disas: Remove libvixl disassembler
[qemu.git] / target / arm / cpu.c
blobae6dca2f0106d4e1be04bbb03d3effebf1c25513
1 /*
2 * QEMU ARM CPU
4 * Copyright (c) 2012 SUSE LINUX Products GmbH
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
21 #include "qemu/osdep.h"
22 #include "qemu/qemu-print.h"
23 #include "qemu/timer.h"
24 #include "qemu/log.h"
25 #include "exec/page-vary.h"
26 #include "target/arm/idau.h"
27 #include "qemu/module.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "cpu.h"
31 #ifdef CONFIG_TCG
32 #include "hw/core/tcg-cpu-ops.h"
33 #endif /* CONFIG_TCG */
34 #include "internals.h"
35 #include "exec/exec-all.h"
36 #include "hw/qdev-properties.h"
37 #if !defined(CONFIG_USER_ONLY)
38 #include "hw/loader.h"
39 #include "hw/boards.h"
40 #endif
41 #include "sysemu/tcg.h"
42 #include "sysemu/qtest.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_arm.h"
45 #include "disas/capstone.h"
46 #include "fpu/softfloat.h"
47 #include "cpregs.h"
49 static void arm_cpu_set_pc(CPUState *cs, vaddr value)
51 ARMCPU *cpu = ARM_CPU(cs);
52 CPUARMState *env = &cpu->env;
54 if (is_a64(env)) {
55 env->pc = value;
56 env->thumb = false;
57 } else {
58 env->regs[15] = value & ~1;
59 env->thumb = value & 1;
63 #ifdef CONFIG_TCG
64 void arm_cpu_synchronize_from_tb(CPUState *cs,
65 const TranslationBlock *tb)
67 ARMCPU *cpu = ARM_CPU(cs);
68 CPUARMState *env = &cpu->env;
71 * It's OK to look at env for the current mode here, because it's
72 * never possible for an AArch64 TB to chain to an AArch32 TB.
74 if (is_a64(env)) {
75 env->pc = tb->pc;
76 } else {
77 env->regs[15] = tb->pc;
80 #endif /* CONFIG_TCG */
82 static bool arm_cpu_has_work(CPUState *cs)
84 ARMCPU *cpu = ARM_CPU(cs);
86 return (cpu->power_state != PSCI_OFF)
87 && cs->interrupt_request &
88 (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
89 | CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
90 | CPU_INTERRUPT_EXITTB);
93 void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
94 void *opaque)
96 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
98 entry->hook = hook;
99 entry->opaque = opaque;
101 QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
104 void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
105 void *opaque)
107 ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
109 entry->hook = hook;
110 entry->opaque = opaque;
112 QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
115 static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
117 /* Reset a single ARMCPRegInfo register */
118 ARMCPRegInfo *ri = value;
119 ARMCPU *cpu = opaque;
121 if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
122 return;
125 if (ri->resetfn) {
126 ri->resetfn(&cpu->env, ri);
127 return;
130 /* A zero offset is never possible as it would be regs[0]
131 * so we use it to indicate that reset is being handled elsewhere.
132 * This is basically only used for fields in non-core coprocessors
133 * (like the pxa2xx ones).
135 if (!ri->fieldoffset) {
136 return;
139 if (cpreg_field_is_64bit(ri)) {
140 CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
141 } else {
142 CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
146 static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
148 /* Purely an assertion check: we've already done reset once,
149 * so now check that running the reset for the cpreg doesn't
150 * change its value. This traps bugs where two different cpregs
151 * both try to reset the same state field but to different values.
153 ARMCPRegInfo *ri = value;
154 ARMCPU *cpu = opaque;
155 uint64_t oldvalue, newvalue;
157 if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
158 return;
161 oldvalue = read_raw_cp_reg(&cpu->env, ri);
162 cp_reg_reset(key, value, opaque);
163 newvalue = read_raw_cp_reg(&cpu->env, ri);
164 assert(oldvalue == newvalue);
167 static void arm_cpu_reset(DeviceState *dev)
169 CPUState *s = CPU(dev);
170 ARMCPU *cpu = ARM_CPU(s);
171 ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
172 CPUARMState *env = &cpu->env;
174 acc->parent_reset(dev);
176 memset(env, 0, offsetof(CPUARMState, end_reset_fields));
178 g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
179 g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
181 env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
182 env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
183 env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
184 env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
186 cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
188 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
189 env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
192 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
193 /* 64 bit CPUs always start in 64 bit mode */
194 env->aarch64 = true;
195 #if defined(CONFIG_USER_ONLY)
196 env->pstate = PSTATE_MODE_EL0t;
197 /* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
198 env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
199 /* Enable all PAC keys. */
200 env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
201 SCTLR_EnDA | SCTLR_EnDB);
202 /* Trap on btype=3 for PACIxSP. */
203 env->cp15.sctlr_el[1] |= SCTLR_BT0;
204 /* and to the FP/Neon instructions */
205 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
206 CPACR_EL1, FPEN, 3);
207 /* and to the SVE instructions */
208 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
209 CPACR_EL1, ZEN, 3);
210 /* with reasonable vector length */
211 if (cpu_isar_feature(aa64_sve, cpu)) {
212 env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
215 * Enable 48-bit address space (TODO: take reserved_va into account).
