2 * Block driver for the QCOW version 2 format
4 * Copyright (c) 2004-2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
26 #include "qapi/error.h"
27 #include "qemu-common.h"
28 #include "block/block_int.h"
29 #include "block/qcow2.h"
30 #include "qemu/range.h"
31 #include "qemu/bswap.h"
32 #include "qemu/cutils.h"
34 static int64_t alloc_clusters_noref(BlockDriverState
*bs
, uint64_t size
);
35 static int QEMU_WARN_UNUSED_RESULT
update_refcount(BlockDriverState
*bs
,
36 int64_t offset
, int64_t length
, uint64_t addend
,
37 bool decrease
, enum qcow2_discard_type type
);
39 static uint64_t get_refcount_ro0(const void *refcount_array
, uint64_t index
);
40 static uint64_t get_refcount_ro1(const void *refcount_array
, uint64_t index
);
41 static uint64_t get_refcount_ro2(const void *refcount_array
, uint64_t index
);
42 static uint64_t get_refcount_ro3(const void *refcount_array
, uint64_t index
);
43 static uint64_t get_refcount_ro4(const void *refcount_array
, uint64_t index
);
44 static uint64_t get_refcount_ro5(const void *refcount_array
, uint64_t index
);
45 static uint64_t get_refcount_ro6(const void *refcount_array
, uint64_t index
);
47 static void set_refcount_ro0(void *refcount_array
, uint64_t index
,
49 static void set_refcount_ro1(void *refcount_array
, uint64_t index
,
51 static void set_refcount_ro2(void *refcount_array
, uint64_t index
,
53 static void set_refcount_ro3(void *refcount_array
, uint64_t index
,
55 static void set_refcount_ro4(void *refcount_array
, uint64_t index
,
57 static void set_refcount_ro5(void *refcount_array
, uint64_t index
,
59 static void set_refcount_ro6(void *refcount_array
, uint64_t index
,
63 static Qcow2GetRefcountFunc
*const get_refcount_funcs
[] = {
73 static Qcow2SetRefcountFunc
*const set_refcount_funcs
[] = {
84 /*********************************************************/
85 /* refcount handling */
87 static void update_max_refcount_table_index(BDRVQcow2State
*s
)
89 unsigned i
= s
->refcount_table_size
- 1;
90 while (i
> 0 && (s
->refcount_table
[i
] & REFT_OFFSET_MASK
) == 0) {
93 /* Set s->max_refcount_table_index to the index of the last used entry */
94 s
->max_refcount_table_index
= i
;
97 int qcow2_refcount_init(BlockDriverState
*bs
)
99 BDRVQcow2State
*s
= bs
->opaque
;
100 unsigned int refcount_table_size2
, i
;
103 assert(s
->refcount_order
>= 0 && s
->refcount_order
<= 6);
105 s
->get_refcount
= get_refcount_funcs
[s
->refcount_order
];
106 s
->set_refcount
= set_refcount_funcs
[s
->refcount_order
];
108 assert(s
->refcount_table_size
<= INT_MAX
/ sizeof(uint64_t));
109 refcount_table_size2
= s
->refcount_table_size
* sizeof(uint64_t);
110 s
->refcount_table
= g_try_malloc(refcount_table_size2
);
112 if (s
->refcount_table_size
> 0) {
113 if (s
->refcount_table
== NULL
) {
117 BLKDBG_EVENT(bs
->file
, BLKDBG_REFTABLE_LOAD
);
118 ret
= bdrv_pread(bs
->file
, s
->refcount_table_offset
,
119 s
->refcount_table
, refcount_table_size2
);
123 for(i
= 0; i
< s
->refcount_table_size
; i
++)
124 be64_to_cpus(&s
->refcount_table
[i
]);
125 update_max_refcount_table_index(s
);
132 void qcow2_refcount_close(BlockDriverState
*bs
)
134 BDRVQcow2State
*s
= bs
->opaque
;
135 g_free(s
->refcount_table
);
139 static uint64_t get_refcount_ro0(const void *refcount_array
, uint64_t index
)
141 return (((const uint8_t *)refcount_array
)[index
/ 8] >> (index
% 8)) & 0x1;
144 static void set_refcount_ro0(void *refcount_array
, uint64_t index
,
147 assert(!(value
>> 1));
148 ((uint8_t *)refcount_array
)[index
/ 8] &= ~(0x1 << (index
% 8));
149 ((uint8_t *)refcount_array
)[index
/ 8] |= value
<< (index
% 8);
152 static uint64_t get_refcount_ro1(const void *refcount_array
, uint64_t index
)
154 return (((const uint8_t *)refcount_array
)[index
/ 4] >> (2 * (index
% 4)))
158 static void set_refcount_ro1(void *refcount_array
, uint64_t index
,
161 assert(!(value
>> 2));
162 ((uint8_t *)refcount_array
)[index
/ 4] &= ~(0x3 << (2 * (index
% 4)));
163 ((uint8_t *)refcount_array
)[index
/ 4] |= value
<< (2 * (index
% 4));
166 static uint64_t get_refcount_ro2(const void *refcount_array
, uint64_t index
)
168 return (((const uint8_t *)refcount_array
)[index
/ 2] >> (4 * (index
% 2)))
172 static void set_refcount_ro2(void *refcount_array
, uint64_t index
,
175 assert(!(value
>> 4));
176 ((uint8_t *)refcount_array
)[index
/ 2] &= ~(0xf << (4 * (index
% 2)));
177 ((uint8_t *)refcount_array
)[index
/ 2] |= value
<< (4 * (index
% 2));
180 static uint64_t get_refcount_ro3(const void *refcount_array
, uint64_t index
)
182 return ((const uint8_t *)refcount_array
)[index
];
185 static void set_refcount_ro3(void *refcount_array
, uint64_t index
,
188 assert(!(value
>> 8));
189 ((uint8_t *)refcount_array
)[index
] = value
;
192 static uint64_t get_refcount_ro4(const void *refcount_array
, uint64_t index
)
194 return be16_to_cpu(((const uint16_t *)refcount_array
)[index
]);
197 static void set_refcount_ro4(void *refcount_array
, uint64_t index
,
200 assert(!(value
>> 16));
201 ((uint16_t *)refcount_array
)[index
] = cpu_to_be16(value
);
204 static uint64_t get_refcount_ro5(const void *refcount_array
, uint64_t index
)
206 return be32_to_cpu(((const uint32_t *)refcount_array
)[index
]);
209 static void set_refcount_ro5(void *refcount_array
, uint64_t index
,
212 assert(!(value
>> 32));
213 ((uint32_t *)refcount_array
)[index
] = cpu_to_be32(value
);
216 static uint64_t get_refcount_ro6(const void *refcount_array
, uint64_t index
)
218 return be64_to_cpu(((const uint64_t *)refcount_array
)[index
]);
221 static void set_refcount_ro6(void *refcount_array
, uint64_t index
,
224 ((uint64_t *)refcount_array
)[index
] = cpu_to_be64(value
);
228 static int load_refcount_block(BlockDriverState
*bs
,
229 int64_t refcount_block_offset
,
230 void **refcount_block
)
232 BDRVQcow2State
*s
= bs
->opaque
;
234 BLKDBG_EVENT(bs
->file
, BLKDBG_REFBLOCK_LOAD
);
235 return qcow2_cache_get(bs
, s
->refcount_block_cache
, refcount_block_offset
,
240 * Retrieves the refcount of the cluster given by its index and stores it in
241 * *refcount. Returns 0 on success and -errno on failure.
243 int qcow2_get_refcount(BlockDriverState
*bs
, int64_t cluster_index
,
246 BDRVQcow2State
*s
= bs
->opaque
;
247 uint64_t refcount_table_index
, block_index
;
248 int64_t refcount_block_offset
;
250 void *refcount_block
;
252 refcount_table_index
= cluster_index
>> s
->refcount_block_bits
;
253 if (refcount_table_index
>= s
->refcount_table_size
) {
257 refcount_block_offset
=
258 s
->refcount_table
[refcount_table_index
] & REFT_OFFSET_MASK
;
259 if (!refcount_block_offset
) {
264 if (offset_into_cluster(s
, refcount_block_offset
)) {
265 qcow2_signal_corruption(bs
, true, -1, -1, "Refblock offset %#" PRIx64
266 " unaligned (reftable index: %#" PRIx64
")",
267 refcount_block_offset
, refcount_table_index
);
271 ret
= qcow2_cache_get(bs
, s
->refcount_block_cache
, refcount_block_offset
,
277 block_index
= cluster_index
& (s
->refcount_block_size
- 1);
278 *refcount
= s
->get_refcount(refcount_block
, block_index
);
280 qcow2_cache_put(bs
, s
->refcount_block_cache
, &refcount_block
);
285 /* Checks if two offsets are described by the same refcount block */
286 static int in_same_refcount_block(BDRVQcow2State
*s
, uint64_t offset_a
,
289 uint64_t block_a
= offset_a
>> (s
->cluster_bits
+ s
->refcount_block_bits
);
290 uint64_t block_b
= offset_b
>> (s
->cluster_bits
+ s
->refcount_block_bits
);
292 return (block_a
== block_b
);
296 * Loads a refcount block. If it doesn't exist yet, it is allocated first
297 * (including growing the refcount table if needed).
299 * Returns 0 on success or -errno in error case
301 static int alloc_refcount_block(BlockDriverState
*bs
,
302 int64_t cluster_index
, void **refcount_block
)
304 BDRVQcow2State
*s
= bs
->opaque
;
305 unsigned int refcount_table_index
;
308 BLKDBG_EVENT(bs
->file
, BLKDBG_REFBLOCK_ALLOC
);
310 /* Find the refcount block for the given cluster */
311 refcount_table_index
= cluster_index
>> s
->refcount_block_bits
;
313 if (refcount_table_index
< s
->refcount_table_size
) {
315 uint64_t refcount_block_offset
=
316 s
->refcount_table
[refcount_table_index
] & REFT_OFFSET_MASK
;
318 /* If it's already there, we're done */
319 if (refcount_block_offset
) {
320 if (offset_into_cluster(s
, refcount_block_offset
)) {
321 qcow2_signal_corruption(bs
, true, -1, -1, "Refblock offset %#"
322 PRIx64
" unaligned (reftable index: "
323 "%#x)", refcount_block_offset
,
324 refcount_table_index
);
328 return load_refcount_block(bs
, refcount_block_offset
,
334 * If we came here, we need to allocate something. Something is at least
335 * a cluster for the new refcount block. It may also include a new refcount
336 * table if the old refcount table is too small.
338 * Note that allocating clusters here needs some special care:
340 * - We can't use the normal qcow2_alloc_clusters(), it would try to
341 * increase the refcount and very likely we would end up with an endless
342 * recursion. Instead we must place the refcount blocks in a way that
343 * they can describe them themselves.
345 * - We need to consider that at this point we are inside update_refcounts
346 * and potentially doing an initial refcount increase. This means that
347 * some clusters have already been allocated by the caller, but their
348 * refcount isn't accurate yet. If we allocate clusters for metadata, we
349 * need to return -EAGAIN to signal the caller that it needs to restart
350 * the search for free clusters.
352 * - alloc_clusters_noref and qcow2_free_clusters may load a different
353 * refcount block into the cache
356 *refcount_block
= NULL
;
358 /* We write to the refcount table, so we might depend on L2 tables */
359 ret
= qcow2_cache_flush(bs
, s
->l2_table_cache
);
364 /* Allocate the refcount block itself and mark it as used */
365 int64_t new_block
= alloc_clusters_noref(bs
, s
->cluster_size
);
371 fprintf(stderr
, "qcow2: Allocate refcount block %d for %" PRIx64
373 refcount_table_index
, cluster_index
<< s
->cluster_bits
, new_block
);
376 if (in_same_refcount_block(s
, new_block
, cluster_index
<< s
->cluster_bits
)) {
377 /* Zero the new refcount block before updating it */
378 ret
= qcow2_cache_get_empty(bs
, s
->refcount_block_cache
, new_block
,
384 memset(*refcount_block
, 0, s
->cluster_size
);
386 /* The block describes itself, need to update the cache */
387 int block_index
= (new_block
>> s
->cluster_bits
) &
388 (s
->refcount_block_size
- 1);
389 s
->set_refcount(*refcount_block
, block_index
, 1);
391 /* Described somewhere else. This can recurse at most twice before we
392 * arrive at a block that describes itself. */
393 ret
= update_refcount(bs
, new_block
, s
->cluster_size
, 1, false,
394 QCOW2_DISCARD_NEVER
);
399 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
404 /* Initialize the new refcount block only after updating its refcount,
405 * update_refcount uses the refcount cache itself */
406 ret
= qcow2_cache_get_empty(bs
, s
->refcount_block_cache
, new_block
,
412 memset(*refcount_block
, 0, s
->cluster_size
);
415 /* Now the new refcount block needs to be written to disk */
416 BLKDBG_EVENT(bs
->file
, BLKDBG_REFBLOCK_ALLOC_WRITE
);
417 qcow2_cache_entry_mark_dirty(bs
, s
->refcount_block_cache
, *refcount_block
);
418 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
423 /* If the refcount table is big enough, just hook the block up there */
424 if (refcount_table_index
< s
->refcount_table_size
) {
425 uint64_t data64
= cpu_to_be64(new_block
);
426 BLKDBG_EVENT(bs
->file
, BLKDBG_REFBLOCK_ALLOC_HOOKUP
);
427 ret
= bdrv_pwrite_sync(bs
->file
,
428 s
->refcount_table_offset
+ refcount_table_index
* sizeof(uint64_t),
429 &data64
, sizeof(data64
));
434 s
->refcount_table
[refcount_table_index
] = new_block
;
435 /* If there's a hole in s->refcount_table then it can happen
436 * that refcount_table_index < s->max_refcount_table_index */
437 s
->max_refcount_table_index
=
438 MAX(s
->max_refcount_table_index
, refcount_table_index
);
440 /* The new refcount block may be where the caller intended to put its
441 * data, so let it restart the search. */
445 qcow2_cache_put(bs
, s
->refcount_block_cache
, refcount_block
);
448 * If we come here, we need to grow the refcount table. Again, a new
449 * refcount table needs some space and we can't simply allocate to avoid
452 * Therefore let's grab new refcount blocks at the end of the image, which
453 * will describe themselves and the new refcount table. This way we can
454 * reference them only in the new table and do the switch to the new
455 * refcount table at once without producing an inconsistent state in
458 BLKDBG_EVENT(bs
->file
, BLKDBG_REFTABLE_GROW
);
460 /* Calculate the number of refcount blocks needed so far; this will be the
461 * basis for calculating the index of the first cluster used for the
462 * self-describing refcount structures which we are about to create.
