sdl: Fix memory leakage
[qemu.git] / vl.c
blob9d1fe87f44f63ac213636ca28e1be6398137c3c1
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
32 /* Needed early for HOST_BSD etc. */
33 #include "config-host.h"
35 #ifndef _WIN32
36 #include <libgen.h>
37 #include <pwd.h>
38 #include <sys/times.h>
39 #include <sys/wait.h>
40 #include <termios.h>
41 #include <sys/mman.h>
42 #include <sys/ioctl.h>
43 #include <sys/resource.h>
44 #include <sys/socket.h>
45 #include <netinet/in.h>
46 #include <net/if.h>
47 #if defined(__NetBSD__)
48 #include <net/if_tap.h>
49 #endif
50 #ifdef __linux__
51 #include <linux/if_tun.h>
52 #endif
53 #include <arpa/inet.h>
54 #include <dirent.h>
55 #include <netdb.h>
56 #include <sys/select.h>
57 #ifdef HOST_BSD
58 #include <sys/stat.h>
59 #if defined(__FreeBSD__) || defined(__DragonFly__)
60 #include <libutil.h>
61 #else
62 #include <util.h>
63 #endif
64 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
65 #include <freebsd/stdlib.h>
66 #else
67 #ifdef __linux__
68 #include <pty.h>
69 #include <malloc.h>
70 #include <linux/rtc.h>
72 /* For the benefit of older linux systems which don't supply it,
73 we use a local copy of hpet.h. */
74 /* #include <linux/hpet.h> */
75 #include "hpet.h"
77 #include <linux/ppdev.h>
78 #include <linux/parport.h>
79 #endif
80 #ifdef __sun__
81 #include <sys/stat.h>
82 #include <sys/ethernet.h>
83 #include <sys/sockio.h>
84 #include <netinet/arp.h>
85 #include <netinet/in.h>
86 #include <netinet/in_systm.h>
87 #include <netinet/ip.h>
88 #include <netinet/ip_icmp.h> // must come after ip.h
89 #include <netinet/udp.h>
90 #include <netinet/tcp.h>
91 #include <net/if.h>
92 #include <syslog.h>
93 #include <stropts.h>
94 #endif
95 #endif
96 #endif
98 #if defined(__OpenBSD__)
99 #include <util.h>
100 #endif
102 #if defined(CONFIG_VDE)
103 #include <libvdeplug.h>
104 #endif
106 #ifdef _WIN32
107 #include <windows.h>
108 #include <malloc.h>
109 #include <sys/timeb.h>
110 #include <mmsystem.h>
111 #define getopt_long_only getopt_long
112 #define memalign(align, size) malloc(size)
113 #endif
115 #ifdef CONFIG_SDL
116 #if defined(__APPLE__) || defined(main)
117 #include <SDL.h>
118 int qemu_main(int argc, char **argv, char **envp);
119 int main(int argc, char **argv)
121 return qemu_main(argc, argv, NULL);
123 #undef main
124 #define main qemu_main
125 #endif
126 #endif /* CONFIG_SDL */
128 #ifdef CONFIG_COCOA
129 #undef main
130 #define main qemu_main
131 #endif /* CONFIG_COCOA */
133 #include "hw/hw.h"
134 #include "hw/boards.h"
135 #include "hw/usb.h"
136 #include "hw/pcmcia.h"
137 #include "hw/pc.h"
138 #include "hw/audiodev.h"
139 #include "hw/isa.h"
140 #include "hw/baum.h"
141 #include "hw/bt.h"
142 #include "hw/watchdog.h"
143 #include "hw/smbios.h"
144 #include "hw/xen.h"
145 #include "bt-host.h"
146 #include "net.h"
147 #include "monitor.h"
148 #include "console.h"
149 #include "sysemu.h"
150 #include "gdbstub.h"
151 #include "qemu-timer.h"
152 #include "qemu-char.h"
153 #include "cache-utils.h"
154 #include "block.h"
155 #include "dma.h"
156 #include "audio/audio.h"
157 #include "migration.h"
158 #include "kvm.h"
159 #include "balloon.h"
160 #include "qemu-option.h"
162 #include "disas.h"
164 #include "exec-all.h"
166 #include "qemu_socket.h"
168 #include "slirp/libslirp.h"
170 //#define DEBUG_UNUSED_IOPORT
171 //#define DEBUG_IOPORT
172 //#define DEBUG_NET
173 //#define DEBUG_SLIRP
176 #ifdef DEBUG_IOPORT
177 # define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
178 #else
179 # define LOG_IOPORT(...) do { } while (0)
180 #endif
182 #define DEFAULT_RAM_SIZE 128
184 /* Max number of USB devices that can be specified on the commandline. */
185 #define MAX_USB_CMDLINE 8
187 /* Max number of bluetooth switches on the commandline. */
188 #define MAX_BT_CMDLINE 10
190 /* XXX: use a two level table to limit memory usage */
191 #define MAX_IOPORTS 65536
193 static const char *data_dir;
194 const char *bios_name = NULL;
195 static void *ioport_opaque[MAX_IOPORTS];
196 static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
197 static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
198 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
199 to store the VM snapshots */
200 DriveInfo drives_table[MAX_DRIVES+1];
201 int nb_drives;
202 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
203 static DisplayState *display_state;
204 DisplayType display_type = DT_DEFAULT;
205 const char* keyboard_layout = NULL;
206 int64_t ticks_per_sec;
207 ram_addr_t ram_size;
208 int nb_nics;
209 NICInfo nd_table[MAX_NICS];
210 int vm_running;
211 static int autostart;
212 static int rtc_utc = 1;
213 static int rtc_date_offset = -1; /* -1 means no change */
214 int cirrus_vga_enabled = 1;
215 int std_vga_enabled = 0;
216 int vmsvga_enabled = 0;
217 int xenfb_enabled = 0;
218 #ifdef TARGET_SPARC
219 int graphic_width = 1024;
220 int graphic_height = 768;
221 int graphic_depth = 8;
222 #else
223 int graphic_width = 800;
224 int graphic_height = 600;
225 int graphic_depth = 15;
226 #endif
227 static int full_screen = 0;
228 #ifdef CONFIG_SDL
229 static int no_frame = 0;
230 #endif
231 int no_quit = 0;
232 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
233 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
234 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
235 #ifdef TARGET_I386
236 int win2k_install_hack = 0;
237 int rtc_td_hack = 0;
238 #endif
239 int usb_enabled = 0;
240 int singlestep = 0;
241 int smp_cpus = 1;
242 const char *vnc_display;
243 int acpi_enabled = 1;
244 int no_hpet = 0;
245 int no_virtio_balloon = 0;
246 int fd_bootchk = 1;
247 int no_reboot = 0;
248 int no_shutdown = 0;
249 int cursor_hide = 1;
250 int graphic_rotate = 0;
251 #ifndef _WIN32
252 int daemonize = 0;
253 #endif
254 WatchdogTimerModel *watchdog = NULL;
255 int watchdog_action = WDT_RESET;
256 const char *option_rom[MAX_OPTION_ROMS];
257 int nb_option_roms;
258 int semihosting_enabled = 0;
259 #ifdef TARGET_ARM
260 int old_param = 0;
261 #endif
262 const char *qemu_name;
263 int alt_grab = 0;
264 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
265 unsigned int nb_prom_envs = 0;
266 const char *prom_envs[MAX_PROM_ENVS];
267 #endif
268 int nb_drives_opt;
269 struct drive_opt drives_opt[MAX_DRIVES];
271 int nb_numa_nodes;
272 uint64_t node_mem[MAX_NODES];
273 uint64_t node_cpumask[MAX_NODES];
275 static CPUState *cur_cpu;
276 static CPUState *next_cpu;
277 static int timer_alarm_pending = 1;
278 /* Conversion factor from emulated instructions to virtual clock ticks. */
279 static int icount_time_shift;
280 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
281 #define MAX_ICOUNT_SHIFT 10
282 /* Compensate for varying guest execution speed. */
283 static int64_t qemu_icount_bias;
284 static QEMUTimer *icount_rt_timer;
285 static QEMUTimer *icount_vm_timer;
286 static QEMUTimer *nographic_timer;
288 uint8_t qemu_uuid[16];
290 /***********************************************************/
291 /* x86 ISA bus support */
293 target_phys_addr_t isa_mem_base = 0;
294 PicState2 *isa_pic;
296 static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
297 static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
299 static uint32_t ioport_read(int index, uint32_t address)
301 static IOPortReadFunc *default_func[3] = {
302 default_ioport_readb,
303 default_ioport_readw,
304 default_ioport_readl
306 IOPortReadFunc *func = ioport_read_table[index][address];
307 if (!func)
308 func = default_func[index];
309 return func(ioport_opaque[address], address);
312 static void ioport_write(int index, uint32_t address, uint32_t data)
314 static IOPortWriteFunc *default_func[3] = {
315 default_ioport_writeb,
316 default_ioport_writew,
317 default_ioport_writel
319 IOPortWriteFunc *func = ioport_write_table[index][address];
320 if (!func)
321 func = default_func[index];
322 func(ioport_opaque[address], address, data);
325 static uint32_t default_ioport_readb(void *opaque, uint32_t address)
327 #ifdef DEBUG_UNUSED_IOPORT
328 fprintf(stderr, "unused inb: port=0x%04x\n", address);
329 #endif
330 return 0xff;
333 static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
335 #ifdef DEBUG_UNUSED_IOPORT
336 fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
337 #endif
340 /* default is to make two byte accesses */
341 static uint32_t default_ioport_readw(void *opaque, uint32_t address)
343 uint32_t data;
344 data = ioport_read(0, address);
345 address = (address + 1) & (MAX_IOPORTS - 1);
346 data |= ioport_read(0, address) << 8;
347 return data;
350 static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
352 ioport_write(0, address, data & 0xff);
353 address = (address + 1) & (MAX_IOPORTS - 1);
354 ioport_write(0, address, (data >> 8) & 0xff);
357 static uint32_t default_ioport_readl(void *opaque, uint32_t address)
359 #ifdef DEBUG_UNUSED_IOPORT
360 fprintf(stderr, "unused inl: port=0x%04x\n", address);
361 #endif
362 return 0xffffffff;
365 static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
367 #ifdef DEBUG_UNUSED_IOPORT
368 fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
369 #endif
372 /* size is the word size in byte */
373 int register_ioport_read(int start, int length, int size,
374 IOPortReadFunc *func, void *opaque)
376 int i, bsize;
378 if (size == 1) {
379 bsize = 0;
380 } else if (size == 2) {
381 bsize = 1;
382 } else if (size == 4) {
383 bsize = 2;
384 } else {
385 hw_error("register_ioport_read: invalid size");
386 return -1;
388 for(i = start; i < start + length; i += size) {
389 ioport_read_table[bsize][i] = func;
390 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
391 hw_error("register_ioport_read: invalid opaque");
392 ioport_opaque[i] = opaque;
394 return 0;
397 /* size is the word size in byte */
398 int register_ioport_write(int start, int length, int size,
399 IOPortWriteFunc *func, void *opaque)
401 int i, bsize;
403 if (size == 1) {
404 bsize = 0;
405 } else if (size == 2) {
406 bsize = 1;
407 } else if (size == 4) {
408 bsize = 2;
409 } else {
410 hw_error("register_ioport_write: invalid size");
411 return -1;
413 for(i = start; i < start + length; i += size) {
414 ioport_write_table[bsize][i] = func;
415 if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
416 hw_error("register_ioport_write: invalid opaque");
417 ioport_opaque[i] = opaque;
419 return 0;
422 void isa_unassign_ioport(int start, int length)
424 int i;
426 for(i = start; i < start + length; i++) {
427 ioport_read_table[0][i] = default_ioport_readb;
428 ioport_read_table[1][i] = default_ioport_readw;
429 ioport_read_table[2][i] = default_ioport_readl;
431 ioport_write_table[0][i] = default_ioport_writeb;
432 ioport_write_table[1][i] = default_ioport_writew;
433 ioport_write_table[2][i] = default_ioport_writel;
435 ioport_opaque[i] = NULL;
439 /***********************************************************/
441 void cpu_outb(CPUState *env, int addr, int val)
443 LOG_IOPORT("outb: %04x %02x\n", addr, val);
444 ioport_write(0, addr, val);
445 #ifdef CONFIG_KQEMU
446 if (env)
447 env->last_io_time = cpu_get_time_fast();
448 #endif
451 void cpu_outw(CPUState *env, int addr, int val)
453 LOG_IOPORT("outw: %04x %04x\n", addr, val);
454 ioport_write(1, addr, val);
455 #ifdef CONFIG_KQEMU
456 if (env)
457 env->last_io_time = cpu_get_time_fast();
458 #endif
461 void cpu_outl(CPUState *env, int addr, int val)
463 LOG_IOPORT("outl: %04x %08x\n", addr, val);
464 ioport_write(2, addr, val);
465 #ifdef CONFIG_KQEMU
466 if (env)
467 env->last_io_time = cpu_get_time_fast();
468 #endif
471 int cpu_inb(CPUState *env, int addr)
473 int val;
474 val = ioport_read(0, addr);
475 LOG_IOPORT("inb : %04x %02x\n", addr, val);
476 #ifdef CONFIG_KQEMU
477 if (env)
478 env->last_io_time = cpu_get_time_fast();
479 #endif
480 return val;
483 int cpu_inw(CPUState *env, int addr)
485 int val;
486 val = ioport_read(1, addr);
487 LOG_IOPORT("inw : %04x %04x\n", addr, val);
488 #ifdef CONFIG_KQEMU
489 if (env)
490 env->last_io_time = cpu_get_time_fast();
491 #endif
492 return val;
495 int cpu_inl(CPUState *env, int addr)
497 int val;
498 val = ioport_read(2, addr);
499 LOG_IOPORT("inl : %04x %08x\n", addr, val);
500 #ifdef CONFIG_KQEMU
501 if (env)
502 env->last_io_time = cpu_get_time_fast();
503 #endif
504 return val;
507 /***********************************************************/
508 void hw_error(const char *fmt, ...)
510 va_list ap;
511 CPUState *env;
513 va_start(ap, fmt);
514 fprintf(stderr, "qemu: hardware error: ");
515 vfprintf(stderr, fmt, ap);
516 fprintf(stderr, "\n");
517 for(env = first_cpu; env != NULL; env = env->next_cpu) {
518 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
519 #ifdef TARGET_I386
520 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
521 #else
522 cpu_dump_state(env, stderr, fprintf, 0);
523 #endif
525 va_end(ap);
526 abort();
529 /***************/
530 /* ballooning */
532 static QEMUBalloonEvent *qemu_balloon_event;
533 void *qemu_balloon_event_opaque;
535 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
537 qemu_balloon_event = func;
538 qemu_balloon_event_opaque = opaque;
541 void qemu_balloon(ram_addr_t target)
543 if (qemu_balloon_event)
544 qemu_balloon_event(qemu_balloon_event_opaque, target);
547 ram_addr_t qemu_balloon_status(void)
549 if (qemu_balloon_event)
550 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
551 return 0;
554 /***********************************************************/
555 /* keyboard/mouse */
557 static QEMUPutKBDEvent *qemu_put_kbd_event;
558 static void *qemu_put_kbd_event_opaque;
559 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
560 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
562 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
564 qemu_put_kbd_event_opaque = opaque;
565 qemu_put_kbd_event = func;
568 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
569 void *opaque, int absolute,
570 const char *name)
572 QEMUPutMouseEntry *s, *cursor;
574 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
576 s->qemu_put_mouse_event = func;
577 s->qemu_put_mouse_event_opaque = opaque;
578 s->qemu_put_mouse_event_absolute = absolute;
579 s->qemu_put_mouse_event_name = qemu_strdup(name);
580 s->next = NULL;
582 if (!qemu_put_mouse_event_head) {
583 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
584 return s;
587 cursor = qemu_put_mouse_event_head;
588 while (cursor->next != NULL)
589 cursor = cursor->next;
591 cursor->next = s;
592 qemu_put_mouse_event_current = s;
594 return s;
597 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
599 QEMUPutMouseEntry *prev = NULL, *cursor;
601 if (!qemu_put_mouse_event_head || entry == NULL)
602 return;
604 cursor = qemu_put_mouse_event_head;
605 while (cursor != NULL && cursor != entry) {
606 prev = cursor;
607 cursor = cursor->next;
610 if (cursor == NULL) // does not exist or list empty
611 return;
612 else if (prev == NULL) { // entry is head
613 qemu_put_mouse_event_head = cursor->next;
614 if (qemu_put_mouse_event_current == entry)
615 qemu_put_mouse_event_current = cursor->next;
616 qemu_free(entry->qemu_put_mouse_event_name);
617 qemu_free(entry);
618 return;
621 prev->next = entry->next;
623 if (qemu_put_mouse_event_current == entry)
624 qemu_put_mouse_event_current = prev;
626 qemu_free(entry->qemu_put_mouse_event_name);
627 qemu_free(entry);
630 void kbd_put_keycode(int keycode)
632 if (qemu_put_kbd_event) {
633 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
637 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
639 QEMUPutMouseEvent *mouse_event;
640 void *mouse_event_opaque;
641 int width;
643 if (!qemu_put_mouse_event_current) {
644 return;
647 mouse_event =
648 qemu_put_mouse_event_current->qemu_put_mouse_event;
649 mouse_event_opaque =
650 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
652 if (mouse_event) {
653 if (graphic_rotate) {
654 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
655 width = 0x7fff;
656 else
657 width = graphic_width - 1;
658 mouse_event(mouse_event_opaque,
659 width - dy, dx, dz, buttons_state);
660 } else
661 mouse_event(mouse_event_opaque,
662 dx, dy, dz, buttons_state);
666 int kbd_mouse_is_absolute(void)
668 if (!qemu_put_mouse_event_current)
669 return 0;
671 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
674 void do_info_mice(Monitor *mon)
676 QEMUPutMouseEntry *cursor;
677 int index = 0;
679 if (!qemu_put_mouse_event_head) {
680 monitor_printf(mon, "No mouse devices connected\n");
681 return;
684 monitor_printf(mon, "Mouse devices available:\n");
685 cursor = qemu_put_mouse_event_head;
686 while (cursor != NULL) {
687 monitor_printf(mon, "%c Mouse #%d: %s\n",
688 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
689 index, cursor->qemu_put_mouse_event_name);
690 index++;
691 cursor = cursor->next;
695 void do_mouse_set(Monitor *mon, int index)
697 QEMUPutMouseEntry *cursor;
698 int i = 0;
700 if (!qemu_put_mouse_event_head) {
701 monitor_printf(mon, "No mouse devices connected\n");
702 return;
705 cursor = qemu_put_mouse_event_head;
706 while (cursor != NULL && index != i) {
707 i++;
708 cursor = cursor->next;
711 if (cursor != NULL)
712 qemu_put_mouse_event_current = cursor;
713 else
714 monitor_printf(mon, "Mouse at given index not found\n");
717 /* compute with 96 bit intermediate result: (a*b)/c */
718 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
720 union {
721 uint64_t ll;
722 struct {
723 #ifdef WORDS_BIGENDIAN
724 uint32_t high, low;
725 #else
726 uint32_t low, high;
727 #endif
728 } l;
729 } u, res;
730 uint64_t rl, rh;
732 u.ll = a;
733 rl = (uint64_t)u.l.low * (uint64_t)b;
734 rh = (uint64_t)u.l.high * (uint64_t)b;
735 rh += (rl >> 32);
736 res.l.high = rh / c;
737 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
738 return res.ll;
741 /***********************************************************/
742 /* real time host monotonic timer */
744 #define QEMU_TIMER_BASE 1000000000LL
746 #ifdef WIN32
748 static int64_t clock_freq;
750 static void init_get_clock(void)
752 LARGE_INTEGER freq;
753 int ret;
754 ret = QueryPerformanceFrequency(&freq);
755 if (ret == 0) {
756 fprintf(stderr, "Could not calibrate ticks\n");
757 exit(1);
759 clock_freq = freq.QuadPart;
762 static int64_t get_clock(void)
764 LARGE_INTEGER ti;
765 QueryPerformanceCounter(&ti);
766 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
769 #else
771 static int use_rt_clock;
773 static void init_get_clock(void)
775 use_rt_clock = 0;
776 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
777 || defined(__DragonFly__)
779 struct timespec ts;
780 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
781 use_rt_clock = 1;
784 #endif
787 static int64_t get_clock(void)
789 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
790 || defined(__DragonFly__)
791 if (use_rt_clock) {
792 struct timespec ts;
793 clock_gettime(CLOCK_MONOTONIC, &ts);
794 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
795 } else
796 #endif
798 /* XXX: using gettimeofday leads to problems if the date
799 changes, so it should be avoided. */
800 struct timeval tv;
801 gettimeofday(&tv, NULL);
802 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
805 #endif
807 /* Return the virtual CPU time, based on the instruction counter. */
808 static int64_t cpu_get_icount(void)
810 int64_t icount;
811 CPUState *env = cpu_single_env;;
812 icount = qemu_icount;
813 if (env) {
814 if (!can_do_io(env))
815 fprintf(stderr, "Bad clock read\n");
816 icount -= (env->icount_decr.u16.low + env->icount_extra);
818 return qemu_icount_bias + (icount << icount_time_shift);
821 /***********************************************************/
822 /* guest cycle counter */
824 static int64_t cpu_ticks_prev;
825 static int64_t cpu_ticks_offset;
826 static int64_t cpu_clock_offset;
827 static int cpu_ticks_enabled;
829 /* return the host CPU cycle counter and handle stop/restart */
830 int64_t cpu_get_ticks(void)
832 if (use_icount) {
833 return cpu_get_icount();
835 if (!cpu_ticks_enabled) {
836 return cpu_ticks_offset;
837 } else {
838 int64_t ticks;
839 ticks = cpu_get_real_ticks();
840 if (cpu_ticks_prev > ticks) {
841 /* Note: non increasing ticks may happen if the host uses
842 software suspend */
843 cpu_ticks_offset += cpu_ticks_prev - ticks;
845 cpu_ticks_prev = ticks;
846 return ticks + cpu_ticks_offset;
850 /* return the host CPU monotonic timer and handle stop/restart */
851 static int64_t cpu_get_clock(void)
853 int64_t ti;
854 if (!cpu_ticks_enabled) {
855 return cpu_clock_offset;
856 } else {
857 ti = get_clock();
858 return ti + cpu_clock_offset;
862 /* enable cpu_get_ticks() */
863 void cpu_enable_ticks(void)
865 if (!cpu_ticks_enabled) {
866 cpu_ticks_offset -= cpu_get_real_ticks();
867 cpu_clock_offset -= get_clock();
868 cpu_ticks_enabled = 1;
872 /* disable cpu_get_ticks() : the clock is stopped. You must not call
873 cpu_get_ticks() after that. */
874 void cpu_disable_ticks(void)
876 if (cpu_ticks_enabled) {
877 cpu_ticks_offset = cpu_get_ticks();
878 cpu_clock_offset = cpu_get_clock();
879 cpu_ticks_enabled = 0;
883 /***********************************************************/
884 /* timers */
886 #define QEMU_TIMER_REALTIME 0
887 #define QEMU_TIMER_VIRTUAL 1
889 struct QEMUClock {
890 int type;
891 /* XXX: add frequency */
894 struct QEMUTimer {
895 QEMUClock *clock;
896 int64_t expire_time;
897 QEMUTimerCB *cb;
898 void *opaque;
899 struct QEMUTimer *next;
902 struct qemu_alarm_timer {
903 char const *name;
904 unsigned int flags;
906 int (*start)(struct qemu_alarm_timer *t);
907 void (*stop)(struct qemu_alarm_timer *t);
908 void (*rearm)(struct qemu_alarm_timer *t);
909 void *priv;
912 #define ALARM_FLAG_DYNTICKS 0x1
913 #define ALARM_FLAG_EXPIRED 0x2
915 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
917 return t && (t->flags & ALARM_FLAG_DYNTICKS);
920 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
922 if (!alarm_has_dynticks(t))
923 return;
925 t->rearm(t);
928 /* TODO: MIN_TIMER_REARM_US should be optimized */
929 #define MIN_TIMER_REARM_US 250
931 static struct qemu_alarm_timer *alarm_timer;
933 #ifdef _WIN32
935 struct qemu_alarm_win32 {
936 MMRESULT timerId;
937 unsigned int period;
938 } alarm_win32_data = {0, -1};
940 static int win32_start_timer(struct qemu_alarm_timer *t);
941 static void win32_stop_timer(struct qemu_alarm_timer *t);
942 static void win32_rearm_timer(struct qemu_alarm_timer *t);
944 #else
946 static int unix_start_timer(struct qemu_alarm_timer *t);
947 static void unix_stop_timer(struct qemu_alarm_timer *t);
949 #ifdef __linux__
951 static int dynticks_start_timer(struct qemu_alarm_timer *t);
952 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
953 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
955 static int hpet_start_timer(struct qemu_alarm_timer *t);
956 static void hpet_stop_timer(struct qemu_alarm_timer *t);
958 static int rtc_start_timer(struct qemu_alarm_timer *t);
959 static void rtc_stop_timer(struct qemu_alarm_timer *t);
961 #endif /* __linux__ */
963 #endif /* _WIN32 */
965 /* Correlation between real and virtual time is always going to be
966 fairly approximate, so ignore small variation.