216 * Enable TBI0 but not TBI1.
217 * Note that this must match useronly_clean_ptr.
219 env->cp15.tcr_el[1].raw_tcr = 5 | (1ULL << 37);
221 /* Enable MTE */
222 if (cpu_isar_feature(aa64_mte, cpu)) {
223 /* Enable tag access, but leave TCF0 as No Effect (0). */
224 env->cp15.sctlr_el[1] |= SCTLR_ATA0;
226 * Exclude all tags, so that tag 0 is always used.
227 * This corresponds to Linux current->thread.gcr_incl = 0.
229 * Set RRND, so that helper_irg() will generate a seed later.
230 * Here in cpu_reset(), the crypto subsystem has not yet been
231 * initialized.
233 env->cp15.gcr_el1 = 0x1ffff;
236 * Disable access to SCXTNUM_EL0 from CSV2_1p2.
237 * This is not yet exposed from the Linux kernel in any way.
239 env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
240 #else
241 /* Reset into the highest available EL */
242 if (arm_feature(env, ARM_FEATURE_EL3)) {
243 env->pstate = PSTATE_MODE_EL3h;
244 } else if (arm_feature(env, ARM_FEATURE_EL2)) {
245 env->pstate = PSTATE_MODE_EL2h;
246 } else {
247 env->pstate = PSTATE_MODE_EL1h;
250 /* Sample rvbar at reset. */
251 env->cp15.rvbar = cpu->rvbar_prop;
252 env->pc = env->cp15.rvbar;
253 #endif
254 } else {
255 #if defined(CONFIG_USER_ONLY)
256 /* Userspace expects access to cp10 and cp11 for FP/Neon */
257 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
258 CPACR, CP10, 3);
259 env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
260 CPACR, CP11, 3);
261 #endif
264 #if defined(CONFIG_USER_ONLY)
265 env->uncached_cpsr = ARM_CPU_MODE_USR;
266 /* For user mode we must enable access to coprocessors */
267 env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
268 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
269 env->cp15.c15_cpar = 3;
270 } else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
271 env->cp15.c15_cpar = 1;
273 #else
276 * If the highest available EL is EL2, AArch32 will start in Hyp
277 * mode; otherwise it starts in SVC. Note that if we start in
278 * AArch64 then these values in the uncached_cpsr will be ignored.
280 if (arm_feature(env, ARM_FEATURE_EL2) &&
281 !arm_feature(env, ARM_FEATURE_EL3)) {
282 env->uncached_cpsr = ARM_CPU_MODE_HYP;
283 } else {
284 env->uncached_cpsr = ARM_CPU_MODE_SVC;
286 env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
288 /* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
289 * executing as AArch32 then check if highvecs are enabled and
290 * adjust the PC accordingly.
292 if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
293 env->regs[15] = 0xFFFF0000;
296 env->vfp.xregs[ARM_VFP_FPEXC] = 0;
297 #endif
299 if (arm_feature(env, ARM_FEATURE_M)) {
300 #ifndef CONFIG_USER_ONLY
301 uint32_t initial_msp; /* Loaded from 0x0 */
302 uint32_t initial_pc; /* Loaded from 0x4 */
303 uint8_t *rom;
304 uint32_t vecbase;
305 #endif
307 if (cpu_isar_feature(aa32_lob, cpu)) {
309 * LTPSIZE is constant 4 if MVE not implemented, and resets
310 * to an UNKNOWN value if MVE is implemented. We choose to
311 * always reset to 4.
313 env->v7m.ltpsize = 4;
314 /* The LTPSIZE field in FPDSCR is constant and reads as 4. */
315 env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
316 env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
319 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
320 env->v7m.secure = true;
321 } else {
322 /* This bit resets to 0 if security is supported, but 1 if
323 * it is not. The bit is not present in v7M, but we set it
324 * here so we can avoid having to make checks on it conditional
325 * on ARM_FEATURE_V8 (we don't let the guest see the bit).
327 env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
329 * Set NSACR to indicate "NS access permitted to everything";
330 * this avoids having to have all the tests of it being
331 * conditional on ARM_FEATURE_M_SECURITY. Note also that from
332 * v8.1M the guest-visible value of NSACR in a CPU without the
333 * Security Extension is 0xcff.
335 env->v7m.nsacr = 0xcff;
338 /* In v7M the reset value of this bit is IMPDEF, but ARM recommends
339 * that it resets to 1, so QEMU always does that rather than making
340 * it dependent on CPU model. In v8M it is RES1.
