2 * i386 emulator main execution loop
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
25 #if !defined(CONFIG_SOFTMMU)
37 #include <sys/ucontext.h>
41 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
42 // Work around ugly bugs in glibc that mangle global register contents
44 #define env cpu_single_env
47 int tb_invalidated_flag
;
49 //#define CONFIG_DEBUG_EXEC
50 //#define DEBUG_SIGNAL
52 int qemu_cpu_has_work(CPUState
*env
)
54 return cpu_has_work(env
);
57 void cpu_loop_exit(void)
59 /* NOTE: the register at this point must be saved by hand because
60 longjmp restore them */
62 longjmp(env
->jmp_env
, 1);
65 /* exit the current TB from a signal handler. The host registers are
66 restored in a state compatible with the CPU emulator
68 void cpu_resume_from_signal(CPUState
*env1
, void *puc
)
70 #if !defined(CONFIG_SOFTMMU)
72 struct ucontext
*uc
= puc
;
73 #elif defined(__OpenBSD__)
74 struct sigcontext
*uc
= puc
;
80 /* XXX: restore cpu registers saved in host registers */
82 #if !defined(CONFIG_SOFTMMU)
84 /* XXX: use siglongjmp ? */
86 sigprocmask(SIG_SETMASK
, &uc
->uc_sigmask
, NULL
);
87 #elif defined(__OpenBSD__)
88 sigprocmask(SIG_SETMASK
, &uc
->sc_mask
, NULL
);
92 env
->exception_index
= -1;
93 longjmp(env
->jmp_env
, 1);
96 /* Execute the code without caching the generated code. An interpreter
97 could be used if available. */
98 static void cpu_exec_nocache(int max_cycles
, TranslationBlock
*orig_tb
)
100 unsigned long next_tb
;
101 TranslationBlock
*tb
;
103 /* Should never happen.
104 We only end up here when an existing TB is too long. */
105 if (max_cycles
> CF_COUNT_MASK
)
106 max_cycles
= CF_COUNT_MASK
;
108 tb
= tb_gen_code(env
, orig_tb
->pc
, orig_tb
->cs_base
, orig_tb
->flags
,
110 env
->current_tb
= tb
;
111 /* execute the generated code */
112 next_tb
= tcg_qemu_tb_exec(tb
->tc_ptr
);
114 if ((next_tb
& 3) == 2) {
115 /* Restore PC. This may happen if async event occurs before
116 the TB starts executing. */
117 cpu_pc_from_tb(env
, tb
);
119 tb_phys_invalidate(tb
, -1);
123 static TranslationBlock
*tb_find_slow(target_ulong pc
,
124 target_ulong cs_base
,
127 TranslationBlock
*tb
, **ptb1
;
129 target_ulong phys_pc
, phys_page1
, phys_page2
, virt_page2
;
131 tb_invalidated_flag
= 0;
133 regs_to_env(); /* XXX: do it just before cpu_gen_code() */
135 /* find translated block using physical mappings */
136 phys_pc
= get_phys_addr_code(env
, pc
);
137 phys_page1
= phys_pc
& TARGET_PAGE_MASK
;
139 h
= tb_phys_hash_func(phys_pc
);
140 ptb1
= &tb_phys_hash
[h
];
146 tb
->page_addr
[0] == phys_page1
&&
147 tb
->cs_base
== cs_base
&&
148 tb
->flags
== flags
) {
149 /* check next page if needed */
150 if (tb
->page_addr
[1] != -1) {
151 virt_page2
= (pc
& TARGET_PAGE_MASK
) +
153 phys_page2
= get_phys_addr_code(env
, virt_page2
);
154 if (tb
->page_addr
[1] == phys_page2
)
160 ptb1
= &tb
->phys_hash_next
;
163 /* if no translated code available, then translate it now */
164 tb
= tb_gen_code(env
, pc
, cs_base
, flags
, 0);
167 /* we add the TB in the virtual pc hash table */
168 env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)] = tb
;
172 static inline TranslationBlock
*tb_find_fast(void)
174 TranslationBlock
*tb
;
175 target_ulong cs_base
, pc
;
178 /* we record a subset of the CPU state. It will
179 always be the same before a given translated block
181 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &flags
);
182 tb
= env
->tb_jmp_cache
[tb_jmp_cache_hash_func(pc
)];
183 if (unlikely(!tb
|| tb
->pc
!= pc
|| tb
->cs_base
!= cs_base
||
184 tb
->flags
!= flags
)) {
185 tb
= tb_find_slow(pc
, cs_base
, flags
);
190 static CPUDebugExcpHandler
*debug_excp_handler
;
192 CPUDebugExcpHandler
*cpu_set_debug_excp_handler(CPUDebugExcpHandler
*handler
)
194 CPUDebugExcpHandler
*old_handler
= debug_excp_handler
;
196 debug_excp_handler
= handler
;
200 static void cpu_handle_debug_exception(CPUState
*env
)
204 if (!env
->watchpoint_hit
)
205 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
)
206 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
208 if (debug_excp_handler
)
209 debug_excp_handler(env
);
212 /* main execution loop */
214 int cpu_exec(CPUState
