virtio-bus: remove old set_host_notifier callback
[qemu.git] / hw / block / m25p80.c
blob51d85960566f9ca086ef7fc85a700175704bfc1d
1 /*
2 * ST M25P80 emulator. Emulate all SPI flash devices based on the m25p80 command
3 * set. Known devices table current as of Jun/2012 and taken from linux.
4 * See drivers/mtd/devices/m25p80.c.
6 * Copyright (C) 2011 Edgar E. Iglesias <edgar.iglesias@gmail.com>
7 * Copyright (C) 2012 Peter A. G. Crosthwaite <peter.crosthwaite@petalogix.com>
8 * Copyright (C) 2012 PetaLogix
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 or
13 * (at your option) a later version of the License.
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with this program; if not, see <http://www.gnu.org/licenses/>.
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "sysemu/block-backend.h"
27 #include "sysemu/blockdev.h"
28 #include "hw/ssi/ssi.h"
29 #include "qemu/bitops.h"
30 #include "qemu/log.h"
32 #ifndef M25P80_ERR_DEBUG
33 #define M25P80_ERR_DEBUG 0
34 #endif
36 #define DB_PRINT_L(level, ...) do { \
37 if (M25P80_ERR_DEBUG > (level)) { \
38 fprintf(stderr, ": %s: ", __func__); \
39 fprintf(stderr, ## __VA_ARGS__); \
40 } \
41 } while (0);
43 /* Fields for FlashPartInfo->flags */
45 /* erase capabilities */
46 #define ER_4K 1
47 #define ER_32K 2
48 /* set to allow the page program command to write 0s back to 1. Useful for
49 * modelling EEPROM with SPI flash command set
51 #define EEPROM 0x100
53 /* 16 MiB max in 3 byte address mode */
54 #define MAX_3BYTES_SIZE 0x1000000
56 typedef struct FlashPartInfo {
57 const char *part_name;
58 /* jedec code. (jedec >> 16) & 0xff is the 1st byte, >> 8 the 2nd etc */
59 uint32_t jedec;
60 /* extended jedec code */
61 uint16_t ext_jedec;
62 /* there is confusion between manufacturers as to what a sector is. In this
63 * device model, a "sector" is the size that is erased by the ERASE_SECTOR
64 * command (opcode 0xd8).
66 uint32_t sector_size;
67 uint32_t n_sectors;
68 uint32_t page_size;
69 uint16_t flags;
70 } FlashPartInfo;
72 /* adapted from linux */
74 #define INFO(_part_name, _jedec, _ext_jedec, _sector_size, _n_sectors, _flags)\
75 .part_name = (_part_name),\
76 .jedec = (_jedec),\
77 .ext_jedec = (_ext_jedec),\
78 .sector_size = (_sector_size),\
79 .n_sectors = (_n_sectors),\
80 .page_size = 256,\
81 .flags = (_flags),\
83 #define JEDEC_NUMONYX 0x20
84 #define JEDEC_WINBOND 0xEF
85 #define JEDEC_SPANSION 0x01
87 /* Numonyx (Micron) Configuration register macros */
88 #define VCFG_DUMMY 0x1
89 #define VCFG_WRAP_SEQUENTIAL 0x2
90 #define NVCFG_XIP_MODE_DISABLED (7 << 9)
91 #define NVCFG_XIP_MODE_MASK (7 << 9)
92 #define VCFG_XIP_MODE_ENABLED (1 << 3)
93 #define CFG_DUMMY_CLK_LEN 4
94 #define NVCFG_DUMMY_CLK_POS 12
95 #define VCFG_DUMMY_CLK_POS 4
96 #define EVCFG_OUT_DRIVER_STRENGHT_DEF 7
97 #define EVCFG_VPP_ACCELERATOR (1 << 3)
98 #define EVCFG_RESET_HOLD_ENABLED (1 << 4)
99 #define NVCFG_DUAL_IO_MASK (1 << 2)
100 #define EVCFG_DUAL_IO_ENABLED (1 << 6)
101 #define NVCFG_QUAD_IO_MASK (1 << 3)
102 #define EVCFG_QUAD_IO_ENABLED (1 << 7)
103 #define NVCFG_4BYTE_ADDR_MASK (1 << 0)
104 #define NVCFG_LOWER_SEGMENT_MASK (1 << 1)
105 #define CFG_UPPER_128MB_SEG_ENABLED 0x3
107 /* Numonyx (Micron) Flag Status Register macros */
108 #define FSR_4BYTE_ADDR_MODE_ENABLED 0x1
109 #define FSR_FLASH_READY (1 << 7)
111 static const FlashPartInfo known_devices[] = {
112 /* Atmel -- some are (confusingly) marketed as "DataFlash" */
113 { INFO("at25fs010", 0x1f6601, 0, 32 << 10, 4, ER_4K) },
114 { INFO("at25fs040", 0x1f6604, 0, 64 << 10, 8, ER_4K) },
116 { INFO("at25df041a", 0x1f4401, 0, 64 << 10, 8, ER_4K) },
117 { INFO("at25df321a", 0x1f4701, 0, 64 << 10, 64, ER_4K) },
118 { INFO("at25df641", 0x1f4800, 0, 64 << 10, 128, ER_4K) },
120 { INFO("at26f004", 0x1f0400, 0, 64 << 10, 8, ER_4K) },
121 { INFO("at26df081a", 0x1f4501, 0, 64 << 10, 16, ER_4K) },
122 { INFO("at26df161a", 0x1f4601, 0, 64 << 10, 32, ER_4K) },
123 { INFO("at26df321", 0x1f4700, 0, 64 << 10, 64, ER_4K) },
125 { INFO("at45db081d", 0x1f2500, 0, 64 << 10, 16, ER_4K) },
127 /* Atmel EEPROMS - it is assumed, that don't care bit in command
128 * is set to 0. Block protection is not supported.