464 * Because we reached this point, there cannot be any refcount entries for
465 * cluster_index or higher indices yet. However, because new_block has been
466 * allocated to describe that cluster (and it will assume this role later
467 * on), we cannot use that index; also, new_block may actually have a higher
468 * cluster index than cluster_index, so it needs to be taken into account
469 * here (and 1 needs to be added to its value because that cluster is used).
471 uint64_t blocks_used
= DIV_ROUND_UP(MAX(cluster_index
+ 1,
472 (new_block
>> s
->cluster_bits
) + 1),
473 s
->refcount_block_size
);
475 /* Create the new refcount table and blocks */
476 uint64_t meta_offset
= (blocks_used
* s
->refcount_block_size
) *
479 ret
= qcow2_refcount_area(bs
, meta_offset
, 0, false,
480 refcount_table_index
, new_block
);
485 ret
= load_refcount_block(bs
, new_block
, refcount_block
);
490 /* If we were trying to do the initial refcount update for some cluster
491 * allocation, we might have used the same clusters to store newly
492 * allocated metadata. Make the caller search some new space. */
496 if (*refcount_block
!= NULL
) {
497 qcow2_cache_put(bs
, s
->refcount_block_cache
, refcount_block
);
503 * Starting at @start_offset, this function creates new self-covering refcount
504 * structures: A new refcount table and refcount blocks which cover all of
505 * themselves, and a number of @additional_clusters beyond their end.
506 * @start_offset must be at the end of the image file, that is, there must be
507 * only empty space beyond it.
508 * If @exact_size is false, the refcount table will have 50 % more entries than
509 * necessary so it will not need to grow again soon.
510 * If @new_refblock_offset is not zero, it contains the offset of a refcount
511 * block that should be entered into the new refcount table at index
512 * @new_refblock_index.
514 * Returns: The offset after the new refcount structures (i.e. where the
515 * @additional_clusters may be placed) on success, -errno on error.
517 int64_t qcow2_refcount_area(BlockDriverState
*bs
, uint64_t start_offset
,
518 uint64_t additional_clusters
, bool exact_size
,
519 int new_refblock_index
,
520 uint64_t new_refblock_offset
)
522 BDRVQcow2State
*s
= bs
->opaque
;
523 uint64_t total_refblock_count_u64
, additional_refblock_count
;
524 int total_refblock_count
, table_size
, area_reftable_index
, table_clusters
;
526 uint64_t table_offset
, block_offset
, end_offset
;
530 assert(!(start_offset
% s
->cluster_size
));
532 qcow2_refcount_metadata_size(start_offset
/ s
->cluster_size
+
534 s
->cluster_size
, s
->refcount_order
,
535 !exact_size
, &total_refblock_count_u64
);
536 if (total_refblock_count_u64
> QCOW_MAX_REFTABLE_SIZE
) {
539 total_refblock_count
= total_refblock_count_u64
;
541 /* Index in the refcount table of the first refcount block to cover the area
542 * of refcount structures we are about to create; we know that
543 * @total_refblock_count can cover @start_offset, so this will definitely
544 * fit into an int. */
545 area_reftable_index
= (start_offset
/ s
->cluster_size
) /
546 s
->refcount_block_size
;
549 table_size
= total_refblock_count
;
551 table_size
= total_refblock_count
+
552 DIV_ROUND_UP(total_refblock_count
, 2);
554 /* The qcow2 file can only store the reftable size in number of clusters */
555 table_size
= ROUND_UP(table_size
, s
->cluster_size
/ sizeof(uint64_t));
556 table_clusters
= (table_size
* sizeof(uint64_t)) / s
->cluster_size
;
558 if (table_size
> QCOW_MAX_REFTABLE_SIZE
) {
562 new_table
= g_try_new0(uint64_t, table_size
);
564 assert(table_size
> 0);
565 if (new_table
== NULL
) {
570 /* Fill the new refcount table */
571 if (table_size
> s
->max_refcount_table_index
) {
572 /* We're actually growing the reftable */
573 memcpy(new_table
, s
->refcount_table
,
574 (s
->max_refcount_table_index
+ 1) * sizeof(uint64_t));
576 /* Improbable case: We're shrinking the reftable. However, the caller
577 * has assured us that there is only empty space beyond @start_offset,
578 * so we can simply drop all of the refblocks that won't fit into the
580 memcpy(new_table
, s
->refcount_table
, table_size
* sizeof(uint64_t));
583 if (new_refblock_offset
) {
584 assert(new_refblock_index
< total_refblock_count
);
585 new_table
[new_refblock_index
] = new_refblock_offset
;
588 /* Count how many new refblocks we have to create */
589 additional_refblock_count
= 0;
590 for (i
= area_reftable_index
; i
< total_refblock_count
; i
++) {
592 additional_refblock_count
++;
596 table_offset
= start_offset
+ additional_refblock_count
* s
->cluster_size
;
597 end_offset
= table_offset
+ table_clusters
* s
->cluster_size
;
599 /* Fill the refcount blocks, and create new ones, if necessary */
600 block_offset
= start_offset
;
601 for (i
= area_reftable_index
; i
< total_refblock_count
; i
++) {
603 uint64_t first_offset_covered
;
605 /* Reuse an existing refblock if possible, create a new one otherwise */
607 ret
= qcow2_cache_get(bs
, s
->refcount_block_cache
, new_table
[i
],
613 ret
= qcow2_cache_get_empty(bs
, s
->refcount_block_cache
,
614 block_offset
, &refblock_data
);
618 memset(refblock_data
, 0, s
->cluster_size
);
619 qcow2_cache_entry_mark_dirty(bs
, s
->refcount_block_cache
,
622 new_table
[i
] = block_offset
;
623 block_offset
+= s
->cluster_size
;
626 /* First host offset covered by this refblock */
627 first_offset_covered
= (uint64_t)i
* s
->refcount_block_size
*
629 if (first_offset_covered
< end_offset
) {
632 /* Set the refcount of all of the new refcount structures to 1 */
634 if (first_offset_covered
< start_offset
) {
635 assert(i
== area_reftable_index
);
636 j
= (start_offset
- first_offset_covered
) / s
->cluster_size
;
637 assert(j
< s
->refcount_block_size
);
642 end_index
= MIN((end_offset
- first_offset_covered
) /
644 s
->refcount_block_size
);
646 for (; j
< end_index
; j
++) {
647 /* The caller guaranteed us this space would be empty */
648 assert(s
->get_refcount(refblock_data
, j
) == 0);
649 s
->set_refcount(refblock_data
, j
, 1);
652 qcow2_cache_entry_mark_dirty(bs
, s
->refcount_block_cache
,
656 qcow2_cache_put(bs
, s
->refcount_block_cache
, &refblock_data
);
659 assert(block_offset
== table_offset
);
661 /* Write refcount blocks to disk */
662 BLKDBG_EVENT(bs
->file
, BLKDBG_REFBLOCK_ALLOC_WRITE_BLOCKS
);
663 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
668 /* Write refcount table to disk */
669 for (i
= 0; i
< total_refblock_count
; i
++) {
670 cpu_to_be64s(&new_table
[i
]);
673 BLKDBG_EVENT(bs
->file
, BLKDBG_REFBLOCK_ALLOC_WRITE_TABLE
);
674 ret
= bdrv_pwrite_sync(bs
->file
, table_offset
, new_table
,
675 table_size
* sizeof(uint64_t));
680 for (i
= 0; i
< total_refblock_count
; i
++) {
681 be64_to_cpus(&new_table
[i
]);
684 /* Hook up the new refcount table in the qcow2 header */
689 data
.d64
= cpu_to_be64(table_offset
);
690 data
.d32
= cpu_to_be32(table_clusters
);
691 BLKDBG_EVENT(bs
->file
, BLKDBG_REFBLOCK_ALLOC_SWITCH_TABLE
);
692 ret
= bdrv_pwrite_sync(bs
->file
,
693 offsetof(QCowHeader
, refcount_table_offset
),
694 &data
, sizeof(data
));
699 /* And switch it in memory */
700 uint64_t old_table_offset
= s
->refcount_table_offset
;
701 uint64_t old_table_size
= s
->refcount_table_size
;
703 g_free(s
->refcount_table
);
704 s
->refcount_table
= new_table
;
705 s
->refcount_table_size
= table_size
;
706 s
->refcount_table_offset
= table_offset
;
707 update_max_refcount_table_index(s
);
709 /* Free old table. */
710 qcow2_free_clusters(bs
, old_table_offset
, old_table_size
* sizeof(uint64_t),
711 QCOW2_DISCARD_OTHER
);
720 void qcow2_process_discards(BlockDriverState
*bs
, int ret
)
722 BDRVQcow2State
*s
= bs
->opaque
;
723 Qcow2DiscardRegion
*d
, *next
;
725 QTAILQ_FOREACH_SAFE(d
, &s
->discards
, next
, next
) {
726 QTAILQ_REMOVE(&s
->discards
, d
, next
);
728 /* Discard is optional, ignore the return value */
730 bdrv_pdiscard(bs
->file
->bs
, d
->offset
, d
->bytes
);
737 static void update_refcount_discard(BlockDriverState
*bs
,
738 uint64_t offset
, uint64_t length
)
740 BDRVQcow2State
*s
= bs
->opaque
;
741 Qcow2DiscardRegion
*d
, *p
, *next
;
743 QTAILQ_FOREACH(d
, &s
->discards
, next
) {
744 uint64_t new_start
= MIN(offset
, d
->offset
);
745 uint64_t new_end
= MAX(offset
+ length
, d
->offset
+ d
->bytes
);
747 if (new_end
- new_start
<= length
+ d
->bytes
) {
748 /* There can't be any overlap, areas ending up here have no
749 * references any more and therefore shouldn't get freed another
751 assert(d
->bytes
+ length
== new_end
- new_start
);
752 d
->offset
= new_start
;
753 d
->bytes
= new_end
- new_start
;
758 d
= g_malloc(sizeof(*d
));
759 *d
= (Qcow2DiscardRegion
) {
764 QTAILQ_INSERT_TAIL(&s
->discards
, d
, next
);
767 /* Merge discard requests if they are adjacent now */
768 QTAILQ_FOREACH_SAFE(p
, &s
->discards
, next
, next
) {
770 || p
->offset
> d
->offset
+ d
->bytes
771 || d
->offset
> p
->offset
+ p
->bytes
)
776 /* Still no overlap possible */
777 assert(p
->offset
== d
->offset
+ d
->bytes
778 || d
->offset
== p
->offset
+ p
->bytes
);
780 QTAILQ_REMOVE(&s
->discards
, p
, next
);
781 d
->offset
= MIN(d
->offset
, p
->offset
);
782 d
->bytes
+= p
->bytes
;
787 /* XXX: cache several refcount block clusters ? */
788 /* @addend is the absolute value of the addend; if @decrease is set, @addend
789 * will be subtracted from the current refcount, otherwise it will be added */
790 static int QEMU_WARN_UNUSED_RESULT
update_refcount(BlockDriverState
*bs
,
795 enum qcow2_discard_type type
)
797 BDRVQcow2State
*s
= bs
->opaque
;
798 int64_t start
, last
, cluster_offset
;
799 void *refcount_block
= NULL
;
800 int64_t old_table_index
= -1;
804 fprintf(stderr
, "update_refcount: offset=%" PRId64
" size=%" PRId64
805 " addend=%s%" PRIu64
"\n", offset
, length
, decrease
? "-" : "",
810 } else if (length
== 0) {
815 qcow2_cache_set_dependency(bs
, s
->refcount_block_cache
,
819 start
= start_of_cluster(s
, offset
);
820 last
= start_of_cluster(s
, offset
+ length
- 1);
821 for(cluster_offset
= start
; cluster_offset
<= last
;
822 cluster_offset
+= s
->cluster_size
)
826 int64_t cluster_index
= cluster_offset
>> s
->cluster_bits
;
827 int64_t table_index
= cluster_index
>> s
->refcount_block_bits
;
829 /* Load the refcount block and allocate it if needed */
830 if (table_index
!= old_table_index
) {
831 if (refcount_block
) {
832 qcow2_cache_put(bs
, s
->refcount_block_cache
, &refcount_block
);
834 ret
= alloc_refcount_block(bs
, cluster_index
, &refcount_block
);
839 old_table_index
= table_index
;
841 qcow2_cache_entry_mark_dirty(bs
, s
->refcount_block_cache
,
844 /* we can update the count and save it */
845 block_index
= cluster_index
& (s
->refcount_block_size
- 1);
847 refcount
= s
->get_refcount(refcount_block
, block_index
);
848 if (decrease
? (refcount
- addend
> refcount
)
849 : (refcount
+ addend
< refcount
||
850 refcount
+ addend
> s
->refcount_max
))
860 if (refcount
== 0 && cluster_index
< s
->free_cluster_index
) {
861 s
->free_cluster_index
= cluster_index
;
863 s
->set_refcount(refcount_block
, block_index
, refcount
);
868 table
= qcow2_cache_is_table_offset(bs
, s
->refcount_block_cache
,
871 qcow2_cache_put(bs
, s
->refcount_block_cache
, &refcount_block
);
872 qcow2_cache_discard(bs
, s
->refcount_block_cache
, table
);
875 table
= qcow2_cache_is_table_offset(bs
, s
->l2_table_cache
, offset
);
877 qcow2_cache_discard(bs
, s
->l2_table_cache
, table
);
880 if (s
->discard_passthrough
[type
]) {
881 update_refcount_discard(bs
, cluster_offset
, s
->cluster_size
);
888 if (!s
->cache_discards
) {
889 qcow2_process_discards(bs
, ret
);
892 /* Write last changed block to disk */
893 if (refcount_block
) {
894 qcow2_cache_put(bs
, s
->refcount_block_cache
, &refcount_block
);
898 * Try do undo any updates if an error is returned (This may succeed in
899 * some cases like ENOSPC for allocating a new refcount block)
903 dummy
= update_refcount(bs
, offset
, cluster_offset
- offset
, addend
,
904 !decrease
, QCOW2_DISCARD_NEVER
);
912 * Increases or decreases the refcount of a given cluster.