*env1
)
216 #define DECLARE_HOST_REGS 1
217 #include "hostregs_helper.h"
218 int ret
, interrupt_request
;
219 TranslationBlock
*tb
;
221 unsigned long next_tb
;
223 if (cpu_halted(env1
) == EXCP_HALTED
)
226 cpu_single_env
= env1
;
228 /* first we save global registers */
229 #define SAVE_HOST_REGS 1
230 #include "hostregs_helper.h"
234 #if defined(TARGET_I386)
235 /* put eflags in CPU temporary format */
236 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
237 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
238 CC_OP
= CC_OP_EFLAGS
;
239 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
240 #elif defined(TARGET_SPARC)
241 #elif defined(TARGET_M68K)
242 env
->cc_op
= CC_OP_FLAGS
;
243 env
->cc_dest
= env
->sr
& 0xf;
244 env
->cc_x
= (env
->sr
>> 4) & 1;
245 #elif defined(TARGET_ALPHA)
246 #elif defined(TARGET_ARM)
247 #elif defined(TARGET_PPC)
248 #elif defined(TARGET_MICROBLAZE)
249 #elif defined(TARGET_MIPS)
250 #elif defined(TARGET_SH4)
251 #elif defined(TARGET_CRIS)
254 #error unsupported target CPU
256 env
->exception_index
= -1;
258 /* prepare setjmp context for exception handling */
260 if (setjmp(env
->jmp_env
) == 0) {
261 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
263 env
= cpu_single_env
;
264 #define env cpu_single_env
266 env
->current_tb
= NULL
;
267 /* if an exception is pending, we execute it here */
268 if (env
->exception_index
>= 0) {
269 if (env
->exception_index
>= EXCP_INTERRUPT
) {
270 /* exit request from the cpu execution loop */
271 ret
= env
->exception_index
;
272 if (ret
== EXCP_DEBUG
)
273 cpu_handle_debug_exception(env
);
276 #if defined(CONFIG_USER_ONLY)
277 /* if user mode only, we simulate a fake exception
278 which will be handled outside the cpu execution
280 #if defined(TARGET_I386)
281 do_interrupt_user(env
->exception_index
,
282 env
->exception_is_int
,
284 env
->exception_next_eip
);
285 /* successfully delivered */
286 env
->old_exception
= -1;
288 ret
= env
->exception_index
;
291 #if defined(TARGET_I386)
292 /* simulate a real cpu exception. On i386, it can
293 trigger new exceptions, but we do not handle
294 double or triple faults yet. */
295 do_interrupt(env
->exception_index
,
296 env
->exception_is_int
,
298 env
->exception_next_eip
, 0);
299 /* successfully delivered */
300 env
->old_exception
= -1;
301 #elif defined(TARGET_PPC)
303 #elif defined(TARGET_MICROBLAZE)
305 #elif defined(TARGET_MIPS)
307 #elif defined(TARGET_SPARC)
309 #elif defined(TARGET_ARM)
311 #elif defined(TARGET_SH4)
313 #elif defined(TARGET_ALPHA)
315 #elif defined(TARGET_CRIS)
317 #elif defined(TARGET_M68K)
322 env
->exception_index
= -1;
325 if (kqemu_is_ok(env
) && env
->interrupt_request
== 0 && env
->exit_request
== 0) {
327 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
328 ret
= kqemu_cpu_exec(env
);
329 /* put eflags in CPU temporary format */
330 CC_SRC
= env
->eflags
& (CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
331 DF
= 1 - (2 * ((env
->eflags
>> 10) & 1));
332 CC_OP
= CC_OP_EFLAGS
;
333 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
336 longjmp(env
->jmp_env
, 1);
337 } else if (ret
== 2) {
338 /* softmmu execution needed */
340 if (env
->interrupt_request
!= 0 || env
->exit_request
!= 0) {
341 /* hardware interrupt will be executed just after */
343 /* otherwise, we restart */
344 longjmp(env
->jmp_env
, 1);
352 longjmp(env
->jmp_env
, 1);
355 next_tb
= 0; /* force lookup of first TB */
357 interrupt_request
= env
->interrupt_request
;
358 if (unlikely(interrupt_request
)) {
359 if (unlikely(env
->singlestep_enabled
& SSTEP_NOIRQ
)) {
360 /* Mask out external interrupts for this step. */
361 interrupt_request
&= ~(CPU_INTERRUPT_HARD
|
366 if (interrupt_request
& CPU_INTERRUPT_DEBUG
) {
367 env
->interrupt_request
&= ~CPU_INTERRUPT_DEBUG
;
368 env
->exception_index
= EXCP_DEBUG
;
371 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
372 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
373 defined(TARGET_MICROBLAZE)
374 if (interrupt_request
& CPU_INTERRUPT_HALT
) {
375 env
->interrupt_request
&= ~CPU_INTERRUPT_HALT
;
377 env
->exception_index
= EXCP_HLT
;
381 #if defined(TARGET_I386)
382 if (interrupt_request