967 When the guest is idle real and virtual time will be aligned in
968 the IO wait loop. */
969 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
971 static void icount_adjust(void)
973 int64_t cur_time;
974 int64_t cur_icount;
975 int64_t delta;
976 static int64_t last_delta;
977 /* If the VM is not running, then do nothing. */
978 if (!vm_running)
979 return;
981 cur_time = cpu_get_clock();
982 cur_icount = qemu_get_clock(vm_clock);
983 delta = cur_icount - cur_time;
984 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
985 if (delta > 0
986 && last_delta + ICOUNT_WOBBLE < delta * 2
987 && icount_time_shift > 0) {
988 /* The guest is getting too far ahead. Slow time down. */
989 icount_time_shift--;
991 if (delta < 0
992 && last_delta - ICOUNT_WOBBLE > delta * 2
993 && icount_time_shift < MAX_ICOUNT_SHIFT) {
994 /* The guest is getting too far behind. Speed time up. */
995 icount_time_shift++;
997 last_delta = delta;
998 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
1001 static void icount_adjust_rt(void * opaque)
1003 qemu_mod_timer(icount_rt_timer,
1004 qemu_get_clock(rt_clock) + 1000);
1005 icount_adjust();
1008 static void icount_adjust_vm(void * opaque)
1010 qemu_mod_timer(icount_vm_timer,
1011 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1012 icount_adjust();
1015 static void init_icount_adjust(void)
1017 /* Have both realtime and virtual time triggers for speed adjustment.
1018 The realtime trigger catches emulated time passing too slowly,
1019 the virtual time trigger catches emulated time passing too fast.
1020 Realtime triggers occur even when idle, so use them less frequently
1021 than VM triggers. */
1022 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1023 qemu_mod_timer(icount_rt_timer,
1024 qemu_get_clock(rt_clock) + 1000);
1025 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1026 qemu_mod_timer(icount_vm_timer,
1027 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1030 static struct qemu_alarm_timer alarm_timers[] = {
1031 #ifndef _WIN32
1032 #ifdef __linux__
1033 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1034 dynticks_stop_timer, dynticks_rearm_timer, NULL},
1035 /* HPET - if available - is preferred */
1036 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1037 /* ...otherwise try RTC */
1038 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1039 #endif
1040 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1041 #else
1042 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1043 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1044 {"win32", 0, win32_start_timer,
1045 win32_stop_timer, NULL, &alarm_win32_data},
1046 #endif
1047 {NULL, }
1050 static void show_available_alarms(void)
1052 int i;
1054 printf("Available alarm timers, in order of precedence:\n");
1055 for (i = 0; alarm_timers[i].name; i++)
1056 printf("%s\n", alarm_timers[i].name);
1059 static void configure_alarms(char const *opt)
1061 int i;
1062 int cur = 0;
1063 int count = ARRAY_SIZE(alarm_timers) - 1;
1064 char *arg;
1065 char *name;
1066 struct qemu_alarm_timer tmp;
1068 if (!strcmp(opt, "?")) {
1069 show_available_alarms();
1070 exit(0);
1073 arg = strdup(opt);
1075 /* Reorder the array */
1076 name = strtok(arg, ",");
1077 while (name) {
1078 for (i = 0; i < count && alarm_timers[i].name; i++) {
1079 if (!strcmp(alarm_timers[i].name, name))
1080 break;
1083 if (i == count) {
1084 fprintf(stderr, "Unknown clock %s\n", name);
1085 goto next;
1088 if (i < cur)
1089 /* Ignore */
1090 goto next;
1092 /* Swap */
1093 tmp = alarm_timers[i];
1094 alarm_timers[i] = alarm_timers[cur];
1095 alarm_timers[cur] = tmp;
1097 cur++;
1098 next:
1099 name = strtok(NULL, ",");
1102 free(arg);
1104 if (cur) {
1105 /* Disable remaining timers */
1106 for (i = cur; i < count; i++)
1107 alarm_timers[i].name = NULL;
1108 } else {
1109 show_available_alarms();
1110 exit(1);
1114 QEMUClock *rt_clock;
1115 QEMUClock *vm_clock;
1117 static QEMUTimer *active_timers[2];
1119 static QEMUClock *qemu_new_clock(int type)
1121 QEMUClock *clock;
1122 clock = qemu_mallocz(sizeof(QEMUClock));
1123 clock->type = type;
1124 return clock;
1127 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1129 QEMUTimer *ts;
1131 ts = qemu_mallocz(sizeof(QEMUTimer));
1132 ts->clock = clock;
1133 ts->cb = cb;
1134 ts->opaque = opaque;
1135 return ts;
1138 void qemu_free_timer(QEMUTimer *ts)
1140 qemu_free(ts);
1143 /* stop a timer, but do not dealloc it */
1144 void qemu_del_timer(QEMUTimer *ts)
1146 QEMUTimer **pt, *t;
1148 /* NOTE: this code must be signal safe because
1149 qemu_timer_expired() can be called from a signal. */
1150 pt = &active_timers[ts->clock->type];
1151 for(;;) {
1152 t = *pt;
1153 if (!t)
1154 break;
1155 if (t == ts) {
1156 *pt = t->next;
1157 break;
1159 pt = &t->next;
1163 /* modify the current timer so that it will be fired when current_time
1164 >= expire_time. The corresponding callback will be called. */
1165 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1167 QEMUTimer **pt, *t;
1169 qemu_del_timer(ts);
1171 /* add the timer in the sorted list */
1172 /* NOTE: this code must be signal safe because
1173 qemu_timer_expired() can be called from a signal. */
1174 pt = &active_timers[ts->clock->type];
1175 for(;;) {
1176 t = *pt;
1177 if (!t)
1178 break;
1179 if (t->expire_time > expire_time)
1180 break;
1181 pt = &t->next;
1183 ts->expire_time = expire_time;
1184 ts->next = *pt;
1185 *pt = ts;
1187 /* Rearm if necessary */
1188 if (pt == &active_timers[ts->clock->type]) {
1189 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1190 qemu_rearm_alarm_timer(alarm_timer);
1192 /* Interrupt execution to force deadline recalculation. */
1193 if (use_icount)
1194 qemu_notify_event();
1198 int qemu_timer_pending(QEMUTimer *ts)
1200 QEMUTimer *t;
1201 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1202 if (t == ts)
1203 return 1;
1205 return 0;
1208 static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1210 if (!timer_head)
1211 return 0;
1212 return (timer_head->expire_time <= current_time);
1215 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1217 QEMUTimer *ts;
1219 for(;;) {
1220 ts = *ptimer_head;
1221 if (!ts || ts->expire_time > current_time)
1222 break;
1223 /* remove timer from the list before calling the callback */
1224 *ptimer_head = ts->next;
1225 ts->next = NULL;
1227 /* run the callback (the timer list can be modified) */
1228 ts->cb(ts->opaque);
1232 int64_t qemu_get_clock(QEMUClock *clock)
1234 switch(clock->type) {
1235 case QEMU_TIMER_REALTIME:
1236 return get_clock() / 1000000;
1237 default:
1238 case QEMU_TIMER_VIRTUAL:
1239 if (use_icount) {
1240 return cpu_get_icount();
1241 } else {
1242 return cpu_get_clock();
1247 static void init_timers(void)
1249 init_get_clock();
1250 ticks_per_sec = QEMU_TIMER_BASE;
1251 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1252 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1255 /* save a timer */
1256 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1258 uint64_t expire_time;
1260 if (qemu_timer_pending(ts)) {
1261 expire_time = ts->expire_time;
1262 } else {
1263 expire_time = -1;
1265 qemu_put_be64(f, expire_time);
1268 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1270 uint64_t expire_time;
1272 expire_time = qemu_get_be64(f);
1273 if (expire_time != -1) {
1274 qemu_mod_timer(ts, expire_time);
1275 } else {
1276 qemu_del_timer(ts);
1280 static void timer_save(QEMUFile *f, void *opaque)
1282 if (cpu_ticks_enabled) {
1283 hw_error("cannot save state if virtual timers are running");
1285 qemu_put_be64(f, cpu_ticks_offset);
1286 qemu_put_be64(f, ticks_per_sec);
1287 qemu_put_be64(f, cpu_clock_offset);
1290 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1292 if (version_id != 1 && version_id != 2)
1293 return -EINVAL;
1294 if (cpu_ticks_enabled) {
1295 return -EINVAL;
1297 cpu_ticks_offset=qemu_get_be64(f);
1298 ticks_per_sec=qemu_get_be64(f);
1299 if (version_id == 2) {
1300 cpu_clock_offset=qemu_get_be64(f);
1302 return 0;
1305 static void qemu_event_increment(void);
1307 #ifdef _WIN32
1308 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1309 DWORD_PTR dwUser, DWORD_PTR dw1,
1310 DWORD_PTR dw2)
1311 #else
1312 static void host_alarm_handler(int host_signum)
1313 #endif
1315 #if 0
1316 #define DISP_FREQ 1000
1318 static int64_t delta_min = INT64_MAX;
1319 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1320 static int count;
1321 ti = qemu_get_clock(vm_clock);
1322 if (last_clock != 0) {
1323 delta = ti - last_clock;
1324 if (delta < delta_min)
1325 delta_min = delta;
1326 if (delta > delta_max)
1327 delta_max = delta;
1328 delta_cum += delta;
1329 if (++count == DISP_FREQ) {
1330 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1331 muldiv64(delta_min, 1000000, ticks_per_sec),
1332 muldiv64(delta_max, 1000000, ticks_per_sec),
1333 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1334 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1335 count = 0;
1336 delta_min = INT64_MAX;
1337 delta_max = 0;
1338 delta_cum = 0;
1341 last_clock = ti;
1343 #endif
1344 if (alarm_has_dynticks(alarm_timer) ||
1345 (!use_icount &&
1346 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1347 qemu_get_clock(vm_clock))) ||
1348 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1349 qemu_get_clock(rt_clock))) {
1350 qemu_event_increment();
1351 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1353 #ifndef CONFIG_IOTHREAD
1354 if (next_cpu) {
1355 /* stop the currently executing cpu because a timer occured */
1356 cpu_exit(next_cpu);
1357 #ifdef CONFIG_KQEMU
1358 if (next_cpu->kqemu_enabled) {
1359 kqemu_cpu_interrupt(next_cpu);
1361 #endif
1363 #endif
1364 timer_alarm_pending = 1;
1365 qemu_notify_event();
1369 static int64_t qemu_next_deadline(void)
1371 int64_t delta;
1373 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1374 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1375 qemu_get_clock(vm_clock);
1376 } else {
1377 /* To avoid problems with overflow limit this to 2^32. */
1378 delta = INT32_MAX;
1381 if (delta < 0)
1382 delta = 0;
1384 return delta;
1387 #if defined(__linux__) || defined(_WIN32)
1388 static uint64_t qemu_next_deadline_dyntick(void)
1390 int64_t delta;
1391 int64_t rtdelta;
1393 if (use_icount)
1394 delta = INT32_MAX;
1395 else
1396 delta = (qemu_next_deadline() + 999) / 1000;
1398 if (active_timers[QEMU_TIMER_REALTIME]) {
1399 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1400 qemu_get_clock(rt_clock))*1000;
1401 if (rtdelta < delta)
1402 delta = rtdelta;
1405 if (delta < MIN_TIMER_REARM_US)
1406 delta = MIN_TIMER_REARM_US;
1408 return delta;
1410 #endif
1412 #ifndef _WIN32
1414 /* Sets a specific flag */
1415 static int fcntl_setfl(int fd, int flag)
1417 int flags;
1419 flags = fcntl(fd, F_GETFL);
1420 if (flags == -1)
1421 return -errno;
1423 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1424 return -errno;
1426 return 0;
1429 #if defined(__linux__)
1431 #define RTC_FREQ 1024
1433 static void enable_sigio_timer(int fd)
1435 struct sigaction act;
1437 /* timer signal */
1438 sigfillset(&act.sa_mask);
1439 act.sa_flags = 0;
1440 act.sa_handler = host_alarm_handler;
1442 sigaction(SIGIO, &act, NULL);
1443 fcntl_setfl(fd, O_ASYNC);
1444 fcntl(fd, F_SETOWN, getpid());
1447 static int hpet_start_timer(struct qemu_alarm_timer *t)
1449 struct hpet_info info;
1450 int r, fd;
1452 fd = open("/dev/hpet", O_RDONLY);
1453 if (fd < 0)
1454 return -1;
1456 /* Set frequency */
1457 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1458 if (r < 0) {
1459 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1460 "error, but for better emulation accuracy type:\n"
1461 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1462 goto fail;
1465 /* Check capabilities */
1466 r = ioctl(fd, HPET_INFO, &info);
1467 if (r < 0)
1468 goto fail;
1470 /* Enable periodic mode */
1471 r = ioctl(fd, HPET_EPI, 0);
1472 if (info.hi_flags && (r < 0))
1473 goto fail;
1475 /* Enable interrupt */
1476 r = ioctl(fd, HPET_IE_ON, 0);
1477 if (r < 0)
1478 goto fail;
1480 enable_sigio_timer(fd);
1481 t->priv = (void *)(long)fd;
1483 return 0;
1484 fail:
1485 close(fd);
1486 return -1;
1489 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1491 int fd = (long)t->priv;
1493 close(fd);
1496 static int rtc_start_timer(struct qemu_alarm_timer *t)
1498 int rtc_fd;
1499 unsigned long current_rtc_freq = 0;
1501 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1502 if (rtc_fd < 0)
1503 return -1;
1504 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1505 if (current_rtc_freq != RTC_FREQ &&
1506 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1507 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1508 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1509 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1510 goto fail;
1512 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1513 fail:
1514 close(rtc_fd);
1515 return -1;
1518 enable_sigio_timer(rtc_fd);
1520 t->priv = (void *)(long)rtc_fd;
1522 return 0;
1525 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1527 int rtc_fd = (long)t->priv;
1529 close(rtc_fd);
1532 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1534 struct sigevent ev;
1535 timer_t host_timer;
1536 struct sigaction act;
1538 sigfillset(&act.sa_mask);
1539 act.sa_flags = 0;
1540 act.sa_handler = host_alarm_handler;
1542 sigaction(SIGALRM, &act, NULL);
1545 * Initialize ev struct to 0 to avoid valgrind complaining
1546 * about uninitialized data in timer_create call
1548 memset(&ev, 0, sizeof(ev));
1549 ev.sigev_value.sival_int = 0;
1550 ev.sigev_notify = SIGEV_SIGNAL;
1551 ev.sigev_signo = SIGALRM;
1553 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1554 perror("timer_create");
1556 /* disable dynticks */
1557 fprintf(stderr, "Dynamic Ticks disabled\n");
1559 return -1;
1562 t->priv = (void *)(long)host_timer;
1564 return 0;
1567 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1569 timer_t host_timer = (timer_t)(long)t->priv;
1571 timer_delete(host_timer);
1574 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1576 timer_t host_timer = (timer_t)(long)t->priv;
1577 struct itimerspec timeout;
1578 int64_t nearest_delta_us = INT64_MAX;
1579 int64_t current_us;
1581 if (!active_timers[QEMU_TIMER_REALTIME] &&
1582 !active_timers[QEMU_TIMER_VIRTUAL])
1583 return;
1585 nearest_delta_us = qemu_next_deadline_dyntick();
1587 /* check whether a timer is already running */
1588 if (timer_gettime(host_timer, &timeout)) {
1589 perror("gettime");
1590 fprintf(stderr, "Internal timer error: aborting\n");
1591 exit(1);
1593 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1594 if (current_us && current_us <= nearest_delta_us)
1595 return;
1597 timeout.it_interval.tv_sec = 0;
1598 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1599 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1600 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1601 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1602 perror("settime");
1603 fprintf(stderr, "Internal timer error: aborting\n");
1604 exit(1);
1608 #endif /* defined(__linux__) */
1610 static int unix_start_timer(struct qemu_alarm_timer *t)
1612 struct sigaction act;
1613 struct itimerval itv;
1614 int err;
1616 /* timer signal */
1617 sigfillset(&act.sa_mask);
1618 act.sa_flags = 0;
1619 act.sa_handler = host_alarm_handler;
1621 sigaction(SIGALRM, &act, NULL);
1623 itv.it_interval.tv_sec = 0;
1624 /* for i386 kernel 2.6 to get 1 ms */
1625 itv.it_interval.tv_usec = 999;
1626 itv.it_value.tv_sec = 0;
1627 itv.it_value.tv_usec = 10 * 1000;
1629 err = setitimer(ITIMER_REAL, &itv, NULL);
1630 if (err)
1631 return -1;
1633 return 0;
1636 static void unix_stop_timer(struct qemu_alarm_timer *t)
1638 struct itimerval itv;
1640 memset(&itv, 0, sizeof(itv));
1641 setitimer(ITIMER_REAL, &itv, NULL);
1644 #endif /* !defined(_WIN32) */
1647 #ifdef _WIN32
1649 static int win32_start_timer(struct qemu_alarm_timer *t)
1651 TIMECAPS tc;
1652 struct qemu_alarm_win32 *data = t->priv;
1653 UINT flags;
1655 memset(&tc, 0, sizeof(tc));
1656 timeGetDevCaps(&tc, sizeof(tc));
1658 if (data->period < tc.wPeriodMin)
1659 data->period = tc.wPeriodMin;
1661 timeBeginPeriod(data->period);
1663 flags = TIME_CALLBACK_FUNCTION;
1664 if (alarm_has_dynticks(t))
1665 flags |= TIME_ONESHOT;
1666 else
1667 flags |= TIME_PERIODIC;
1669 data->timerId = timeSetEvent(1, // interval (ms)