130 { INFO("at25128a-nonjedec", 0x0, 0, 1, 131072, EEPROM) },
131 { INFO("at25256a-nonjedec", 0x0, 0, 1, 262144, EEPROM) },
133 /* EON -- en25xxx */
134 { INFO("en25f32", 0x1c3116, 0, 64 << 10, 64, ER_4K) },
135 { INFO("en25p32", 0x1c2016, 0, 64 << 10, 64, 0) },
136 { INFO("en25q32b", 0x1c3016, 0, 64 << 10, 64, 0) },
137 { INFO("en25p64", 0x1c2017, 0, 64 << 10, 128, 0) },
138 { INFO("en25q64", 0x1c3017, 0, 64 << 10, 128, ER_4K) },
140 /* GigaDevice */
141 { INFO("gd25q32", 0xc84016, 0, 64 << 10, 64, ER_4K) },
142 { INFO("gd25q64", 0xc84017, 0, 64 << 10, 128, ER_4K) },
144 /* Intel/Numonyx -- xxxs33b */
145 { INFO("160s33b", 0x898911, 0, 64 << 10, 32, 0) },
146 { INFO("320s33b", 0x898912, 0, 64 << 10, 64, 0) },
147 { INFO("640s33b", 0x898913, 0, 64 << 10, 128, 0) },
148 { INFO("n25q064", 0x20ba17, 0, 64 << 10, 128, 0) },
150 /* Macronix */
151 { INFO("mx25l2005a", 0xc22012, 0, 64 << 10, 4, ER_4K) },
152 { INFO("mx25l4005a", 0xc22013, 0, 64 << 10, 8, ER_4K) },
153 { INFO("mx25l8005", 0xc22014, 0, 64 << 10, 16, 0) },
154 { INFO("mx25l1606e", 0xc22015, 0, 64 << 10, 32, ER_4K) },
155 { INFO("mx25l3205d", 0xc22016, 0, 64 << 10, 64, 0) },
156 { INFO("mx25l6405d", 0xc22017, 0, 64 << 10, 128, 0) },
157 { INFO("mx25l12805d", 0xc22018, 0, 64 << 10, 256, 0) },
158 { INFO("mx25l12855e", 0xc22618, 0, 64 << 10, 256, 0) },
159 { INFO("mx25l25635e", 0xc22019, 0, 64 << 10, 512, 0) },
160 { INFO("mx25l25655e", 0xc22619, 0, 64 << 10, 512, 0) },
162 /* Micron */
163 { INFO("n25q032a11", 0x20bb16, 0, 64 << 10, 64, ER_4K) },
164 { INFO("n25q032a13", 0x20ba16, 0, 64 << 10, 64, ER_4K) },
165 { INFO("n25q064a11", 0x20bb17, 0, 64 << 10, 128, ER_4K) },
166 { INFO("n25q064a13", 0x20ba17, 0, 64 << 10, 128, ER_4K) },
167 { INFO("n25q128a11", 0x20bb18, 0, 64 << 10, 256, ER_4K) },
168 { INFO("n25q128a13", 0x20ba18, 0, 64 << 10, 256, ER_4K) },
169 { INFO("n25q256a11", 0x20bb19, 0, 64 << 10, 512, ER_4K) },
170 { INFO("n25q256a13", 0x20ba19, 0, 64 << 10, 512, ER_4K) },
172 /* Spansion -- single (large) sector size only, at least
173 * for the chips listed here (without boot sectors).
