reg
[RDH
]) * sizeof(desc
)) <= s
->mac_reg
[RDLEN
] >>
771 n
|= E1000_ICS_RXDMT0
;
779 mac_readreg(E1000State
*s
, int index
)
781 return s
->mac_reg
[index
];
785 mac_icr_read(E1000State
*s
, int index
)
787 uint32_t ret
= s
->mac_reg
[ICR
];
789 DBGOUT(INTERRUPT
, "ICR read: %x\n", ret
);
790 set_interrupt_cause(s
, 0, 0);
795 mac_read_clr4(E1000State
*s
, int index
)
797 uint32_t ret
= s
->mac_reg
[index
];
799 s
->mac_reg
[index
] = 0;
804 mac_read_clr8(E1000State
*s
, int index
)
806 uint32_t ret
= s
->mac_reg
[index
];
808 s
->mac_reg
[index
] = 0;
809 s
->mac_reg
[index
-1] = 0;
814 mac_writereg(E1000State
*s
, int index
, uint32_t val
)
816 s
->mac_reg
[index
] = val
;
820 set_rdt(E1000State
*s
, int index
, uint32_t val
)
823 s
->mac_reg
[index
] = val
& 0xffff;
827 set_16bit(E1000State
*s
, int index
, uint32_t val
)
829 s
->mac_reg
[index
] = val
& 0xffff;
833 set_dlen(E1000State
*s
, int index
, uint32_t val
)
835 s
->mac_reg
[index
] = val
& 0xfff80;
839 set_tctl(E1000State
*s
, int index
, uint32_t val
)
841 s
->mac_reg
[index
] = val
;
842 s
->mac_reg
[TDT
] &= 0xffff;
847 set_icr(E1000State
*s
, int index
, uint32_t val
)
849 DBGOUT(INTERRUPT
, "set_icr %x\n", val
);
850 set_interrupt_cause(s
, 0, s
->mac_reg
[ICR
] & ~val
);
854 set_imc(E1000State
*s
, int index
, uint32_t val
)
856 s
->mac_reg
[IMS
] &= ~val
;
861 set_ims(E1000State
*s
, int index
, uint32_t val
)
863 s
->mac_reg
[IMS
] |= val
;
867 #define getreg(x) [x] = mac_readreg
868 static uint32_t (*macreg_readops
[])(E1000State
*, int) = {
869 getreg(PBA
), getreg(RCTL
), getreg(TDH
), getreg(TXDCTL
),
870 getreg(WUFC
), getreg(TDT
), getreg(CTRL
), getreg(LEDCTL
),
871 getreg(MANC
), getreg(MDIC
), getreg(SWSM
), getreg(STATUS
),
872 getreg(TORL
), getreg(TOTL
), getreg(IMS
), getreg(TCTL
),
873 getreg(RDH
), getreg(RDT
), getreg(VET
), getreg(ICS
),
874 getreg(TDBAL
), getreg(TDBAH
), getreg(RDBAH
), getreg(RDBAL
),
875 getreg(TDLEN
), getreg(RDLEN
),
877 [TOTH
] = mac_read_clr8
, [TORH
] = mac_read_clr8
, [GPRC
] = mac_read_clr4
,
878 [GPTC
] = mac_read_clr4
, [TPR
] = mac_read_clr4
, [TPT
] = mac_read_clr4
,
879 [ICR
] = mac_icr_read
, [EECD
] = get_eecd
, [EERD
] = flash_eerd_read
,
880 [CRCERRS
... MPC
] = &mac_readreg
,
881 [RA
... RA
+31] = &mac_readreg
,
882 [MTA
... MTA
+127] = &mac_readreg
,
883 [VFTA
... VFTA
+127] = &mac_readreg
,
885 enum { NREADOPS
= ARRAY_SIZE(macreg_readops
) };
887 #define putreg(x) [x] = mac_writereg
888 static void (*macreg_writeops
[])(E1000State
*, int, uint32_t) = {
889 putreg(PBA
), putreg(EERD
), putreg(SWSM
), putreg(WUFC
),
890 putreg(TDBAL
), putreg(TDBAH
), putreg(TXDCTL
), putreg(RDBAH
),
891 putreg(RDBAL
), putreg(LEDCTL
), putreg(VET
),
892 [TDLEN