914 * @addend is the absolute value of the addend; if @decrease is set, @addend
915 * will be subtracted from the current refcount, otherwise it will be added.
917 * On success 0 is returned; on failure -errno is returned.
919 int qcow2_update_cluster_refcount(BlockDriverState
*bs
,
920 int64_t cluster_index
,
921 uint64_t addend
, bool decrease
,
922 enum qcow2_discard_type type
)
924 BDRVQcow2State
*s
= bs
->opaque
;
927 ret
= update_refcount(bs
, cluster_index
<< s
->cluster_bits
, 1, addend
,
938 /*********************************************************/
939 /* cluster allocation functions */
943 /* return < 0 if error */
944 static int64_t alloc_clusters_noref(BlockDriverState
*bs
, uint64_t size
)
946 BDRVQcow2State
*s
= bs
->opaque
;
947 uint64_t i
, nb_clusters
, refcount
;
950 /* We can't allocate clusters if they may still be queued for discard. */
951 if (s
->cache_discards
) {
952 qcow2_process_discards(bs
, 0);
955 nb_clusters
= size_to_clusters(s
, size
);
957 for(i
= 0; i
< nb_clusters
; i
++) {
958 uint64_t next_cluster_index
= s
->free_cluster_index
++;
959 ret
= qcow2_get_refcount(bs
, next_cluster_index
, &refcount
);
963 } else if (refcount
!= 0) {
968 /* Make sure that all offsets in the "allocated" range are representable
970 if (s
->free_cluster_index
> 0 &&
971 s
->free_cluster_index
- 1 > (INT64_MAX
>> s
->cluster_bits
))
977 fprintf(stderr
, "alloc_clusters: size=%" PRId64
" -> %" PRId64
"\n",
979 (s
->free_cluster_index
- nb_clusters
) << s
->cluster_bits
);
981 return (s
->free_cluster_index
- nb_clusters
) << s
->cluster_bits
;
984 int64_t qcow2_alloc_clusters(BlockDriverState
*bs
, uint64_t size
)
989 BLKDBG_EVENT(bs
->file
, BLKDBG_CLUSTER_ALLOC
);
991 offset
= alloc_clusters_noref(bs
, size
);
996 ret
= update_refcount(bs
, offset
, size
, 1, false, QCOW2_DISCARD_NEVER
);
997 } while (ret
== -EAGAIN
);
1006 int64_t qcow2_alloc_clusters_at(BlockDriverState
*bs
, uint64_t offset
,
1007 int64_t nb_clusters
)
1009 BDRVQcow2State
*s
= bs
->opaque
;
1010 uint64_t cluster_index
, refcount
;
1014 assert(nb_clusters
>= 0);
1015 if (nb_clusters
== 0) {
1020 /* Check how many clusters there are free */
1021 cluster_index
= offset
>> s
->cluster_bits
;
1022 for(i
= 0; i
< nb_clusters
; i
++) {
1023 ret
= qcow2_get_refcount(bs
, cluster_index
++, &refcount
);
1026 } else if (refcount
!= 0) {
1031 /* And then allocate them */
1032 ret
= update_refcount(bs
, offset
, i
<< s
->cluster_bits
, 1, false,
1033 QCOW2_DISCARD_NEVER
);
1034 } while (ret
== -EAGAIN
);
1043 /* only used to allocate compressed sectors. We try to allocate
1044 contiguous sectors. size must be <= cluster_size */
1045 int64_t qcow2_alloc_bytes(BlockDriverState
*bs
, int size
)
1047 BDRVQcow2State
*s
= bs
->opaque
;
1049 size_t free_in_cluster
;
1052 BLKDBG_EVENT(bs
->file
, BLKDBG_CLUSTER_ALLOC_BYTES
);
1053 assert(size
> 0 && size
<= s
->cluster_size
);
1054 assert(!s
->free_byte_offset
|| offset_into_cluster(s
, s
->free_byte_offset
));
1056 offset
= s
->free_byte_offset
;
1060 ret
= qcow2_get_refcount(bs
, offset
>> s
->cluster_bits
, &refcount
);
1065 if (refcount
== s
->refcount_max
) {
1070 free_in_cluster
= s
->cluster_size
- offset_into_cluster(s
, offset
);
1072 if (!offset
|| free_in_cluster
< size
) {
1073 int64_t new_cluster
= alloc_clusters_noref(bs
, s
->cluster_size
);
1074 if (new_cluster
< 0) {
1078 if (!offset
|| ROUND_UP(offset
, s
->cluster_size
) != new_cluster
) {
1079 offset
= new_cluster
;
1080 free_in_cluster
= s
->cluster_size
;
1082 free_in_cluster
+= s
->cluster_size
;
1087 ret
= update_refcount(bs
, offset
, size
, 1, false, QCOW2_DISCARD_NEVER
);
1091 } while (ret
== -EAGAIN
);
1096 /* The cluster refcount was incremented; refcount blocks must be flushed
1097 * before the caller's L2 table updates. */
1098 qcow2_cache_set_dependency(bs
, s
->l2_table_cache
, s
->refcount_block_cache
);
1100 s
->free_byte_offset
= offset
+ size
;
1101 if (!offset_into_cluster(s
, s
->free_byte_offset
)) {
1102 s
->free_byte_offset
= 0;
1108 void qcow2_free_clusters(BlockDriverState
*bs
,
1109 int64_t offset
, int64_t size
,
1110 enum qcow2_discard_type type
)
1114 BLKDBG_EVENT(bs
->file
, BLKDBG_CLUSTER_FREE
);
1115 ret
= update_refcount(bs
, offset
, size
, 1, true, type
);
1117 fprintf(stderr
, "qcow2_free_clusters failed: %s\n", strerror(-ret
));
1118 /* TODO Remember the clusters to free them later and avoid leaking */
1123 * Free a cluster using its L2 entry (handles clusters of all types, e.g.
1124 * normal cluster, compressed cluster, etc.)
1126 void qcow2_free_any_clusters(BlockDriverState
*bs
, uint64_t l2_entry
,
1127 int nb_clusters
, enum qcow2_discard_type type
)
1129 BDRVQcow2State
*s
= bs
->opaque
;
1131 switch (qcow2_get_cluster_type(l2_entry
)) {
1132 case QCOW2_CLUSTER_COMPRESSED
:
1135 nb_csectors
= ((l2_entry
>> s
->csize_shift
) &
1137 qcow2_free_clusters(bs
,
1138 (l2_entry
& s
->cluster_offset_mask
) & ~511,
1139 nb_csectors
* 512, type
);
1142 case QCOW2_CLUSTER_NORMAL
:
1143 case QCOW2_CLUSTER_ZERO_ALLOC
:
1144 if (offset_into_cluster(s
, l2_entry
& L2E_OFFSET_MASK
)) {
1145 qcow2_signal_corruption(bs
, false, -1, -1,
1146 "Cannot free unaligned cluster %#llx",
1147 l2_entry
& L2E_OFFSET_MASK
);
1149 qcow2_free_clusters(bs
, l2_entry
& L2E_OFFSET_MASK
,
1150 nb_clusters
<< s
->cluster_bits
, type
);
1153 case QCOW2_CLUSTER_ZERO_PLAIN
:
1154 case QCOW2_CLUSTER_UNALLOCATED
:
1163 /*********************************************************/
1164 /* snapshots and image creation */
1168 /* update the refcounts of snapshots and the copied flag */
1169 int qcow2_update_snapshot_refcount(BlockDriverState
*bs
,
1170 int64_t l1_table_offset
, int l1_size
, int addend
)
1172 BDRVQcow2State
*s
= bs
->opaque
;
1173 uint64_t *l1_table
, *l2_table
, l2_offset
, entry
, l1_size2
, refcount
;
1174 bool l1_allocated
= false;
1175 int64_t old_entry
, old_l2_offset
;
1176 int i
, j
, l1_modified
= 0, nb_csectors
;
1179 assert(addend
>= -1 && addend
<= 1);
1183 l1_size2
= l1_size
* sizeof(uint64_t);
1185 s
->cache_discards
= true;
1187 /* WARNING: qcow2_snapshot_goto relies on this function not using the
1188 * l1_table_offset when it is the current s->l1_table_offset! Be careful
1189 * when changing this! */
1190 if (l1_table_offset
!= s
->l1_table_offset
) {
1191 l1_table
= g_try_malloc0(align_offset(l1_size2
, 512));
1192 if (l1_size2
&& l1_table
== NULL
) {
1196 l1_allocated
= true;
1198 ret
= bdrv_pread(bs
->file
, l1_table_offset
, l1_table
, l1_size2
);
1203 for (i
= 0; i
< l1_size
; i
++) {
1204 be64_to_cpus(&l1_table
[i
]);
1207 assert(l1_size
== s
->l1_size
);
1208 l1_table
= s
->l1_table
;
1209 l1_allocated
= false;
1212 for (i
= 0; i
< l1_size
; i
++) {
1213 l2_offset
= l1_table
[i
];
1215 old_l2_offset
= l2_offset
;
1216 l2_offset
&= L1E_OFFSET_MASK
;
1218 if (offset_into_cluster(s
, l2_offset
)) {
1219 qcow2_signal_corruption(bs
, true, -1, -1, "L2 table offset %#"
1220 PRIx64
" unaligned (L1 index: %#x)",
1226 ret
= qcow2_cache_get(bs
, s
->l2_table_cache
, l2_offset
,
1227 (void**) &l2_table
);
1232 for (j
= 0; j
< s
->l2_size
; j
++) {
1233 uint64_t cluster_index
;
1236 entry
= be64_to_cpu(l2_table
[j
]);
1238 entry
&= ~QCOW_OFLAG_COPIED
;
1239 offset
= entry
& L2E_OFFSET_MASK
;
1241 switch (qcow2_get_cluster_type(entry
)) {
1242 case QCOW2_CLUSTER_COMPRESSED
:
1243 nb_csectors
= ((entry
>> s
->csize_shift
) &
1246 ret
= update_refcount(bs
,
1247 (entry
& s
->cluster_offset_mask
) & ~511,
1248 nb_csectors
* 512, abs(addend
), addend
< 0,
1249 QCOW2_DISCARD_SNAPSHOT
);
1254 /* compressed clusters are never modified */
1258 case QCOW2_CLUSTER_NORMAL
:
1259 case QCOW2_CLUSTER_ZERO_ALLOC
:
1260 if (offset_into_cluster(s
, offset
)) {
1261 qcow2_signal_corruption(bs
, true, -1, -1, "Cluster "
1262 "allocation offset %#" PRIx64
1263 " unaligned (L2 offset: %#"
1264 PRIx64
", L2 index: %#x)",
1265 offset
, l2_offset
, j
);
1270 cluster_index
= offset
>> s
->cluster_bits
;
1271 assert(cluster_index
);
1273 ret
= qcow2_update_cluster_refcount(bs
,
1274 cluster_index
, abs(addend
), addend
< 0,
1275 QCOW2_DISCARD_SNAPSHOT
);
1281 ret
= qcow2_get_refcount(bs
, cluster_index
, &refcount
);
1287 case QCOW2_CLUSTER_ZERO_PLAIN
:
1288 case QCOW2_CLUSTER_UNALLOCATED
:
1296 if (refcount
== 1) {
1297 entry
|= QCOW_OFLAG_COPIED
;
1299 if (entry
!= old_entry
) {
1301 qcow2_cache_set_dependency(bs
, s
->l2_table_cache
,
1302 s
->refcount_block_cache
);
1304 l2_table
[j
] = cpu_to_be64(entry
);
1305 qcow2_cache_entry_mark_dirty(bs
, s
->l2_table_cache
,
1310 qcow2_cache_put(bs
, s
->l2_table_cache
, (void **) &l2_table
);
1313 ret
= qcow2_update_cluster_refcount(bs
, l2_offset
>>
1315 abs(addend
), addend
< 0,
1316 QCOW2_DISCARD_SNAPSHOT
);
1321 ret
= qcow2_get_refcount(bs
, l2_offset
>> s
->cluster_bits
,
1325 } else if (refcount
== 1) {
1326 l2_offset
|= QCOW_OFLAG_COPIED
;
1328 if (l2_offset
!= old_l2_offset
) {
1329 l1_table
[i
] = l2_offset
;
1335 ret
= bdrv_flush(bs
);
1338 qcow2_cache_put(bs
, s
->l2_table_cache
, (void**) &l2_table
);
1341 s
->cache_discards
= false;
1342 qcow2_process_discards(bs
, ret
);
1344 /* Update L1 only if it isn't deleted anyway (addend = -1) */
1345 if (ret
== 0 && addend
>= 0 && l1_modified
) {
1346 for (i
= 0; i
< l1_size
; i
++) {
1347 cpu_to_be64s(&l1_table
[i
]);
1350 ret
= bdrv_pwrite_sync(bs
->file
, l1_table_offset
,
1351 l1_table
, l1_size2
);
1353 for (i
= 0; i
< l1_size
; i
++) {
1354 be64_to_cpus(&l1_table
[i
]);
1365 /*********************************************************/
1366 /* refcount checking functions */
1369 static uint64_t refcount_array_byte_size(BDRVQcow2State
*s
, uint64_t entries
)
1371 /* This assertion holds because there is no way we can address more than
1372 * 2^(64 - 9) clusters at once (with cluster size 512 = 2^9, and because
1373 * offsets have to be representable in bytes); due to every cluster
1374 * corresponding to one refcount entry, we are well below that limit */
1375 assert(entries
< (UINT64_C(1) << (64 - 9)));
1377 /* Thanks to the assertion this will not overflow, because
1378 * s->refcount_order < 7.