175 { INFO("s25sl032p", 0x010215, 0x4d00, 64 << 10, 64, ER_4K) },
176 { INFO("s25sl064p", 0x010216, 0x4d00, 64 << 10, 128, ER_4K) },
177 { INFO("s25fl256s0", 0x010219, 0x4d00, 256 << 10, 128, 0) },
178 { INFO("s25fl256s1", 0x010219, 0x4d01, 64 << 10, 512, 0) },
179 { INFO("s25fl512s", 0x010220, 0x4d00, 256 << 10, 256, 0) },
180 { INFO("s70fl01gs", 0x010221, 0x4d00, 256 << 10, 256, 0) },
181 { INFO("s25sl12800", 0x012018, 0x0300, 256 << 10, 64, 0) },
182 { INFO("s25sl12801", 0x012018, 0x0301, 64 << 10, 256, 0) },
183 { INFO("s25fl129p0", 0x012018, 0x4d00, 256 << 10, 64, 0) },
184 { INFO("s25fl129p1", 0x012018, 0x4d01, 64 << 10, 256, 0) },
185 { INFO("s25sl004a", 0x010212, 0, 64 << 10, 8, 0) },
186 { INFO("s25sl008a", 0x010213, 0, 64 << 10, 16, 0) },
187 { INFO("s25sl016a", 0x010214, 0, 64 << 10, 32, 0) },
188 { INFO("s25sl032a", 0x010215, 0, 64 << 10, 64, 0) },
189 { INFO("s25sl064a", 0x010216, 0, 64 << 10, 128, 0) },
190 { INFO("s25fl016k", 0xef4015, 0, 64 << 10, 32, ER_4K | ER_32K) },
191 { INFO("s25fl064k", 0xef4017, 0, 64 << 10, 128, ER_4K | ER_32K) },
193 /* SST -- large erase sizes are "overlays", "sectors" are 4<< 10 */
194 { INFO("sst25vf040b", 0xbf258d, 0, 64 << 10, 8, ER_4K) },
195 { INFO("sst25vf080b", 0xbf258e, 0, 64 << 10, 16, ER_4K) },
196 { INFO("sst25vf016b", 0xbf2541, 0, 64 << 10, 32, ER_4K) },
197 { INFO("sst25vf032b", 0xbf254a, 0, 64 << 10, 64, ER_4K) },
198 { INFO("sst25wf512", 0xbf2501, 0, 64 << 10, 1, ER_4K) },
199 { INFO("sst25wf010", 0xbf2502, 0, 64 << 10, 2, ER_4K) },
200 { INFO("sst25wf020", 0xbf2503, 0, 64 << 10, 4, ER_4K) },
201 { INFO("sst25wf040", 0xbf2504, 0, 64 << 10, 8, ER_4K) },
202 { INFO("sst25wf080", 0xbf2505, 0, 64 << 10, 16, ER_4K) },
204 /* ST Microelectronics -- newer production may have feature updates */
205 { INFO("m25p05", 0x202010, 0, 32 << 10, 2, 0) },
206 { INFO("m25p10", 0x202011, 0, 32 << 10, 4, 0) },
207 { INFO("m25p20", 0x202012, 0, 64 << 10, 4, 0) },
208 { INFO("m25p40", 0x202013, 0, 64 << 10, 8, 0) },
209 { INFO("m25p80", 0x202014, 0, 64 << 10, 16, 0) },
210 { INFO("m25p16", 0x202015, 0, 64 << 10, 32, 0) },
211 { INFO("m25p32", 0x202016, 0, 64 << 10, 64, 0) },
212 { INFO("m25p64", 0x202017, 0, 64 << 10, 128, 0) },
213 { INFO("m25p128", 0x202018, 0, 256 << 10, 64, 0) },
214 { INFO("n25q032", 0x20ba16, 0, 64 << 10, 64, 0) },
216 { INFO("m45pe10", 0x204011, 0, 64 << 10, 2, 0) },
217 { INFO("m45pe80", 0x204014, 0, 64 << 10, 16, 0) },
218 { INFO("m45pe16", 0x204015, 0, 64 << 10, 32, 0) },
220 { INFO("m25pe20", 0x208012, 0, 64 << 10, 4, 0) },
221 { INFO("m25pe80", 0x208014, 0, 64 << 10, 16, 0) },
222 { INFO("m25pe16", 0x208015, 0, 64 << 10, 32, ER_4K) },
224 { INFO("m25px32", 0x207116, 0, 64 << 10, 64, ER_4K) },
225 { INFO("m25px32-s0", 0x207316, 0, 64 << 10, 64, ER_4K) },
226 { INFO("m25px32-s1", 0x206316, 0, 64 << 10, 64, ER_4K) },
227 { INFO("m25px64", 0x207117, 0, 64 << 10, 128, 0) },
229 /* Winbond -- w25x "blocks" are 64k, "sectors" are 4KiB */
230 { INFO("w25x10", 0xef3011, 0, 64 << 10, 2, ER_4K) },