1670 data->period, // resolution
1671 host_alarm_handler, // function
1672 (DWORD)t, // parameter
1673 flags);
1675 if (!data->timerId) {
1676 perror("Failed to initialize win32 alarm timer");
1677 timeEndPeriod(data->period);
1678 return -1;
1681 return 0;
1684 static void win32_stop_timer(struct qemu_alarm_timer *t)
1686 struct qemu_alarm_win32 *data = t->priv;
1688 timeKillEvent(data->timerId);
1689 timeEndPeriod(data->period);
1692 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1694 struct qemu_alarm_win32 *data = t->priv;
1695 uint64_t nearest_delta_us;
1697 if (!active_timers[QEMU_TIMER_REALTIME] &&
1698 !active_timers[QEMU_TIMER_VIRTUAL])
1699 return;
1701 nearest_delta_us = qemu_next_deadline_dyntick();
1702 nearest_delta_us /= 1000;
1704 timeKillEvent(data->timerId);
1706 data->timerId = timeSetEvent(1,
1707 data->period,
1708 host_alarm_handler,
1709 (DWORD)t,
1710 TIME_ONESHOT | TIME_PERIODIC);
1712 if (!data->timerId) {
1713 perror("Failed to re-arm win32 alarm timer");
1715 timeEndPeriod(data->period);
1716 exit(1);
1720 #endif /* _WIN32 */
1722 static int init_timer_alarm(void)
1724 struct qemu_alarm_timer *t = NULL;
1725 int i, err = -1;
1727 for (i = 0; alarm_timers[i].name; i++) {
1728 t = &alarm_timers[i];
1730 err = t->start(t);
1731 if (!err)
1732 break;
1735 if (err) {
1736 err = -ENOENT;
1737 goto fail;
1740 alarm_timer = t;
1742 return 0;
1744 fail:
1745 return err;
1748 static void quit_timers(void)
1750 alarm_timer->stop(alarm_timer);
1751 alarm_timer = NULL;
1754 /***********************************************************/
1755 /* host time/date access */
1756 void qemu_get_timedate(struct tm *tm, int offset)
1758 time_t ti;
1759 struct tm *ret;
1761 time(&ti);
1762 ti += offset;
1763 if (rtc_date_offset == -1) {
1764 if (rtc_utc)
1765 ret = gmtime(&ti);
1766 else
1767 ret = localtime(&ti);
1768 } else {
1769 ti -= rtc_date_offset;
1770 ret = gmtime(&ti);
1773 memcpy(tm, ret, sizeof(struct tm));
1776 int qemu_timedate_diff(struct tm *tm)
1778 time_t seconds;
1780 if (rtc_date_offset == -1)
1781 if (rtc_utc)
1782 seconds = mktimegm(tm);
1783 else
1784 seconds = mktime(tm);
1785 else
1786 seconds = mktimegm(tm) + rtc_date_offset;
1788 return seconds - time(NULL);
1791 #ifdef _WIN32
1792 static void socket_cleanup(void)
1794 WSACleanup();
1797 static int socket_init(void)
1799 WSADATA Data;
1800 int ret, err;
1802 ret = WSAStartup(MAKEWORD(2,2), &Data);
1803 if (ret != 0) {
1804 err = WSAGetLastError();
1805 fprintf(stderr, "WSAStartup: %d\n", err);
1806 return -1;
1808 atexit(socket_cleanup);
1809 return 0;
1811 #endif
1813 int get_next_param_value(char *buf, int buf_size,
1814 const char *tag, const char **pstr)
1816 const char *p;
1817 char option[128];
1819 p = *pstr;
1820 for(;;) {
1821 p = get_opt_name(option, sizeof(option), p, '=');
1822 if (*p != '=')
1823 break;
1824 p++;
1825 if (!strcmp(tag, option)) {
1826 *pstr = get_opt_value(buf, buf_size, p);
1827 if (**pstr == ',') {
1828 (*pstr)++;
1830 return strlen(buf);
1831 } else {
1832 p = get_opt_value(NULL, 0, p);
1834 if (*p != ',')
1835 break;
1836 p++;
1838 return 0;
1841 int get_param_value(char *buf, int buf_size,
1842 const char *tag, const char *str)
1844 return get_next_param_value(buf, buf_size, tag, &str);
1847 int check_params(char *buf, int buf_size,
1848 const char * const *params, const char *str)
1850 const char *p;
1851 int i;
1853 p = str;
1854 while (*p != '\0') {
1855 p = get_opt_name(buf, buf_size, p, '=');
1856 if (*p != '=') {
1857 return -1;
1859 p++;
1860 for (i = 0; params[i] != NULL; i++) {
1861 if (!strcmp(params[i], buf)) {
1862 break;
1865 if (params[i] == NULL) {
1866 return -1;
1868 p = get_opt_value(NULL, 0, p);
1869 if (*p != ',') {
1870 break;
1872 p++;
1874 return 0;
1877 /***********************************************************/
1878 /* Bluetooth support */
1879 static int nb_hcis;
1880 static int cur_hci;
1881 static struct HCIInfo *hci_table[MAX_NICS];
1883 static struct bt_vlan_s {
1884 struct bt_scatternet_s net;
1885 int id;
1886 struct bt_vlan_s *next;
1887 } *first_bt_vlan;
1889 /* find or alloc a new bluetooth "VLAN" */
1890 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1892 struct bt_vlan_s **pvlan, *vlan;
1893 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1894 if (vlan->id == id)
1895 return &vlan->net;
1897 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1898 vlan->id = id;
1899 pvlan = &first_bt_vlan;
1900 while (*pvlan != NULL)
1901 pvlan = &(*pvlan)->next;
1902 *pvlan = vlan;
1903 return &vlan->net;
1906 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1910 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1912 return -ENOTSUP;
1915 static struct HCIInfo null_hci = {
1916 .cmd_send = null_hci_send,
1917 .sco_send = null_hci_send,
1918 .acl_send = null_hci_send,
1919 .bdaddr_set = null_hci_addr_set,
1922 struct HCIInfo *qemu_next_hci(void)
1924 if (cur_hci == nb_hcis)
1925 return &null_hci;
1927 return hci_table[cur_hci++];
1930 static struct HCIInfo *hci_init(const char *str)
1932 char *endp;
1933 struct bt_scatternet_s *vlan = 0;
1935 if (!strcmp(str, "null"))
1936 /* null */
1937 return &null_hci;
1938 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1939 /* host[:hciN] */
1940 return bt_host_hci(str[4] ? str + 5 : "hci0");
1941 else if (!strncmp(str, "hci", 3)) {
1942 /* hci[,vlan=n] */
1943 if (str[3]) {
1944 if (!strncmp(str + 3, ",vlan=", 6)) {
1945 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1946 if (*endp)
1947 vlan = 0;
1949 } else
1950 vlan = qemu_find_bt_vlan(0);
1951 if (vlan)
1952 return bt_new_hci(vlan);
1955 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1957 return 0;
1960 static int bt_hci_parse(const char *str)
1962 struct HCIInfo *hci;
1963 bdaddr_t bdaddr;
1965 if (nb_hcis >= MAX_NICS) {
1966 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1967 return -1;
1970 hci = hci_init(str);
1971 if (!hci)
1972 return -1;
1974 bdaddr.b[0] = 0x52;
1975 bdaddr.b[1] = 0x54;
1976 bdaddr.b[2] = 0x00;
1977 bdaddr.b[3] = 0x12;
1978 bdaddr.b[4] = 0x34;
1979 bdaddr.b[5] = 0x56 + nb_hcis;
1980 hci->bdaddr_set(hci, bdaddr.b);
1982 hci_table[nb_hcis++] = hci;
1984 return 0;
1987 static void bt_vhci_add(int vlan_id)
1989 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1991 if (!vlan->slave)
1992 fprintf(stderr, "qemu: warning: adding a VHCI to "
1993 "an empty scatternet %i\n", vlan_id);
1995 bt_vhci_init(bt_new_hci(vlan));
1998 static struct bt_device_s *bt_device_add(const char *opt)
2000 struct bt_scatternet_s *vlan;
2001 int vlan_id = 0;
2002 char *endp = strstr(opt, ",vlan=");
2003 int len = (endp ? endp - opt : strlen(opt)) + 1;
2004 char devname[10];
2006 pstrcpy(devname, MIN(sizeof(devname), len), opt);
2008 if (endp) {
2009 vlan_id = strtol(endp + 6, &endp, 0);
2010 if (*endp) {
2011 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2012 return 0;
2016 vlan = qemu_find_bt_vlan(vlan_id);
2018 if (!vlan->slave)
2019 fprintf(stderr, "qemu: warning: adding a slave device to "
2020 "an empty scatternet %i\n", vlan_id);
2022 if (!strcmp(devname, "keyboard"))
2023 return bt_keyboard_init(vlan);
2025 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2026 return 0;
2029 static int bt_parse(const char *opt)
2031 const char *endp, *p;
2032 int vlan;
2034 if (strstart(opt, "hci", &endp)) {
2035 if (!*endp || *endp == ',') {
2036 if (*endp)
2037 if (!strstart(endp, ",vlan=", 0))
2038 opt = endp + 1;
2040 return bt_hci_parse(opt);
2042 } else if (strstart(opt, "vhci", &endp)) {
2043 if (!*endp || *endp == ',') {
2044 if (*endp) {
2045 if (strstart(endp, ",vlan=", &p)) {
2046 vlan = strtol(p, (char **) &endp, 0);
2047 if (*endp) {
2048 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2049 return 1;
2051 } else {
2052 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2053 return 1;
2055 } else
2056 vlan = 0;
2058 bt_vhci_add(vlan);
2059 return 0;
2061 } else if (strstart(opt, "device:", &endp))
2062 return !bt_device_add(endp);
2064 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2065 return 1;
2068 /***********************************************************/
2069 /* QEMU Block devices */
2071 #define HD_ALIAS "index=%d,media=disk"
2072 #define CDROM_ALIAS "index=2,media=cdrom"
2073 #define FD_ALIAS "index=%d,if=floppy"
2074 #define PFLASH_ALIAS "if=pflash"
2075 #define MTD_ALIAS "if=mtd"
2076 #define SD_ALIAS "index=0,if=sd"
2078 static int drive_opt_get_free_idx(void)
2080 int index;
2082 for (index = 0; index < MAX_DRIVES; index++)
2083 if (!drives_opt[index].used) {
2084 drives_opt[index].used = 1;
2085 return index;
2088 return -1;
2091 static int drive_get_free_idx(void)
2093 int index;
2095 for (index = 0; index < MAX_DRIVES; index++)
2096 if (!drives_table[index].used) {
2097 drives_table[index].used = 1;
2098 return index;
2101 return -1;
2104 int drive_add(const char *file, const char *fmt, ...)
2106 va_list ap;
2107 int index = drive_opt_get_free_idx();
2109 if (nb_drives_opt >= MAX_DRIVES || index == -1) {
2110 fprintf(stderr, "qemu: too many drives\n");
2111 return -1;
2114 drives_opt[index].file = file;
2115 va_start(ap, fmt);
2116 vsnprintf(drives_opt[index].opt,
2117 sizeof(drives_opt[0].opt), fmt, ap);
2118 va_end(ap);
2120 nb_drives_opt++;
2121 return index;
2124 void drive_remove(int index)
2126 drives_opt[index].used = 0;
2127 nb_drives_opt--;
2130 int drive_get_index(BlockInterfaceType type, int bus, int unit)
2132 int index;
2134 /* seek interface, bus and unit */
2136 for (index = 0; index < MAX_DRIVES; index++)
2137 if (drives_table[index].type == type &&
2138 drives_table[index].bus == bus &&
2139 drives_table[index].unit == unit &&
2140 drives_table[index].used)
2141 return index;
2143 return -1;
2146 int drive_get_max_bus(BlockInterfaceType type)
2148 int max_bus;
2149 int index;
2151 max_bus = -1;
2152 for (index = 0; index < nb_drives; index++) {
2153 if(drives_table[index].type == type &&
2154 drives_table[index].bus > max_bus)
2155 max_bus = drives_table[index].bus;
2157 return max_bus;
2160 const char *drive_get_serial(BlockDriverState *bdrv)
2162 int index;
2164 for (index = 0; index < nb_drives; index++)
2165 if (drives_table[index].bdrv == bdrv)
2166 return drives_table[index].serial;
2168 return "\0";
2171 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
2173 int index;
2175 for (index = 0; index < nb_drives; index++)
2176 if (drives_table[index].bdrv == bdrv)
2177 return drives_table[index].onerror;
2179 return BLOCK_ERR_STOP_ENOSPC;
2182 static void bdrv_format_print(void *opaque, const char *name)
2184 fprintf(stderr, " %s", name);
2187 void drive_uninit(BlockDriverState *bdrv)
2189 int i;
2191 for (i = 0; i < MAX_DRIVES; i++)
2192 if (drives_table[i].bdrv == bdrv) {
2193 drives_table[i].bdrv = NULL;
2194 drives_table[i].used = 0;
2195 drive_remove(drives_table[i].drive_opt_idx);
2196 nb_drives--;
2197 break;
2201 int drive_init(struct drive_opt *arg, int snapshot, void *opaque)
2203 char buf[128];
2204 char file[1024];
2205 char devname[128];
2206 char serial[21];
2207 const char *mediastr = "";
2208 BlockInterfaceType type;
2209 enum { MEDIA_DISK, MEDIA_CDROM } media;
2210 int bus_id, unit_id;
2211 int cyls, heads, secs, translation;
2212 BlockDriverState *bdrv;
2213 BlockDriver *drv = NULL;
2214 QEMUMachine *machine = opaque;
2215 int max_devs;
2216 int index;
2217 int cache;
2218 int bdrv_flags, onerror;
2219 const char *devaddr;
2220 int drives_table_idx;
2221 char *str = arg->opt;
2222 static const char * const params[] = { "bus", "unit", "if", "index",
2223 "cyls", "heads", "secs", "trans",
2224 "media", "snapshot", "file",
2225 "cache", "format", "serial",
2226 "werror", "addr",
2227 NULL };
2229 if (check_params(buf, sizeof(buf), params, str) < 0) {
2230 fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2231 buf, str);
2232 return -1;
2235 file[0] = 0;
2236 cyls = heads = secs = 0;
2237 bus_id = 0;
2238 unit_id = -1;
2239 translation = BIOS_ATA_TRANSLATION_AUTO;
2240 index = -1;
2241 cache = 3;
2243 if (machine->use_scsi) {
2244 type = IF_SCSI;
2245 max_devs = MAX_SCSI_DEVS;
2246 pstrcpy(devname, sizeof(devname), "scsi");
2247 } else {
2248 type = IF_IDE;
2249 max_devs = MAX_IDE_DEVS;
2250 pstrcpy(devname, sizeof(devname), "ide");
2252 media = MEDIA_DISK;
2254 /* extract parameters */
2256 if (get_param_value(buf, sizeof(buf), "bus", str)) {
2257 bus_id = strtol(buf, NULL, 0);
2258 if (bus_id < 0) {
2259 fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2260 return -1;
2264 if (get_param_value(buf, sizeof(buf), "unit", str)) {
2265 unit_id = strtol(buf, NULL, 0);
2266 if (unit_id < 0) {
2267 fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2268 return -1;
2272 if (get_param_value(buf, sizeof(buf), "if", str)) {
2273 pstrcpy(devname, sizeof(devname), buf);
2274 if (!strcmp(buf, "ide")) {
2275 type = IF_IDE;
2276 max_devs = MAX_IDE_DEVS;
2277 } else if (!strcmp(buf, "scsi")) {
2278 type = IF_SCSI;
2279 max_devs = MAX_SCSI_DEVS;
2280 } else if (!strcmp(buf, "floppy")) {
2281 type = IF_FLOPPY;
2282 max_devs = 0;
2283 } else if (!strcmp(buf, "pflash")) {
2284 type = IF_PFLASH;
2285 max_devs = 0;
2286 } else if (!strcmp(buf, "mtd")) {
2287 type = IF_MTD;
2288 max_devs = 0;
2289 } else if (!strcmp(buf, "sd")) {
2290 type = IF_SD;
2291 max_devs = 0;
2292 } else if (!strcmp(buf, "virtio")) {
2293 type = IF_VIRTIO;
2294 max_devs = 0;
2295 } else if (!strcmp(buf, "xen")) {
2296 type = IF_XEN;
2297 max_devs = 0;
2298 } else {
2299 fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2300 return -1;
2304 if (get_param_value(buf, sizeof(buf), "index", str)) {
2305 index = strtol(buf, NULL, 0);
2306 if (index < 0) {
2307 fprintf(stderr, "qemu: '%s' invalid index\n", str);
2308 return -1;
2312 if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2313 cyls = strtol(buf, NULL, 0);
2316 if (get_param_value(buf, sizeof(buf), "heads", str)) {
2317 heads = strtol(buf, NULL, 0);
2320 if (get_param_value(buf, sizeof(buf), "secs", str)) {
2321 secs = strtol(buf, NULL, 0);
2324 if (cyls || heads || secs) {
2325 if (cyls < 1 || cyls > 16383) {
2326 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2327 return -1;
2329 if (heads < 1 || heads > 16) {
2330 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2331 return -1;
2333 if (secs < 1 || secs > 63) {
2334 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2335 return -1;
2339 if (get_param_value(buf, sizeof(buf), "trans", str)) {
2340 if (!cyls) {
2341 fprintf(stderr,
2342 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2343 str);
2344 return -1;
2346 if (!strcmp(buf, "none"))
2347 translation = BIOS_ATA_TRANSLATION_NONE;
2348 else if (!strcmp(buf, "lba"))
2349 translation = BIOS_ATA_TRANSLATION_LBA;
2350 else if (!strcmp(buf, "auto"))
2351 translation = BIOS_ATA_TRANSLATION_AUTO;
2352 else {
2353 fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2354 return -1;
2358 if (get_param_value(buf, sizeof(buf), "media", str)) {
2359 if (!strcmp(buf, "disk")) {
2360 media = MEDIA_DISK;
2361 } else if (!strcmp(buf, "cdrom")) {
2362 if (cyls || secs || heads) {
2363 fprintf(stderr,
2364 "qemu: '%s' invalid physical CHS format\n", str);
2365 return -1;
2367 media = MEDIA_CDROM;
2368 } else {
2369 fprintf(stderr, "qemu: '%s' invalid media\n", str);
2370 return -1;
2374 if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2375 if (!strcmp(buf, "on"))
2376 snapshot = 1;
2377 else if (!strcmp(buf, "off"))
2378 snapshot = 0;
2379 else {
2380 fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2381 return -1;
2385 if (get_param_value(buf, sizeof(buf), "cache", str)) {
2386 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2387 cache = 0;
2388 else if (!strcmp(buf, "writethrough"))
2389 cache = 1;
2390 else if (!strcmp(buf, "writeback"))
2391 cache = 2;
2392 else {
2393 fprintf(stderr, "qemu: invalid cache option\n");
2394 return -1;
2398 if (get_param_value(buf, sizeof(buf), "format", str)) {
2399 if (strcmp(buf, "?") == 0) {
2400 fprintf(stderr, "qemu: Supported formats:");
2401 bdrv_iterate_format(bdrv_format_print, NULL);
2402 fprintf(stderr, "\n");
2403 return -1;
2405 drv = bdrv_find_format(buf);
2406 if (!drv) {
2407 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2408 return -1;
2412 if (arg->file == NULL)
2413 get_param_value(file, sizeof(file), "file", str);
2414 else
2415 pstrcpy(file, sizeof(file), arg->file);