& CPU_INTERRUPT_INIT
) {
383 svm_check_intercept(SVM_EXIT_INIT
);
385 env
->exception_index
= EXCP_HALTED
;
387 } else if (interrupt_request
& CPU_INTERRUPT_SIPI
) {
389 } else if (env
->hflags2
& HF2_GIF_MASK
) {
390 if ((interrupt_request
& CPU_INTERRUPT_SMI
) &&
391 !(env
->hflags
& HF_SMM_MASK
)) {
392 svm_check_intercept(SVM_EXIT_SMI
);
393 env
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
396 } else if ((interrupt_request
& CPU_INTERRUPT_NMI
) &&
397 !(env
->hflags2
& HF2_NMI_MASK
)) {
398 env
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
399 env
->hflags2
|= HF2_NMI_MASK
;
400 do_interrupt(EXCP02_NMI
, 0, 0, 0, 1);
402 } else if (interrupt_request
& CPU_INTERRUPT_MCE
) {
403 env
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
404 do_interrupt(EXCP12_MCHK
, 0, 0, 0, 0);
406 } else if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
407 (((env
->hflags2
& HF2_VINTR_MASK
) &&
408 (env
->hflags2
& HF2_HIF_MASK
)) ||
409 (!(env
->hflags2
& HF2_VINTR_MASK
) &&
410 (env
->eflags
& IF_MASK
&&
411 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
))))) {
413 svm_check_intercept(SVM_EXIT_INTR
);
414 env
->interrupt_request
&= ~(CPU_INTERRUPT_HARD
| CPU_INTERRUPT_VIRQ
);
415 intno
= cpu_get_pic_interrupt(env
);
416 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing hardware INT=0x%02x\n", intno
);
417 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
419 env
= cpu_single_env
;
420 #define env cpu_single_env
422 do_interrupt(intno
, 0, 0, 0, 1);
423 /* ensure that no TB jump will be modified as
424 the program flow was changed */
426 #if !defined(CONFIG_USER_ONLY)
427 } else if ((interrupt_request
& CPU_INTERRUPT_VIRQ
) &&
428 (env
->eflags
& IF_MASK
) &&
429 !(env
->hflags
& HF_INHIBIT_IRQ_MASK
)) {
431 /* FIXME: this should respect TPR */
432 svm_check_intercept(SVM_EXIT_VINTR
);
433 intno
= ldl_phys(env
->vm_vmcb
+ offsetof(struct vmcb
, control
.int_vector
));
434 qemu_log_mask(CPU_LOG_TB_IN_ASM
, "Servicing virtual hardware INT=0x%02x\n", intno
);
435 do_interrupt(intno
, 0, 0, 0, 1);
436 env
->interrupt_request
&= ~CPU_INTERRUPT_VIRQ
;
441 #elif defined(TARGET_PPC)
443 if ((interrupt_request
& CPU_INTERRUPT_RESET
)) {
447 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
448 ppc_hw_interrupt(env
);
449 if (env
->pending_interrupts
== 0)
450 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
453 #elif defined(TARGET_MICROBLAZE)
454 if ((interrupt_request
& CPU_INTERRUPT_HARD
)
455 && (env
->sregs
[SR_MSR
] & MSR_IE
)
456 && !(env
->sregs
[SR_MSR
] & (MSR_EIP
| MSR_BIP
))
457 && !(env
->iflags
& (D_FLAG
| IMM_FLAG
))) {
458 env
->exception_index
= EXCP_IRQ
;
462 #elif defined(TARGET_MIPS)
463 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
464 (env
->CP0_Status
& env
->CP0_Cause
& CP0Ca_IP_mask
) &&
465 (env
->CP0_Status
& (1 << CP0St_IE
)) &&
466 !(env
->CP0_Status
& (1 << CP0St_EXL
)) &&
467 !(env
->CP0_Status
& (1 << CP0St_ERL
)) &&
468 !(env
->hflags
& MIPS_HFLAG_DM
)) {
470 env
->exception_index
= EXCP_EXT_INTERRUPT
;
475 #elif defined(TARGET_SPARC)
476 if ((interrupt_request
& CPU_INTERRUPT_HARD
) &&
477 cpu_interrupts_enabled(env
)) {
478 int pil
= env
->interrupt_index
& 15;
479 int type
= env
->interrupt_index
& 0xf0;
481 if (((type
== TT_EXTINT
) &&
482 (pil
== 15 || pil
> env
->psrpil
)) ||
484 env
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
485 env
->exception_index
= env
->interrupt_index
;
487 env
->interrupt_index
= 0;
490 } else if (interrupt_request
& CPU_INTERRUPT_TIMER
) {
491 //do_interrupt(0, 0, 0, 0, 0);
492 env
->interrupt_request
&= ~CPU_INTERRUPT_TIMER
;
494 #elif defined(TARGET_ARM)
495 if (interrupt_request
& CPU_INTERRUPT_FIQ
496 && !(env
->uncached_cpsr
& CPSR_F
)) {
497 env
->exception_index
= EXCP_FIQ
;
501 /* ARMv7-M interrupt return works by loading a magic value
502 into the PC. On real hardware the load causes the
503 return to occur. The qemu implementation performs the
504 jump normally, then does the exception return when the
505 CPU tries to execute code at the magic address.
506 This will cause the magic PC value to be pushed to
507 the stack if an interrupt occured at the wrong time.