231 { INFO("w25x20", 0xef3012, 0, 64 << 10, 4, ER_4K) },
232 { INFO("w25x40", 0xef3013, 0, 64 << 10, 8, ER_4K) },
233 { INFO("w25x80", 0xef3014, 0, 64 << 10, 16, ER_4K) },
234 { INFO("w25x16", 0xef3015, 0, 64 << 10, 32, ER_4K) },
235 { INFO("w25x32", 0xef3016, 0, 64 << 10, 64, ER_4K) },
236 { INFO("w25q32", 0xef4016, 0, 64 << 10, 64, ER_4K) },
237 { INFO("w25q32dw", 0xef6016, 0, 64 << 10, 64, ER_4K) },
238 { INFO("w25x64", 0xef3017, 0, 64 << 10, 128, ER_4K) },
239 { INFO("w25q64", 0xef4017, 0, 64 << 10, 128, ER_4K) },
240 { INFO("w25q80", 0xef5014, 0, 64 << 10, 16, ER_4K) },
241 { INFO("w25q80bl", 0xef4014, 0, 64 << 10, 16, ER_4K) },
242 { INFO("w25q256", 0xef4019, 0, 64 << 10, 512, ER_4K) },
244 { INFO("n25q128", 0x20ba18, 0, 64 << 10, 256, 0) },
245 { INFO("n25q256a", 0x20ba19, 0, 64 << 10, 512, ER_4K) },
246 { INFO("n25q512a", 0x20ba20, 0, 64 << 10, 1024, ER_4K) },
249 typedef enum {
250 NOP = 0,
251 WRSR = 0x1,
252 WRDI = 0x4,
253 RDSR = 0x5,
254 WREN = 0x6,
255 JEDEC_READ = 0x9f,
256 BULK_ERASE = 0xc7,
257 READ_FSR = 0x70,
259 READ = 0x03,
260 READ4 = 0x13,
261 FAST_READ = 0x0b,
262 FAST_READ4 = 0x0c,
263 DOR = 0x3b,
264 DOR4 = 0x3c,
265 QOR = 0x6b,
266 QOR4 = 0x6c,
267 DIOR = 0xbb,
268 DIOR4 = 0xbc,
269 QIOR = 0xeb,
270 QIOR4 = 0xec,
272 PP = 0x02,
273 PP4 = 0x12,
274 DPP = 0xa2,
275 QPP = 0x32,
277 ERASE_4K = 0x20,
278 ERASE4_4K = 0x21,
279 ERASE_32K = 0x52,
280 ERASE_SECTOR = 0xd8,
281 ERASE4_SECTOR = 0xdc,
283 EN_4BYTE_ADDR = 0xB7,
284 EX_4BYTE_ADDR = 0xE9,
286 EXTEND_ADDR_READ = 0xC8,
287 EXTEND_ADDR_WRITE = 0xC5,
289 RESET_ENABLE = 0x66,
290 RESET_MEMORY = 0x99,
292 RNVCR = 0xB5,
293 WNVCR = 0xB1,
295 RVCR = 0x85,
296 WVCR = 0x81,
298 REVCR = 0x65,
299 WEVCR = 0x61,
300 } FlashCMD;
302 typedef enum {
303 STATE_IDLE,
304 STATE_PAGE_PROGRAM,
305 STATE_READ,
306 STATE_COLLECTING_DATA,
307 STATE_READING_DATA,
308 } CMDState;
310 typedef struct Flash {
311 SSISlave parent_obj;
313 BlockBackend *blk;
315 uint8_t *storage;
316 uint32_t size;
317 int page_size;
319 uint8_t state;
320 uint8_t data[16];
321 uint32_t len;
322 uint32_t pos;
323 uint8_t needed_bytes;
324 uint8_t cmd_in_progress;
325 uint64_t cur_addr;
326 uint32_t nonvolatile_cfg;
327 uint32_t volatile_cfg;
328 uint32_t enh_volatile_cfg;
329 bool write_enable;
330 bool four_bytes_address_mode;
331 bool reset_enable;
332 uint8_t ear;
334 int64_t dirty_page;
336 const FlashPartInfo *pi;
338 } Flash;
340 typedef struct M25P80Class {
341 SSISlaveClass parent_class;
342 FlashPartInfo *pi;
343 } M25P80Class;
345 #define TYPE_M25P80 "m25p80-generic"
346 #define M25P80(obj) \
347 OBJECT_CHECK(Flash, (obj), TYPE_M25P80)
348 #define M25P80_CLASS(klass) \
349 OBJECT_CLASS_CHECK(M25P80Class, (klass), TYPE_M25P80)
350 #define M25P80_GET_CLASS(obj) \
351 OBJECT_GET_CLASS(M25P80Class, (obj), TYPE_M25P80)
353 static void blk_sync_complete(void *opaque, int ret)
355 /* do nothing. Masters do not directly interact with the backing store,
356 * only the working copy so no mutexing required.