2417 if (!get_param_value(serial, sizeof(serial), "serial", str))
2418 memset(serial, 0, sizeof(serial));
2420 onerror = BLOCK_ERR_STOP_ENOSPC;
2421 if (get_param_value(buf, sizeof(serial), "werror", str)) {
2422 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2423 fprintf(stderr, "werror is no supported by this format\n");
2424 return -1;
2426 if (!strcmp(buf, "ignore"))
2427 onerror = BLOCK_ERR_IGNORE;
2428 else if (!strcmp(buf, "enospc"))
2429 onerror = BLOCK_ERR_STOP_ENOSPC;
2430 else if (!strcmp(buf, "stop"))
2431 onerror = BLOCK_ERR_STOP_ANY;
2432 else if (!strcmp(buf, "report"))
2433 onerror = BLOCK_ERR_REPORT;
2434 else {
2435 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2436 return -1;
2440 devaddr = NULL;
2441 if (get_param_value(buf, sizeof(buf), "addr", str)) {
2442 if (type != IF_VIRTIO) {
2443 fprintf(stderr, "addr is not supported by in '%s'\n", str);
2444 return -1;
2446 devaddr = strdup(buf);
2449 /* compute bus and unit according index */
2451 if (index != -1) {
2452 if (bus_id != 0 || unit_id != -1) {
2453 fprintf(stderr,
2454 "qemu: '%s' index cannot be used with bus and unit\n", str);
2455 return -1;
2457 if (max_devs == 0)
2459 unit_id = index;
2460 bus_id = 0;
2461 } else {
2462 unit_id = index % max_devs;
2463 bus_id = index / max_devs;
2467 /* if user doesn't specify a unit_id,
2468 * try to find the first free
2471 if (unit_id == -1) {
2472 unit_id = 0;
2473 while (drive_get_index(type, bus_id, unit_id) != -1) {
2474 unit_id++;
2475 if (max_devs && unit_id >= max_devs) {
2476 unit_id -= max_devs;
2477 bus_id++;
2482 /* check unit id */
2484 if (max_devs && unit_id >= max_devs) {
2485 fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2486 str, unit_id, max_devs - 1);
2487 return -1;
2491 * ignore multiple definitions
2494 if (drive_get_index(type, bus_id, unit_id) != -1)
2495 return -2;
2497 /* init */
2499 if (type == IF_IDE || type == IF_SCSI)
2500 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2501 if (max_devs)
2502 snprintf(buf, sizeof(buf), "%s%i%s%i",
2503 devname, bus_id, mediastr, unit_id);
2504 else
2505 snprintf(buf, sizeof(buf), "%s%s%i",
2506 devname, mediastr, unit_id);
2507 bdrv = bdrv_new(buf);
2508 drives_table_idx = drive_get_free_idx();
2509 drives_table[drives_table_idx].bdrv = bdrv;
2510 drives_table[drives_table_idx].devaddr = devaddr;
2511 drives_table[drives_table_idx].type = type;
2512 drives_table[drives_table_idx].bus = bus_id;
2513 drives_table[drives_table_idx].unit = unit_id;
2514 drives_table[drives_table_idx].onerror = onerror;
2515 drives_table[drives_table_idx].drive_opt_idx = arg - drives_opt;
2516 strncpy(drives_table[drives_table_idx].serial, serial, sizeof(serial));
2517 nb_drives++;
2519 switch(type) {
2520 case IF_IDE:
2521 case IF_SCSI:
2522 case IF_XEN:
2523 switch(media) {
2524 case MEDIA_DISK:
2525 if (cyls != 0) {
2526 bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2527 bdrv_set_translation_hint(bdrv, translation);
2529 break;
2530 case MEDIA_CDROM:
2531 bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2532 break;
2534 break;
2535 case IF_SD:
2536 /* FIXME: This isn't really a floppy, but it's a reasonable
2537 approximation. */
2538 case IF_FLOPPY:
2539 bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2540 break;
2541 case IF_PFLASH:
2542 case IF_MTD:
2543 case IF_VIRTIO:
2544 break;
2545 case IF_COUNT:
2546 abort();
2548 if (!file[0])
2549 return -2;
2550 bdrv_flags = 0;
2551 if (snapshot) {
2552 bdrv_flags |= BDRV_O_SNAPSHOT;
2553 cache = 2; /* always use write-back with snapshot */
2555 if (cache == 0) /* no caching */
2556 bdrv_flags |= BDRV_O_NOCACHE;
2557 else if (cache == 2) /* write-back */
2558 bdrv_flags |= BDRV_O_CACHE_WB;
2559 else if (cache == 3) /* not specified */
2560 bdrv_flags |= BDRV_O_CACHE_DEF;
2561 if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0) {
2562 fprintf(stderr, "qemu: could not open disk image %s\n",
2563 file);
2564 return -1;
2566 if (bdrv_key_required(bdrv))
2567 autostart = 0;
2568 return drives_table_idx;
2571 static void numa_add(const char *optarg)
2573 char option[128];
2574 char *endptr;
2575 unsigned long long value, endvalue;
2576 int nodenr;
2578 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2579 if (!strcmp(option, "node")) {
2580 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2581 nodenr = nb_numa_nodes;
2582 } else {
2583 nodenr = strtoull(option, NULL, 10);
2586 if (get_param_value(option, 128, "mem", optarg) == 0) {
2587 node_mem[nodenr] = 0;
2588 } else {
2589 value = strtoull(option, &endptr, 0);
2590 switch (*endptr) {
2591 case 0: case 'M': case 'm':
2592 value <<= 20;
2593 break;
2594 case 'G': case 'g':
2595 value <<= 30;
2596 break;
2598 node_mem[nodenr] = value;
2600 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2601 node_cpumask[nodenr] = 0;
2602 } else {
2603 value = strtoull(option, &endptr, 10);
2604 if (value >= 64) {
2605 value = 63;
2606 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2607 } else {
2608 if (*endptr == '-') {
2609 endvalue = strtoull(endptr+1, &endptr, 10);
2610 if (endvalue >= 63) {
2611 endvalue = 62;
2612 fprintf(stderr,
2613 "only 63 CPUs in NUMA mode supported.\n");
2615 value = (1 << (endvalue + 1)) - (1 << value);
2616 } else {
2617 value = 1 << value;
2620 node_cpumask[nodenr] = value;
2622 nb_numa_nodes++;
2624 return;
2627 /***********************************************************/
2628 /* USB devices */
2630 static USBPort *used_usb_ports;
2631 static USBPort *free_usb_ports;
2633 /* ??? Maybe change this to register a hub to keep track of the topology. */
2634 void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2635 usb_attachfn attach)
2637 port->opaque = opaque;
2638 port->index = index;
2639 port->attach = attach;
2640 port->next = free_usb_ports;
2641 free_usb_ports = port;
2644 int usb_device_add_dev(USBDevice *dev)
2646 USBPort *port;
2648 /* Find a USB port to add the device to. */
2649 port = free_usb_ports;
2650 if (!port->next) {
2651 USBDevice *hub;
2653 /* Create a new hub and chain it on. */
2654 free_usb_ports = NULL;
2655 port->next = used_usb_ports;
2656 used_usb_ports = port;
2658 hub = usb_hub_init(VM_USB_HUB_SIZE);
2659 usb_attach(port, hub);
2660 port = free_usb_ports;
2663 free_usb_ports = port->next;
2664 port->next = used_usb_ports;
2665 used_usb_ports = port;
2666 usb_attach(port, dev);
2667 return 0;
2670 static void usb_msd_password_cb(void *opaque, int err)
2672 USBDevice *dev = opaque;
2674 if (!err)
2675 usb_device_add_dev(dev);
2676 else
2677 dev->handle_destroy(dev);
2680 static int usb_device_add(const char *devname, int is_hotplug)
2682 const char *p;
2683 USBDevice *dev;
2685 if (!free_usb_ports)
2686 return -1;
2688 if (strstart(devname, "host:", &p)) {
2689 dev = usb_host_device_open(p);
2690 } else if (!strcmp(devname, "mouse")) {
2691 dev = usb_mouse_init();
2692 } else if (!strcmp(devname, "tablet")) {
2693 dev = usb_tablet_init();
2694 } else if (!strcmp(devname, "keyboard")) {
2695 dev = usb_keyboard_init();
2696 } else if (strstart(devname, "disk:", &p)) {
2697 BlockDriverState *bs;
2699 dev = usb_msd_init(p);
2700 if (!dev)
2701 return -1;
2702 bs = usb_msd_get_bdrv(dev);
2703 if (bdrv_key_required(bs)) {
2704 autostart = 0;
2705 if (is_hotplug) {
2706 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2707 dev);
2708 return 0;
2711 } else if (!strcmp(devname, "wacom-tablet")) {
2712 dev = usb_wacom_init();
2713 } else if (strstart(devname, "serial:", &p)) {
2714 dev = usb_serial_init(p);
2715 #ifdef CONFIG_BRLAPI
2716 } else if (!strcmp(devname, "braille")) {
2717 dev = usb_baum_init();
2718 #endif
2719 } else if (strstart(devname, "net:", &p)) {
2720 int nic = nb_nics;
2722 if (net_client_init(NULL, "nic", p) < 0)
2723 return -1;
2724 nd_table[nic].model = "usb";
2725 dev = usb_net_init(&nd_table[nic]);
2726 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2727 dev = usb_bt_init(devname[2] ? hci_init(p) :
2728 bt_new_hci(qemu_find_bt_vlan(0)));
2729 } else {
2730 return -1;
2732 if (!dev)
2733 return -1;
2735 return usb_device_add_dev(dev);
2738 int usb_device_del_addr(int bus_num, int addr)
2740 USBPort *port;
2741 USBPort **lastp;
2742 USBDevice *dev;
2744 if (!used_usb_ports)
2745 return -1;
2747 if (bus_num != 0)
2748 return -1;
2750 lastp = &used_usb_ports;
2751 port = used_usb_ports;
2752 while (port && port->dev->addr != addr) {
2753 lastp = &port->next;
2754 port = port->next;
2757 if (!port)
2758 return -1;
2760 dev = port->dev;
2761 *lastp = port->next;
2762 usb_attach(port, NULL);
2763 dev->handle_destroy(dev);
2764 port->next = free_usb_ports;
2765 free_usb_ports = port;
2766 return 0;
2769 static int usb_device_del(const char *devname)
2771 int bus_num, addr;
2772 const char *p;
2774 if (strstart(devname, "host:", &p))
2775 return usb_host_device_close(p);
2777 if (!used_usb_ports)
2778 return -1;
2780 p = strchr(devname, '.');
2781 if (!p)
2782 return -1;
2783 bus_num = strtoul(devname, NULL, 0);
2784 addr = strtoul(p + 1, NULL, 0);
2786 return usb_device_del_addr(bus_num, addr);
2789 void do_usb_add(Monitor *mon, const char *devname)
2791 usb_device_add(devname, 1);
2794 void do_usb_del(Monitor *mon, const char *devname)
2796 usb_device_del(devname);
2799 void usb_info(Monitor *mon)
2801 USBDevice *dev;
2802 USBPort *port;
2803 const char *speed_str;
2805 if (!usb_enabled) {
2806 monitor_printf(mon, "USB support not enabled\n");
2807 return;
2810 for (port = used_usb_ports; port; port = port->next) {
2811 dev = port->dev;
2812 if (!dev)
2813 continue;
2814 switch(dev->speed) {
2815 case USB_SPEED_LOW:
2816 speed_str = "1.5";
2817 break;
2818 case USB_SPEED_FULL:
2819 speed_str = "12";
2820 break;
2821 case USB_SPEED_HIGH:
2822 speed_str = "480";
2823 break;
2824 default:
2825 speed_str = "?";
2826 break;
2828 monitor_printf(mon, " Device %d.%d, Speed %s Mb/s, Product %s\n",
2829 0, dev->addr, speed_str, dev->devname);
2833 /***********************************************************/
2834 /* PCMCIA/Cardbus */
2836 static struct pcmcia_socket_entry_s {
2837 PCMCIASocket *socket;
2838 struct pcmcia_socket_entry_s *next;
2839 } *pcmcia_sockets = 0;
2841 void pcmcia_socket_register(PCMCIASocket *socket)
2843 struct pcmcia_socket_entry_s *entry;
2845 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2846 entry->socket = socket;
2847 entry->next = pcmcia_sockets;
2848 pcmcia_sockets = entry;
2851 void pcmcia_socket_unregister(PCMCIASocket *socket)
2853 struct pcmcia_socket_entry_s *entry, **ptr;
2855 ptr = &pcmcia_sockets;
2856 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2857 if (entry->socket == socket) {
2858 *ptr = entry->next;
2859 qemu_free(entry);
2863 void pcmcia_info(Monitor *mon)
2865 struct pcmcia_socket_entry_s *iter;
2867 if (!pcmcia_sockets)
2868 monitor_printf(mon, "No PCMCIA sockets\n");
2870 for (iter = pcmcia_sockets; iter; iter = iter->next)
2871 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2872 iter->socket->attached ? iter->socket->card_string :
2873 "Empty");
2876 /***********************************************************/
2877 /* register display */
2879 struct DisplayAllocator default_allocator = {
2880 defaultallocator_create_displaysurface,
2881 defaultallocator_resize_displaysurface,
2882 defaultallocator_free_displaysurface
2885 void register_displaystate(DisplayState *ds)
2887 DisplayState **s;
2888 s = &display_state;
2889 while (*s != NULL)
2890 s = &(*s)->next;
2891 ds->next = NULL;
2892 *s = ds;
2895 DisplayState *get_displaystate(void)
2897 return display_state;
2900 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2902 if(ds->allocator == &default_allocator) ds->allocator = da;
2903 return ds->allocator;
2906 /* dumb display */
2908 static void dumb_display_init(void)
2910 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2911 ds->allocator = &default_allocator;
2912 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2913 register_displaystate(ds);
2916 /***********************************************************/
2917 /* I/O handling */
2919 typedef struct IOHandlerRecord {
2920 int fd;
2921 IOCanRWHandler *fd_read_poll;
2922 IOHandler *fd_read;
2923 IOHandler *fd_write;
2924 int deleted;
2925 void *opaque;
2926 /* temporary data */
2927 struct pollfd *ufd;
2928 struct IOHandlerRecord *next;
2929 } IOHandlerRecord;
2931 static IOHandlerRecord *first_io_handler;
2933 /* XXX: fd_read_poll should be suppressed, but an API change is
2934 necessary in the character devices to suppress fd_can_read(). */
2935 int qemu_set_fd_handler2(int fd,
2936 IOCanRWHandler *fd_read_poll,
2937 IOHandler *fd_read,
2938 IOHandler *fd_write,
2939 void *opaque)
2941 IOHandlerRecord **pioh, *ioh;
2943 if (!fd_read && !fd_write) {
2944 pioh = &first_io_handler;
2945 for(;;) {
2946 ioh = *pioh;
2947 if (ioh == NULL)
2948 break;
2949 if (ioh->fd == fd) {
2950 ioh->deleted = 1;
2951 break;
2953 pioh = &ioh->next;
2955 } else {
2956 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2957 if (ioh->fd == fd)
2958 goto found;
2960 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2961 ioh->next = first_io_handler;
2962 first_io_handler = ioh;
2963 found:
2964 ioh->fd = fd;
2965 ioh->fd_read_poll = fd_read_poll;
2966 ioh->fd_read = fd_read;
2967 ioh->fd_write = fd_write;
2968 ioh->opaque = opaque;
2969 ioh->deleted = 0;
2971 return 0;
2974 int qemu_set_fd_handler(int fd,
2975 IOHandler *fd_read,
2976 IOHandler *fd_write,
2977 void *opaque)
2979 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2982 #ifdef _WIN32
2983 /***********************************************************/
2984 /* Polling handling */
2986 typedef struct PollingEntry {
2987 PollingFunc *func;
2988 void *opaque;
2989 struct PollingEntry *next;
2990 } PollingEntry;
2992 static PollingEntry *first_polling_entry;
2994 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2996 PollingEntry **ppe, *pe;
2997 pe = qemu_mallocz(sizeof(PollingEntry));
2998 pe->func = func;
2999 pe->opaque = opaque;
3000 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
3001 *ppe = pe;
3002 return 0;
3005 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
3007 PollingEntry **ppe, *pe;
3008 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
3009 pe = *ppe;
3010 if (pe->func == func && pe->opaque == opaque) {
3011 *ppe = pe->next;
3012 qemu_free(pe);
3013 break;
3018 /***********************************************************/
3019 /* Wait objects support */
3020 typedef struct WaitObjects {
3021 int num;
3022 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
3023 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
3024 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
3025 } WaitObjects;
3027 static WaitObjects wait_objects = {0};
3029 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3031 WaitObjects *w = &wait_objects;
3033 if (w->num >= MAXIMUM_WAIT_OBJECTS)
3034 return -1;
3035 w->events[w->num] = handle;
3036 w->func[w->num] = func;
3037 w->opaque[w->num] = opaque;
3038 w->num++;
3039 return 0;
3042 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
3044 int i, found;
3045 WaitObjects *w = &wait_objects;
3047 found = 0;
3048 for (i = 0; i < w->num; i++) {
3049 if (w->events[i] == handle)
3050 found = 1;
3051 if (found) {
3052 w->events[i] = w->events[i + 1];
3053 w->func[i] = w->func[i + 1];
3054 w->opaque[i] = w->opaque[i + 1];
3057 if (found)
3058 w->num--;
3060 #endif
3062 /***********************************************************/
3063 /* ram save/restore */
3065 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
3067 int v;
3069 v = qemu_get_byte(f);
3070 switch(v) {
3071 case 0:
3072 if (qemu_get_buffer(f, buf, len) != len)
3073 return -EIO;
3074 break;
3075 case 1:
3076 v = qemu_get_byte(f);
3077 memset(buf, v, len);
3078 break;
3079 default:
3080 return -EINVAL;
3083 if (qemu_file_has_error(f))
3084 return -EIO;
3086 return 0;
3089 static int ram_load_v1(QEMUFile *f, void *opaque)
3091 int ret;
3092 ram_addr_t i;
3094 if (qemu_get_be32(f) != last_ram_offset)
3095 return -EINVAL;
3096 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
3097 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
3098 if (ret)
3099 return ret;
3101 return 0;
3104 #define BDRV_HASH_BLOCK_SIZE 1024
3105 #define IOBUF_SIZE 4096
3106 #define RAM_CBLOCK_MAGIC 0xfabe
3108 typedef struct RamDecompressState {
3109 z_stream zstream;
3110 QEMUFile *f;
3111 uint8_t buf[IOBUF_SIZE];
3112 } RamDecompressState;