] = set_dlen
, [RDLEN
] = set_dlen
, [TCTL
] = set_tctl
,
893 [TDT
] = set_tctl
, [MDIC
] = set_mdic
, [ICS
] = set_ics
,
894 [TDH
] = set_16bit
, [RDH
] = set_16bit
, [RDT
] = set_rdt
,
895 [IMC
] = set_imc
, [IMS
] = set_ims
, [ICR
] = set_icr
,
896 [EECD
] = set_eecd
, [RCTL
] = set_rx_control
, [CTRL
] = set_ctrl
,
897 [RA
... RA
+31] = &mac_writereg
,
898 [MTA
... MTA
+127] = &mac_writereg
,
899 [VFTA
... VFTA
+127] = &mac_writereg
,
901 enum { NWRITEOPS
= ARRAY_SIZE(macreg_writeops
) };
904 e1000_mmio_write(void *opaque
, target_phys_addr_t addr
, uint64_t val
,
907 E1000State
*s
= opaque
;
908 unsigned int index
= (addr
& 0x1ffff) >> 2;
910 if (index
< NWRITEOPS
&& macreg_writeops
[index
]) {
911 macreg_writeops
[index
](s
, index
, val
);
912 } else if (index
< NREADOPS
&& macreg_readops
[index
]) {
913 DBGOUT(MMIO
, "e1000_mmio_writel RO %x: 0x%04"PRIx64
"\n", index
<<2, val
);
915 DBGOUT(UNKNOWN
, "MMIO unknown write addr=0x%08x,val=0x%08"PRIx64
"\n",
921 e1000_mmio_read(void *opaque
, target_phys_addr_t addr
, unsigned size
)
923 E1000State
*s
= opaque
;
924 unsigned int index
= (addr
& 0x1ffff) >> 2;
926 if (index
< NREADOPS
&& macreg_readops
[index
])
928 return macreg_readops
[index
](s
, index
);
930 DBGOUT(UNKNOWN
, "MMIO unknown read addr=0x%08x\n", index
<<2);
934 static const MemoryRegionOps e1000_mmio_ops
= {
935 .read
= e1000_mmio_read
,
936 .write
= e1000_mmio_write
,
937 .endianness
= DEVICE_LITTLE_ENDIAN
,
939 .min_access_size
= 4,
940 .max_access_size
= 4,
944 static uint64_t e1000_io_read(void *opaque
, target_phys_addr_t addr
,
947 E1000State
*s
= opaque
;
953 static void e1000_io_write(void *opaque
, target_phys_addr_t addr
,
954 uint64_t val
, unsigned size
)
956 E1000State
*s
= opaque
;
961 static const MemoryRegionOps e1000_io_ops
= {
962 .read
= e1000_io_read
,
963 .write
= e1000_io_write
,
964 .endianness
= DEVICE_LITTLE_ENDIAN
,
967 static bool is_version_1(void *opaque
, int version_id
)
969 return version_id
== 1;
972 static const VMStateDescription vmstate_e1000
= {
975 .minimum_version_id
= 1,
976 .minimum_version_id_old
= 1,
977 .fields
= (VMStateField
[]) {
978 VMSTATE_PCI_DEVICE(dev
, E1000State
),
979 VMSTATE_UNUSED_TEST(is_version_1
, 4), /* was instance id */
980 VMSTATE_UNUSED(4), /* Was mmio_base. */
981 VMSTATE_UINT32(rxbuf_size
, E1000State
),
982 VMSTATE_UINT32(rxbuf_min_shift
, E1000State
),
983 VMSTATE_UINT32(eecd_state
.val_in
, E1000State
),
984 VMSTATE_UINT16(eecd_state
.bitnum_in
, E1000State
),
985 VMSTATE_UINT16(eecd_state
.bitnum_out
, E1000State
),
986 VMSTATE_UINT16(eecd_state
.reading
, E1000State
),
987 VMSTATE_UINT32(eecd_state
.old_eecd
, E1000State
),
988 VMSTATE_UINT8(tx
.ipcss
, E1000State
),
989 VMSTATE_UINT8(tx