1379 * (note: x << s->refcount_order == x * s->refcount_bits) */
1380 return DIV_ROUND_UP(entries
<< s
->refcount_order
, 8);
1384 * Reallocates *array so that it can hold new_size entries. *size must contain
1385 * the current number of entries in *array. If the reallocation fails, *array
1386 * and *size will not be modified and -errno will be returned. If the
1387 * reallocation is successful, *array will be set to the new buffer, *size
1388 * will be set to new_size and 0 will be returned. The size of the reallocated
1389 * refcount array buffer will be aligned to a cluster boundary, and the newly
1390 * allocated area will be zeroed.
1392 static int realloc_refcount_array(BDRVQcow2State
*s
, void **array
,
1393 int64_t *size
, int64_t new_size
)
1395 int64_t old_byte_size
, new_byte_size
;
1398 /* Round to clusters so the array can be directly written to disk */
1399 old_byte_size
= size_to_clusters(s
, refcount_array_byte_size(s
, *size
))
1401 new_byte_size
= size_to_clusters(s
, refcount_array_byte_size(s
, new_size
))
1404 if (new_byte_size
== old_byte_size
) {
1409 assert(new_byte_size
> 0);
1411 if (new_byte_size
> SIZE_MAX
) {
1415 new_ptr
= g_try_realloc(*array
, new_byte_size
);
1420 if (new_byte_size
> old_byte_size
) {
1421 memset((char *)new_ptr
+ old_byte_size
, 0,
1422 new_byte_size
- old_byte_size
);
1432 * Increases the refcount for a range of clusters in a given refcount table.
1433 * This is used to construct a temporary refcount table out of L1 and L2 tables
1434 * which can be compared to the refcount table saved in the image.
1436 * Modifies the number of errors in res.
1438 int qcow2_inc_refcounts_imrt(BlockDriverState
*bs
, BdrvCheckResult
*res
,
1439 void **refcount_table
,
1440 int64_t *refcount_table_size
,
1441 int64_t offset
, int64_t size
)
1443 BDRVQcow2State
*s
= bs
->opaque
;
1444 uint64_t start
, last
, cluster_offset
, k
, refcount
;
1451 start
= start_of_cluster(s
, offset
);
1452 last
= start_of_cluster(s
, offset
+ size
- 1);
1453 for(cluster_offset
= start
; cluster_offset
<= last
;
1454 cluster_offset
+= s
->cluster_size
) {
1455 k
= cluster_offset
>> s
->cluster_bits
;
1456 if (k
>= *refcount_table_size
) {
1457 ret
= realloc_refcount_array(s
, refcount_table
,
1458 refcount_table_size
, k
+ 1);
1460 res
->check_errors
++;
1465 refcount
= s
->get_refcount(*refcount_table
, k
);
1466 if (refcount
== s
->refcount_max
) {
1467 fprintf(stderr
, "ERROR: overflow cluster offset=0x%" PRIx64
1468 "\n", cluster_offset
);
1469 fprintf(stderr
, "Use qemu-img amend to increase the refcount entry "
1470 "width or qemu-img convert to create a clean copy if the "
1471 "image cannot be opened for writing\n");
1475 s
->set_refcount(*refcount_table
, k
, refcount
+ 1);
1481 /* Flags for check_refcounts_l1() and check_refcounts_l2() */
1483 CHECK_FRAG_INFO
= 0x2, /* update BlockFragInfo counters */
1487 * Increases the refcount in the given refcount table for the all clusters
1488 * referenced in the L2 table. While doing so, performs some checks on L2
1491 * Returns the number of errors found by the checks or -errno if an internal
1494 static int check_refcounts_l2(BlockDriverState
*bs
, BdrvCheckResult
*res
,
1495 void **refcount_table
,
1496 int64_t *refcount_table_size
, int64_t l2_offset
,
1499 BDRVQcow2State
*s
= bs
->opaque
;
1500 uint64_t *l2_table
, l2_entry
;
1501 uint64_t next_contiguous_offset
= 0;
1502 int i
, l2_size
, nb_csectors
, ret
;
1504 /* Read L2 table from disk */
1505 l2_size
= s
->l2_size
* sizeof(uint64_t);
1506 l2_table
= g_malloc(l2_size
);
1508 ret
= bdrv_pread(bs
->file
, l2_offset
, l2_table
, l2_size
);
1510 fprintf(stderr
, "ERROR: I/O error in check_refcounts_l2\n");
1511 res
->check_errors
++;
1515 /* Do the actual checks */
1516 for(i
= 0; i
< s
->l2_size
; i
++) {
1517 l2_entry
= be64_to_cpu(l2_table
[i
]);
1519 switch (qcow2_get_cluster_type(l2_entry
)) {
1520 case QCOW2_CLUSTER_COMPRESSED
:
1521 /* Compressed clusters don't have QCOW_OFLAG_COPIED */
1522 if (l2_entry
& QCOW_OFLAG_COPIED
) {
1523 fprintf(stderr
, "ERROR: cluster %" PRId64
": "
1524 "copied flag must never be set for compressed "
1525 "clusters\n", l2_entry
>> s
->cluster_bits
);
1526 l2_entry
&= ~QCOW_OFLAG_COPIED
;
1530 /* Mark cluster as used */
1531 nb_csectors
= ((l2_entry
>> s
->csize_shift
) &
1533 l2_entry
&= s
->cluster_offset_mask
;
1534 ret
= qcow2_inc_refcounts_imrt(bs
, res
,
1535 refcount_table
, refcount_table_size
,
1536 l2_entry
& ~511, nb_csectors
* 512);
1541 if (flags
& CHECK_FRAG_INFO
) {
1542 res
->bfi
.allocated_clusters
++;
1543 res
->bfi
.compressed_clusters
++;
1545 /* Compressed clusters are fragmented by nature. Since they
1546 * take up sub-sector space but we only have sector granularity
1547 * I/O we need to re-read the same sectors even for adjacent
1548 * compressed clusters.
1550 res
->bfi
.fragmented_clusters
++;
1554 case QCOW2_CLUSTER_ZERO_ALLOC
:
1555 case QCOW2_CLUSTER_NORMAL
:
1557 uint64_t offset
= l2_entry
& L2E_OFFSET_MASK
;
1559 if (flags
& CHECK_FRAG_INFO
) {
1560 res
->bfi
.allocated_clusters
++;
1561 if (next_contiguous_offset
&&
1562 offset
!= next_contiguous_offset
) {
1563 res
->bfi
.fragmented_clusters
++;
1565 next_contiguous_offset
= offset
+ s
->cluster_size
;
1568 /* Mark cluster as used */
1569 ret
= qcow2_inc_refcounts_imrt(bs
, res
,
1570 refcount_table
, refcount_table_size
,
1571 offset
, s
->cluster_size
);
1576 /* Correct offsets are cluster aligned */
1577 if (offset_into_cluster(s
, offset
)) {
1578 fprintf(stderr
, "ERROR offset=%" PRIx64
": Cluster is not "
1579 "properly aligned; L2 entry corrupted.\n", offset
);
1585 case QCOW2_CLUSTER_ZERO_PLAIN
:
1586 case QCOW2_CLUSTER_UNALLOCATED
:
1603 * Increases the refcount for the L1 table, its L2 tables and all referenced
1604 * clusters in the given refcount table. While doing so, performs some checks
1605 * on L1 and L2 entries.
1607 * Returns the number of errors found by the checks or -errno if an internal
1610 static int check_refcounts_l1(BlockDriverState
*bs
,
1611 BdrvCheckResult
*res
,
1612 void **refcount_table
,
1613 int64_t *refcount_table_size
,
1614 int64_t l1_table_offset
, int l1_size
,
1617 BDRVQcow2State
*s
= bs
->opaque
;
1618 uint64_t *l1_table
= NULL
, l2_offset
, l1_size2
;
1621 l1_size2
= l1_size
* sizeof(uint64_t);
1623 /* Mark L1 table as used */
1624 ret
= qcow2_inc_refcounts_imrt(bs
, res
, refcount_table
, refcount_table_size
,
1625 l1_table_offset
, l1_size2
);
1630 /* Read L1 table entries from disk */
1632 l1_table
= g_try_malloc(l1_size2
);
1633 if (l1_table
== NULL
) {
1635 res
->check_errors
++;
1638 ret
= bdrv_pread(bs
->file
, l1_table_offset
, l1_table
, l1_size2
);
1640 fprintf(stderr
, "ERROR: I/O error in check_refcounts_l1\n");
1641 res
->check_errors
++;
1644 for(i
= 0;i
< l1_size
; i
++)
1645 be64_to_cpus(&l1_table
[i
]);
1648 /* Do the actual checks */
1649 for(i
= 0; i
< l1_size
; i
++) {
1650 l2_offset
= l1_table
[i
];
1652 /* Mark L2 table as used */
1653 l2_offset
&= L1E_OFFSET_MASK
;
1654 ret
= qcow2_inc_refcounts_imrt(bs
, res
,
1655 refcount_table
, refcount_table_size
,
1656 l2_offset
, s
->cluster_size
);
1661 /* L2 tables are cluster aligned */
1662 if (offset_into_cluster(s
, l2_offset
)) {
1663 fprintf(stderr
, "ERROR l2_offset=%" PRIx64
": Table is not "
1664 "cluster aligned; L1 entry corrupted\n", l2_offset
);
1668 /* Process and check L2 entries */
1669 ret
= check_refcounts_l2(bs
, res
, refcount_table
,
1670 refcount_table_size
, l2_offset
, flags
);
1685 * Checks the OFLAG_COPIED flag for all L1 and L2 entries.