3114 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3116 int ret;
3117 memset(s, 0, sizeof(*s));
3118 s->f = f;
3119 ret = inflateInit(&s->zstream);
3120 if (ret != Z_OK)
3121 return -1;
3122 return 0;
3125 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3127 int ret, clen;
3129 s->zstream.avail_out = len;
3130 s->zstream.next_out = buf;
3131 while (s->zstream.avail_out > 0) {
3132 if (s->zstream.avail_in == 0) {
3133 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3134 return -1;
3135 clen = qemu_get_be16(s->f);
3136 if (clen > IOBUF_SIZE)
3137 return -1;
3138 qemu_get_buffer(s->f, s->buf, clen);
3139 s->zstream.avail_in = clen;
3140 s->zstream.next_in = s->buf;
3142 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3143 if (ret != Z_OK && ret != Z_STREAM_END) {
3144 return -1;
3147 return 0;
3150 static void ram_decompress_close(RamDecompressState *s)
3152 inflateEnd(&s->zstream);
3155 #define RAM_SAVE_FLAG_FULL 0x01
3156 #define RAM_SAVE_FLAG_COMPRESS 0x02
3157 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
3158 #define RAM_SAVE_FLAG_PAGE 0x08
3159 #define RAM_SAVE_FLAG_EOS 0x10
3161 static int is_dup_page(uint8_t *page, uint8_t ch)
3163 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3164 uint32_t *array = (uint32_t *)page;
3165 int i;
3167 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3168 if (array[i] != val)
3169 return 0;
3172 return 1;
3175 static int ram_save_block(QEMUFile *f)
3177 static ram_addr_t current_addr = 0;
3178 ram_addr_t saved_addr = current_addr;
3179 ram_addr_t addr = 0;
3180 int found = 0;
3182 while (addr < last_ram_offset) {
3183 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3184 uint8_t *p;
3186 cpu_physical_memory_reset_dirty(current_addr,
3187 current_addr + TARGET_PAGE_SIZE,
3188 MIGRATION_DIRTY_FLAG);
3190 p = qemu_get_ram_ptr(current_addr);
3192 if (is_dup_page(p, *p)) {
3193 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3194 qemu_put_byte(f, *p);
3195 } else {
3196 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3197 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
3200 found = 1;
3201 break;
3203 addr += TARGET_PAGE_SIZE;
3204 current_addr = (saved_addr + addr) % last_ram_offset;
3207 return found;
3210 static uint64_t bytes_transferred = 0;
3212 static ram_addr_t ram_save_remaining(void)
3214 ram_addr_t addr;
3215 ram_addr_t count = 0;
3217 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3218 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3219 count++;
3222 return count;
3225 uint64_t ram_bytes_remaining(void)
3227 return ram_save_remaining() * TARGET_PAGE_SIZE;
3230 uint64_t ram_bytes_transferred(void)
3232 return bytes_transferred;
3235 uint64_t ram_bytes_total(void)
3237 return last_ram_offset;
3240 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3242 ram_addr_t addr;
3243 uint64_t bytes_transferred_last;
3244 double bwidth = 0;
3245 uint64_t expected_time = 0;
3247 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
3248 qemu_file_set_error(f);
3249 return 0;
3252 if (stage == 1) {
3253 /* Make sure all dirty bits are set */
3254 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
3255 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3256 cpu_physical_memory_set_dirty(addr);
3259 /* Enable dirty memory tracking */
3260 cpu_physical_memory_set_dirty_tracking(1);
3262 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
3265 bytes_transferred_last = bytes_transferred;
3266 bwidth = get_clock();
3268 while (!qemu_file_rate_limit(f)) {
3269 int ret;
3271 ret = ram_save_block(f);
3272 bytes_transferred += ret * TARGET_PAGE_SIZE;
3273 if (ret == 0) /* no more blocks */
3274 break;
3277 bwidth = get_clock() - bwidth;
3278 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
3280 /* if we haven't transferred anything this round, force expected_time to a
3281 * a very high value, but without crashing */
3282 if (bwidth == 0)
3283 bwidth = 0.000001;
3285 /* try transferring iterative blocks of memory */
3287 if (stage == 3) {
3289 /* flush all remaining blocks regardless of rate limiting */
3290 while (ram_save_block(f) != 0) {
3291 bytes_transferred += TARGET_PAGE_SIZE;
3293 cpu_physical_memory_set_dirty_tracking(0);
3296 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3298 expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
3300 return (stage == 2) && (expected_time <= migrate_max_downtime());
3303 static int ram_load_dead(QEMUFile *f, void *opaque)
3305 RamDecompressState s1, *s = &s1;
3306 uint8_t buf[10];
3307 ram_addr_t i;
3309 if (ram_decompress_open(s, f) < 0)
3310 return -EINVAL;
3311 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3312 if (ram_decompress_buf(s, buf, 1) < 0) {
3313 fprintf(stderr, "Error while reading ram block header\n");
3314 goto error;
3316 if (buf[0] == 0) {
3317 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3318 BDRV_HASH_BLOCK_SIZE) < 0) {
3319 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3320 goto error;
3322 } else {
3323 error:
3324 printf("Error block header\n");
3325 return -EINVAL;
3328 ram_decompress_close(s);
3330 return 0;
3333 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3335 ram_addr_t addr;
3336 int flags;
3338 if (version_id == 1)
3339 return ram_load_v1(f, opaque);
3341 if (version_id == 2) {
3342 if (qemu_get_be32(f) != last_ram_offset)
3343 return -EINVAL;
3344 return ram_load_dead(f, opaque);
3347 if (version_id != 3)
3348 return -EINVAL;
3350 do {
3351 addr = qemu_get_be64(f);
3353 flags = addr & ~TARGET_PAGE_MASK;
3354 addr &= TARGET_PAGE_MASK;
3356 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3357 if (addr != last_ram_offset)
3358 return -EINVAL;
3361 if (flags & RAM_SAVE_FLAG_FULL) {
3362 if (ram_load_dead(f, opaque) < 0)
3363 return -EINVAL;
3366 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3367 uint8_t ch = qemu_get_byte(f);
3368 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3369 #ifndef _WIN32
3370 if (ch == 0 &&
3371 (!kvm_enabled() || kvm_has_sync_mmu())) {
3372 madvise(qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE, MADV_DONTNEED);
3374 #endif
3375 } else if (flags & RAM_SAVE_FLAG_PAGE)
3376 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3377 } while (!(flags & RAM_SAVE_FLAG_EOS));
3379 return 0;
3382 void qemu_service_io(void)
3384 qemu_notify_event();
3387 /***********************************************************/
3388 /* bottom halves (can be seen as timers which expire ASAP) */
3390 struct QEMUBH {
3391 QEMUBHFunc *cb;
3392 void *opaque;
3393 int scheduled;
3394 int idle;
3395 int deleted;
3396 QEMUBH *next;
3399 static QEMUBH *first_bh = NULL;
3401 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3403 QEMUBH *bh;
3404 bh = qemu_mallocz(sizeof(QEMUBH));
3405 bh->cb = cb;
3406 bh->opaque = opaque;
3407 bh->next = first_bh;
3408 first_bh = bh;
3409 return bh;
3412 int qemu_bh_poll(void)
3414 QEMUBH *bh, **bhp;
3415 int ret;
3417 ret = 0;
3418 for (bh = first_bh; bh; bh = bh->next) {
3419 if (!bh->deleted && bh->scheduled) {
3420 bh->scheduled = 0;
3421 if (!bh->idle)
3422 ret = 1;
3423 bh->idle = 0;
3424 bh->cb(bh->opaque);
3428 /* remove deleted bhs */
3429 bhp = &first_bh;
3430 while (*bhp) {
3431 bh = *bhp;
3432 if (bh->deleted) {
3433 *bhp = bh->next;
3434 qemu_free(bh);
3435 } else
3436 bhp = &bh->next;
3439 return ret;
3442 void qemu_bh_schedule_idle(QEMUBH *bh)
3444 if (bh->scheduled)
3445 return;
3446 bh->scheduled = 1;
3447 bh->idle = 1;
3450 void qemu_bh_schedule(QEMUBH *bh)
3452 if (bh->scheduled)
3453 return;
3454 bh->scheduled = 1;
3455 bh->idle = 0;
3456 /* stop the currently executing CPU to execute the BH ASAP */
3457 qemu_notify_event();
3460 void qemu_bh_cancel(QEMUBH *bh)
3462 bh->scheduled = 0;
3465 void qemu_bh_delete(QEMUBH *bh)
3467 bh->scheduled = 0;
3468 bh->deleted = 1;
3471 static void qemu_bh_update_timeout(int *timeout)
3473 QEMUBH *bh;
3475 for (bh = first_bh; bh; bh = bh->next) {
3476 if (!bh->deleted && bh->scheduled) {
3477 if (bh->idle) {
3478 /* idle bottom halves will be polled at least
3479 * every 10ms */
3480 *timeout = MIN(10, *timeout);
3481 } else {
3482 /* non-idle bottom halves will be executed
3483 * immediately */
3484 *timeout = 0;
3485 break;
3491 /***********************************************************/
3492 /* machine registration */
3494 static QEMUMachine *first_machine = NULL;
3495 QEMUMachine *current_machine = NULL;
3497 int qemu_register_machine(QEMUMachine *m)
3499 QEMUMachine **pm;
3500 pm = &first_machine;
3501 while (*pm != NULL)
3502 pm = &(*pm)->next;
3503 m->next = NULL;
3504 *pm = m;
3505 return 0;
3508 static QEMUMachine *find_machine(const char *name)
3510 QEMUMachine *m;
3512 for(m = first_machine; m != NULL; m = m->next) {
3513 if (!strcmp(m->name, name))
3514 return m;
3516 return NULL;
3519 static QEMUMachine *find_default_machine(void)
3521 QEMUMachine *m;
3523 for(m = first_machine; m != NULL; m = m->next) {
3524 if (m->is_default) {
3525 return m;
3528 return NULL;
3531 /***********************************************************/
3532 /* main execution loop */
3534 static void gui_update(void *opaque)
3536 uint64_t interval = GUI_REFRESH_INTERVAL;
3537 DisplayState *ds = opaque;
3538 DisplayChangeListener *dcl = ds->listeners;
3540 dpy_refresh(ds);
3542 while (dcl != NULL) {
3543 if (dcl->gui_timer_interval &&
3544 dcl->gui_timer_interval < interval)
3545 interval = dcl->gui_timer_interval;
3546 dcl = dcl->next;
3548 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3551 static void nographic_update(void *opaque)
3553 uint64_t interval = GUI_REFRESH_INTERVAL;
3555 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3558 struct vm_change_state_entry {
3559 VMChangeStateHandler *cb;
3560 void *opaque;
3561 LIST_ENTRY (vm_change_state_entry) entries;
3564 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3566 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3567 void *opaque)
3569 VMChangeStateEntry *e;
3571 e = qemu_mallocz(sizeof (*e));
3573 e->cb = cb;
3574 e->opaque = opaque;
3575 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3576 return e;
3579 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3581 LIST_REMOVE (e, entries);
3582 qemu_free (e);
3585 static void vm_state_notify(int running, int reason)
3587 VMChangeStateEntry *e;
3589 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3590 e->cb(e->opaque, running, reason);
3594 static void resume_all_vcpus(void);
3595 static void pause_all_vcpus(void);
3597 void vm_start(void)
3599 if (!vm_running) {
3600 cpu_enable_ticks();
3601 vm_running = 1;
3602 vm_state_notify(1, 0);
3603 qemu_rearm_alarm_timer(alarm_timer);
3604 resume_all_vcpus();
3608 /* reset/shutdown handler */
3610 typedef struct QEMUResetEntry {
3611 QEMUResetHandler *func;
3612 void *opaque;
3613 struct QEMUResetEntry *next;
3614 } QEMUResetEntry;
3616 static QEMUResetEntry *first_reset_entry;
3617 static int reset_requested;
3618 static int shutdown_requested;
3619 static int powerdown_requested;
3620 static int debug_requested;
3621 static int vmstop_requested;
3623 int qemu_shutdown_requested(void)
3625 int r = shutdown_requested;
3626 shutdown_requested = 0;
3627 return r;
3630 int qemu_reset_requested(void)
3632 int r = reset_requested;
3633 reset_requested = 0;
3634 return r;
3637 int qemu_powerdown_requested(void)
3639 int r = powerdown_requested;
3640 powerdown_requested = 0;
3641 return r;
3644 static int qemu_debug_requested(void)
3646 int r = debug_requested;
3647 debug_requested = 0;
3648 return r;
3651 static int qemu_vmstop_requested(void)
3653 int r = vmstop_requested;
3654 vmstop_requested = 0;
3655 return r;
3658 static void do_vm_stop(int reason)
3660 if (vm_running) {
3661 cpu_disable_ticks();
3662 vm_running = 0;
3663 pause_all_vcpus();
3664 vm_state_notify(0, reason);
3668 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3670 QEMUResetEntry **pre, *re;
3672 pre = &first_reset_entry;
3673 while (*pre != NULL)
3674 pre = &(*pre)->next;
3675 re = qemu_mallocz(sizeof(QEMUResetEntry));
3676 re->func = func;
3677 re->opaque = opaque;
3678 re->next = NULL;
3679 *pre = re;
3682 void qemu_system_reset(void)
3684 QEMUResetEntry *re;
3686 /* reset all devices */
3687 for(re = first_reset_entry; re != NULL; re = re->next) {
3688 re->func(re->opaque);
3692 void qemu_system_reset_request(void)
3694 if (no_reboot) {
3695 shutdown_requested = 1;
3696 } else {
3697 reset_requested = 1;
3699 qemu_notify_event();
3702 void qemu_system_shutdown_request(void)
3704 shutdown_requested = 1;
3705 qemu_notify_event();
3708 void qemu_system_powerdown_request(void)
3710 powerdown_requested = 1;
3711 qemu_notify_event();
3714 #ifdef CONFIG_IOTHREAD
3715 static void qemu_system_vmstop_request(int reason)
3717 vmstop_requested = reason;
3718 qemu_notify_event();
3720 #endif
3722 #ifndef _WIN32
3723 static int io_thread_fd = -1;
3725 static void qemu_event_increment(void)
3727 static const char byte = 0;
3729 if (io_thread_fd == -1)
3730 return;
3732 write(io_thread_fd, &byte, sizeof(byte));
3735 static void qemu_event_read(void *opaque)
3737 int fd = (unsigned long)opaque;
3738 ssize_t len;
3740 /* Drain the notify pipe */
3741 do {
3742 char buffer[512];
3743 len = read(fd, buffer, sizeof(buffer));
3744 } while ((len == -1 && errno == EINTR) || len > 0);
3747 static int qemu_event_init(void)
3749 int err;
3750 int fds[2];
3752 err = pipe(fds);
3753 if (err == -1)
3754 return -errno;
3756 err = fcntl_setfl(fds[0], O_NONBLOCK);
3757 if (err < 0)
3758 goto fail;
3760 err = fcntl_setfl(fds[1], O_NONBLOCK);
3761 if (err < 0)
3762 goto fail;
3764 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3765 (void *)(unsigned long)fds[0]);
3767 io_thread_fd = fds[1];
3768 return 0;
3770 fail:
3771 close(fds[0]);
3772 close(fds[1]);
3773 return err;
3775 #else
3776 HANDLE qemu_event_handle;
3778 static void dummy_event_handler(void *opaque)
3782 static int qemu_event_init(void)
3784 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3785 if (!qemu_event_handle) {
3786 perror("Failed CreateEvent");
3787 return -1;
3789 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3790 return 0;
3793 static void qemu_event_increment(void)
3795 SetEvent(qemu_event_handle);
3797 #endif
3799 static int cpu_can_run(CPUState *env)
3801 if (env->stop)
3802 return 0;
3803 if (env->stopped)
3804 return 0;
3805 return 1;
3808 #ifndef CONFIG_IOTHREAD
3809 static int qemu_init_main_loop(void)
3811 return qemu_event_init();
3814 void qemu_init_vcpu(void *_env)
3816 CPUState *env = _env;
3818 if (kvm_enabled())
3819 kvm_init_vcpu(env);
3820 return;
3823 int qemu_cpu_self(void *env)
3825 return 1;
3828 static void resume_all_vcpus(void)
3832 static void pause_all_vcpus(void)
3836 void qemu_cpu_kick(void *env)
3838 return;
3841 void qemu_notify_event(void)
3843 CPUState *env = cpu_single_env;
3845 if (env) {
3846 cpu_exit(env);
3847 #ifdef USE_KQEMU
3848 if (env->kqemu_enabled)
3849 kqemu_cpu_interrupt(env);
3850 #endif
3854 #define qemu_mutex_lock_iothread() do { } while (0)
3855 #define qemu_mutex_unlock_iothread() do { } while (0)
3857 void vm_stop(int reason)
3859 do_vm_stop(reason);
3862 #else /* CONFIG_IOTHREAD */
3864 #include "qemu-thread.h"
3866 QemuMutex qemu_global_mutex;
3867 static QemuMutex qemu_fair_mutex;
3869 static QemuThread io_thread;
3871 static QemuThread *tcg_cpu_thread;
3872 static QemuCond *tcg_halt_cond;
3874 static int qemu_system_ready;
3875 /* cpu creation */
3876 static QemuCond qemu_cpu_cond;
3877 /* system init */
3878 static QemuCond qemu_system_cond;
3879 static QemuCond qemu_pause_cond;
3881 static void block_io_signals(void);
3882 static void unblock_io_signals(void);
3883 static int tcg_has_work(void);
3885 static int qemu_init_main_loop(void)
3887 int ret;
3889 ret = qemu_event_init();
3890 if (ret)
3891 return ret;
3893 qemu_cond_init(&qemu_pause_cond);
3894 qemu_mutex_init(&qemu_fair_mutex);
3895 qemu_mutex_init(&qemu_global_mutex);
3896 qemu_mutex_lock(&qemu_global_mutex);
3898 unblock_io_signals();
3899 qemu_thread_self(&io_thread);
3901 return 0;
3904 static void qemu_wait_io_event(CPUState *env)
3906 while (!tcg_has_work())
3907 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3909 qemu_mutex_unlock(&qemu_global_mutex);
3912 * Users of qemu_global_mutex can be starved, having no chance
3913 * to acquire it since this path will get to it first.
3914 * So use another lock to provide fairness.