.ipcso
, E1000State
),
990 VMSTATE_UINT16(tx
.ipcse
, E1000State
),
991 VMSTATE_UINT8(tx
.tucss
, E1000State
),
992 VMSTATE_UINT8(tx
.tucso
, E1000State
),
993 VMSTATE_UINT16(tx
.tucse
, E1000State
),
994 VMSTATE_UINT32(tx
.paylen
, E1000State
),
995 VMSTATE_UINT8(tx
.hdr_len
, E1000State
),
996 VMSTATE_UINT16(tx
.mss
, E1000State
),
997 VMSTATE_UINT16(tx
.size
, E1000State
),
998 VMSTATE_UINT16(tx
.tso_frames
, E1000State
),
999 VMSTATE_UINT8(tx
.sum_needed
, E1000State
),
1000 VMSTATE_INT8(tx
.ip
, E1000State
),
1001 VMSTATE_INT8(tx
.tcp
, E1000State
),
1002 VMSTATE_BUFFER(tx
.header
, E1000State
),
1003 VMSTATE_BUFFER(tx
.data
, E1000State
),
1004 VMSTATE_UINT16_ARRAY(eeprom_data
, E1000State
, 64),
1005 VMSTATE_UINT16_ARRAY(phy_reg
, E1000State
, 0x20),
1006 VMSTATE_UINT32(mac_reg
[CTRL
], E1000State
),
1007 VMSTATE_UINT32(mac_reg
[EECD
], E1000State
),
1008 VMSTATE_UINT32(mac_reg
[EERD
], E1000State
),
1009 VMSTATE_UINT32(mac_reg
[GPRC
], E1000State
),
1010 VMSTATE_UINT32(mac_reg
[GPTC
], E1000State
),
1011 VMSTATE_UINT32(mac_reg
[ICR
], E1000State
),
1012 VMSTATE_UINT32(mac_reg
[ICS
], E1000State
),
1013 VMSTATE_UINT32(mac_reg
[IMC
], E1000State
),
1014 VMSTATE_UINT32(mac_reg
[IMS
], E1000State
),
1015 VMSTATE_UINT32(mac_reg
[LEDCTL
], E1000State
),
1016 VMSTATE_UINT32(mac_reg
[MANC
], E1000State
),
1017 VMSTATE_UINT32(mac_reg
[MDIC
], E1000State
),
1018 VMSTATE_UINT32(mac_reg
[MPC
], E1000State
),
1019 VMSTATE_UINT32(mac_reg
[PBA
], E1000State
),
1020 VMSTATE_UINT32(mac_reg
[RCTL
], E1000State
),
1021 VMSTATE_UINT32(mac_reg
[RDBAH
], E1000State
),
1022 VMSTATE_UINT32(mac_reg
[RDBAL
], E1000State
),
1023 VMSTATE_UINT32(mac_reg
[RDH
], E1000State
),
1024 VMSTATE_UINT32(mac_reg
[RDLEN
], E1000State
),
1025 VMSTATE_UINT32(mac_reg
[RDT
], E1000State
),
1026 VMSTATE_UINT32(mac_reg
[STATUS
], E1000State
),
1027 VMSTATE_UINT32(mac_reg
[SWSM
], E1000State
),
1028 VMSTATE_UINT32(mac_reg
[TCTL
], E1000State
),
1029 VMSTATE_UINT32(mac_reg
[TDBAH
], E1000State
),
1030 VMSTATE_UINT32(mac_reg
[TDBAL
], E1000State
),
1031 VMSTATE_UINT32(mac_reg
[TDH
], E1000State
),
1032 VMSTATE_UINT32(mac_reg
[TDLEN
], E1000State
),
1033 VMSTATE_UINT32(mac_reg
[TDT
], E1000State
),
1034 VMSTATE_UINT32(mac_reg
[TORH
], E1000State
),
1035 VMSTATE_UINT32(mac_reg
[TORL
], E1000State
),
1036 VMSTATE_UINT32(mac_reg
[TOTH
], E1000State
),
1037 VMSTATE_UINT32(mac_reg
[TOTL
], E1000State
),
1038 VMSTATE_UINT32(mac_reg
[TPR
], E1000State
),
1039 VMSTATE_UINT32(mac_reg
[TPT
], E1000State
),
1040 VMSTATE_UINT32(mac_reg
[TXDCTL
], E1000State
),
1041 VMSTATE_UINT32(mac_reg
[WUFC
], E1000State
),
1042 VMSTATE_UINT32(mac_reg
[VET
], E1000State
),
1043 VMSTATE_UINT32_SUB_ARRAY(mac_reg
, E1000State
, RA
, 32),