508 We avoid this by disabling interrupts when
509 pc contains a magic address. */
510 if (interrupt_request
& CPU_INTERRUPT_HARD
511 && ((IS_M(env
) && env
->regs
[15] < 0xfffffff0)
512 || !(env
->uncached_cpsr
& CPSR_I
))) {
513 env
->exception_index
= EXCP_IRQ
;
517 #elif defined(TARGET_SH4)
518 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
522 #elif defined(TARGET_ALPHA)
523 if (interrupt_request
& CPU_INTERRUPT_HARD
) {
527 #elif defined(TARGET_CRIS)
528 if (interrupt_request
& CPU_INTERRUPT_HARD
529 && (env
->pregs
[PR_CCS
] & I_FLAG
)) {
530 env
->exception_index
= EXCP_IRQ
;
534 if (interrupt_request
& CPU_INTERRUPT_NMI
535 && (env
->pregs
[PR_CCS
] & M_FLAG
)) {
536 env
->exception_index
= EXCP_NMI
;
540 #elif defined(TARGET_M68K)
541 if (interrupt_request
& CPU_INTERRUPT_HARD
542 && ((env
->sr
& SR_I
) >> SR_I_SHIFT
)
543 < env
->pending_level
) {
544 /* Real hardware gets the interrupt vector via an
545 IACK cycle at this point. Current emulated
546 hardware doesn't rely on this, so we
547 provide/save the vector when the interrupt is
549 env
->exception_index
= env
->pending_vector
;
554 /* Don't use the cached interupt_request value,
555 do_interrupt may have updated the EXITTB flag. */
556 if (env
->interrupt_request
& CPU_INTERRUPT_EXITTB
) {
557 env
->interrupt_request
&= ~CPU_INTERRUPT_EXITTB
;
558 /* ensure that no TB jump will be modified as
559 the program flow was changed */
563 if (unlikely(env
->exit_request
)) {
564 env
->exit_request
= 0;
565 env
->exception_index
= EXCP_INTERRUPT
;
568 #ifdef CONFIG_DEBUG_EXEC
569 if (qemu_loglevel_mask(CPU_LOG_TB_CPU
)) {
570 /* restore flags in standard format */
572 #if defined(TARGET_I386)
573 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
574 log_cpu_state(env
, X86_DUMP_CCOP
);
575 env
->eflags
&= ~(DF_MASK
| CC_O
| CC_S
| CC_Z
| CC_A
| CC_P
| CC_C
);
576 #elif defined(TARGET_ARM)
577 log_cpu_state(env
, 0);
578 #elif defined(TARGET_SPARC)
579 log_cpu_state(env
, 0);
580 #elif defined(TARGET_PPC)
581 log_cpu_state(env
, 0);
582 #elif defined(TARGET_M68K)
583 cpu_m68k_flush_flags(env
, env
->cc_op
);
584 env
->cc_op
= CC_OP_FLAGS
;
585 env
->sr
= (env
->sr
& 0xffe0)
586 | env
->cc_dest
| (env
->cc_x
<< 4);
587 log_cpu_state(env
, 0);
588 #elif defined(TARGET_MICROBLAZE)
589 log_cpu_state(env
, 0);
590 #elif defined(TARGET_MIPS)
591 log_cpu_state(env
, 0);
592 #elif defined(TARGET_SH4)
593 log_cpu_state(env
, 0);
594 #elif defined(TARGET_ALPHA)
595 log_cpu_state(env
, 0);
596 #elif defined(TARGET_CRIS)
597 log_cpu_state(env
, 0);
599 #error unsupported target CPU
605 /* Note: we do it here to avoid a gcc bug on Mac OS X when
606 doing it in tb_find_slow */
607 if (tb_invalidated_flag
) {
608 /* as some TB could have been invalidated because
609 of memory exceptions while generating the code, we
610 must recompute the hash index here */
612 tb_invalidated_flag
= 0;
614 #ifdef CONFIG_DEBUG_EXEC
615 qemu_log_mask(CPU_LOG_EXEC
, "Trace 0x%08lx [" TARGET_FMT_lx
"] %s\n",
616 (long)tb
->tc_ptr
, tb
->pc
,
617 lookup_symbol(tb
->pc
));
619 /* see if we can patch the calling TB. When the TB
620 spans two pages, we cannot safely do a direct
625 (env
->kqemu_enabled
!= 2) &&
627 tb
->page_addr
[1] == -1) {
628 tb_add_jump((TranslationBlock
*)(next_tb
& ~3), next_tb
& 3, tb
);
631 spin_unlock(&tb_lock
);
632 env
->current_tb
= tb
;
634 /* cpu_interrupt might be called while translating the
635 TB, but before it is linked into a potentially
636 infinite loop and becomes env->current_tb. Avoid
637 starting execution if there is a pending interrupt. */
638 if (unlikely (env
->exit_request
))
639 env
->current_tb
= NULL
;
641 while (env
->current_tb
) {
643 /* execute the generated code */
644 #if defined(__sparc__) && !defined(CONFIG_SOLARIS)
646 env
= cpu_single_env
;
647 #define env cpu_single_env
649 next_tb
= tcg_qemu_tb_exec(tc_ptr
);
650 env
->current_tb
= NULL
;
651 if ((next_tb
& 3) == 2) {
652 /* Instruction counter expired. */
654 tb
= (TranslationBlock
*)(long)(next_tb
& ~3);
656 cpu_pc_from_tb(env
, tb
);
657 insns_left
= env
->icount_decr
.u32
;
658 if (env
->icount_extra
&& insns_left
>= 0) {
659 /* Refill decrementer and continue execution. */
660 env
->icount_extra
+= insns_left
;
661 if (env
->icount_extra
> 0xffff) {
664 insns_left
= env
->icount_extra
;
666 env
->icount_extra
-= insns_left
;
667 env
->icount_decr
.u16
.low
= insns_left
;
669 if (insns_left
> 0) {
670 /* Execute remaining instructions. */
671 cpu_exec_nocache(insns_left
, tb
);
673 env
->exception_index
= EXCP_INTERRUPT
;
679 /* reset soft MMU for next block (it can currently
680 only be set by a memory fault) */
681 #if defined(CONFIG_KQEMU)
682 #define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
683 if (kqemu_is_ok(env
) &&
684 (cpu_get_time_fast() - env
->last_io_time
) >= MIN_CYCLE_BEFORE_SWITCH
) {
695 #if defined(TARGET_I386)
696 /* restore flags in standard format */
697 env
->eflags
= env
->eflags
| helper_cc_compute_all(CC_OP
) | (DF
& DF_MASK
);
698 #elif defined(TARGET_ARM)
699 /* XXX: Save/restore host fpu exception state?. */
700 #elif defined(TARGET_SPARC)
701 #elif defined(TARGET_PPC)
702 #elif defined(TARGET_M68K)
703 cpu_m68k_flush_flags(env
, env
->cc_op
);
704 env
->cc_op
= CC_OP_FLAGS
;