3916 qemu_mutex_lock(&qemu_fair_mutex);
3917 qemu_mutex_unlock(&qemu_fair_mutex);
3919 qemu_mutex_lock(&qemu_global_mutex);
3920 if (env->stop) {
3921 env->stop = 0;
3922 env->stopped = 1;
3923 qemu_cond_signal(&qemu_pause_cond);
3927 static int qemu_cpu_exec(CPUState *env);
3929 static void *kvm_cpu_thread_fn(void *arg)
3931 CPUState *env = arg;
3933 block_io_signals();
3934 qemu_thread_self(env->thread);
3936 /* signal CPU creation */
3937 qemu_mutex_lock(&qemu_global_mutex);
3938 env->created = 1;
3939 qemu_cond_signal(&qemu_cpu_cond);
3941 /* and wait for machine initialization */
3942 while (!qemu_system_ready)
3943 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3945 while (1) {
3946 if (cpu_can_run(env))
3947 qemu_cpu_exec(env);
3948 qemu_wait_io_event(env);
3951 return NULL;
3954 static void tcg_cpu_exec(void);
3956 static void *tcg_cpu_thread_fn(void *arg)
3958 CPUState *env = arg;
3960 block_io_signals();
3961 qemu_thread_self(env->thread);
3963 /* signal CPU creation */
3964 qemu_mutex_lock(&qemu_global_mutex);
3965 for (env = first_cpu; env != NULL; env = env->next_cpu)
3966 env->created = 1;
3967 qemu_cond_signal(&qemu_cpu_cond);
3969 /* and wait for machine initialization */
3970 while (!qemu_system_ready)
3971 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3973 while (1) {
3974 tcg_cpu_exec();
3975 qemu_wait_io_event(cur_cpu);
3978 return NULL;
3981 void qemu_cpu_kick(void *_env)
3983 CPUState *env = _env;
3984 qemu_cond_broadcast(env->halt_cond);
3985 if (kvm_enabled())
3986 qemu_thread_signal(env->thread, SIGUSR1);
3989 int qemu_cpu_self(void *env)
3991 return (cpu_single_env != NULL);
3994 static void cpu_signal(int sig)
3996 if (cpu_single_env)
3997 cpu_exit(cpu_single_env);
4000 static void block_io_signals(void)
4002 sigset_t set;
4003 struct sigaction sigact;
4005 sigemptyset(&set);
4006 sigaddset(&set, SIGUSR2);
4007 sigaddset(&set, SIGIO);
4008 sigaddset(&set, SIGALRM);
4009 pthread_sigmask(SIG_BLOCK, &set, NULL);
4011 sigemptyset(&set);
4012 sigaddset(&set, SIGUSR1);
4013 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
4015 memset(&sigact, 0, sizeof(sigact));
4016 sigact.sa_handler = cpu_signal;
4017 sigaction(SIGUSR1, &sigact, NULL);
4020 static void unblock_io_signals(void)
4022 sigset_t set;
4024 sigemptyset(&set);
4025 sigaddset(&set, SIGUSR2);
4026 sigaddset(&set, SIGIO);
4027 sigaddset(&set, SIGALRM);
4028 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
4030 sigemptyset(&set);
4031 sigaddset(&set, SIGUSR1);
4032 pthread_sigmask(SIG_BLOCK, &set, NULL);
4035 static void qemu_signal_lock(unsigned int msecs)
4037 qemu_mutex_lock(&qemu_fair_mutex);
4039 while (qemu_mutex_trylock(&qemu_global_mutex)) {
4040 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
4041 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
4042 break;
4044 qemu_mutex_unlock(&qemu_fair_mutex);
4047 static void qemu_mutex_lock_iothread(void)
4049 if (kvm_enabled()) {
4050 qemu_mutex_lock(&qemu_fair_mutex);
4051 qemu_mutex_lock(&qemu_global_mutex);
4052 qemu_mutex_unlock(&qemu_fair_mutex);
4053 } else
4054 qemu_signal_lock(100);
4057 static void qemu_mutex_unlock_iothread(void)
4059 qemu_mutex_unlock(&qemu_global_mutex);
4062 static int all_vcpus_paused(void)
4064 CPUState *penv = first_cpu;
4066 while (penv) {
4067 if (!penv->stopped)
4068 return 0;
4069 penv = (CPUState *)penv->next_cpu;
4072 return 1;
4075 static void pause_all_vcpus(void)
4077 CPUState *penv = first_cpu;
4079 while (penv) {
4080 penv->stop = 1;
4081 qemu_thread_signal(penv->thread, SIGUSR1);
4082 qemu_cpu_kick(penv);
4083 penv = (CPUState *)penv->next_cpu;
4086 while (!all_vcpus_paused()) {
4087 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
4088 penv = first_cpu;
4089 while (penv) {
4090 qemu_thread_signal(penv->thread, SIGUSR1);
4091 penv = (CPUState *)penv->next_cpu;
4096 static void resume_all_vcpus(void)
4098 CPUState *penv = first_cpu;
4100 while (penv) {
4101 penv->stop = 0;
4102 penv->stopped = 0;
4103 qemu_thread_signal(penv->thread, SIGUSR1);
4104 qemu_cpu_kick(penv);
4105 penv = (CPUState *)penv->next_cpu;
4109 static void tcg_init_vcpu(void *_env)
4111 CPUState *env = _env;
4112 /* share a single thread for all cpus with TCG */
4113 if (!tcg_cpu_thread) {
4114 env->thread = qemu_mallocz(sizeof(QemuThread));
4115 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4116 qemu_cond_init(env->halt_cond);
4117 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
4118 while (env->created == 0)
4119 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4120 tcg_cpu_thread = env->thread;
4121 tcg_halt_cond = env->halt_cond;
4122 } else {
4123 env->thread = tcg_cpu_thread;
4124 env->halt_cond = tcg_halt_cond;
4128 static void kvm_start_vcpu(CPUState *env)
4130 kvm_init_vcpu(env);
4131 env->thread = qemu_mallocz(sizeof(QemuThread));
4132 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
4133 qemu_cond_init(env->halt_cond);
4134 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
4135 while (env->created == 0)
4136 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
4139 void qemu_init_vcpu(void *_env)
4141 CPUState *env = _env;
4143 if (kvm_enabled())
4144 kvm_start_vcpu(env);
4145 else
4146 tcg_init_vcpu(env);
4149 void qemu_notify_event(void)
4151 qemu_event_increment();
4154 void vm_stop(int reason)
4156 QemuThread me;
4157 qemu_thread_self(&me);
4159 if (!qemu_thread_equal(&me, &io_thread)) {
4160 qemu_system_vmstop_request(reason);
4162 * FIXME: should not return to device code in case
4163 * vm_stop() has been requested.
4165 if (cpu_single_env) {
4166 cpu_exit(cpu_single_env);
4167 cpu_single_env->stop = 1;
4169 return;
4171 do_vm_stop(reason);
4174 #endif
4177 #ifdef _WIN32
4178 static void host_main_loop_wait(int *timeout)
4180 int ret, ret2, i;
4181 PollingEntry *pe;
4184 /* XXX: need to suppress polling by better using win32 events */
4185 ret = 0;
4186 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
4187 ret |= pe->func(pe->opaque);
4189 if (ret == 0) {
4190 int err;
4191 WaitObjects *w = &wait_objects;
4193 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
4194 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
4195 if (w->func[ret - WAIT_OBJECT_0])
4196 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
4198 /* Check for additional signaled events */
4199 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
4201 /* Check if event is signaled */
4202 ret2 = WaitForSingleObject(w->events[i], 0);
4203 if(ret2 == WAIT_OBJECT_0) {
4204 if (w->func[i])
4205 w->func[i](w->opaque[i]);
4206 } else if (ret2 == WAIT_TIMEOUT) {
4207 } else {
4208 err = GetLastError();
4209 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
4212 } else if (ret == WAIT_TIMEOUT) {
4213 } else {
4214 err = GetLastError();
4215 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
4219 *timeout = 0;
4221 #else
4222 static void host_main_loop_wait(int *timeout)
4225 #endif
4227 void main_loop_wait(int timeout)
4229 IOHandlerRecord *ioh;
4230 fd_set rfds, wfds, xfds;
4231 int ret, nfds;
4232 struct timeval tv;
4234 qemu_bh_update_timeout(&timeout);
4236 host_main_loop_wait(&timeout);
4238 /* poll any events */
4239 /* XXX: separate device handlers from system ones */
4240 nfds = -1;
4241 FD_ZERO(&rfds);
4242 FD_ZERO(&wfds);
4243 FD_ZERO(&xfds);
4244 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4245 if (ioh->deleted)
4246 continue;
4247 if (ioh->fd_read &&
4248 (!ioh->fd_read_poll ||
4249 ioh->fd_read_poll(ioh->opaque) != 0)) {
4250 FD_SET(ioh->fd, &rfds);
4251 if (ioh->fd > nfds)
4252 nfds = ioh->fd;
4254 if (ioh->fd_write) {
4255 FD_SET(ioh->fd, &wfds);
4256 if (ioh->fd > nfds)
4257 nfds = ioh->fd;
4261 tv.tv_sec = timeout / 1000;
4262 tv.tv_usec = (timeout % 1000) * 1000;
4264 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4266 qemu_mutex_unlock_iothread();
4267 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4268 qemu_mutex_lock_iothread();
4269 if (ret > 0) {
4270 IOHandlerRecord **pioh;
4272 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4273 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4274 ioh->fd_read(ioh->opaque);
4276 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4277 ioh->fd_write(ioh->opaque);
4281 /* remove deleted IO handlers */
4282 pioh = &first_io_handler;
4283 while (*pioh) {
4284 ioh = *pioh;
4285 if (ioh->deleted) {
4286 *pioh = ioh->next;
4287 qemu_free(ioh);
4288 } else
4289 pioh = &ioh->next;
4293 slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
4295 /* rearm timer, if not periodic */
4296 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4297 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4298 qemu_rearm_alarm_timer(alarm_timer);
4301 /* vm time timers */
4302 if (vm_running) {
4303 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4304 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4305 qemu_get_clock(vm_clock));
4308 /* real time timers */
4309 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4310 qemu_get_clock(rt_clock));
4312 /* Check bottom-halves last in case any of the earlier events triggered
4313 them. */
4314 qemu_bh_poll();
4318 static int qemu_cpu_exec(CPUState *env)
4320 int ret;
4321 #ifdef CONFIG_PROFILER
4322 int64_t ti;
4323 #endif
4325 #ifdef CONFIG_PROFILER
4326 ti = profile_getclock();
4327 #endif
4328 if (use_icount) {
4329 int64_t count;
4330 int decr;
4331 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4332 env->icount_decr.u16.low = 0;
4333 env->icount_extra = 0;
4334 count = qemu_next_deadline();
4335 count = (count + (1 << icount_time_shift) - 1)
4336 >> icount_time_shift;
4337 qemu_icount += count;
4338 decr = (count > 0xffff) ? 0xffff : count;
4339 count -= decr;
4340 env->icount_decr.u16.low = decr;
4341 env->icount_extra = count;
4343 ret = cpu_exec(env);
4344 #ifdef CONFIG_PROFILER
4345 qemu_time += profile_getclock() - ti;
4346 #endif
4347 if (use_icount) {
4348 /* Fold pending instructions back into the
4349 instruction counter, and clear the interrupt flag. */
4350 qemu_icount -= (env->icount_decr.u16.low
4351 + env->icount_extra);
4352 env->icount_decr.u32 = 0;
4353 env->icount_extra = 0;
4355 return ret;
4358 static void tcg_cpu_exec(void)
4360 int ret = 0;
4362 if (next_cpu == NULL)
4363 next_cpu = first_cpu;
4364 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4365 CPUState *env = cur_cpu = next_cpu;
4367 if (!vm_running)
4368 break;
4369 if (timer_alarm_pending) {
4370 timer_alarm_pending = 0;
4371 break;
4373 if (cpu_can_run(env))
4374 ret = qemu_cpu_exec(env);
4375 if (ret == EXCP_DEBUG) {
4376 gdb_set_stop_cpu(env);
4377 debug_requested = 1;
4378 break;
4383 static int cpu_has_work(CPUState *env)
4385 if (env->stop)
4386 return 1;
4387 if (env->stopped)
4388 return 0;
4389 if (!env->halted)
4390 return 1;
4391 if (qemu_cpu_has_work(env))
4392 return 1;
4393 return 0;
4396 static int tcg_has_work(void)
4398 CPUState *env;
4400 for (env = first_cpu; env != NULL; env = env->next_cpu)
4401 if (cpu_has_work(env))
4402 return 1;
4403 return 0;
4406 static int qemu_calculate_timeout(void)
4408 #ifndef CONFIG_IOTHREAD
4409 int timeout;
4411 if (!vm_running)
4412 timeout = 5000;
4413 else if (tcg_has_work())
4414 timeout = 0;
4415 else if (!use_icount)
4416 timeout = 5000;
4417 else {
4418 /* XXX: use timeout computed from timers */
4419 int64_t add;
4420 int64_t delta;
4421 /* Advance virtual time to the next event. */
4422 if (use_icount == 1) {
4423 /* When not using an adaptive execution frequency
4424 we tend to get badly out of sync with real time,
4425 so just delay for a reasonable amount of time. */
4426 delta = 0;
4427 } else {
4428 delta = cpu_get_icount() - cpu_get_clock();
4430 if (delta > 0) {
4431 /* If virtual time is ahead of real time then just
4432 wait for IO. */
4433 timeout = (delta / 1000000) + 1;
4434 } else {
4435 /* Wait for either IO to occur or the next
4436 timer event. */
4437 add = qemu_next_deadline();
4438 /* We advance the timer before checking for IO.
4439 Limit the amount we advance so that early IO
4440 activity won't get the guest too far ahead. */
4441 if (add > 10000000)
4442 add = 10000000;
4443 delta += add;
4444 add = (add + (1 << icount_time_shift) - 1)
4445 >> icount_time_shift;
4446 qemu_icount += add;
4447 timeout = delta / 1000000;
4448 if (timeout < 0)
4449 timeout = 0;
4453 return timeout;
4454 #else /* CONFIG_IOTHREAD */
4455 return 1000;
4456 #endif
4459 static int vm_can_run(void)
4461 if (powerdown_requested)
4462 return 0;
4463 if (reset_requested)
4464 return 0;
4465 if (shutdown_requested)
4466 return 0;
4467 if (debug_requested)
4468 return 0;
4469 return 1;
4472 static void main_loop(void)
4474 int r;
4476 #ifdef CONFIG_IOTHREAD
4477 qemu_system_ready = 1;
4478 qemu_cond_broadcast(&qemu_system_cond);
4479 #endif
4481 for (;;) {
4482 do {
4483 #ifdef CONFIG_PROFILER
4484 int64_t ti;
4485 #endif
4486 #ifndef CONFIG_IOTHREAD
4487 tcg_cpu_exec();
4488 #endif
4489 #ifdef CONFIG_PROFILER
4490 ti = profile_getclock();
4491 #endif
4492 main_loop_wait(qemu_calculate_timeout());
4493 #ifdef CONFIG_PROFILER
4494 dev_time += profile_getclock() - ti;
4495 #endif
4496 } while (vm_can_run());
4498 if (qemu_debug_requested())
4499 vm_stop(EXCP_DEBUG);
4500 if (qemu_shutdown_requested()) {
4501 if (no_shutdown) {
4502 vm_stop(0);
4503 no_shutdown = 0;
4504 } else
4505 break;
4507 if (qemu_reset_requested()) {
4508 pause_all_vcpus();
4509 qemu_system_reset();
4510 resume_all_vcpus();
4512 if (qemu_powerdown_requested())
4513 qemu_system_powerdown();
4514 if ((r = qemu_vmstop_requested()))
4515 vm_stop(r);
4517 pause_all_vcpus();
4520 static void version(void)
4522 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4525 static void help(int exitcode)
4527 version();
4528 printf("usage: %s [options] [disk_image]\n"
4529 "\n"
4530 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4531 "\n"
4532 #define DEF(option, opt_arg, opt_enum, opt_help) \
4533 opt_help
4534 #define DEFHEADING(text) stringify(text) "\n"
4535 #include "qemu-options.h"
4536 #undef DEF
4537 #undef DEFHEADING
4538 #undef GEN_DOCS
4539 "\n"
4540 "During emulation, the following keys are useful:\n"
4541 "ctrl-alt-f toggle full screen\n"
4542 "ctrl-alt-n switch to virtual console 'n'\n"
4543 "ctrl-alt toggle mouse and keyboard grab\n"
4544 "\n"
4545 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4547 "qemu",
4548 DEFAULT_RAM_SIZE,
4549 #ifndef _WIN32
4550 DEFAULT_NETWORK_SCRIPT,
4551 DEFAULT_NETWORK_DOWN_SCRIPT,
4552 #endif
4553 DEFAULT_GDBSTUB_PORT,
4554 "/tmp/qemu.log");
4555 exit(exitcode);
4558 #define HAS_ARG 0x0001
4560 enum {
4561 #define DEF(option, opt_arg, opt_enum, opt_help) \
4562 opt_enum,
4563 #define DEFHEADING(text)
4564 #include "qemu-options.h"
4565 #undef DEF
4566 #undef DEFHEADING
4567 #undef GEN_DOCS
4570 typedef struct QEMUOption {
4571 const char *name;
4572 int flags;
4573 int index;
4574 } QEMUOption;
4576 static const QEMUOption qemu_options[] = {
4577 { "h", 0, QEMU_OPTION_h },
4578 #define DEF(option, opt_arg, opt_enum, opt_help) \
4579 { option, opt_arg, opt_enum },
4580 #define DEFHEADING(text)
4581 #include "qemu-options.h"
4582 #undef DEF
4583 #undef DEFHEADING
4584 #undef GEN_DOCS
4585 { NULL },
4588 #ifdef HAS_AUDIO
4589 struct soundhw soundhw[] = {
4590 #ifdef HAS_AUDIO_CHOICE
4591 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4593 "pcspk",
4594 "PC speaker",
4597 { .init_isa = pcspk_audio_init }
4599 #endif
4601 #ifdef CONFIG_SB16
4603 "sb16",
4604 "Creative Sound Blaster 16",
4607 { .init_isa = SB16_init }
4609 #endif
4611 #ifdef CONFIG_CS4231A
4613 "cs4231a",
4614 "CS4231A",
4617 { .init_isa = cs4231a_init }
4619 #endif
4621 #ifdef CONFIG_ADLIB
4623 "adlib",
4624 #ifdef HAS_YMF262
4625 "Yamaha YMF262 (OPL3)",
4626 #else
4627 "Yamaha YM3812 (OPL2)",
4628 #endif
4631 { .init_isa = Adlib_init }
4633 #endif
4635 #ifdef CONFIG_GUS
4637 "gus",
4638 "Gravis Ultrasound GF1",
4641 { .init_isa = GUS_init }
4643 #endif
4645 #ifdef CONFIG_AC97
4647 "ac97",
4648 "Intel 82801AA AC97 Audio",
4651 { .init_pci = ac97_init }
4653 #endif
4655 #ifdef CONFIG_ES1370
4657 "es1370",
4658 "ENSONIQ AudioPCI ES1370",
4661 { .init_pci = es1370_init }
4663 #endif
4665 #endif /* HAS_AUDIO_CHOICE */
4667 { NULL, NULL, 0, 0, { NULL } }
4670 static void select_soundhw (const char *optarg)
4672 struct soundhw *c;
4674 if (*optarg == '?') {
4675 show_valid_cards:
4677 printf ("Valid sound card names (comma separated):\n");
4678 for (c = soundhw; c->name; ++c) {
4679 printf ("%-11s %s\n", c->name, c->descr);
4681 printf ("\n-soundhw all will enable all of the above\n");
4682 exit (*optarg != '?');
4684 else {
4685 size_t l;
4686 const char *p;
4687 char *e;
4688 int bad_card = 0;
4690 if (!strcmp (optarg, "all")) {
4691 for (c = soundhw; c->name; ++c) {
4692 c->enabled = 1;
4694 return;
4697 p = optarg;
4698 while (*p) {
4699 e = strchr (p, ',');
4700 l = !e ? strlen (p) : (size_t) (e - p);
4702 for (c = soundhw; c->name; ++c) {
4703 if (!strncmp (c->name, p, l)) {
4704 c->enabled = 1;
4705 break;
4709 if (!c->name) {
4710 if (l > 80) {
4711 fprintf (stderr,
4712 "Unknown sound card name (too big to show)\n");
4714 else {
4715 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4716 (int) l, p);
4718 bad_card = 1;
4720 p += l + (e != NULL);
4723 if (bad_card)
4724 goto show_valid_cards;
4727 #endif
4729 static void select_vgahw (const char *p)
4731 const char *opts;
4733 cirrus_vga_enabled = 0;
4734 std_vga_enabled = 0;
4735 vmsvga_enabled = 0;
4736 xenfb_enabled = 0;
4737 if (strstart(p, "std", &opts)) {
4738 std_vga_enabled = 1;
4739 } else if (strstart(p, "cirrus", &opts)) {
4740 cirrus_vga_enabled = 1;
4741 } else if (strstart(p, "vmware", &opts)) {
4742 vmsvga_enabled = 1;
4743 } else if (strstart(p, "xenfb", &opts)) {
4744 xenfb_enabled = 1;
4745 } else if (!strstart(p, "none", &opts)) {
4746 invalid_vga:
4747 fprintf(stderr, "Unknown vga type: %s\n", p);
4748 exit(1);
4750 while (*opts) {
4751 const char *nextopt;
4753 if (strstart(opts, ",retrace=", &nextopt)) {
4754 opts = nextopt;
4755 if (strstart(opts, "dumb", &nextopt))
4756 vga_retrace_method = VGA_RETRACE_DUMB;
4757 else if (strstart(opts, "precise", &nextopt))
4758 vga_retrace_method = VGA_RETRACE_PRECISE;
4759 else goto invalid_vga;
4760 } else goto invalid_vga;
4761 opts = nextopt;
4765 #ifdef _WIN32
4766 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4768 exit(STATUS_CONTROL_C_EXIT);
4769 return TRUE;
4771 #endif
4773 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4775 int ret;
4777 if(strlen(str) != 36)
4778 return -1;
4780 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4781 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4782 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4784 if(ret != 16)
4785 return -1;
4787 #ifdef TARGET_I386
4788 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4789 #endif
4791 return 0;
4794 #define MAX_NET_CLIENTS 32
4796 #ifndef _WIN32
4798 static void termsig_handler(int signal)
4800 qemu_system_shutdown_request();
4803 static void sigchld_handler(int signal)
4805 waitpid(-1, NULL, WNOHANG);
4808 static void sighandler_setup(void)
4810 struct sigaction act;
4812 memset(&act, 0, sizeof(act));
4813 act.sa_handler = termsig_handler;
4814 sigaction(SIGINT, &act, NULL);
4815 sigaction(SIGHUP, &act, NULL);
4816 sigaction(SIGTERM, &act, NULL);
4818 act.sa_handler = sigchld_handler;
4819 act.sa_flags = SA_NOCLDSTOP;
4820 sigaction(SIGCHLD, &act, NULL);
4823 #endif
4825 #ifdef _WIN32
4826 /* Look for support files in the same directory as the executable. */
4827 static char *find_datadir(const char *argv0)
4829 char *p;
4830 char buf[MAX_PATH];
4831 DWORD len;
4833 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4834 if (len == 0) {
4835 return NULL;
4838 buf[len] = 0;
4839 p = buf + len - 1;
4840 while (p != buf && *p != '\\')
4841 p--;
4842 *p = 0;
4843 if (access(buf, R_OK) == 0) {
4844 return qemu_strdup(buf);
4846 return NULL;
4848 #else /* !_WIN32 */
4850 /* Find a likely location for support files using the location of the binary.