1044 VMSTATE_UINT32_SUB_ARRAY(mac_reg
, E1000State
, MTA
, 128),
1045 VMSTATE_UINT32_SUB_ARRAY(mac_reg
, E1000State
, VFTA
, 128),
1046 VMSTATE_END_OF_LIST()
1050 static const uint16_t e1000_eeprom_template
[64] = {
1051 0x0000, 0x0000, 0x0000, 0x0000, 0xffff, 0x0000, 0x0000, 0x0000,
1052 0x3000, 0x1000, 0x6403, E1000_DEVID
, 0x8086, E1000_DEVID
, 0x8086, 0x3040,
1053 0x0008, 0x2000, 0x7e14, 0x0048, 0x1000, 0x00d8, 0x0000, 0x2700,
1054 0x6cc9, 0x3150, 0x0722, 0x040b, 0x0984, 0x0000, 0xc000, 0x0706,
1055 0x1008, 0x0000, 0x0f04, 0x7fff, 0x4d01, 0xffff, 0xffff, 0xffff,
1056 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
1057 0x0100, 0x4000, 0x121c, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff,
1058 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0xffff, 0x0000,
1061 static const uint16_t phy_reg_init
[] = {
1062 [PHY_CTRL
] = 0x1140, [PHY_STATUS
] = 0x796d, // link initially up
1063 [PHY_ID1
] = 0x141, [PHY_ID2
] = PHY_ID2_INIT
,
1064 [PHY_1000T_CTRL
] = 0x0e00, [M88E1000_PHY_SPEC_CTRL
] = 0x360,
1065 [M88E1000_EXT_PHY_SPEC_CTRL
] = 0x0d60, [PHY_AUTONEG_ADV
] = 0xde1,
1066 [PHY_LP_ABILITY
] = 0x1e0, [PHY_1000T_STATUS
] = 0x3c00,
1067 [M88E1000_PHY_SPEC_STATUS
] = 0xac00,
1070 static const uint32_t mac_reg_init
[] = {
1073 [CTRL
] = E1000_CTRL_SWDPIN2
| E1000_CTRL_SWDPIN0
|
1074 E1000_CTRL_SPD_1000
| E1000_CTRL_SLU
,
1075 [STATUS
] = 0x80000000 | E1000_STATUS_GIO_MASTER_ENABLE
|
1076 E1000_STATUS_ASDV
| E1000_STATUS_MTXCKOK
|
1077 E1000_STATUS_SPEED_1000
| E1000_STATUS_FD
|
1079 [MANC
] = E1000_MANC_EN_MNG2HOST
| E1000_MANC_RCV_TCO_EN
|
1080 E1000_MANC_ARP_EN
| E1000_MANC_0298_EN
|
1087 e1000_mmio_setup(E1000State
*d
)
1090 const uint32_t excluded_regs
[] = {
1091 E1000_MDIC
, E1000_ICR
, E1000_ICS
, E1000_IMS
,
1092 E1000_IMC
, E1000_TCTL
, E1000_TDT
, PNPMMIO_SIZE
1095 memory_region_init_io(&d
->mmio
, &e1000_mmio_ops
, d
, "e1000-mmio",
1097 memory_region_add_coalescing(&d
->mmio
, 0, excluded_regs
[0]);
1098 for (i
= 0; excluded_regs
[i
] != PNPMMIO_SIZE
; i
++)
1099 memory_region_add_coalescing(&d
->mmio
, excluded_regs
[i
] + 4,
1100 excluded_regs
[i
+1] - excluded_regs
[i
] - 4);
1101 memory_region_init_io(&d
->io
, &e1000_io_ops
, d
, "e1000-io", IOPORT_SIZE
);
1105 e1000_cleanup(VLANClientState
*nc
)
1107 E1000State
*s
= DO_UPCAST(NICState
, nc
, nc
)->opaque
;
1113 pci_e1000_uninit(PCIDevice
*dev
)
1115 E1000State
*d
= DO_UPCAST(E1000State
, dev
, dev
);
1117 memory_region_destroy(&d
->mmio
);
1118 memory_region_destroy(&d
->io
);
1119 qemu_del_vlan_client(&d
->nic
->nc
);
1123 static void e1000_reset(void *opaque
)
1125 E1000State
*d
= opaque
;
1127 memset(d
->phy_reg
, 0, sizeof d
->phy_reg
);
1128 memmove(d
->phy_reg
, phy_reg_init
, sizeof phy_reg_init