1687 * This function does not print an error message nor does it increment
1688 * check_errors if qcow2_get_refcount fails (this is because such an error will
1689 * have been already detected and sufficiently signaled by the calling function
1690 * (qcow2_check_refcounts) by the time this function is called).
1692 static int check_oflag_copied(BlockDriverState
*bs
, BdrvCheckResult
*res
,
1695 BDRVQcow2State
*s
= bs
->opaque
;
1696 uint64_t *l2_table
= qemu_blockalign(bs
, s
->cluster_size
);
1701 for (i
= 0; i
< s
->l1_size
; i
++) {
1702 uint64_t l1_entry
= s
->l1_table
[i
];
1703 uint64_t l2_offset
= l1_entry
& L1E_OFFSET_MASK
;
1704 bool l2_dirty
= false;
1710 ret
= qcow2_get_refcount(bs
, l2_offset
>> s
->cluster_bits
,
1713 /* don't print message nor increment check_errors */
1716 if ((refcount
== 1) != ((l1_entry
& QCOW_OFLAG_COPIED
) != 0)) {
1717 fprintf(stderr
, "%s OFLAG_COPIED L2 cluster: l1_index=%d "
1718 "l1_entry=%" PRIx64
" refcount=%" PRIu64
"\n",
1719 fix
& BDRV_FIX_ERRORS
? "Repairing" :
1721 i
, l1_entry
, refcount
);
1722 if (fix
& BDRV_FIX_ERRORS
) {
1723 s
->l1_table
[i
] = refcount
== 1
1724 ? l1_entry
| QCOW_OFLAG_COPIED
1725 : l1_entry
& ~QCOW_OFLAG_COPIED
;
1726 ret
= qcow2_write_l1_entry(bs
, i
);
1728 res
->check_errors
++;
1731 res
->corruptions_fixed
++;
1737 ret
= bdrv_pread(bs
->file
, l2_offset
, l2_table
,
1738 s
->l2_size
* sizeof(uint64_t));
1740 fprintf(stderr
, "ERROR: Could not read L2 table: %s\n",
1742 res
->check_errors
++;
1746 for (j
= 0; j
< s
->l2_size
; j
++) {
1747 uint64_t l2_entry
= be64_to_cpu(l2_table
[j
]);
1748 uint64_t data_offset
= l2_entry
& L2E_OFFSET_MASK
;
1749 QCow2ClusterType cluster_type
= qcow2_get_cluster_type(l2_entry
);
1751 if (cluster_type
== QCOW2_CLUSTER_NORMAL
||
1752 cluster_type
== QCOW2_CLUSTER_ZERO_ALLOC
) {
1753 ret
= qcow2_get_refcount(bs
,
1754 data_offset
>> s
->cluster_bits
,
1757 /* don't print message nor increment check_errors */
1760 if ((refcount
== 1) != ((l2_entry
& QCOW_OFLAG_COPIED
) != 0)) {
1761 fprintf(stderr
, "%s OFLAG_COPIED data cluster: "
1762 "l2_entry=%" PRIx64
" refcount=%" PRIu64
"\n",
1763 fix
& BDRV_FIX_ERRORS
? "Repairing" :
1765 l2_entry
, refcount
);
1766 if (fix
& BDRV_FIX_ERRORS
) {
1767 l2_table
[j
] = cpu_to_be64(refcount
== 1
1768 ? l2_entry
| QCOW_OFLAG_COPIED
1769 : l2_entry
& ~QCOW_OFLAG_COPIED
);
1771 res
->corruptions_fixed
++;
1780 ret
= qcow2_pre_write_overlap_check(bs
, QCOW2_OL_ACTIVE_L2
,
1781 l2_offset
, s
->cluster_size
);
1783 fprintf(stderr
, "ERROR: Could not write L2 table; metadata "
1784 "overlap check failed: %s\n", strerror(-ret
));
1785 res
->check_errors
++;
1789 ret
= bdrv_pwrite(bs
->file
, l2_offset
, l2_table
,
1792 fprintf(stderr
, "ERROR: Could not write L2 table: %s\n",
1794 res
->check_errors
++;
1803 qemu_vfree(l2_table
);
1808 * Checks consistency of refblocks and accounts for each refblock in
1811 static int check_refblocks(BlockDriverState
*bs
, BdrvCheckResult
*res
,
1812 BdrvCheckMode fix
, bool *rebuild
,
1813 void **refcount_table
, int64_t *nb_clusters
)
1815 BDRVQcow2State
*s
= bs
->opaque
;
1819 for(i
= 0; i
< s
->refcount_table_size
; i
++) {
1820 uint64_t offset
, cluster
;
1821 offset
= s
->refcount_table
[i
];
1822 cluster
= offset
>> s
->cluster_bits
;
1824 /* Refcount blocks are cluster aligned */
1825 if (offset_into_cluster(s
, offset
)) {
1826 fprintf(stderr
, "ERROR refcount block %" PRId64
" is not "
1827 "cluster aligned; refcount table entry corrupted\n", i
);
1833 if (cluster
>= *nb_clusters
) {
1834 fprintf(stderr
, "%s refcount block %" PRId64
" is outside image\n",
1835 fix
& BDRV_FIX_ERRORS
? "Repairing" : "ERROR", i
);
1837 if (fix
& BDRV_FIX_ERRORS
) {
1838 int64_t new_nb_clusters
;
1839 Error
*local_err
= NULL
;
1841 if (offset
> INT64_MAX
- s
->cluster_size
) {
1846 ret
= bdrv_truncate(bs
->file
, offset
+ s
->cluster_size
,
1847 PREALLOC_MODE_OFF
, &local_err
);
1849 error_report_err(local_err
);
1852 size
= bdrv_getlength(bs
->file
->bs
);
1858 new_nb_clusters
= size_to_clusters(s
, size
);
1859 assert(new_nb_clusters
>= *nb_clusters
);
1861 ret
= realloc_refcount_array(s
, refcount_table
,
1862 nb_clusters
, new_nb_clusters
);
1864 res
->check_errors
++;
1868 if (cluster
>= *nb_clusters
) {
1873 res
->corruptions_fixed
++;
1874 ret
= qcow2_inc_refcounts_imrt(bs
, res
,
1875 refcount_table
, nb_clusters
,
1876 offset
, s
->cluster_size
);
1880 /* No need to check whether the refcount is now greater than 1:
1881 * This area was just allocated and zeroed, so it can only be
1882 * exactly 1 after qcow2_inc_refcounts_imrt() */
1888 fprintf(stderr
, "ERROR could not resize image: %s\n",
1897 ret
= qcow2_inc_refcounts_imrt(bs
, res
, refcount_table
, nb_clusters
,
1898 offset
, s
->cluster_size
);
1902 if (s
->get_refcount(*refcount_table
, cluster
) != 1) {
1903 fprintf(stderr
, "ERROR refcount block %" PRId64
1904 " refcount=%" PRIu64
"\n", i
,
1905 s
->get_refcount(*refcount_table
, cluster
));
1916 * Calculates an in-memory refcount table.
1918 static int calculate_refcounts(BlockDriverState
*bs
, BdrvCheckResult
*res
,
1919 BdrvCheckMode fix
, bool *rebuild
,
1920 void **refcount_table
, int64_t *nb_clusters
)
1922 BDRVQcow2State
*s
= bs
->opaque
;
1927 if (!*refcount_table
) {
1928 int64_t old_size
= 0;
1929 ret
= realloc_refcount_array(s
, refcount_table
,
1930 &old_size
, *nb_clusters
);
1932 res
->check_errors
++;
1938 ret
= qcow2_inc_refcounts_imrt(bs
, res
, refcount_table
, nb_clusters
,
1939 0, s
->cluster_size
);
1944 /* current L1 table */
1945 ret
= check_refcounts_l1(bs
, res
, refcount_table
, nb_clusters
,
1946 s
->l1_table_offset
, s
->l1_size
, CHECK_FRAG_INFO
);
1952 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
1953 sn
= s
->snapshots
+ i
;
1954 ret
= check_refcounts_l1(bs
, res
, refcount_table
, nb_clusters
,
1955 sn
->l1_table_offset
, sn
->l1_size
, 0);
1960 ret
= qcow2_inc_refcounts_imrt(bs
, res
, refcount_table
, nb_clusters
,
1961 s
->snapshots_offset
, s
->snapshots_size
);
1967 ret
= qcow2_inc_refcounts_imrt(bs
, res
, refcount_table
, nb_clusters
,
1968 s
->refcount_table_offset
,
1969 s
->refcount_table_size
* sizeof(uint64_t));
1975 if (s
->crypto_header
.length
) {
1976 ret
= qcow2_inc_refcounts_imrt(bs
, res
, refcount_table
, nb_clusters
,
1977 s
->crypto_header
.offset
,
1978 s
->crypto_header
.length
);
1985 ret
= qcow2_check_bitmaps_refcounts(bs
, res
, refcount_table
, nb_clusters
);
1990 return check_refblocks(bs
, res
, fix
, rebuild
, refcount_table
, nb_clusters
);
1994 * Compares the actual reference count for each cluster in the image against the
1995 * refcount as reported by the refcount structures on-disk.
1997 static void compare_refcounts(BlockDriverState
*bs
, BdrvCheckResult
*res
,
1998 BdrvCheckMode fix
, bool *rebuild
,
1999 int64_t *highest_cluster
,
2000 void *refcount_table
, int64_t nb_clusters
)
2002 BDRVQcow2State
*s
= bs
->opaque
;
2004 uint64_t refcount1
, refcount2
;
2007 for (i
= 0, *highest_cluster
= 0; i
< nb_clusters
; i
++) {
2008 ret
= qcow2_get_refcount(bs
, i
, &refcount1
);
2010 fprintf(stderr
, "Can't get refcount for cluster %" PRId64
": %s\n",
2012 res
->check_errors
++;
2016 refcount2
= s
->get_refcount(refcount_table
, i
);
2018 if (refcount1
> 0 || refcount2
> 0) {
2019 *highest_cluster
= i
;
2022 if (refcount1
!= refcount2
) {
2023 /* Check if we're allowed to fix the mismatch */
2024 int *num_fixed
= NULL
;
2025 if (refcount1
== 0) {
2027 } else if (refcount1
> refcount2
&& (fix
& BDRV_FIX_LEAKS
)) {
2028 num_fixed
= &res
->leaks_fixed
;
2029 } else if (refcount1
< refcount2
&& (fix
& BDRV_FIX_ERRORS
)) {
2030 num_fixed
= &res
->corruptions_fixed
;
2033 fprintf(stderr
, "%s cluster %" PRId64
" refcount=%" PRIu64
2034 " reference=%" PRIu64
"\n",
2035 num_fixed
!= NULL
? "Repairing" :
2036 refcount1
< refcount2
? "ERROR" :
2038 i
, refcount1
, refcount2
);
2041 ret
= update_refcount(bs
, i
<< s
->cluster_bits
, 1,
2042 refcount_diff(refcount1
, refcount2
),
2043 refcount1
> refcount2
,
2044 QCOW2_DISCARD_ALWAYS
);
2051 /* And if we couldn't, print an error */
2052 if (refcount1
< refcount2
) {
2062 * Allocates clusters using an in-memory refcount table (IMRT) in contrast to
2063 * the on-disk refcount structures.
2065 * On input, *first_free_cluster tells where to start looking, and need not
2066 * actually be a free cluster; the returned offset will not be before that
2067 * cluster. On output, *first_free_cluster points to the first gap found, even
2068 * if that gap was too small to be used as the returned offset.