705 env
->sr
= (env
->sr
& 0xffe0)
706 | env
->cc_dest
| (env
->cc_x
<< 4);
707 #elif defined(TARGET_MICROBLAZE)
708 #elif defined(TARGET_MIPS)
709 #elif defined(TARGET_SH4)
710 #elif defined(TARGET_ALPHA)
711 #elif defined(TARGET_CRIS)
714 #error unsupported target CPU
717 /* restore global registers */
718 #include "hostregs_helper.h"
720 /* fail safe : never use cpu_single_env outside cpu_exec() */
721 cpu_single_env
= NULL
;
725 /* must only be called from the generated code as an exception can be
727 void tb_invalidate_page_range(target_ulong start
, target_ulong end
)
729 /* XXX: cannot enable it yet because it yields to MMU exception
730 where NIP != read address on PowerPC */
732 target_ulong phys_addr
;
733 phys_addr
= get_phys_addr_code(env
, start
);
734 tb_invalidate_phys_page_range(phys_addr
, phys_addr
+ end
- start
, 0);
738 #if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
740 void cpu_x86_load_seg(CPUX86State
*s
, int seg_reg
, int selector
)
742 CPUX86State
*saved_env
;
746 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
)) {
748 cpu_x86_load_seg_cache(env
, seg_reg
, selector
,
749 (selector
<< 4), 0xffff, 0);
751 helper_load_seg(seg_reg
, selector
);
756 void cpu_x86_fsave(CPUX86State
*s
, target_ulong ptr
, int data32
)
758 CPUX86State
*saved_env
;
763 helper_fsave(ptr
, data32
);
768 void cpu_x86_frstor(CPUX86State
*s
, target_ulong ptr
, int data32
)
770 CPUX86State
*saved_env
;
775 helper_frstor(ptr
, data32
);
780 #endif /* TARGET_I386 */
782 #if !defined(CONFIG_SOFTMMU)
784 #if defined(TARGET_I386)
786 /* 'pc' is the host PC at which the exception was raised. 'address' is
787 the effective address of the memory exception. 'is_write' is 1 if a
788 write caused the exception and otherwise 0'. 'old_set' is the
789 signal set which should be restored */
790 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
791 int is_write
, sigset_t
*old_set
,
794 TranslationBlock
*tb
;
798 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
799 #if defined(DEBUG_SIGNAL)
800 qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
801 pc
, address
, is_write
, *(unsigned long *)old_set
);
803 /* XXX: locking issue */
804 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
808 /* see if it is an MMU fault */
809 ret
= cpu_x86_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
811 return 0; /* not an MMU fault */
813 return 1; /* the MMU fault was handled without causing real CPU fault */
814 /* now we have a real cpu fault */
817 /* the PC is inside the translated code. It means that we have
818 a virtual CPU fault */
819 cpu_restore_state(tb
, env
, pc
, puc
);
823 printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
824 env
->eip
, env
->cr
[2], env
->error_code
);
826 /* we restore the process signal mask as the sigreturn should
827 do it (XXX: use sigsetjmp) */
828 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
829 raise_exception_err(env
->exception_index
, env
->error_code
);
831 /* activate soft MMU for this block */
832 env
->hflags
|= HF_SOFTMMU_MASK
;
833 cpu_resume_from_signal(env
, puc
);
835 /* never comes here */
839 #elif defined(TARGET_ARM)
840 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
841 int is_write
, sigset_t
*old_set
,
844 TranslationBlock
*tb
;
848 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
849 #if defined(DEBUG_SIGNAL)
850 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
851 pc
, address
, is_write
, *(unsigned long *)old_set
);
853 /* XXX: locking issue */
854 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
857 /* see if it is an MMU fault */
858 ret
= cpu_arm_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
860 return 0; /* not an MMU fault */
862 return 1; /* the MMU fault was handled without causing real CPU fault */
863 /* now we have a real cpu fault */
866 /* the PC is inside the translated code. It means that we have
867 a virtual CPU fault */
868 cpu_restore_state(tb
, env
, pc
, puc
);
870 /* we restore the process signal mask as the sigreturn should
871 do it (XXX: use sigsetjmp) */
872 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
874 /* never comes here */
877 #elif defined(TARGET_SPARC)
878 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
879 int is_write
, sigset_t
*old_set
,
882 TranslationBlock
*tb
;
886 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
887 #if defined(DEBUG_SIGNAL)
888 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
889 pc
, address
, is_write
, *(unsigned long *)old_set
);
891 /* XXX: locking issue */
892 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
895 /* see if it is an MMU fault */
896 ret
= cpu_sparc_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
898 return 0; /* not an MMU fault */
900 return 1; /* the MMU fault was handled without causing real CPU fault */
901 /* now we have a real cpu fault */
904 /* the PC is inside the translated code. It means that we have
905 a virtual CPU fault */
906 cpu_restore_state(tb
, env
, pc
, puc
);
908 /* we restore the process signal mask as the sigreturn should
909 do it (XXX: use sigsetjmp) */
910 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
912 /* never comes here */
915 #elif defined (TARGET_PPC)
916 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