360 static void flash_sync_page(Flash *s, int page)
362 QEMUIOVector iov;
364 if (!s->blk || blk_is_read_only(s->blk)) {
365 return;
368 qemu_iovec_init(&iov, 1);
369 qemu_iovec_add(&iov, s->storage + page * s->pi->page_size,
370 s->pi->page_size);
371 blk_aio_pwritev(s->blk, page * s->pi->page_size, &iov, 0,
372 blk_sync_complete, NULL);
375 static inline void flash_sync_area(Flash *s, int64_t off, int64_t len)
377 QEMUIOVector iov;
379 if (!s->blk || blk_is_read_only(s->blk)) {
380 return;
383 assert(!(len % BDRV_SECTOR_SIZE));
384 qemu_iovec_init(&iov, 1);
385 qemu_iovec_add(&iov, s->storage + off, len);
386 blk_aio_pwritev(s->blk, off, &iov, 0, blk_sync_complete, NULL);
389 static void flash_erase(Flash *s, int offset, FlashCMD cmd)
391 uint32_t len;
392 uint8_t capa_to_assert = 0;
394 switch (cmd) {
395 case ERASE_4K:
396 case ERASE4_4K:
397 len = 4 << 10;
398 capa_to_assert = ER_4K;
399 break;
400 case ERASE_32K:
401 len = 32 << 10;
402 capa_to_assert = ER_32K;
403 break;
404 case ERASE_SECTOR:
405 case ERASE4_SECTOR:
406 len = s->pi->sector_size;
407 break;
408 case BULK_ERASE:
409 len = s->size;
410 break;
411 default:
412 abort();
415 DB_PRINT_L(0, "offset = %#x, len = %d\n", offset, len);
416 if ((s->pi->flags & capa_to_assert) != capa_to_assert) {
417 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: %d erase size not supported by"
418 " device\n", len);
421 if (!s->write_enable) {
422 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: erase with write protect!\n");
423 return;
425 memset(s->storage + offset, 0xff, len);
426 flash_sync_area(s, offset, len);
429 static inline void flash_sync_dirty(Flash *s, int64_t newpage)
431 if (s->dirty_page >= 0 && s->dirty_page != newpage) {
432 flash_sync_page(s, s->dirty_page);
433 s->dirty_page = newpage;
437 static inline
438 void flash_write8(Flash *s, uint64_t addr, uint8_t data)
440 int64_t page = addr / s->pi->page_size;
441 uint8_t prev = s->storage[s->cur_addr];
443 if (!s->write_enable) {
444 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: write with write protect!\n");
447 if ((prev ^ data) & data) {
448 DB_PRINT_L(1, "programming zero to one! addr=%" PRIx64 " %" PRIx8
449 " -> %" PRIx8 "\n", addr, prev, data);
452 if (s->pi->flags & EEPROM) {
453 s->storage[s->cur_addr] = data;
454 } else {
455 s->storage[s->cur_addr] &= data;
458 flash_sync_dirty(s, page);
459 s->dirty_page = page;
462 static inline int get_addr_length(Flash *s)
464 /* check if eeprom is in use */
465 if (s->pi->flags == EEPROM) {
466 return 2;
469 switch (s->cmd_in_progress) {
470 case PP4:
471 case READ4:
472 case QIOR4:
473 case ERASE4_4K:
474 case ERASE4_SECTOR:
475 case FAST_READ4:
476 case DOR4:
477 case QOR4:
478 case DIOR4:
479 return 4;
480 default:
481 return s->four_bytes_address_mode ? 4 : 3;
485 static void complete_collecting_data(Flash *s)
487 int i;
489 s->cur_addr = 0;
491 for (i = 0; i < get_addr_length(s); ++i) {
492 s->cur_addr <<= 8;
493 s->cur_addr |= s->data[i];
496 if (get_addr_length(s) == 3) {
497 s->cur_addr += (s->ear & 0x3) * MAX_3BYTES_SIZE;
500 s->state = STATE_IDLE;
502 switch (s->cmd_in_progress) {
503 case DPP:
504 case QPP:
505 case PP:
506 case PP4:
507 s->state = STATE_PAGE_PROGRAM;
508 break;
509 case READ:
510 case READ4:
511 case FAST_READ:
512 case FAST_READ4:
513 case DOR:
514 case DOR4:
515 case QOR:
516 case QOR4:
517 case DIOR:
518 case DIOR4:
519 case QIOR:
520 case QIOR4:
521 s->state = STATE_READ;
522 break;
523 case ERASE_4K:
524 case ERASE4_4K:
525 case ERASE_32K:
526 case ERASE_SECTOR:
527 case ERASE4_SECTOR:
528 flash_erase(s, s->cur_addr, s->cmd_in_progress);
529 break;
530 case WRSR:
531 if (s->write_enable) {
532 s->write_enable = false;
534 break;
535 case EXTEND_ADDR_WRITE:
536 s->ear = s->data[0];
537 break;
538 case WNVCR:
539 s->nonvolatile_cfg = s->data[0] | (s->data[1] << 8);
540 break;
541 case WVCR:
542 s->volatile_cfg = s->data[0];
543 break;
544 case WEVCR:
545 s->enh_volatile_cfg = s->data[0];
546 break;
547 default:
548 break;
552 static void reset_memory(Flash *s)
554 s->cmd_in_progress = NOP;
555 s->cur_addr = 0;
556 s->ear = 0;
557 s->four_bytes_address_mode = false;
558 s->len = 0;
559 s->needed_bytes = 0;
560 s->pos = 0;
561 s->state = STATE_IDLE;
562 s->write_enable = false;
563 s->reset_enable = false;
565 if (((s->pi->jedec >> 16) & 0xFF) == JEDEC_NUMONYX) {
566 s->volatile_cfg = 0;
567 s->volatile_cfg |= VCFG_DUMMY;
568 s->volatile_cfg |= VCFG_WRAP_SEQUENTIAL;
569 if ((s->nonvolatile_cfg & NVCFG_XIP_MODE_MASK)
570 != NVCFG_XIP_MODE_DISABLED) {
571 s->volatile_cfg |= VCFG_XIP_MODE_ENABLED;
573 s->volatile_cfg |= deposit32(s->volatile_cfg,
574 VCFG_DUMMY_CLK_POS,
575 CFG_DUMMY_CLK_LEN,
576 extract32(s->nonvolatile_cfg,
577 NVCFG_DUMMY_CLK_POS,
578 CFG_DUMMY_CLK_LEN)
581 s->enh_volatile_cfg = 0;
582 s->enh_volatile_cfg |= EVCFG_OUT_DRIVER_STRENGHT_DEF;
583 s->enh_volatile_cfg |= EVCFG_VPP_ACCELERATOR;
584 s->enh_volatile_cfg |= EVCFG_RESET_HOLD_ENABLED;
585 if (s->nonvolatile_cfg & NVCFG_DUAL_IO_MASK) {
586 s->enh_volatile_cfg |= EVCFG_DUAL_IO_ENABLED;
588 if (s->nonvolatile_cfg & NVCFG_QUAD_IO_MASK) {
589 s->enh_volatile_cfg |= EVCFG_QUAD_IO_ENABLED;
591 if (!(s->nonvolatile_cfg & NVCFG_4BYTE_ADDR_MASK)) {
592 s->four_bytes_address_mode = true;
594 if (!(s->nonvolatile_cfg & NVCFG_LOWER_SEGMENT_MASK)) {
595 s->ear = CFG_UPPER_128MB_SEG_ENABLED;
599 DB_PRINT_L(0, "Reset done.\n");
602 static void decode_new_cmd(Flash *s, uint32_t value)
604 s->cmd_in_progress = value;
605 DB_PRINT_L(0, "decoded new command:%x\n", value);
607 if (value != RESET_MEMORY) {
608 s->reset_enable = false;
611 switch (value) {
613 case ERASE_4K:
614 case ERASE4_4K:
615 case ERASE_32K:
616 case ERASE_SECTOR:
617 case ERASE4_SECTOR:
618 case READ:
619 case READ4:
620 case DPP:
621 case QPP:
622 case PP:
623 case PP4:
624 s->needed_bytes = get_addr_length(s);
625 s->pos = 0;
626 s->len = 0;
627 s->state = STATE_COLLECTING_DATA;
628 break;
630 case FAST_READ:
631 case FAST_READ4:
632 case DOR:
633 case DOR4:
634 case QOR:
635 case QOR4:
636 s->needed_bytes = get_addr_length(s);
637 if (((s->pi->jedec >> 16) & 0xFF) == JEDEC_NUMONYX) {
638 /* Dummy cycles modeled with bytes writes instead of bits */
639 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
641 s->pos = 0;
642 s->len = 0;
643 s->state = STATE_COLLECTING_DATA;
644 break;
646 case DIOR:
647 case DIOR4:
648 switch ((s->pi->jedec >> 16) & 0xFF) {
649 case JEDEC_WINBOND:
650 case JEDEC_SPANSION:
651 s->needed_bytes = 4;
652 break;
653 default:
654 s->needed_bytes = get_addr_length(s);
655 /* Dummy cycles modeled with bytes writes instead of bits */
656 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
658 s->pos = 0;
659 s->len = 0;
660 s->state = STATE_COLLECTING_DATA;
661 break;
663 case QIOR:
664 case QIOR4:
665 switch ((s->pi->jedec >> 16) & 0xFF) {
666 case JEDEC_WINBOND:
667 case JEDEC_SPANSION:
668 s->needed_bytes = 6;
669 break;
670 default:
671 s->needed_bytes = get_addr_length(s);
672 /* Dummy cycles modeled with bytes writes instead of bits */
673 s->needed_bytes += extract32(s->volatile_cfg, 4, 4);
675 s->pos = 0;
676 s->len = 0;