2070 * Note that *first_free_cluster is a cluster index whereas the return value is
2073 static int64_t alloc_clusters_imrt(BlockDriverState
*bs
,
2075 void **refcount_table
,
2076 int64_t *imrt_nb_clusters
,
2077 int64_t *first_free_cluster
)
2079 BDRVQcow2State
*s
= bs
->opaque
;
2080 int64_t cluster
= *first_free_cluster
, i
;
2081 bool first_gap
= true;
2082 int contiguous_free_clusters
;
2085 /* Starting at *first_free_cluster, find a range of at least cluster_count
2086 * continuously free clusters */
2087 for (contiguous_free_clusters
= 0;
2088 cluster
< *imrt_nb_clusters
&&
2089 contiguous_free_clusters
< cluster_count
;
2092 if (!s
->get_refcount(*refcount_table
, cluster
)) {
2093 contiguous_free_clusters
++;
2095 /* If this is the first free cluster found, update
2096 * *first_free_cluster accordingly */
2097 *first_free_cluster
= cluster
;
2100 } else if (contiguous_free_clusters
) {
2101 contiguous_free_clusters
= 0;
2105 /* If contiguous_free_clusters is greater than zero, it contains the number
2106 * of continuously free clusters until the current cluster; the first free
2107 * cluster in the current "gap" is therefore
2108 * cluster - contiguous_free_clusters */
2110 /* If no such range could be found, grow the in-memory refcount table
2111 * accordingly to append free clusters at the end of the image */
2112 if (contiguous_free_clusters
< cluster_count
) {
2113 /* contiguous_free_clusters clusters are already empty at the image end;
2114 * we need cluster_count clusters; therefore, we have to allocate
2115 * cluster_count - contiguous_free_clusters new clusters at the end of
2116 * the image (which is the current value of cluster; note that cluster
2117 * may exceed old_imrt_nb_clusters if *first_free_cluster pointed beyond
2119 ret
= realloc_refcount_array(s
, refcount_table
, imrt_nb_clusters
,
2120 cluster
+ cluster_count
2121 - contiguous_free_clusters
);
2127 /* Go back to the first free cluster */
2128 cluster
-= contiguous_free_clusters
;
2129 for (i
= 0; i
< cluster_count
; i
++) {
2130 s
->set_refcount(*refcount_table
, cluster
+ i
, 1);
2133 return cluster
<< s
->cluster_bits
;
2137 * Creates a new refcount structure based solely on the in-memory information
2138 * given through *refcount_table. All necessary allocations will be reflected
2141 * On success, the old refcount structure is leaked (it will be covered by the
2142 * new refcount structure).
2144 static int rebuild_refcount_structure(BlockDriverState
*bs
,
2145 BdrvCheckResult
*res
,
2146 void **refcount_table
,
2147 int64_t *nb_clusters
)
2149 BDRVQcow2State
*s
= bs
->opaque
;
2150 int64_t first_free_cluster
= 0, reftable_offset
= -1, cluster
= 0;
2151 int64_t refblock_offset
, refblock_start
, refblock_index
;
2152 uint32_t reftable_size
= 0;
2153 uint64_t *on_disk_reftable
= NULL
;
2154 void *on_disk_refblock
;
2157 uint64_t reftable_offset
;
2158 uint32_t reftable_clusters
;
2159 } QEMU_PACKED reftable_offset_and_clusters
;
2161 qcow2_cache_empty(bs
, s
->refcount_block_cache
);
2164 for (; cluster
< *nb_clusters
; cluster
++) {
2165 if (!s
->get_refcount(*refcount_table
, cluster
)) {
2169 refblock_index
= cluster
>> s
->refcount_block_bits
;
2170 refblock_start
= refblock_index
<< s
->refcount_block_bits
;
2172 /* Don't allocate a cluster in a refblock already written to disk */
2173 if (first_free_cluster
< refblock_start
) {
2174 first_free_cluster
= refblock_start
;
2176 refblock_offset
= alloc_clusters_imrt(bs
, 1, refcount_table
,
2177 nb_clusters
, &first_free_cluster
);
2178 if (refblock_offset
< 0) {
2179 fprintf(stderr
, "ERROR allocating refblock: %s\n",
2180 strerror(-refblock_offset
));
2181 res
->check_errors
++;
2182 ret
= refblock_offset
;
2186 if (reftable_size
<= refblock_index
) {
2187 uint32_t old_reftable_size
= reftable_size
;
2188 uint64_t *new_on_disk_reftable
;
2190 reftable_size
= ROUND_UP((refblock_index
+ 1) * sizeof(uint64_t),
2191 s
->cluster_size
) / sizeof(uint64_t);
2192 new_on_disk_reftable
= g_try_realloc(on_disk_reftable
,
2195 if (!new_on_disk_reftable
) {
2196 res
->check_errors
++;
2200 on_disk_reftable
= new_on_disk_reftable
;
2202 memset(on_disk_reftable
+ old_reftable_size
, 0,
2203 (reftable_size
- old_reftable_size
) * sizeof(uint64_t));
2205 /* The offset we have for the reftable is now no longer valid;
2206 * this will leak that range, but we can easily fix that by running
2207 * a leak-fixing check after this rebuild operation */
2208 reftable_offset
= -1;
2210 assert(on_disk_reftable
);
2212 on_disk_reftable
[refblock_index
] = refblock_offset
;
2214 /* If this is apparently the last refblock (for now), try to squeeze the
2216 if (refblock_index
== (*nb_clusters
- 1) >> s
->refcount_block_bits
&&
2217 reftable_offset
< 0)
2219 uint64_t reftable_clusters
= size_to_clusters(s
, reftable_size
*
2221 reftable_offset
= alloc_clusters_imrt(bs
, reftable_clusters
,
2222 refcount_table
, nb_clusters
,
2223 &first_free_cluster
);
2224 if (reftable_offset
< 0) {
2225 fprintf(stderr
, "ERROR allocating reftable: %s\n",
2226 strerror(-reftable_offset
));
2227 res
->check_errors
++;
2228 ret
= reftable_offset
;
2233 ret
= qcow2_pre_write_overlap_check(bs
, 0, refblock_offset
,
2236 fprintf(stderr
, "ERROR writing refblock: %s\n", strerror(-ret
));
2240 /* The size of *refcount_table is always cluster-aligned, therefore the
2241 * write operation will not overflow */
2242 on_disk_refblock
= (void *)((char *) *refcount_table
+
2243 refblock_index
* s
->cluster_size
);
2245 ret
= bdrv_write(bs
->file
, refblock_offset
/ BDRV_SECTOR_SIZE
,
2246 on_disk_refblock
, s
->cluster_sectors
);
2248 fprintf(stderr
, "ERROR writing refblock: %s\n", strerror(-ret
));
2252 /* Go to the end of this refblock */
2253 cluster
= refblock_start
+ s
->refcount_block_size
- 1;
2256 if (reftable_offset
< 0) {
2257 uint64_t post_refblock_start
, reftable_clusters
;
2259 post_refblock_start
= ROUND_UP(*nb_clusters
, s
->refcount_block_size
);
2260 reftable_clusters
= size_to_clusters(s
,
2261 reftable_size
* sizeof(uint64_t));
2262 /* Not pretty but simple */
2263 if (first_free_cluster
< post_refblock_start
) {
2264 first_free_cluster
= post_refblock_start
;
2266 reftable_offset
= alloc_clusters_imrt(bs
, reftable_clusters
,
2267 refcount_table
, nb_clusters
,
2268 &first_free_cluster
);
2269 if (reftable_offset
< 0) {
2270 fprintf(stderr
, "ERROR allocating reftable: %s\n",
2271 strerror(-reftable_offset
));
2272 res
->check_errors
++;
2273 ret
= reftable_offset
;
2277 goto write_refblocks
;
2280 for (refblock_index
= 0; refblock_index
< reftable_size
; refblock_index
++) {
2281 cpu_to_be64s(&on_disk_reftable
[refblock_index
]);
2284 ret
= qcow2_pre_write_overlap_check(bs
, 0, reftable_offset
,
2285 reftable_size
* sizeof(uint64_t));
2287 fprintf(stderr
, "ERROR writing reftable: %s\n", strerror(-ret
));
2291 assert(reftable_size
< INT_MAX
/ sizeof(uint64_t));
2292 ret
= bdrv_pwrite(bs
->file
, reftable_offset
, on_disk_reftable
,
2293 reftable_size
* sizeof(uint64_t));
2295 fprintf(stderr
, "ERROR writing reftable: %s\n", strerror(-ret
));
2299 /* Enter new reftable into the image header */
2300 reftable_offset_and_clusters
.reftable_offset
= cpu_to_be64(reftable_offset
);
2301 reftable_offset_and_clusters
.reftable_clusters
=
2302 cpu_to_be32(size_to_clusters(s
, reftable_size
* sizeof(uint64_t)));
2303 ret
= bdrv_pwrite_sync(bs
->file
,
2304 offsetof(QCowHeader
, refcount_table_offset
),
2305 &reftable_offset_and_clusters
,
2306 sizeof(reftable_offset_and_clusters
));
2308 fprintf(stderr
, "ERROR setting reftable: %s\n", strerror(-ret
));
2312 for (refblock_index
= 0; refblock_index
< reftable_size
; refblock_index
++) {
2313 be64_to_cpus(&on_disk_reftable
[refblock_index
]);
2315 s
->refcount_table
= on_disk_reftable
;
2316 s
->refcount_table_offset
= reftable_offset
;
2317 s
->refcount_table_size
= reftable_size
;
2318 update_max_refcount_table_index(s
);
2323 g_free(on_disk_reftable
);
2328 * Checks an image for refcount consistency.
2330 * Returns 0 if no errors are found, the number of errors in case the image is
2331 * detected as corrupted, and -errno when an internal error occurred.
2333 int qcow2_check_refcounts(BlockDriverState
*bs
, BdrvCheckResult
*res
,
2336 BDRVQcow2State
*s
= bs
->opaque
;
2337 BdrvCheckResult pre_compare_res
;
2338 int64_t size
, highest_cluster
, nb_clusters
;
2339 void *refcount_table
= NULL
;
2340 bool rebuild
= false;
2343 size
= bdrv_getlength(bs
->file
->bs
);
2345 res
->check_errors
++;
2349 nb_clusters
= size_to_clusters(s
, size
);
2350 if (nb_clusters
> INT_MAX
) {
2351 res
->check_errors
++;
2355 res
->bfi
.total_clusters
=
2356 size_to_clusters(s
, bs
->total_sectors
* BDRV_SECTOR_SIZE
);
2358 ret
= calculate_refcounts(bs
, res
, fix
, &rebuild
, &refcount_table
,
2364 /* In case we don't need to rebuild the refcount structure (but want to fix
2365 * something), this function is immediately called again, in which case the
2366 * result should be ignored */
2367 pre_compare_res
= *res
;
2368 compare_refcounts(bs
, res
, 0, &rebuild
, &highest_cluster
, refcount_table
,
2371 if (rebuild
&& (fix
& BDRV_FIX_ERRORS
)) {
2372 BdrvCheckResult old_res
= *res
;
2373 int fresh_leaks
= 0;
2375 fprintf(stderr
, "Rebuilding refcount structure\n");
2376 ret
= rebuild_refcount_structure(bs
, res
, &refcount_table
,
2382 res
->corruptions
= 0;
2385 /* Because the old reftable has been exchanged for a new one the
2386 * references have to be recalculated */
2388 memset(refcount_table
, 0, refcount_array_byte_size(s
, nb_clusters
));
2389 ret
= calculate_refcounts(bs
, res
, 0, &rebuild
, &refcount_table
,
2395 if (fix
& BDRV_FIX_LEAKS
) {
2396 /* The old refcount structures are now leaked, fix it; the result
2397 * can be ignored, aside from leaks which were introduced by
2398 * rebuild_refcount_structure() that could not be fixed */
2399 BdrvCheckResult saved_res
= *res
;
2400 *res
= (BdrvCheckResult
){ 0 };
2402 compare_refcounts(bs
, res
, BDRV_FIX_LEAKS
, &rebuild
,
2403 &highest_cluster
, refcount_table
, nb_clusters
);
2405 fprintf(stderr
, "ERROR rebuilt refcount structure is still "
2409 /* Any leaks accounted for here were introduced by
2410 * rebuild_refcount_structure() because that function has created a
2411 * new refcount structure from scratch */
2412 fresh_leaks
= res
->leaks
;
2416 if (res
->corruptions
< old_res
.corruptions
) {
2417 res
->corruptions_fixed
+= old_res
.corruptions
- res
->corruptions
;
2419 if (res
->leaks
< old_res
.leaks
) {
2420 res
->leaks_fixed
+= old_res
.leaks
- res
->leaks
;
2422 res
->leaks
+= fresh_leaks
;
2425 fprintf(stderr
, "ERROR need to rebuild refcount structures\n");
2426 res
->check_errors
++;
2431 if (res
->leaks
|| res
->corruptions
) {
2432 *res
= pre_compare_res
;
2433 compare_refcounts(bs
, res
, fix
, &rebuild
, &highest_cluster
,
2434 refcount_table
, nb_clusters
);
2438 /* check OFLAG_COPIED */
2439 ret
= check_oflag_copied(bs
, res
, fix
);
2444 res
->image_end_offset
= (highest_cluster
+ 1) * s
->cluster_size
;
2448 g_free(refcount_table
);
2453 #define overlaps_with(ofs, sz) \
2454 ranges_overlap(offset, size, ofs, sz)
2457 * Checks if the given offset into the image file is actually free to use by
2458 * looking for overlaps with important metadata sections (L1/L2 tables etc.),
2459 * i.e. a sanity check without relying on the refcount tables.
2461 * The ign parameter specifies what checks not to perform (being a bitmask of
2462 * QCow2MetadataOverlap values), i.e., what sections to ignore.