917 int is_write
, sigset_t
*old_set
,
920 TranslationBlock
*tb
;
924 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
925 #if defined(DEBUG_SIGNAL)
926 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
927 pc
, address
, is_write
, *(unsigned long *)old_set
);
929 /* XXX: locking issue */
930 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
934 /* see if it is an MMU fault */
935 ret
= cpu_ppc_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
937 return 0; /* not an MMU fault */
939 return 1; /* the MMU fault was handled without causing real CPU fault */
941 /* now we have a real cpu fault */
944 /* the PC is inside the translated code. It means that we have
945 a virtual CPU fault */
946 cpu_restore_state(tb
, env
, pc
, puc
);
950 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
951 env
->nip
, env
->error_code
, tb
);
953 /* we restore the process signal mask as the sigreturn should
954 do it (XXX: use sigsetjmp) */
955 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
958 /* activate soft MMU for this block */
959 cpu_resume_from_signal(env
, puc
);
961 /* never comes here */
965 #elif defined(TARGET_M68K)
966 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
967 int is_write
, sigset_t
*old_set
,
970 TranslationBlock
*tb
;
974 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
975 #if defined(DEBUG_SIGNAL)
976 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
977 pc
, address
, is_write
, *(unsigned long *)old_set
);
979 /* XXX: locking issue */
980 if (is_write
&& page_unprotect(address
, pc
, puc
)) {
983 /* see if it is an MMU fault */
984 ret
= cpu_m68k_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
986 return 0; /* not an MMU fault */
988 return 1; /* the MMU fault was handled without causing real CPU fault */
989 /* now we have a real cpu fault */
992 /* the PC is inside the translated code. It means that we have
993 a virtual CPU fault */
994 cpu_restore_state(tb
, env
, pc
, puc
);
996 /* we restore the process signal mask as the sigreturn should
997 do it (XXX: use sigsetjmp) */
998 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1000 /* never comes here */
1004 #elif defined (TARGET_MIPS)
1005 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1006 int is_write
, sigset_t
*old_set
,
1009 TranslationBlock
*tb
;
1013 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1014 #if defined(DEBUG_SIGNAL)
1015 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1016 pc
, address
, is_write
, *(unsigned long *)old_set
);
1018 /* XXX: locking issue */
1019 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1023 /* see if it is an MMU fault */
1024 ret
= cpu_mips_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
1026 return 0; /* not an MMU fault */
1028 return 1; /* the MMU fault was handled without causing real CPU fault */
1030 /* now we have a real cpu fault */
1031 tb
= tb_find_pc(pc
);
1033 /* the PC is inside the translated code. It means that we have
1034 a virtual CPU fault */
1035 cpu_restore_state(tb
, env
, pc
, puc
);
1039 printf("PF exception: PC=0x" TARGET_FMT_lx
" error=0x%x %p\n",
1040 env
->PC
, env
->error_code
, tb
);
1042 /* we restore the process signal mask as the sigreturn should
1043 do it (XXX: use sigsetjmp) */
1044 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1047 /* activate soft MMU for this block */
1048 cpu_resume_from_signal(env
, puc
);
1050 /* never comes here */
1054 #elif defined (TARGET_MICROBLAZE)
1055 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1056 int is_write
, sigset_t
*old_set
,
1059 TranslationBlock
*tb
;
1063 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1064 #if defined(DEBUG_SIGNAL)
1065 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1066 pc
, address
, is_write
, *(unsigned long *)old_set
);
1068 /* XXX: locking issue */
1069 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1073 /* see if it is an MMU fault */
1074 ret
= cpu_mb_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
1076 return 0; /* not an MMU fault */
1078 return 1; /* the MMU fault was handled without causing real CPU fault */
1080 /* now we have a real cpu fault */
1081 tb
= tb_find_pc(pc
);
1083 /* the PC is inside the translated code. It means that we have
1084 a virtual CPU fault */
1085 cpu_restore_state(tb
, env
, pc
, puc
);
1089 printf("PF exception: PC=0x" TARGET_FMT_lx
" error=0x%x %p\n",
1090 env
->PC
, env
->error_code
, tb
);
1092 /* we restore the process signal mask as the sigreturn should
1093 do it (XXX: use sigsetjmp) */
1094 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1097 /* activate soft MMU for this block */
1098 cpu_resume_from_signal(env
, puc
);
1100 /* never comes here */
1104 #elif defined (TARGET_SH4)
1105 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1106 int is_write
, sigset_t
*old_set
,
1109 TranslationBlock
*tb
;
1113 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1114 #if defined(DEBUG_SIGNAL)
1115 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1116 pc
, address
, is_write
, *(unsigned long *)old_set
);
1118 /* XXX: locking issue */
1119 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1123 /* see if it is an MMU fault */
1124 ret
= cpu_sh4_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