677 s->state = STATE_COLLECTING_DATA;
678 break;
680 case WRSR:
681 if (s->write_enable) {
682 s->needed_bytes = 1;
683 s->pos = 0;
684 s->len = 0;
685 s->state = STATE_COLLECTING_DATA;
687 break;
689 case WRDI:
690 s->write_enable = false;
691 break;
692 case WREN:
693 s->write_enable = true;
694 break;
696 case RDSR:
697 s->data[0] = (!!s->write_enable) << 1;
698 s->pos = 0;
699 s->len = 1;
700 s->state = STATE_READING_DATA;
701 break;
703 case READ_FSR:
704 s->data[0] = FSR_FLASH_READY;
705 if (s->four_bytes_address_mode) {
706 s->data[0] |= FSR_4BYTE_ADDR_MODE_ENABLED;
708 s->pos = 0;
709 s->len = 1;
710 s->state = STATE_READING_DATA;
711 break;
713 case JEDEC_READ:
714 DB_PRINT_L(0, "populated jedec code\n");
715 s->data[0] = (s->pi->jedec >> 16) & 0xff;
716 s->data[1] = (s->pi->jedec >> 8) & 0xff;
717 s->data[2] = s->pi->jedec & 0xff;
718 if (s->pi->ext_jedec) {
719 s->data[3] = (s->pi->ext_jedec >> 8) & 0xff;
720 s->data[4] = s->pi->ext_jedec & 0xff;
721 s->len = 5;
722 } else {
723 s->len = 3;
725 s->pos = 0;
726 s->state = STATE_READING_DATA;
727 break;
729 case BULK_ERASE:
730 if (s->write_enable) {
731 DB_PRINT_L(0, "chip erase\n");
732 flash_erase(s, 0, BULK_ERASE);
733 } else {
734 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: chip erase with write "
735 "protect!\n");
737 break;
738 case NOP:
739 break;
740 case EN_4BYTE_ADDR:
741 s->four_bytes_address_mode = true;
742 break;
743 case EX_4BYTE_ADDR:
744 s->four_bytes_address_mode = false;
745 break;
746 case EXTEND_ADDR_READ:
747 s->data[0] = s->ear;
748 s->pos = 0;
749 s->len = 1;
750 s->state = STATE_READING_DATA;
751 break;
752 case EXTEND_ADDR_WRITE:
753 if (s->write_enable) {
754 s->needed_bytes = 1;
755 s->pos = 0;
756 s->len = 0;
757 s->state = STATE_COLLECTING_DATA;
759 break;
760 case RNVCR:
761 s->data[0] = s->nonvolatile_cfg & 0xFF;
762 s->data[1] = (s->nonvolatile_cfg >> 8) & 0xFF;
763 s->pos = 0;
764 s->len = 2;
765 s->state = STATE_READING_DATA;
766 break;
767 case WNVCR:
768 if (s->write_enable) {
769 s->needed_bytes = 2;
770 s->pos = 0;
771 s->len = 0;
772 s->state = STATE_COLLECTING_DATA;
774 break;
775 case RVCR:
776 s->data[0] = s->volatile_cfg & 0xFF;
777 s->pos = 0;
778 s->len = 1;
779 s->state = STATE_READING_DATA;
780 break;
781 case WVCR:
782 if (s->write_enable) {
783 s->needed_bytes = 1;
784 s->pos = 0;
785 s->len = 0;
786 s->state = STATE_COLLECTING_DATA;
788 break;
789 case REVCR:
790 s->data[0] = s->enh_volatile_cfg & 0xFF;
791 s->pos = 0;
792 s->len = 1;
793 s->state = STATE_READING_DATA;
794 break;
795 case WEVCR:
796 if (s->write_enable) {
797 s->needed_bytes = 1;
798 s->pos = 0;
799 s->len = 0;
800 s->state = STATE_COLLECTING_DATA;
802 break;
803 case RESET_ENABLE:
804 s->reset_enable = true;
805 break;
806 case RESET_MEMORY:
807 if (s->reset_enable) {
808 reset_memory(s);
810 break;
811 default:
812 qemu_log_mask(LOG_GUEST_ERROR, "M25P80: Unknown cmd %x\n", value);
813 break;
817 static int m25p80_cs(SSISlave *ss, bool select)
819 Flash *s = M25P80(ss);
821 if (select) {
822 s->len = 0;
823 s->pos = 0;
824 s->state = STATE_IDLE;
825 flash_sync_dirty(s, -1);
828 DB_PRINT_L(0, "%sselect\n", select ? "de" : "");
830 return 0;
833 static uint32_t m25p80_transfer8(SSISlave *ss, uint32_t tx)
835 Flash *s = M25P80(ss);
836 uint32_t r = 0;
838 switch (s->state) {
840 case STATE_PAGE_PROGRAM:
841 DB_PRINT_L(1, "page program cur_addr=%#" PRIx64 " data=%" PRIx8 "\n",
842 s->cur_addr, (uint8_t)tx);
843 flash_write8(s, s->cur_addr, (uint8_t)tx);
844 s->cur_addr++;
845 break;
847 case STATE_READ:
848 r = s->storage[s->cur_addr];