2465 * - 0 if writing to this offset will not affect the mentioned metadata
2466 * - a positive QCow2MetadataOverlap value indicating one overlapping section
2467 * - a negative value (-errno) indicating an error while performing a check,
2468 * e.g. when bdrv_read failed on QCOW2_OL_INACTIVE_L2
2470 int qcow2_check_metadata_overlap(BlockDriverState
*bs
, int ign
, int64_t offset
,
2473 BDRVQcow2State
*s
= bs
->opaque
;
2474 int chk
= s
->overlap_check
& ~ign
;
2481 if (chk
& QCOW2_OL_MAIN_HEADER
) {
2482 if (offset
< s
->cluster_size
) {
2483 return QCOW2_OL_MAIN_HEADER
;
2487 /* align range to test to cluster boundaries */
2488 size
= align_offset(offset_into_cluster(s
, offset
) + size
, s
->cluster_size
);
2489 offset
= start_of_cluster(s
, offset
);
2491 if ((chk
& QCOW2_OL_ACTIVE_L1
) && s
->l1_size
) {
2492 if (overlaps_with(s
->l1_table_offset
, s
->l1_size
* sizeof(uint64_t))) {
2493 return QCOW2_OL_ACTIVE_L1
;
2497 if ((chk
& QCOW2_OL_REFCOUNT_TABLE
) && s
->refcount_table_size
) {
2498 if (overlaps_with(s
->refcount_table_offset
,
2499 s
->refcount_table_size
* sizeof(uint64_t))) {
2500 return QCOW2_OL_REFCOUNT_TABLE
;
2504 if ((chk
& QCOW2_OL_SNAPSHOT_TABLE
) && s
->snapshots_size
) {
2505 if (overlaps_with(s
->snapshots_offset
, s
->snapshots_size
)) {
2506 return QCOW2_OL_SNAPSHOT_TABLE
;
2510 if ((chk
& QCOW2_OL_INACTIVE_L1
) && s
->snapshots
) {
2511 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
2512 if (s
->snapshots
[i
].l1_size
&&
2513 overlaps_with(s
->snapshots
[i
].l1_table_offset
,
2514 s
->snapshots
[i
].l1_size
* sizeof(uint64_t))) {
2515 return QCOW2_OL_INACTIVE_L1
;
2520 if ((chk
& QCOW2_OL_ACTIVE_L2
) && s
->l1_table
) {
2521 for (i
= 0; i
< s
->l1_size
; i
++) {
2522 if ((s
->l1_table
[i
] & L1E_OFFSET_MASK
) &&
2523 overlaps_with(s
->l1_table
[i
] & L1E_OFFSET_MASK
,
2525 return QCOW2_OL_ACTIVE_L2
;
2530 if ((chk
& QCOW2_OL_REFCOUNT_BLOCK
) && s
->refcount_table
) {
2531 unsigned last_entry
= s
->max_refcount_table_index
;
2532 assert(last_entry
< s
->refcount_table_size
);
2533 assert(last_entry
+ 1 == s
->refcount_table_size
||
2534 (s
->refcount_table
[last_entry
+ 1] & REFT_OFFSET_MASK
) == 0);
2535 for (i
= 0; i
<= last_entry
; i
++) {
2536 if ((s
->refcount_table
[i
] & REFT_OFFSET_MASK
) &&
2537 overlaps_with(s
->refcount_table
[i
] & REFT_OFFSET_MASK
,
2539 return QCOW2_OL_REFCOUNT_BLOCK
;
2544 if ((chk
& QCOW2_OL_INACTIVE_L2
) && s
->snapshots
) {
2545 for (i
= 0; i
< s
->nb_snapshots
; i
++) {
2546 uint64_t l1_ofs
= s
->snapshots
[i
].l1_table_offset
;
2547 uint32_t l1_sz
= s
->snapshots
[i
].l1_size
;
2548 uint64_t l1_sz2
= l1_sz
* sizeof(uint64_t);
2549 uint64_t *l1
= g_try_malloc(l1_sz2
);
2552 if (l1_sz2
&& l1
== NULL
) {
2556 ret
= bdrv_pread(bs
->file
, l1_ofs
, l1
, l1_sz2
);
2562 for (j
= 0; j
< l1_sz
; j
++) {
2563 uint64_t l2_ofs
= be64_to_cpu(l1
[j
]) & L1E_OFFSET_MASK
;
2564 if (l2_ofs
&& overlaps_with(l2_ofs
, s
->cluster_size
)) {
2566 return QCOW2_OL_INACTIVE_L2
;
2577 static const char *metadata_ol_names
[] = {
2578 [QCOW2_OL_MAIN_HEADER_BITNR
] = "qcow2_header",
2579 [QCOW2_OL_ACTIVE_L1_BITNR
] = "active L1 table",
2580 [QCOW2_OL_ACTIVE_L2_BITNR
] = "active L2 table",
2581 [QCOW2_OL_REFCOUNT_TABLE_BITNR
] = "refcount table",
2582 [QCOW2_OL_REFCOUNT_BLOCK_BITNR
] = "refcount block",
2583 [QCOW2_OL_SNAPSHOT_TABLE_BITNR
] = "snapshot table",
2584 [QCOW2_OL_INACTIVE_L1_BITNR
] = "inactive L1 table",
2585 [QCOW2_OL_INACTIVE_L2_BITNR
] = "inactive L2 table",
2589 * First performs a check for metadata overlaps (through
2590 * qcow2_check_metadata_overlap); if that fails with a negative value (error
2591 * while performing a check), that value is returned. If an impending overlap
2592 * is detected, the BDS will be made unusable, the qcow2 file marked corrupt
2593 * and -EIO returned.
2595 * Returns 0 if there were neither overlaps nor errors while checking for
2596 * overlaps; or a negative value (-errno) on error.
2598 int qcow2_pre_write_overlap_check(BlockDriverState
*bs
, int ign
, int64_t offset
,
2601 int ret
= qcow2_check_metadata_overlap(bs
, ign
, offset
, size
);
2605 } else if (ret
> 0) {
2606 int metadata_ol_bitnr
= ctz32(ret
);
2607 assert(metadata_ol_bitnr
< QCOW2_OL_MAX_BITNR
);
2609 qcow2_signal_corruption(bs
, true, offset
, size
, "Preventing invalid "
2610 "write on metadata (overlaps with %s)",
2611 metadata_ol_names
[metadata_ol_bitnr
]);
2618 /* A pointer to a function of this type is given to walk_over_reftable(). That
2619 * function will create refblocks and pass them to a RefblockFinishOp once they
2620 * are completed (@refblock). @refblock_empty is set if the refblock is
2623 * Along with the refblock, a corresponding reftable entry is passed, in the
2624 * reftable @reftable (which may be reallocated) at @reftable_index.
2626 * @allocated should be set to true if a new cluster has been allocated.
2628 typedef int (RefblockFinishOp
)(BlockDriverState
*bs
, uint64_t **reftable
,
2629 uint64_t reftable_index
, uint64_t *reftable_size
,
2630 void *refblock
, bool refblock_empty
,
2631 bool *allocated
, Error
**errp
);
2634 * This "operation" for walk_over_reftable() allocates the refblock on disk (if
2635 * it is not empty) and inserts its offset into the new reftable. The size of
2636 * this new reftable is increased as required.
2638 static int alloc_refblock(BlockDriverState
*bs
, uint64_t **reftable
,
2639 uint64_t reftable_index
, uint64_t *reftable_size
,
2640 void *refblock
, bool refblock_empty
, bool *allocated
,
2643 BDRVQcow2State
*s
= bs
->opaque
;
2646 if (!refblock_empty
&& reftable_index
>= *reftable_size
) {
2647 uint64_t *new_reftable
;
2648 uint64_t new_reftable_size
;
2650 new_reftable_size
= ROUND_UP(reftable_index
+ 1,
2651 s
->cluster_size
/ sizeof(uint64_t));
2652 if (new_reftable_size
> QCOW_MAX_REFTABLE_SIZE
/ sizeof(uint64_t)) {
2654 "This operation would make the refcount table grow "
2655 "beyond the maximum size supported by QEMU, aborting");
2659 new_reftable
= g_try_realloc(*reftable
, new_reftable_size
*
2661 if (!new_reftable
) {
2662 error_setg(errp
, "Failed to increase reftable buffer size");
2666 memset(new_reftable
+ *reftable_size
, 0,
2667 (new_reftable_size
- *reftable_size
) * sizeof(uint64_t));
2669 *reftable
= new_reftable
;
2670 *reftable_size
= new_reftable_size
;
2673 if (!refblock_empty
&& !(*reftable
)[reftable_index
]) {
2674 offset
= qcow2_alloc_clusters(bs
, s
->cluster_size
);
2676 error_setg_errno(errp
, -offset
, "Failed to allocate refblock");
2679 (*reftable
)[reftable_index
] = offset
;
2687 * This "operation" for walk_over_reftable() writes the refblock to disk at the
2688 * offset specified by the new reftable's entry. It does not modify the new
2689 * reftable or change any refcounts.
2691 static int flush_refblock(BlockDriverState
*bs
, uint64_t **reftable
,
2692 uint64_t reftable_index
, uint64_t *reftable_size
,
2693 void *refblock
, bool refblock_empty
, bool *allocated
,
2696 BDRVQcow2State
*s
= bs
->opaque
;
2700 if (reftable_index
< *reftable_size
&& (*reftable
)[reftable_index
]) {
2701 offset
= (*reftable
)[reftable_index
];
2703 ret
= qcow2_pre_write_overlap_check(bs
, 0, offset
, s
->cluster_size
);
2705 error_setg_errno(errp
, -ret
, "Overlap check failed");
2709 ret
= bdrv_pwrite(bs
->file
, offset
, refblock
, s
->cluster_size
);
2711 error_setg_errno(errp
, -ret
, "Failed to write refblock");
2715 assert(refblock_empty
);
2722 * This function walks over the existing reftable and every referenced refblock;
2723 * if @new_set_refcount is non-NULL, it is called for every refcount entry to
2724 * create an equal new entry in the passed @new_refblock. Once that
2725 * @new_refblock is completely filled, @operation will be called.
2727 * @status_cb and @cb_opaque are used for the amend operation's status callback.
2728 * @index is the index of the walk_over_reftable() calls and @total is the total
2729 * number of walk_over_reftable() calls per amend operation. Both are used for
2730 * calculating the parameters for the status callback.
2732 * @allocated is set to true if a new cluster has been allocated.