1126 return 0; /* not an MMU fault */
1128 return 1; /* the MMU fault was handled without causing real CPU fault */
1130 /* now we have a real cpu fault */
1131 tb
= tb_find_pc(pc
);
1133 /* the PC is inside the translated code. It means that we have
1134 a virtual CPU fault */
1135 cpu_restore_state(tb
, env
, pc
, puc
);
1138 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1139 env
->nip
, env
->error_code
, tb
);
1141 /* we restore the process signal mask as the sigreturn should
1142 do it (XXX: use sigsetjmp) */
1143 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1145 /* never comes here */
1149 #elif defined (TARGET_ALPHA)
1150 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1151 int is_write
, sigset_t
*old_set
,
1154 TranslationBlock
*tb
;
1158 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1159 #if defined(DEBUG_SIGNAL)
1160 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1161 pc
, address
, is_write
, *(unsigned long *)old_set
);
1163 /* XXX: locking issue */
1164 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1168 /* see if it is an MMU fault */
1169 ret
= cpu_alpha_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
1171 return 0; /* not an MMU fault */
1173 return 1; /* the MMU fault was handled without causing real CPU fault */
1175 /* now we have a real cpu fault */
1176 tb
= tb_find_pc(pc
);
1178 /* the PC is inside the translated code. It means that we have
1179 a virtual CPU fault */
1180 cpu_restore_state(tb
, env
, pc
, puc
);
1183 printf("PF exception: NIP=0x%08x error=0x%x %p\n",
1184 env
->nip
, env
->error_code
, tb
);
1186 /* we restore the process signal mask as the sigreturn should
1187 do it (XXX: use sigsetjmp) */
1188 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1190 /* never comes here */
1193 #elif defined (TARGET_CRIS)
1194 static inline int handle_cpu_signal(unsigned long pc
, unsigned long address
,
1195 int is_write
, sigset_t
*old_set
,
1198 TranslationBlock
*tb
;
1202 env
= cpu_single_env
; /* XXX: find a correct solution for multithread */
1203 #if defined(DEBUG_SIGNAL)
1204 printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
1205 pc
, address
, is_write
, *(unsigned long *)old_set
);
1207 /* XXX: locking issue */
1208 if (is_write
&& page_unprotect(h2g(address
), pc
, puc
)) {
1212 /* see if it is an MMU fault */
1213 ret
= cpu_cris_handle_mmu_fault(env
, address
, is_write
, MMU_USER_IDX
, 0);
1215 return 0; /* not an MMU fault */
1217 return 1; /* the MMU fault was handled without causing real CPU fault */
1219 /* now we have a real cpu fault */
1220 tb
= tb_find_pc(pc
);
1222 /* the PC is inside the translated code. It means that we have
1223 a virtual CPU fault */
1224 cpu_restore_state(tb
, env
, pc
, puc
);
1226 /* we restore the process signal mask as the sigreturn should
1227 do it (XXX: use sigsetjmp) */
1228 sigprocmask(SIG_SETMASK
, old_set
, NULL
);
1230 /* never comes here */
1235 #error unsupported target CPU
1238 #if defined(__i386__)
1240 #if defined(__APPLE__)
1241 # include <sys/ucontext.h>
1243 # define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
1244 # define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
1245 # define ERROR_sig(context) ((context)->uc_mcontext->es.err)
1246 # define MASK_sig(context) ((context)->uc_sigmask)
1247 #elif defined(__OpenBSD__)
1248 # define EIP_sig(context) ((context)->sc_eip)
1249 # define TRAP_sig(context) ((context)->sc_trapno)
1250 # define ERROR_sig(context) ((context)->sc_err)
1251 # define MASK_sig(context) ((context)->sc_mask)
1253 # define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
1254 # define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1255 # define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1256 # define MASK_sig(context) ((context)->uc_sigmask)
1259 int cpu_signal_handler(int host_signum
, void *pinfo
,
1262 siginfo_t
*info
= pinfo
;
1263 #if defined(__OpenBSD__)
1264 struct sigcontext
*uc
= puc
;
1266 struct ucontext
*uc
= puc
;
1275 #define REG_TRAPNO TRAPNO
1278 trapno
= TRAP_sig(uc
);
1279 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1281 (ERROR_sig(uc
) >> 1) & 1 : 0,
1282 &MASK_sig(uc
), puc
);
1285 #elif defined(__x86_64__)
1288 #define PC_sig(context) _UC_MACHINE_PC(context)
1289 #define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
1290 #define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
1291 #define MASK_sig(context) ((context)->uc_sigmask)
1292 #elif defined(__OpenBSD__)
1293 #define PC_sig(context) ((context)->sc_rip)
1294 #define TRAP_sig(context) ((context)->sc_trapno)
1295 #define ERROR_sig(context) ((context)->sc_err)
1296 #define MASK_sig(context) ((context)->sc_mask)
1298 #define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
1299 #define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
1300 #define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
1301 #define MASK_sig(context) ((context)->uc_sigmask)
1304 int cpu_signal_handler(int host_signum
, void *pinfo
,
1307 siginfo_t
*info
= pinfo
;
1310 ucontext_t
*uc
= puc
;
1311 #elif defined(__OpenBSD__)
1312 struct sigcontext
*uc
= puc
;
1314 struct ucontext
*uc
= puc
;
1318 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1319 TRAP_sig(uc
) == 0xe ?