);
1129 memset(d
->mac_reg
, 0, sizeof d
->mac_reg
);
1130 memmove(d
->mac_reg
, mac_reg_init
, sizeof mac_reg_init
);
1131 d
->rxbuf_min_shift
= 1;
1132 memset(&d
->tx
, 0, sizeof d
->tx
);
1135 static NetClientInfo net_e1000_info
= {
1136 .type
= NET_CLIENT_TYPE_NIC
,
1137 .size
= sizeof(NICState
),
1138 .can_receive
= e1000_can_receive
,
1139 .receive
= e1000_receive
,
1140 .cleanup
= e1000_cleanup
,
1141 .link_status_changed
= e1000_set_link_status
,
1144 static int pci_e1000_init(PCIDevice
*pci_dev
)
1146 E1000State
*d
= DO_UPCAST(E1000State
, dev
, pci_dev
);
1148 uint16_t checksum
= 0;
1152 pci_conf
= d
->dev
.config
;
1154 /* TODO: we have no capabilities, so why is this bit set? */
1155 pci_set_word(pci_conf
+ PCI_STATUS
, PCI_STATUS_CAP_LIST
);
1156 /* TODO: RST# value should be 0, PCI spec 6.2.4 */
1157 pci_conf
[PCI_CACHE_LINE_SIZE
] = 0x10;
1159 /* TODO: RST# value should be 0 if programmable, PCI spec 6.2.4 */
1160 pci_conf
[PCI_INTERRUPT_PIN
] = 1; // interrupt pin 0
1162 e1000_mmio_setup(d
);
1164 pci_register_bar(&d
->dev
, 0, PCI_BASE_ADDRESS_SPACE_MEMORY
, &d
->mmio
);
1166 pci_register_bar(&d
->dev
, 1, PCI_BASE_ADDRESS_SPACE_IO
, &d
->io
);
1168 memmove(d
->eeprom_data
, e1000_eeprom_template
,
1169 sizeof e1000_eeprom_template
);
1170 qemu_macaddr_default_if_unset(&d
->conf
.macaddr
);
1171 macaddr
= d
->conf
.macaddr
.a
;
1172 for (i
= 0; i
< 3; i
++)
1173 d
->eeprom_data
[i
] = (macaddr
[2*i
+1]<<8) | macaddr
[2*i
];
1174 for (i
= 0; i
< EEPROM_CHECKSUM_REG
; i
++)
1175 checksum
+= d
->eeprom_data
[i
];
1176 checksum
= (uint16_t) EEPROM_SUM
- checksum
;
1177 d
->eeprom_data
[EEPROM_CHECKSUM_REG
] = checksum
;
1179 d
->nic
= qemu_new_nic(&net_e1000_info
, &d
->conf
,
1180 d
->dev
.qdev
.info
->name
, d
->dev
.qdev
.id
, d
);
1182 qemu_format_nic_info_str(&d
->nic
->nc
, macaddr
);
1184 add_boot_device_path(d
->conf
.bootindex
, &pci_dev
->qdev
, "/ethernet-phy@0");
1189 static void qdev_e1000_reset(DeviceState
*dev
)
1191 E1000State
*d
= DO_UPCAST(E1000State
, dev
.qdev
, dev
);
1195 static PCIDeviceInfo e1000_info
= {
1196 .qdev
.name
= "e1000",
1197 .qdev
.desc
= "Intel Gigabit Ethernet",
1198 .qdev
.size
= sizeof(E1000State
),
1199 .qdev
.reset
= qdev_e1000_reset
,
1200 .qdev
.vmsd
= &vmstate_e1000
,
1201 .init
= pci_e1000_init
,
1202 .exit
= pci_e1000_uninit
,
1203 .romfile
= "pxe-e1000.rom",
1204 .vendor_id
= PCI_VENDOR_ID_INTEL
,
1205 .device_id
= E1000_DEVID
,
1207 .class_id
= PCI_CLASS_NETWORK_ETHERNET
,
1208 .qdev
.props
= (Property
[]) {
1209 DEFINE_NIC_PROPERTIES(E1000State
, conf
),
1210 DEFINE_PROP_END_OF_LIST(),
1214 static void e1000_register_devices(void)
1216 pci_qdev_register(&e1000_info
);
1219 device_init(e1000_register_devices
)