4851 For installed binaries this will be "$bindir/../share/qemu". When
4852 running from the build tree this will be "$bindir/../pc-bios". */
4853 #define SHARE_SUFFIX "/share/qemu"
4854 #define BUILD_SUFFIX "/pc-bios"
4855 static char *find_datadir(const char *argv0)
4857 char *dir;
4858 char *p = NULL;
4859 char *res;
4860 #ifdef PATH_MAX
4861 char buf[PATH_MAX];
4862 #endif
4863 size_t max_len;
4865 #if defined(__linux__)
4867 int len;
4868 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4869 if (len > 0) {
4870 buf[len] = 0;
4871 p = buf;
4874 #elif defined(__FreeBSD__)
4876 int len;
4877 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4878 if (len > 0) {
4879 buf[len] = 0;
4880 p = buf;
4883 #endif
4884 /* If we don't have any way of figuring out the actual executable
4885 location then try argv[0]. */
4886 if (!p) {
4887 #ifdef PATH_MAX
4888 p = buf;
4889 #endif
4890 p = realpath(argv0, p);
4891 if (!p) {
4892 return NULL;
4895 dir = dirname(p);
4896 dir = dirname(dir);
4898 max_len = strlen(dir) +
4899 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
4900 res = qemu_mallocz(max_len);
4901 snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
4902 if (access(res, R_OK)) {
4903 snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
4904 if (access(res, R_OK)) {
4905 qemu_free(res);
4906 res = NULL;
4909 #ifndef PATH_MAX
4910 free(p);
4911 #endif
4912 return res;
4914 #undef SHARE_SUFFIX
4915 #undef BUILD_SUFFIX
4916 #endif
4918 char *qemu_find_file(int type, const char *name)
4920 int len;
4921 const char *subdir;
4922 char *buf;
4924 /* If name contains path separators then try it as a straight path. */
4925 if ((strchr(name, '/') || strchr(name, '\\'))
4926 && access(name, R_OK) == 0) {
4927 return strdup(name);
4929 switch (type) {
4930 case QEMU_FILE_TYPE_BIOS:
4931 subdir = "";
4932 break;
4933 case QEMU_FILE_TYPE_KEYMAP:
4934 subdir = "keymaps/";
4935 break;
4936 default:
4937 abort();
4939 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4940 buf = qemu_mallocz(len);
4941 snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
4942 if (access(buf, R_OK)) {
4943 qemu_free(buf);
4944 return NULL;
4946 return buf;
4949 int main(int argc, char **argv, char **envp)
4951 const char *gdbstub_dev = NULL;
4952 uint32_t boot_devices_bitmap = 0;
4953 int i;
4954 int snapshot, linux_boot, net_boot;
4955 const char *initrd_filename;
4956 const char *kernel_filename, *kernel_cmdline;
4957 const char *boot_devices = "";
4958 DisplayState *ds;
4959 DisplayChangeListener *dcl;
4960 int cyls, heads, secs, translation;
4961 const char *net_clients[MAX_NET_CLIENTS];
4962 int nb_net_clients;
4963 const char *bt_opts[MAX_BT_CMDLINE];
4964 int nb_bt_opts;
4965 int hda_index;
4966 int optind;
4967 const char *r, *optarg;
4968 CharDriverState *monitor_hd = NULL;
4969 const char *monitor_device;
4970 const char *serial_devices[MAX_SERIAL_PORTS];
4971 int serial_device_index;
4972 const char *parallel_devices[MAX_PARALLEL_PORTS];
4973 int parallel_device_index;
4974 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4975 int virtio_console_index;
4976 const char *loadvm = NULL;
4977 QEMUMachine *machine;
4978 const char *cpu_model;
4979 const char *usb_devices[MAX_USB_CMDLINE];
4980 int usb_devices_index;
4981 #ifndef _WIN32
4982 int fds[2];
4983 #endif
4984 int tb_size;
4985 const char *pid_file = NULL;
4986 const char *incoming = NULL;
4987 #ifndef _WIN32
4988 int fd = 0;
4989 struct passwd *pwd = NULL;
4990 const char *chroot_dir = NULL;
4991 const char *run_as = NULL;
4992 #endif
4993 CPUState *env;
4994 int show_vnc_port = 0;
4996 qemu_cache_utils_init(envp);
4998 LIST_INIT (&vm_change_state_head);
4999 #ifndef _WIN32
5001 struct sigaction act;
5002 sigfillset(&act.sa_mask);
5003 act.sa_flags = 0;
5004 act.sa_handler = SIG_IGN;
5005 sigaction(SIGPIPE, &act, NULL);
5007 #else
5008 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
5009 /* Note: cpu_interrupt() is currently not SMP safe, so we force
5010 QEMU to run on a single CPU */
5012 HANDLE h;
5013 DWORD mask, smask;
5014 int i;
5015 h = GetCurrentProcess();
5016 if (GetProcessAffinityMask(h, &mask, &smask)) {
5017 for(i = 0; i < 32; i++) {
5018 if (mask & (1 << i))
5019 break;
5021 if (i != 32) {
5022 mask = 1 << i;
5023 SetProcessAffinityMask(h, mask);
5027 #endif
5029 module_call_init(MODULE_INIT_MACHINE);
5030 machine = find_default_machine();
5031 cpu_model = NULL;
5032 initrd_filename = NULL;
5033 ram_size = 0;
5034 snapshot = 0;
5035 kernel_filename = NULL;
5036 kernel_cmdline = "";
5037 cyls = heads = secs = 0;
5038 translation = BIOS_ATA_TRANSLATION_AUTO;
5039 monitor_device = "vc:80Cx24C";
5041 serial_devices[0] = "vc:80Cx24C";
5042 for(i = 1; i < MAX_SERIAL_PORTS; i++)
5043 serial_devices[i] = NULL;
5044 serial_device_index = 0;
5046 parallel_devices[0] = "vc:80Cx24C";
5047 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
5048 parallel_devices[i] = NULL;
5049 parallel_device_index = 0;
5051 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
5052 virtio_consoles[i] = NULL;
5053 virtio_console_index = 0;
5055 for (i = 0; i < MAX_NODES; i++) {
5056 node_mem[i] = 0;
5057 node_cpumask[i] = 0;
5060 usb_devices_index = 0;
5062 nb_net_clients = 0;
5063 nb_bt_opts = 0;
5064 nb_drives = 0;
5065 nb_drives_opt = 0;
5066 nb_numa_nodes = 0;
5067 hda_index = -1;
5069 nb_nics = 0;
5071 tb_size = 0;
5072 autostart= 1;
5074 register_watchdogs();
5076 optind = 1;
5077 for(;;) {
5078 if (optind >= argc)
5079 break;
5080 r = argv[optind];
5081 if (r[0] != '-') {
5082 hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
5083 } else {
5084 const QEMUOption *popt;
5086 optind++;
5087 /* Treat --foo the same as -foo. */
5088 if (r[1] == '-')
5089 r++;
5090 popt = qemu_options;
5091 for(;;) {
5092 if (!popt->name) {
5093 fprintf(stderr, "%s: invalid option -- '%s'\n",
5094 argv[0], r);
5095 exit(1);
5097 if (!strcmp(popt->name, r + 1))
5098 break;
5099 popt++;
5101 if (popt->flags & HAS_ARG) {
5102 if (optind >= argc) {
5103 fprintf(stderr, "%s: option '%s' requires an argument\n",
5104 argv[0], r);
5105 exit(1);
5107 optarg = argv[optind++];
5108 } else {
5109 optarg = NULL;
5112 switch(popt->index) {
5113 case QEMU_OPTION_M:
5114 machine = find_machine(optarg);
5115 if (!machine) {
5116 QEMUMachine *m;
5117 printf("Supported machines are:\n");
5118 for(m = first_machine; m != NULL; m = m->next) {
5119 printf("%-10s %s%s\n",
5120 m->name, m->desc,
5121 m->is_default ? " (default)" : "");
5123 exit(*optarg != '?');
5125 break;
5126 case QEMU_OPTION_cpu:
5127 /* hw initialization will check this */
5128 if (*optarg == '?') {
5129 /* XXX: implement xxx_cpu_list for targets that still miss it */
5130 #if defined(cpu_list)
5131 cpu_list(stdout, &fprintf);
5132 #endif
5133 exit(0);
5134 } else {
5135 cpu_model = optarg;
5137 break;
5138 case QEMU_OPTION_initrd:
5139 initrd_filename = optarg;
5140 break;
5141 case QEMU_OPTION_hda:
5142 if (cyls == 0)
5143 hda_index = drive_add(optarg, HD_ALIAS, 0);
5144 else
5145 hda_index = drive_add(optarg, HD_ALIAS
5146 ",cyls=%d,heads=%d,secs=%d%s",
5147 0, cyls, heads, secs,
5148 translation == BIOS_ATA_TRANSLATION_LBA ?
5149 ",trans=lba" :
5150 translation == BIOS_ATA_TRANSLATION_NONE ?
5151 ",trans=none" : "");
5152 break;
5153 case QEMU_OPTION_hdb:
5154 case QEMU_OPTION_hdc:
5155 case QEMU_OPTION_hdd:
5156 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
5157 break;
5158 case QEMU_OPTION_drive:
5159 drive_add(NULL, "%s", optarg);
5160 break;
5161 case QEMU_OPTION_mtdblock:
5162 drive_add(optarg, MTD_ALIAS);
5163 break;
5164 case QEMU_OPTION_sd:
5165 drive_add(optarg, SD_ALIAS);
5166 break;
5167 case QEMU_OPTION_pflash:
5168 drive_add(optarg, PFLASH_ALIAS);
5169 break;
5170 case QEMU_OPTION_snapshot:
5171 snapshot = 1;
5172 break;
5173 case QEMU_OPTION_hdachs:
5175 const char *p;
5176 p = optarg;
5177 cyls = strtol(p, (char **)&p, 0);
5178 if (cyls < 1 || cyls > 16383)
5179 goto chs_fail;
5180 if (*p != ',')
5181 goto chs_fail;
5182 p++;
5183 heads = strtol(p, (char **)&p, 0);
5184 if (heads < 1 || heads > 16)
5185 goto chs_fail;
5186 if (*p != ',')
5187 goto chs_fail;
5188 p++;
5189 secs = strtol(p, (char **)&p, 0);
5190 if (secs < 1 || secs > 63)
5191 goto chs_fail;
5192 if (*p == ',') {
5193 p++;
5194 if (!strcmp(p, "none"))
5195 translation = BIOS_ATA_TRANSLATION_NONE;
5196 else if (!strcmp(p, "lba"))
5197 translation = BIOS_ATA_TRANSLATION_LBA;
5198 else if (!strcmp(p, "auto"))
5199 translation = BIOS_ATA_TRANSLATION_AUTO;
5200 else
5201 goto chs_fail;
5202 } else if (*p != '\0') {
5203 chs_fail:
5204 fprintf(stderr, "qemu: invalid physical CHS format\n");
5205 exit(1);
5207 if (hda_index != -1)
5208 snprintf(drives_opt[hda_index].opt,
5209 sizeof(drives_opt[hda_index].opt),
5210 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
5211 0, cyls, heads, secs,
5212 translation == BIOS_ATA_TRANSLATION_LBA ?
5213 ",trans=lba" :
5214 translation == BIOS_ATA_TRANSLATION_NONE ?
5215 ",trans=none" : "");
5217 break;
5218 case QEMU_OPTION_numa:
5219 if (nb_numa_nodes >= MAX_NODES) {
5220 fprintf(stderr, "qemu: too many NUMA nodes\n");
5221 exit(1);
5223 numa_add(optarg);
5224 break;
5225 case QEMU_OPTION_nographic:
5226 display_type = DT_NOGRAPHIC;
5227 break;
5228 #ifdef CONFIG_CURSES
5229 case QEMU_OPTION_curses:
5230 display_type = DT_CURSES;
5231 break;
5232 #endif
5233 case QEMU_OPTION_portrait:
5234 graphic_rotate = 1;
5235 break;
5236 case QEMU_OPTION_kernel:
5237 kernel_filename = optarg;
5238 break;
5239 case QEMU_OPTION_append:
5240 kernel_cmdline = optarg;
5241 break;
5242 case QEMU_OPTION_cdrom:
5243 drive_add(optarg, CDROM_ALIAS);
5244 break;
5245 case QEMU_OPTION_boot:
5246 boot_devices = optarg;
5247 /* We just do some generic consistency checks */
5249 /* Could easily be extended to 64 devices if needed */
5250 const char *p;
5252 boot_devices_bitmap = 0;
5253 for (p = boot_devices; *p != '\0'; p++) {
5254 /* Allowed boot devices are:
5255 * a b : floppy disk drives
5256 * c ... f : IDE disk drives
5257 * g ... m : machine implementation dependant drives
5258 * n ... p : network devices
5259 * It's up to each machine implementation to check
5260 * if the given boot devices match the actual hardware
5261 * implementation and firmware features.
5263 if (*p < 'a' || *p > 'q') {
5264 fprintf(stderr, "Invalid boot device '%c'\n", *p);
5265 exit(1);
5267 if (boot_devices_bitmap & (1 << (*p - 'a'))) {
5268 fprintf(stderr,
5269 "Boot device '%c' was given twice\n",*p);
5270 exit(1);
5272 boot_devices_bitmap |= 1 << (*p - 'a');
5275 break;
5276 case QEMU_OPTION_fda:
5277 case QEMU_OPTION_fdb:
5278 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5279 break;
5280 #ifdef TARGET_I386
5281 case QEMU_OPTION_no_fd_bootchk:
5282 fd_bootchk = 0;
5283 break;
5284 #endif
5285 case QEMU_OPTION_net:
5286 if (nb_net_clients >= MAX_NET_CLIENTS) {
5287 fprintf(stderr, "qemu: too many network clients\n");
5288 exit(1);
5290 net_clients[nb_net_clients] = optarg;
5291 nb_net_clients++;
5292 break;
5293 #ifdef CONFIG_SLIRP
5294 case QEMU_OPTION_tftp:
5295 legacy_tftp_prefix = optarg;
5296 break;
5297 case QEMU_OPTION_bootp:
5298 legacy_bootp_filename = optarg;
5299 break;
5300 #ifndef _WIN32
5301 case QEMU_OPTION_smb:
5302 net_slirp_smb(optarg);
5303 break;
5304 #endif
5305 case QEMU_OPTION_redir:
5306 net_slirp_redir(optarg);
5307 break;
5308 #endif
5309 case QEMU_OPTION_bt:
5310 if (nb_bt_opts >= MAX_BT_CMDLINE) {
5311 fprintf(stderr, "qemu: too many bluetooth options\n");
5312 exit(1);
5314 bt_opts[nb_bt_opts++] = optarg;
5315 break;
5316 #ifdef HAS_AUDIO
5317 case QEMU_OPTION_audio_help:
5318 AUD_help ();
5319 exit (0);
5320 break;
5321 case QEMU_OPTION_soundhw:
5322 select_soundhw (optarg);
5323 break;
5324 #endif
5325 case QEMU_OPTION_h:
5326 help(0);
5327 break;
5328 case QEMU_OPTION_version:
5329 version();
5330 exit(0);
5331 break;
5332 case QEMU_OPTION_m: {
5333 uint64_t value;
5334 char *ptr;
5336 value = strtoul(optarg, &ptr, 10);
5337 switch (*ptr) {
5338 case 0: case 'M': case 'm':
5339 value <<= 20;
5340 break;
5341 case 'G': case 'g':
5342 value <<= 30;
5343 break;
5344 default:
5345 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5346 exit(1);
5349 /* On 32-bit hosts, QEMU is limited by virtual address space */
5350 if (value > (2047 << 20)
5351 #ifndef CONFIG_KQEMU
5352 && HOST_LONG_BITS == 32
5353 #endif
5355 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5356 exit(1);
5358 if (value != (uint64_t)(ram_addr_t)value) {
5359 fprintf(stderr, "qemu: ram size too large\n");
5360 exit(1);
5362 ram_size = value;
5363 break;
5365 case QEMU_OPTION_d:
5367 int mask;
5368 const CPULogItem *item;
5370 mask = cpu_str_to_log_mask(optarg);
5371 if (!mask) {
5372 printf("Log items (comma separated):\n");
5373 for(item = cpu_log_items; item->mask != 0; item++) {
5374 printf("%-10s %s\n", item->name, item->help);
5376 exit(1);
5378 cpu_set_log(mask);
5380 break;
5381 case QEMU_OPTION_s:
5382 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5383 break;
5384 case QEMU_OPTION_gdb:
5385 gdbstub_dev = optarg;
5386 break;
5387 case QEMU_OPTION_L:
5388 data_dir = optarg;
5389 break;
5390 case QEMU_OPTION_bios:
5391 bios_name = optarg;
5392 break;
5393 case QEMU_OPTION_singlestep:
5394 singlestep = 1;
5395 break;
5396 case QEMU_OPTION_S:
5397 autostart = 0;
5398 break;
5399 #ifndef _WIN32
5400 case QEMU_OPTION_k:
5401 keyboard_layout = optarg;
5402 break;
5403 #endif
5404 case QEMU_OPTION_localtime:
5405 rtc_utc = 0;
5406 break;
5407 case QEMU_OPTION_vga:
5408 select_vgahw (optarg);
5409 break;
5410 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5411 case QEMU_OPTION_g:
5413 const char *p;
5414 int w, h, depth;
5415 p = optarg;
5416 w = strtol(p, (char **)&p, 10);
5417 if (w <= 0) {
5418 graphic_error:
5419 fprintf(stderr, "qemu: invalid resolution or depth\n");
5420 exit(1);
5422 if (*p != 'x')
5423 goto graphic_error;
5424 p++;
5425 h = strtol(p, (char **)&p, 10);
5426 if (h <= 0)
5427 goto graphic_error;
5428 if (*p == 'x') {
5429 p++;
5430 depth = strtol(p, (char **)&p, 10);
5431 if (depth != 8 && depth != 15 && depth != 16 &&
5432 depth != 24 && depth != 32)
5433 goto graphic_error;
5434 } else if (*p == '\0') {
5435 depth = graphic_depth;
5436 } else {
5437 goto graphic_error;
5440 graphic_width = w;
5441 graphic_height = h;
5442 graphic_depth = depth;
5444 break;
5445 #endif
5446 case QEMU_OPTION_echr:
5448 char *r;
5449 term_escape_char = strtol(optarg, &r, 0);
5450 if (r == optarg)
5451 printf("Bad argument to echr\n");
5452 break;
5454 case QEMU_OPTION_monitor:
5455 monitor_device = optarg;
5456 break;
5457 case QEMU_OPTION_serial:
5458 if (serial_device_index >= MAX_SERIAL_PORTS) {
5459 fprintf(stderr, "qemu: too many serial ports\n");
5460 exit(1);
5462 serial_devices[serial_device_index] = optarg;
5463 serial_device_index++;
5464 break;
5465 case QEMU_OPTION_watchdog:
5466 i = select_watchdog(optarg);
5467 if (i > 0)
5468 exit (i == 1 ? 1 : 0);
5469 break;
5470 case QEMU_OPTION_watchdog_action:
5471 if (select_watchdog_action(optarg) == -1) {
5472 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5473 exit(1);
5475 break;
5476 case QEMU_OPTION_virtiocon:
5477 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5478 fprintf(stderr, "qemu: too many virtio consoles\n");
5479 exit(1);
5481 virtio_consoles[virtio_console_index] = optarg;
5482 virtio_console_index++;
5483 break;
5484 case QEMU_OPTION_parallel:
5485 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5486 fprintf(stderr, "qemu: too many parallel ports\n");
5487 exit(1);
5489 parallel_devices[parallel_device_index] = optarg;
5490 parallel_device_index++;
5491 break;
5492 case QEMU_OPTION_loadvm:
5493 loadvm = optarg;
5494 break;
5495 case QEMU_OPTION_full_screen:
5496 full_screen = 1;
5497 break;
5498 #ifdef CONFIG_SDL
5499 case QEMU_OPTION_no_frame:
5500 no_frame = 1;
5501 break;
5502 case QEMU_OPTION_alt_grab:
5503 alt_grab = 1;
5504 break;
5505 case QEMU_OPTION_no_quit:
5506 no_quit = 1;
5507 break;
5508 case QEMU_OPTION_sdl:
5509 display_type = DT_SDL;
5510 break;
5511 #endif
5512 case QEMU_OPTION_pidfile:
5513 pid_file = optarg;
5514 break;
5515 #ifdef TARGET_I386
5516 case QEMU_OPTION_win2k_hack:
5517 win2k_install_hack = 1;
5518 break;
5519 case QEMU_OPTION_rtc_td_hack:
5520 rtc_td_hack = 1;
5521 break;
5522 case QEMU_OPTION_acpitable:
5523 if(acpi_table_add(optarg) < 0) {
5524 fprintf(stderr, "Wrong acpi table provided\n");
5525 exit(1);
5527 break;
5528 case QEMU_OPTION_smbios:
5529 if(smbios_entry_add(optarg) < 0) {
5530 fprintf(stderr, "Wrong smbios provided\n");
5531 exit(1);
5533 break;
5534 #endif
5535 #ifdef CONFIG_KQEMU
5536 case QEMU_OPTION_no_kqemu:
5537 kqemu_allowed = 0;
5538 break;
5539 case QEMU_OPTION_kernel_kqemu:
5540 kqemu_allowed = 2;
5541 break;
5542 #endif
5543 #ifdef CONFIG_KVM
5544 case QEMU_OPTION_enable_kvm:
5545 kvm_allowed = 1;
5546 #ifdef CONFIG_KQEMU
5547 kqemu_allowed = 0;
5548 #endif
5549 break;
5550 #endif
5551 case QEMU_OPTION_usb:
5552 usb_enabled = 1;
5553 break;
5554 case QEMU_OPTION_usbdevice:
5555 usb_enabled = 1;
5556 if (usb_devices_index >= MAX_USB_CMDLINE) {
5557 fprintf(stderr, "Too many USB devices\n");
5558 exit(1);
5560 usb_devices[usb_devices_index] = optarg;
5561 usb_devices_index++;
5562 break;
5563 case QEMU_OPTION_smp:
5564 smp_cpus = atoi(optarg);
5565 if (smp_cpus < 1) {
5566 fprintf(stderr, "Invalid number of CPUs\n");
5567 exit(1);
5569 break;
5570 case QEMU_OPTION_vnc:
5571 display_type = DT_VNC;
5572 vnc_display = optarg;
5573 break;
5574 #ifdef TARGET_I386
5575 case QEMU_OPTION_no_acpi:
5576 acpi_enabled = 0;
5577 break;
5578 case QEMU_OPTION_no_hpet:
5579 no_hpet = 1;
5580 break;
5581 case QEMU_OPTION_no_virtio_balloon:
5582 no_virtio_balloon = 1;
5583 break;
5584 #endif
5585 case QEMU_OPTION_no_reboot:
5586 no_reboot = 1;
5587 break;
5588 case QEMU_OPTION_no_shutdown:
5589 no_shutdown = 1;
5590 break;
5591 case QEMU_OPTION_show_cursor:
5592 cursor_hide = 0;
5593 break;
5594 case QEMU_OPTION_uuid:
5595 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5596 fprintf(stderr, "Fail to parse UUID string."