2734 static int walk_over_reftable(BlockDriverState
*bs
, uint64_t **new_reftable
,
2735 uint64_t *new_reftable_index
,
2736 uint64_t *new_reftable_size
,
2737 void *new_refblock
, int new_refblock_size
,
2738 int new_refcount_bits
,
2739 RefblockFinishOp
*operation
, bool *allocated
,
2740 Qcow2SetRefcountFunc
*new_set_refcount
,
2741 BlockDriverAmendStatusCB
*status_cb
,
2742 void *cb_opaque
, int index
, int total
,
2745 BDRVQcow2State
*s
= bs
->opaque
;
2746 uint64_t reftable_index
;
2747 bool new_refblock_empty
= true;
2749 int new_refblock_index
= 0;
2752 for (reftable_index
= 0; reftable_index
< s
->refcount_table_size
;
2755 uint64_t refblock_offset
= s
->refcount_table
[reftable_index
]
2758 status_cb(bs
, (uint64_t)index
* s
->refcount_table_size
+ reftable_index
,
2759 (uint64_t)total
* s
->refcount_table_size
, cb_opaque
);
2761 if (refblock_offset
) {
2764 if (offset_into_cluster(s
, refblock_offset
)) {
2765 qcow2_signal_corruption(bs
, true, -1, -1, "Refblock offset %#"
2766 PRIx64
" unaligned (reftable index: %#"
2767 PRIx64
")", refblock_offset
,
2770 "Image is corrupt (unaligned refblock offset)");
2774 ret
= qcow2_cache_get(bs
, s
->refcount_block_cache
, refblock_offset
,
2777 error_setg_errno(errp
, -ret
, "Failed to retrieve refblock");
2781 for (refblock_index
= 0; refblock_index
< s
->refcount_block_size
;
2786 if (new_refblock_index
>= new_refblock_size
) {
2787 /* new_refblock is now complete */
2788 ret
= operation(bs
, new_reftable
, *new_reftable_index
,
2789 new_reftable_size
, new_refblock
,
2790 new_refblock_empty
, allocated
, errp
);
2792 qcow2_cache_put(bs
, s
->refcount_block_cache
, &refblock
);
2796 (*new_reftable_index
)++;
2797 new_refblock_index
= 0;
2798 new_refblock_empty
= true;
2801 refcount
= s
->get_refcount(refblock
, refblock_index
);
2802 if (new_refcount_bits
< 64 && refcount
>> new_refcount_bits
) {
2805 qcow2_cache_put(bs
, s
->refcount_block_cache
, &refblock
);
2807 offset
= ((reftable_index
<< s
->refcount_block_bits
)
2808 + refblock_index
) << s
->cluster_bits
;
2810 error_setg(errp
, "Cannot decrease refcount entry width to "
2811 "%i bits: Cluster at offset %#" PRIx64
" has a "
2812 "refcount of %" PRIu64
, new_refcount_bits
,
2817 if (new_set_refcount
) {
2818 new_set_refcount(new_refblock
, new_refblock_index
++,
2821 new_refblock_index
++;
2823 new_refblock_empty
= new_refblock_empty
&& refcount
== 0;
2826 qcow2_cache_put(bs
, s
->refcount_block_cache
, &refblock
);
2828 /* No refblock means every refcount is 0 */
2829 for (refblock_index
= 0; refblock_index
< s
->refcount_block_size
;
2832 if (new_refblock_index
>= new_refblock_size
) {
2833 /* new_refblock is now complete */
2834 ret
= operation(bs
, new_reftable
, *new_reftable_index
,
2835 new_reftable_size
, new_refblock
,
2836 new_refblock_empty
, allocated
, errp
);
2841 (*new_reftable_index
)++;
2842 new_refblock_index
= 0;
2843 new_refblock_empty
= true;
2846 if (new_set_refcount
) {
2847 new_set_refcount(new_refblock
, new_refblock_index
++, 0);
2849 new_refblock_index
++;
2855 if (new_refblock_index
> 0) {
2856 /* Complete the potentially existing partially filled final refblock */
2857 if (new_set_refcount
) {
2858 for (; new_refblock_index
< new_refblock_size
;
2859 new_refblock_index
++)
2861 new_set_refcount(new_refblock
, new_refblock_index
, 0);
2865 ret
= operation(bs
, new_reftable
, *new_reftable_index
,
2866 new_reftable_size
, new_refblock
, new_refblock_empty
,
2872 (*new_reftable_index
)++;
2875 status_cb(bs
, (uint64_t)(index
+ 1) * s
->refcount_table_size
,
2876 (uint64_t)total
* s
->refcount_table_size
, cb_opaque
);
2881 int qcow2_change_refcount_order(BlockDriverState
*bs
, int refcount_order
,
2882 BlockDriverAmendStatusCB
*status_cb
,
2883 void *cb_opaque
, Error
**errp
)
2885 BDRVQcow2State
*s
= bs
->opaque
;
2886 Qcow2GetRefcountFunc
*new_get_refcount
;
2887 Qcow2SetRefcountFunc
*new_set_refcount
;
2888 void *new_refblock
= qemu_blockalign(bs
->file
->bs
, s
->cluster_size
);
2889 uint64_t *new_reftable
= NULL
, new_reftable_size
= 0;
2890 uint64_t *old_reftable
, old_reftable_size
, old_reftable_offset
;
2891 uint64_t new_reftable_index
= 0;
2893 int64_t new_reftable_offset
= 0, allocated_reftable_size
= 0;
2894 int new_refblock_size
, new_refcount_bits
= 1 << refcount_order
;
2895 int old_refcount_order
;
2898 bool new_allocation
;
2900 assert(s
->qcow_version
>= 3);
2901 assert(refcount_order
>= 0 && refcount_order
<= 6);
2903 /* see qcow2_open() */
2904 new_refblock_size
= 1 << (s
->cluster_bits
- (refcount_order
- 3));
2906 new_get_refcount
= get_refcount_funcs
[refcount_order
];
2907 new_set_refcount
= set_refcount_funcs
[refcount_order
];
2913 new_allocation
= false;
2915 /* At least we have to do this walk and the one which writes the
2916 * refblocks; also, at least we have to do this loop here at least
2917 * twice (normally), first to do the allocations, and second to
2918 * determine that everything is correctly allocated, this then makes
2919 * three walks in total */
2920 total_walks
= MAX(walk_index
+ 2, 3);
2922 /* First, allocate the structures so they are present in the refcount
2924 ret
= walk_over_reftable(bs
, &new_reftable
, &new_reftable_index
,
2925 &new_reftable_size
, NULL
, new_refblock_size
,
2926 new_refcount_bits
, &alloc_refblock
,
2927 &new_allocation
, NULL
, status_cb
, cb_opaque
,
2928 walk_index
++, total_walks
, errp
);
2933 new_reftable_index
= 0;
2935 if (new_allocation
) {
2936 if (new_reftable_offset
) {
2937 qcow2_free_clusters(bs
, new_reftable_offset
,
2938 allocated_reftable_size
* sizeof(uint64_t),
2939 QCOW2_DISCARD_NEVER
);
2942 new_reftable_offset
= qcow2_alloc_clusters(bs
, new_reftable_size
*
2944 if (new_reftable_offset
< 0) {
2945 error_setg_errno(errp
, -new_reftable_offset
,
2946 "Failed to allocate the new reftable");
2947 ret
= new_reftable_offset
;
2950 allocated_reftable_size
= new_reftable_size
;
2952 } while (new_allocation
);
2954 /* Second, write the new refblocks */
2955 ret
= walk_over_reftable(bs
, &new_reftable
, &new_reftable_index
,
2956 &new_reftable_size
, new_refblock
,
2957 new_refblock_size
, new_refcount_bits
,
2958 &flush_refblock
, &new_allocation
, new_set_refcount
,
2959 status_cb
, cb_opaque
, walk_index
, walk_index
+ 1,
2964 assert(!new_allocation
);
2967 /* Write the new reftable */
2968 ret
= qcow2_pre_write_overlap_check(bs
, 0, new_reftable_offset
,
2969 new_reftable_size
* sizeof(uint64_t));
2971 error_setg_errno(errp
, -ret
, "Overlap check failed");
2975 for (i
= 0; i
< new_reftable_size
; i
++) {
2976 cpu_to_be64s(&new_reftable
[i
]);
2979 ret
= bdrv_pwrite(bs
->file
, new_reftable_offset
, new_reftable
,
2980 new_reftable_size
* sizeof(uint64_t));
2982 for (i
= 0; i
< new_reftable_size
; i
++) {
2983 be64_to_cpus(&new_reftable
[i
]);
2987 error_setg_errno(errp
, -ret
, "Failed to write the new reftable");
2992 /* Empty the refcount cache */
2993 ret
= qcow2_cache_flush(bs
, s
->refcount_block_cache
);
2995 error_setg_errno(errp
, -ret
, "Failed to flush the refblock cache");
2999 /* Update the image header to point to the new reftable; this only updates
3000 * the fields which are relevant to qcow2_update_header(); other fields
3001 * such as s->refcount_table or s->refcount_bits stay stale for now
3002 * (because we have to restore everything if qcow2_update_header() fails) */
3003 old_refcount_order
= s
->refcount_order
;
3004 old_reftable_size
= s
->refcount_table_size
;
3005 old_reftable_offset
= s
->refcount_table_offset
;
3007 s
->refcount_order
= refcount_order
;
3008 s
->refcount_table_size
= new_reftable_size
;
3009 s
->refcount_table_offset
= new_reftable_offset
;
3011 ret
= qcow2_update_header(bs
);
3013 s
->refcount_order
= old_refcount_order
;
3014 s
->refcount_table_size
= old_reftable_size
;
3015 s
->refcount_table_offset
= old_reftable_offset
;
3016 error_setg_errno(errp
, -ret
, "Failed to update the qcow2 header");
3020 /* Now update the rest of the in-memory information */
3021 old_reftable
= s
->refcount_table
;
3022 s
->refcount_table
= new_reftable
;
3023 update_max_refcount_table_index(s
);
3025 s
->refcount_bits
= 1 << refcount_order
;
3026 s
->refcount_max
= UINT64_C(1) << (s
->refcount_bits
- 1);
3027 s
->refcount_max
+= s
->refcount_max
- 1;
3029 s
->refcount_block_bits
= s
->cluster_bits
- (refcount_order
- 3);
3030 s
->refcount_block_size
= 1 << s
->refcount_block_bits
;
3032 s
->get_refcount
= new_get_refcount
;
3033 s
->set_refcount
= new_set_refcount
;
3035 /* For cleaning up all old refblocks and the old reftable below the "done"
3037 new_reftable
= old_reftable
;
3038 new_reftable_size
= old_reftable_size
;
3039 new_reftable_offset
= old_reftable_offset
;
3043 /* On success, new_reftable actually points to the old reftable (and
3044 * new_reftable_size is the old reftable's size); but that is just
3046 for (i
= 0; i
< new_reftable_size
; i
++) {
3047 uint64_t offset
= new_reftable
[i
] & REFT_OFFSET_MASK
;
3049 qcow2_free_clusters(bs
, offset
, s
->cluster_size
,
3050 QCOW2_DISCARD_OTHER
);
3053 g_free(new_reftable
);
3055 if (new_reftable_offset
> 0) {
3056 qcow2_free_clusters(bs
, new_reftable_offset
,
3057 new_reftable_size
* sizeof(uint64_t),
3058 QCOW2_DISCARD_OTHER
);
3062 qemu_vfree(new_refblock
);
3066 static int qcow2_discard_refcount_block(BlockDriverState
*bs
,
3067 uint64_t discard_block_offs
)
3069 BDRVQcow2State
*s
= bs
->opaque
;
3070 uint64_t refblock_offs
= get_refblock_offset(s
, discard_block_offs
);
3071 uint64_t cluster_index
= discard_block_offs
>> s
->cluster_bits
;
3072 uint32_t block_index
= cluster_index
& (s
->refcount_block_size
- 1);
3076 assert(discard_block_offs
!= 0);
3078 ret
= qcow2_cache_get(bs
, s
->refcount_block_cache
, refblock_offs
,
3084 if (s
->get_refcount(refblock
, block_index
) != 1) {
3085 qcow2_signal_corruption(bs
, true, -1, -1, "Invalid refcount:"
3086 " refblock offset %#" PRIx64
3087 ", reftable index %u"
3088 ", block offset %#" PRIx64
3089 ", refcount %#" PRIx64
,
3091 offset_to_reftable_index(s
, discard_block_offs
),
3093 s
->get_refcount(refblock
, block_index
));
3094 qcow2_cache_put(bs
, s
->refcount_block_cache
, &refblock
);
3097 s
->set_refcount(refblock
, block_index
, 0);
3099 qcow2_cache_entry_mark_dirty(bs
, s
->refcount_block_cache
, refblock
);
3101 qcow2_cache_put(bs
, s
->refcount_block_cache
, &refblock
);
3103 if (cluster_index
< s
->free_cluster_index
) {
3104 s
->free_cluster_index
= cluster_index
;
3107 refblock
= qcow2_cache_is_table_offset(bs
, s
->refcount_block_cache
,
3108 discard_block_offs
);
3110 /* discard refblock from the cache if refblock is cached */
3111 qcow2_cache_discard(bs
, s
->refcount_block_cache
, refblock
);
3113 update_refcount_discard(bs
, discard_block_offs
, s
->cluster_size
);
3118 int qcow2_shrink_reftable(BlockDriverState
*bs
)
3120 BDRVQcow2State
*s
= bs
->opaque
;
3121 uint64_t *reftable_tmp
=
3122 g_malloc(s
->refcount_table_size
* sizeof(uint64_t));
3125 for (i
= 0; i
< s
->refcount_table_size
; i
++) {
3126 int64_t refblock_offs
= s
->refcount_table
[i
] & REFT_OFFSET_MASK
;
3130 if (refblock_offs
== 0) {
3131 reftable_tmp
[i
] = 0;
3134 ret
= qcow2_cache_get(bs
, s
->refcount_block_cache
, refblock_offs
,
3140 /* the refblock has own reference */
3141 if (i
== offset_to_reftable_index(s
, refblock_offs
)) {
3142 uint64_t block_index
= (refblock_offs
>> s
->cluster_bits
) &
3143 (s
->refcount_block_size
- 1);
3144 uint64_t refcount
= s
->get_refcount(refblock
, block_index
);
3146 s
->set_refcount(refblock
, block_index
, 0);
3148 unused_block
= buffer_is_zero(refblock
, s
->cluster_size
);
3150 s
->set_refcount(refblock
, block_index
, refcount
);
3152 unused_block
= buffer_is_zero(refblock
, s
->cluster_size
);
3154 qcow2_cache_put(bs
, s
->refcount_block_cache
, &refblock
);
3156 reftable_tmp
[i
] = unused_block
? 0 : cpu_to_be64(s
->refcount_table
[i
]);
3159 ret
= bdrv_pwrite_sync(bs
->file
, s
->refcount_table_offset
, reftable_tmp
,
3160 s
->refcount_table_size
* sizeof(uint64_t));
3162 * If the write in the reftable failed the image may contain a partially
3163 * overwritten reftable. In this case it would be better to clear the
3164 * reftable in memory to avoid possible image corruption.
3166 for (i
= 0; i
< s
->refcount_table_size
; i
++) {
3167 if (s
->refcount_table
[i
] && !reftable_tmp
[i
]) {
3169 ret
= qcow2_discard_refcount_block(bs
, s
->refcount_table
[i
] &
3172 s
->refcount_table
[i
] = 0;
3176 if (!s
->cache_discards
) {
3177 qcow2_process_discards(bs
, ret
);
3181 g_free(reftable_tmp
);