1320 (ERROR_sig(uc
) >> 1) & 1 : 0,
1321 &MASK_sig(uc
), puc
);
1324 #elif defined(_ARCH_PPC)
1326 /***********************************************************************
1327 * signal context platform-specific definitions
1331 /* All Registers access - only for local access */
1332 # define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
1333 /* Gpr Registers access */
1334 # define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
1335 # define IAR_sig(context) REG_sig(nip, context) /* Program counter */
1336 # define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
1337 # define CTR_sig(context) REG_sig(ctr, context) /* Count register */
1338 # define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
1339 # define LR_sig(context) REG_sig(link, context) /* Link register */
1340 # define CR_sig(context) REG_sig(ccr, context) /* Condition register */
1341 /* Float Registers access */
1342 # define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1343 # define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1344 /* Exception Registers access */
1345 # define DAR_sig(context) REG_sig(dar, context)
1346 # define DSISR_sig(context) REG_sig(dsisr, context)
1347 # define TRAP_sig(context) REG_sig(trap, context)
1351 # include <sys/ucontext.h>
1352 typedef struct ucontext SIGCONTEXT
;
1353 /* All Registers access - only for local access */
1354 # define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
1355 # define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
1356 # define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
1357 # define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
1358 /* Gpr Registers access */
1359 # define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
1360 # define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
1361 # define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
1362 # define CTR_sig(context) REG_sig(ctr, context)
1363 # define XER_sig(context) REG_sig(xer, context) /* Link register */
1364 # define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
1365 # define CR_sig(context) REG_sig(cr, context) /* Condition register */
1366 /* Float Registers access */
1367 # define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
1368 # define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
1369 /* Exception Registers access */
1370 # define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
1371 # define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
1372 # define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1373 #endif /* __APPLE__ */
1375 int cpu_signal_handler(int host_signum
, void *pinfo
,
1378 siginfo_t
*info
= pinfo
;
1379 struct ucontext
*uc
= puc
;
1387 if (DSISR_sig(uc
) & 0x00800000)
1390 if (TRAP_sig(uc
) != 0x400 && (DSISR_sig(uc
) & 0x02000000))
1393 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1394 is_write
, &uc
->uc_sigmask
, puc
);
1397 #elif defined(__alpha__)
1399 int cpu_signal_handler(int host_signum
, void *pinfo
,
1402 siginfo_t
*info
= pinfo
;
1403 struct ucontext
*uc
= puc
;
1404 uint32_t *pc
= uc
->uc_mcontext
.sc_pc
;
1405 uint32_t insn
= *pc
;
1408 /* XXX: need kernel patch to get write flag faster */
1409 switch (insn
>> 26) {
1424 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1425 is_write
, &uc
->uc_sigmask
, puc
);
1427 #elif defined(__sparc__)
1429 int cpu_signal_handler(int host_signum
, void *pinfo
,
1432 siginfo_t
*info
= pinfo
;
1435 #if !defined(__arch64__) || defined(CONFIG_SOLARIS)
1436 uint32_t *regs
= (uint32_t *)(info
+ 1);
1437 void *sigmask
= (regs
+ 20);
1438 /* XXX: is there a standard glibc define ? */
1439 unsigned long pc
= regs
[1];
1442 struct sigcontext
*sc
= puc
;
1443 unsigned long pc
= sc
->sigc_regs
.tpc
;
1444 void *sigmask
= (void *)sc
->sigc_mask
;
1445 #elif defined(__OpenBSD__)
1446 struct sigcontext
*uc
= puc
;
1447 unsigned long pc
= uc
->sc_pc
;
1448 void *sigmask
= (void *)(long)uc
->sc_mask
;
1452 /* XXX: need kernel patch to get write flag faster */
1454 insn
= *(uint32_t *)pc
;
1455 if ((insn
>> 30) == 3) {
1456 switch((insn
>> 19) & 0x3f) {
1480 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1481 is_write
, sigmask
, NULL
);
1484 #elif defined(__arm__)
1486 int cpu_signal_handler(int host_signum
, void *pinfo
,
1489 siginfo_t
*info
= pinfo
;
1490 struct ucontext
*uc
= puc
;
1494 #if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
1495 pc
= uc
->uc_mcontext
.gregs
[R15
];
1497 pc
= uc
->uc_mcontext
.arm_pc
;
1499 /* XXX: compute is_write */
1501 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1503 &uc
->uc_sigmask
, puc
);
1506 #elif defined(__mc68000)
1508 int cpu_signal_handler(int host_signum
, void *pinfo
,
1511 siginfo_t
*info
= pinfo
;
1512 struct ucontext
*uc
= puc
;
1516 pc
= uc
->uc_mcontext
.gregs
[16];
1517 /* XXX: compute is_write */
1519 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1521 &uc
->uc_sigmask
, puc
);
1524 #elif defined(__ia64)
1527 /* This ought to be in <bits/siginfo.h>... */
1528 # define __ISR_VALID 1
1531 int cpu_signal_handler(int host_signum
, void *pinfo
, void *puc
)
1533 siginfo_t
*info
= pinfo
;
1534 struct ucontext
*uc
= puc
;
1538 ip
= uc
->uc_mcontext
.sc_ip
;
1539 switch (host_signum
) {
1545 if (info
->si_code
&& (info
->si_segvflags
& __ISR_VALID
))
1546 /* ISR.W (write-access) is bit 33: */
1547 is_write
= (info
->si_isr
>> 33) & 1;
1553 return handle_cpu_signal(ip
, (unsigned long)info
->si_addr
,
1555 &uc
->uc_sigmask
, puc
);
1558 #elif defined(__s390__)
1560 int cpu_signal_handler(int host_signum
, void *pinfo
,
1563 siginfo_t
*info
= pinfo
;
1564 struct ucontext
*uc
= puc
;
1568 pc
= uc
->uc_mcontext
.psw
.addr
;
1569 /* XXX: compute is_write */
1571 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1572 is_write
, &uc
->uc_sigmask
, puc
);
1575 #elif defined(__mips__)
1577 int cpu_signal_handler(int host_signum
, void *pinfo
,
1580 siginfo_t
*info
= pinfo
;
1581 struct ucontext
*uc
= puc
;
1582 greg_t pc
= uc
->uc_mcontext
.pc
;
1585 /* XXX: compute is_write */
1587 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1588 is_write
, &uc
->uc_sigmask
, puc
);
1591 #elif defined(__hppa__)
1593 int cpu_signal_handler(int host_signum
, void *pinfo
,
1596 struct siginfo
*info
= pinfo
;
1597 struct ucontext
*uc
= puc
;
1601 pc
= uc
->uc_mcontext
.sc_iaoq
[0];
1602 /* FIXME: compute is_write */
1604 return handle_cpu_signal(pc
, (unsigned long)info
->si_addr
,
1606 &uc
->uc_sigmask
, puc
);
1611 #error host CPU specific signal handler needed
1615 #endif /* !defined(CONFIG_SOFTMMU) */