5597 " Wrong format.\n");
5598 exit(1);
5600 break;
5601 #ifndef _WIN32
5602 case QEMU_OPTION_daemonize:
5603 daemonize = 1;
5604 break;
5605 #endif
5606 case QEMU_OPTION_option_rom:
5607 if (nb_option_roms >= MAX_OPTION_ROMS) {
5608 fprintf(stderr, "Too many option ROMs\n");
5609 exit(1);
5611 option_rom[nb_option_roms] = optarg;
5612 nb_option_roms++;
5613 break;
5614 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5615 case QEMU_OPTION_semihosting:
5616 semihosting_enabled = 1;
5617 break;
5618 #endif
5619 case QEMU_OPTION_name:
5620 qemu_name = optarg;
5621 break;
5622 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5623 case QEMU_OPTION_prom_env:
5624 if (nb_prom_envs >= MAX_PROM_ENVS) {
5625 fprintf(stderr, "Too many prom variables\n");
5626 exit(1);
5628 prom_envs[nb_prom_envs] = optarg;
5629 nb_prom_envs++;
5630 break;
5631 #endif
5632 #ifdef TARGET_ARM
5633 case QEMU_OPTION_old_param:
5634 old_param = 1;
5635 break;
5636 #endif
5637 case QEMU_OPTION_clock:
5638 configure_alarms(optarg);
5639 break;
5640 case QEMU_OPTION_startdate:
5642 struct tm tm;
5643 time_t rtc_start_date;
5644 if (!strcmp(optarg, "now")) {
5645 rtc_date_offset = -1;
5646 } else {
5647 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5648 &tm.tm_year,
5649 &tm.tm_mon,
5650 &tm.tm_mday,
5651 &tm.tm_hour,
5652 &tm.tm_min,
5653 &tm.tm_sec) == 6) {
5654 /* OK */
5655 } else if (sscanf(optarg, "%d-%d-%d",
5656 &tm.tm_year,
5657 &tm.tm_mon,
5658 &tm.tm_mday) == 3) {
5659 tm.tm_hour = 0;
5660 tm.tm_min = 0;
5661 tm.tm_sec = 0;
5662 } else {
5663 goto date_fail;
5665 tm.tm_year -= 1900;
5666 tm.tm_mon--;
5667 rtc_start_date = mktimegm(&tm);
5668 if (rtc_start_date == -1) {
5669 date_fail:
5670 fprintf(stderr, "Invalid date format. Valid format are:\n"
5671 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5672 exit(1);
5674 rtc_date_offset = time(NULL) - rtc_start_date;
5677 break;
5678 case QEMU_OPTION_tb_size:
5679 tb_size = strtol(optarg, NULL, 0);
5680 if (tb_size < 0)
5681 tb_size = 0;
5682 break;
5683 case QEMU_OPTION_icount:
5684 use_icount = 1;
5685 if (strcmp(optarg, "auto") == 0) {
5686 icount_time_shift = -1;
5687 } else {
5688 icount_time_shift = strtol(optarg, NULL, 0);
5690 break;
5691 case QEMU_OPTION_incoming:
5692 incoming = optarg;
5693 break;
5694 #ifndef _WIN32
5695 case QEMU_OPTION_chroot:
5696 chroot_dir = optarg;
5697 break;
5698 case QEMU_OPTION_runas:
5699 run_as = optarg;
5700 break;
5701 #endif
5702 #ifdef CONFIG_XEN
5703 case QEMU_OPTION_xen_domid:
5704 xen_domid = atoi(optarg);
5705 break;
5706 case QEMU_OPTION_xen_create:
5707 xen_mode = XEN_CREATE;
5708 break;
5709 case QEMU_OPTION_xen_attach:
5710 xen_mode = XEN_ATTACH;
5711 break;
5712 #endif
5717 /* If no data_dir is specified then try to find it relative to the
5718 executable path. */
5719 if (!data_dir) {
5720 data_dir = find_datadir(argv[0]);
5722 /* If all else fails use the install patch specified when building. */
5723 if (!data_dir) {
5724 data_dir = CONFIG_QEMU_SHAREDIR;
5727 #if defined(CONFIG_KVM) && defined(CONFIG_KQEMU)
5728 if (kvm_allowed && kqemu_allowed) {
5729 fprintf(stderr,
5730 "You can not enable both KVM and kqemu at the same time\n");
5731 exit(1);
5733 #endif
5735 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5736 if (smp_cpus > machine->max_cpus) {
5737 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5738 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5739 machine->max_cpus);
5740 exit(1);
5743 if (display_type == DT_NOGRAPHIC) {
5744 if (serial_device_index == 0)
5745 serial_devices[0] = "stdio";
5746 if (parallel_device_index == 0)
5747 parallel_devices[0] = "null";
5748 if (strncmp(monitor_device, "vc", 2) == 0)
5749 monitor_device = "stdio";
5752 #ifndef _WIN32
5753 if (daemonize) {
5754 pid_t pid;
5756 if (pipe(fds) == -1)
5757 exit(1);
5759 pid = fork();
5760 if (pid > 0) {
5761 uint8_t status;
5762 ssize_t len;
5764 close(fds[1]);
5766 again:
5767 len = read(fds[0], &status, 1);
5768 if (len == -1 && (errno == EINTR))
5769 goto again;
5771 if (len != 1)
5772 exit(1);
5773 else if (status == 1) {
5774 fprintf(stderr, "Could not acquire pidfile\n");
5775 exit(1);
5776 } else
5777 exit(0);
5778 } else if (pid < 0)
5779 exit(1);
5781 setsid();
5783 pid = fork();
5784 if (pid > 0)
5785 exit(0);
5786 else if (pid < 0)
5787 exit(1);
5789 umask(027);
5791 signal(SIGTSTP, SIG_IGN);
5792 signal(SIGTTOU, SIG_IGN);
5793 signal(SIGTTIN, SIG_IGN);
5796 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5797 if (daemonize) {
5798 uint8_t status = 1;
5799 write(fds[1], &status, 1);
5800 } else
5801 fprintf(stderr, "Could not acquire pid file\n");
5802 exit(1);
5804 #endif
5806 #ifdef CONFIG_KQEMU
5807 if (smp_cpus > 1)
5808 kqemu_allowed = 0;
5809 #endif
5810 if (qemu_init_main_loop()) {
5811 fprintf(stderr, "qemu_init_main_loop failed\n");
5812 exit(1);
5814 linux_boot = (kernel_filename != NULL);
5816 if (!linux_boot && *kernel_cmdline != '\0') {
5817 fprintf(stderr, "-append only allowed with -kernel option\n");
5818 exit(1);
5821 if (!linux_boot && initrd_filename != NULL) {
5822 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5823 exit(1);
5826 /* boot to floppy or the default cd if no hard disk defined yet */
5827 if (!boot_devices[0]) {
5828 boot_devices = "cad";
5830 setvbuf(stdout, NULL, _IOLBF, 0);
5832 init_timers();
5833 if (init_timer_alarm() < 0) {
5834 fprintf(stderr, "could not initialize alarm timer\n");
5835 exit(1);
5837 if (use_icount && icount_time_shift < 0) {
5838 use_icount = 2;
5839 /* 125MIPS seems a reasonable initial guess at the guest speed.
5840 It will be corrected fairly quickly anyway. */
5841 icount_time_shift = 3;
5842 init_icount_adjust();
5845 #ifdef _WIN32
5846 socket_init();
5847 #endif
5849 /* init network clients */
5850 if (nb_net_clients == 0) {
5851 /* if no clients, we use a default config */
5852 net_clients[nb_net_clients++] = "nic";
5853 #ifdef CONFIG_SLIRP
5854 net_clients[nb_net_clients++] = "user";
5855 #endif
5858 for(i = 0;i < nb_net_clients; i++) {
5859 if (net_client_parse(net_clients[i]) < 0)
5860 exit(1);
5863 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5864 net_set_boot_mask(net_boot);
5866 net_client_check();
5868 /* init the bluetooth world */
5869 for (i = 0; i < nb_bt_opts; i++)
5870 if (bt_parse(bt_opts[i]))
5871 exit(1);
5873 /* init the memory */
5874 if (ram_size == 0)
5875 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5877 #ifdef CONFIG_KQEMU
5878 /* FIXME: This is a nasty hack because kqemu can't cope with dynamic
5879 guest ram allocation. It needs to go away. */
5880 if (kqemu_allowed) {
5881 kqemu_phys_ram_size = ram_size + 8 * 1024 * 1024 + 4 * 1024 * 1024;
5882 kqemu_phys_ram_base = qemu_vmalloc(kqemu_phys_ram_size);
5883 if (!kqemu_phys_ram_base) {
5884 fprintf(stderr, "Could not allocate physical memory\n");
5885 exit(1);
5888 #endif
5890 /* init the dynamic translator */
5891 cpu_exec_init_all(tb_size * 1024 * 1024);
5893 bdrv_init();
5895 /* we always create the cdrom drive, even if no disk is there */
5897 if (nb_drives_opt < MAX_DRIVES)
5898 drive_add(NULL, CDROM_ALIAS);
5900 /* we always create at least one floppy */
5902 if (nb_drives_opt < MAX_DRIVES)
5903 drive_add(NULL, FD_ALIAS, 0);
5905 /* we always create one sd slot, even if no card is in it */
5907 if (nb_drives_opt < MAX_DRIVES)
5908 drive_add(NULL, SD_ALIAS);
5910 /* open the virtual block devices */
5912 for(i = 0; i < nb_drives_opt; i++)
5913 if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5914 exit(1);
5916 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5917 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5919 #ifndef _WIN32
5920 /* must be after terminal init, SDL library changes signal handlers */
5921 sighandler_setup();
5922 #endif
5924 /* Maintain compatibility with multiple stdio monitors */
5925 if (!strcmp(monitor_device,"stdio")) {
5926 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5927 const char *devname = serial_devices[i];
5928 if (devname && !strcmp(devname,"mon:stdio")) {
5929 monitor_device = NULL;
5930 break;
5931 } else if (devname && !strcmp(devname,"stdio")) {
5932 monitor_device = NULL;
5933 serial_devices[i] = "mon:stdio";
5934 break;
5939 if (nb_numa_nodes > 0) {
5940 int i;
5942 if (nb_numa_nodes > smp_cpus) {
5943 nb_numa_nodes = smp_cpus;
5946 /* If no memory size if given for any node, assume the default case
5947 * and distribute the available memory equally across all nodes
5949 for (i = 0; i < nb_numa_nodes; i++) {
5950 if (node_mem[i] != 0)
5951 break;
5953 if (i == nb_numa_nodes) {
5954 uint64_t usedmem = 0;
5956 /* On Linux, the each node's border has to be 8MB aligned,
5957 * the final node gets the rest.
5959 for (i = 0; i < nb_numa_nodes - 1; i++) {
5960 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5961 usedmem += node_mem[i];
5963 node_mem[i] = ram_size - usedmem;
5966 for (i = 0; i < nb_numa_nodes; i++) {
5967 if (node_cpumask[i] != 0)
5968 break;
5970 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5971 * must cope with this anyway, because there are BIOSes out there in
5972 * real machines which also use this scheme.
5974 if (i == nb_numa_nodes) {
5975 for (i = 0; i < smp_cpus; i++) {
5976 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5981 if (kvm_enabled()) {
5982 int ret;
5984 ret = kvm_init(smp_cpus);
5985 if (ret < 0) {
5986 fprintf(stderr, "failed to initialize KVM\n");
5987 exit(1);
5991 if (monitor_device) {
5992 monitor_hd = qemu_chr_open("monitor", monitor_device, NULL);
5993 if (!monitor_hd) {
5994 fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5995 exit(1);
5999 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
6000 const char *devname = serial_devices[i];
6001 if (devname && strcmp(devname, "none")) {
6002 char label[32];
6003 snprintf(label, sizeof(label), "serial%d", i);
6004 serial_hds[i] = qemu_chr_open(label, devname, NULL);
6005 if (!serial_hds[i]) {
6006 fprintf(stderr, "qemu: could not open serial device '%s'\n",
6007 devname);
6008 exit(1);
6013 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6014 const char *devname = parallel_devices[i];
6015 if (devname && strcmp(devname, "none")) {
6016 char label[32];
6017 snprintf(label, sizeof(label), "parallel%d", i);
6018 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
6019 if (!parallel_hds[i]) {
6020 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
6021 devname);
6022 exit(1);
6027 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6028 const char *devname = virtio_consoles[i];
6029 if (devname && strcmp(devname, "none")) {
6030 char label[32];
6031 snprintf(label, sizeof(label), "virtcon%d", i);
6032 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
6033 if (!virtcon_hds[i]) {
6034 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
6035 devname);
6036 exit(1);
6041 module_call_init(MODULE_INIT_DEVICE);
6043 machine->init(ram_size, boot_devices,
6044 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
6047 for (env = first_cpu; env != NULL; env = env->next_cpu) {
6048 for (i = 0; i < nb_numa_nodes; i++) {
6049 if (node_cpumask[i] & (1 << env->cpu_index)) {
6050 env->numa_node = i;
6055 current_machine = machine;
6057 /* init USB devices */
6058 if (usb_enabled) {
6059 for(i = 0; i < usb_devices_index; i++) {
6060 if (usb_device_add(usb_devices[i], 0) < 0) {
6061 fprintf(stderr, "Warning: could not add USB device %s\n",
6062 usb_devices[i]);
6067 if (!display_state)
6068 dumb_display_init();
6069 /* just use the first displaystate for the moment */
6070 ds = display_state;
6072 if (display_type == DT_DEFAULT) {
6073 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
6074 display_type = DT_SDL;
6075 #else
6076 display_type = DT_VNC;
6077 vnc_display = "localhost:0,to=99";
6078 show_vnc_port = 1;
6079 #endif
6083 switch (display_type) {
6084 case DT_NOGRAPHIC:
6085 break;
6086 #if defined(CONFIG_CURSES)
6087 case DT_CURSES:
6088 curses_display_init(ds, full_screen);
6089 break;
6090 #endif
6091 #if defined(CONFIG_SDL)
6092 case DT_SDL:
6093 sdl_display_init(ds, full_screen, no_frame);
6094 break;
6095 #elif defined(CONFIG_COCOA)
6096 case DT_SDL:
6097 cocoa_display_init(ds, full_screen);
6098 break;
6099 #endif
6100 case DT_VNC:
6101 vnc_display_init(ds);
6102 if (vnc_display_open(ds, vnc_display) < 0)
6103 exit(1);
6105 if (show_vnc_port) {
6106 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
6108 break;
6109 default:
6110 break;
6112 dpy_resize(ds);
6114 dcl = ds->listeners;
6115 while (dcl != NULL) {
6116 if (dcl->dpy_refresh != NULL) {
6117 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
6118 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
6120 dcl = dcl->next;
6123 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
6124 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
6125 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
6128 text_consoles_set_display(display_state);
6129 qemu_chr_initial_reset();
6131 if (monitor_device && monitor_hd)
6132 monitor_init(monitor_hd, MONITOR_USE_READLINE | MONITOR_IS_DEFAULT);
6134 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
6135 const char *devname = serial_devices[i];
6136 if (devname && strcmp(devname, "none")) {
6137 if (strstart(devname, "vc", 0))
6138 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
6142 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
6143 const char *devname = parallel_devices[i];
6144 if (devname && strcmp(devname, "none")) {
6145 if (strstart(devname, "vc", 0))
6146 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
6150 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6151 const char *devname = virtio_consoles[i];
6152 if (virtcon_hds[i] && devname) {
6153 if (strstart(devname, "vc", 0))
6154 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
6158 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6159 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6160 gdbstub_dev);
6161 exit(1);
6164 if (loadvm)
6165 do_loadvm(cur_mon, loadvm);
6167 if (incoming) {
6168 autostart = 0; /* fixme how to deal with -daemonize */
6169 qemu_start_incoming_migration(incoming);
6172 if (autostart)
6173 vm_start();
6175 #ifndef _WIN32
6176 if (daemonize) {
6177 uint8_t status = 0;
6178 ssize_t len;
6180 again1:
6181 len = write(fds[1], &status, 1);
6182 if (len == -1 && (errno == EINTR))
6183 goto again1;
6185 if (len != 1)
6186 exit(1);
6188 chdir("/");
6189 TFR(fd = open("/dev/null", O_RDWR));
6190 if (fd == -1)
6191 exit(1);
6194 if (run_as) {
6195 pwd = getpwnam(run_as);
6196 if (!pwd) {
6197 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6198 exit(1);
6202 if (chroot_dir) {
6203 if (chroot(chroot_dir) < 0) {
6204 fprintf(stderr, "chroot failed\n");
6205 exit(1);
6207 chdir("/");
6210 if (run_as) {
6211 if (setgid(pwd->pw_gid) < 0) {
6212 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6213 exit(1);
6215 if (setuid(pwd->pw_uid) < 0) {
6216 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6217 exit(1);
6219 if (setuid(0) != -1) {
6220 fprintf(stderr, "Dropping privileges failed\n");
6221 exit(1);
6225 if (daemonize) {
6226 dup2(fd, 0);
6227 dup2(fd, 1);
6228 dup2(fd, 2);
6230 close(fd);
6232 #endif
6234 main_loop();
6235 quit_timers();
6236 net_cleanup();
6238 return 0;