849 DB_PRINT_L(1, "READ 0x%" PRIx64 "=%" PRIx8 "\n", s->cur_addr,
850 (uint8_t)r);
851 s->cur_addr = (s->cur_addr + 1) % s->size;
852 break;
854 case STATE_COLLECTING_DATA:
855 s->data[s->len] = (uint8_t)tx;
856 s->len++;
858 if (s->len == s->needed_bytes) {
859 complete_collecting_data(s);
861 break;
863 case STATE_READING_DATA:
864 r = s->data[s->pos];
865 s->pos++;
866 if (s->pos == s->len) {
867 s->pos = 0;
868 s->state = STATE_IDLE;
870 break;
872 default:
873 case STATE_IDLE:
874 decode_new_cmd(s, (uint8_t)tx);
875 break;
878 return r;
881 static int m25p80_init(SSISlave *ss)
883 DriveInfo *dinfo;
884 Flash *s = M25P80(ss);
885 M25P80Class *mc = M25P80_GET_CLASS(s);
887 s->pi = mc->pi;
889 s->size = s->pi->sector_size * s->pi->n_sectors;
890 s->dirty_page = -1;
892 /* FIXME use a qdev drive property instead of drive_get_next() */
893 dinfo = drive_get_next(IF_MTD);
895 if (dinfo) {
896 DB_PRINT_L(0, "Binding to IF_MTD drive\n");
897 s->blk = blk_by_legacy_dinfo(dinfo);
898 blk_attach_dev_nofail(s->blk, s);
900 s->storage = blk_blockalign(s->blk, s->size);
902 /* FIXME: Move to late init */
903 if (blk_pread(s->blk, 0, s->storage, s->size) != s->size) {
904 fprintf(stderr, "Failed to initialize SPI flash!\n");
905 return 1;
907 } else {
908 DB_PRINT_L(0, "No BDRV - binding to RAM\n");
909 s->storage = blk_blockalign(NULL, s->size);
910 memset(s->storage, 0xFF, s->size);
913 return 0;
916 static void m25p80_reset(DeviceState *d)
918 Flash *s = M25P80(d);
920 reset_memory(s);
923 static void m25p80_pre_save(void *opaque)
925 flash_sync_dirty((Flash *)opaque, -1);
928 static Property m25p80_properties[] = {
929 DEFINE_PROP_UINT32("nonvolatile-cfg", Flash, nonvolatile_cfg, 0x8FFF),
930 DEFINE_PROP_END_OF_LIST(),
933 static const VMStateDescription vmstate_m25p80 = {
934 .name = "xilinx_spi",
935 .version_id = 2,
936 .minimum_version_id = 1,
937 .pre_save = m25p80_pre_save,
938 .fields = (VMStateField[]) {
939 VMSTATE_UINT8(state, Flash),
940 VMSTATE_UINT8_ARRAY(data, Flash, 16),
941 VMSTATE_UINT32(len, Flash),
942 VMSTATE_UINT32(pos, Flash),
943 VMSTATE_UINT8(needed_bytes, Flash),
944 VMSTATE_UINT8(cmd_in_progress, Flash),
945 VMSTATE_UINT64(cur_addr, Flash),
946 VMSTATE_BOOL(write_enable, Flash),
947 VMSTATE_BOOL_V(reset_enable, Flash, 2),
948 VMSTATE_UINT8_V(ear, Flash, 2),
949 VMSTATE_BOOL_V(four_bytes_address_mode, Flash, 2),
950 VMSTATE_UINT32_V(nonvolatile_cfg, Flash, 2),
951 VMSTATE_UINT32_V(volatile_cfg, Flash, 2),
952 VMSTATE_UINT32_V(enh_volatile_cfg, Flash, 2),
953 VMSTATE_END_OF_LIST()
957 static void m25p80_class_init(ObjectClass *klass, void *data)
959 DeviceClass *dc = DEVICE_CLASS(klass);
960 SSISlaveClass *k = SSI_SLAVE_CLASS(klass);
961 M25P80Class *mc = M25P80_CLASS(klass);
963 k->init = m25p80_init;
964 k->transfer = m25p80_transfer8;
965 k->set_cs = m25p80_cs;
966 k->cs_polarity = SSI_CS_LOW;
967 dc->vmsd = &vmstate_m25p80;
968 dc->props = m25p80_properties;
969 dc->reset = m25p80_reset;
970 mc->pi = data;
973 static const TypeInfo m25p80_info = {
974 .name = TYPE_M25P80,
975 .parent = TYPE_SSI_SLAVE,
976 .instance_size = sizeof(Flash),
977 .class_size = sizeof(M25P80Class),
978 .abstract = true,
981 static void m25p80_register_types(void)
983 int i;
985 type_register_static(&m25p80_info);
986 for (i = 0; i < ARRAY_SIZE(known_devices); ++i) {
987 TypeInfo ti = {
988 .name = known_devices[i].part_name,
989 .parent = TYPE_M25P80,
990 .class_init = m25p80_class_init,
991 .class_data = (void *)&known_devices[i],
993 type_register(&ti);
997 type_init(m25p80_register_types)