342 env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
343 env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
344 if (arm_feature(env, ARM_FEATURE_V8)) {
345 /* in v8M the NONBASETHRDENA bit [0] is RES1 */
346 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
347 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
349 if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
350 env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
351 env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
354 if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
355 env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
356 env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
357 R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
360 #ifndef CONFIG_USER_ONLY
361 /* Unlike A/R profile, M profile defines the reset LR value */
362 env->regs[14] = 0xffffffff;
364 env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
365 env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
367 /* Load the initial SP and PC from offset 0 and 4 in the vector table */
368 vecbase = env->v7m.vecbase[env->v7m.secure];
369 rom = rom_ptr_for_as(s->as, vecbase, 8);
370 if (rom) {
371 /* Address zero is covered by ROM which hasn't yet been
372 * copied into physical memory.
374 initial_msp = ldl_p(rom);
375 initial_pc = ldl_p(rom + 4);
376 } else {
377 /* Address zero not covered by a ROM blob, or the ROM blob
378 * is in non-modifiable memory and this is a second reset after
379 * it got copied into memory. In the latter case, rom_ptr
380 * will return a NULL pointer and we should use ldl_phys instead.
382 initial_msp = ldl_phys(s->as, vecbase);
383 initial_pc = ldl_phys(s->as, vecbase + 4);
386 qemu_log_mask(CPU_LOG_INT,
387 "Loaded reset SP 0x%x PC 0x%x from vector table\n",
388 initial_msp, initial_pc);
390 env->regs[13] = initial_msp & 0xFFFFFFFC;
391 env->regs[15] = initial_pc & ~1;
392 env->thumb = initial_pc & 1;
393 #else
395 * For user mode we run non-secure and with access to the FPU.
396 * The FPU context is active (ie does not need further setup)
397 * and is owned by non-secure.
399 env->v7m.secure = false;
400 env->v7m.nsacr = 0xcff;
401 env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
402 env->v7m.fpccr[M_REG_S] &=
403 ~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
404 env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
405 #endif
408 /* M profile requires that reset clears the exclusive monitor;
409 * A profile does not, but clearing it makes more sense than having it
410 * set with an exclusive access on address zero.
412 arm_clear_exclusive(env);
414 if (arm_feature(env, ARM_FEATURE_PMSA)) {
415 if (cpu->pmsav7_dregion > 0) {
416 if (arm_feature(env, ARM_FEATURE_V8)) {
417 memset(env->pmsav8.rbar[M_REG_NS], 0,
418 sizeof(*env->pmsav8.rbar[M_REG_NS])
419 * cpu->pmsav7_dregion);
420 memset(env->pmsav8.rlar[M_REG_NS], 0,
421 sizeof(*env->pmsav8.rlar[M_REG_NS])
422 * cpu->pmsav7_dregion);
423 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
424 memset(env->pmsav8.rbar[M_REG_S], 0,
425 sizeof(*env->pmsav8.rbar[M_REG_S])
426 * cpu->pmsav7_dregion);
427 memset(env->pmsav8.rlar[M_REG_S], 0,
428 sizeof(*env->pmsav8.rlar[M_REG_S])
429 * cpu->pmsav7_dregion);
431 } else if (arm_feature(env, ARM_FEATURE_V7)) {
432 memset(env->pmsav7.drbar, 0,
433 sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
434 memset(env->pmsav7.drsr, 0,
435 sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
436 memset(env->pmsav7.dracr, 0,
437 sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
440 env->pmsav7.rnr[M_REG_NS] = 0;
441 env->pmsav7.rnr[M_REG_S] = 0;
442 env->pmsav8.mair0[M_REG_NS] = 0;
443 env->pmsav8.mair0[M_REG_S] = 0;
444 env->pmsav8.mair1[M_REG_NS] = 0;
445 env->pmsav8.mair1[M_REG_S] = 0;
448 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
449 if (cpu->sau_sregion > 0) {
450 memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
451 memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
453 env->sau.rnr = 0;
454 /* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
455 * the Cortex-M33 does.
457 env->sau.ctrl = 0;
460 set_flush_to_zero(1, &env->vfp.standard_fp_status);
461 set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
462 set_default_nan_mode(1, &env->vfp.standard_fp_status);
463 set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
464 set_float_detect_tininess(float_tininess_before_rounding,
465 &env->vfp.fp_status);
466 set_float_detect_tininess(float_tininess_before_rounding,
467 &env->vfp.standard_fp_status);
468 set_float_detect_tininess(float_tininess_before_rounding,
469 &env->vfp.fp_status_f16);
470 set_float_detect_tininess(float_tininess_before_rounding,
471 &env->vfp.standard_fp_status_f16);
472 #ifndef CONFIG_USER_ONLY
473 if (kvm_enabled()) {
474 kvm_arm_reset_vcpu(cpu);
476 #endif
478 hw_breakpoint_update_all(cpu);
479 hw_watchpoint_update_all(cpu);
480 arm_rebuild_hflags(env);
483 #ifndef CONFIG_USER_ONLY
485 static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
486 unsigned int target_el,
487 unsigned int cur_el, bool secure,
488 uint64_t hcr_el2)
490 CPUARMState *env = cs->env_ptr;
491 bool pstate_unmasked;
492 bool unmasked = false;
495 * Don't take exceptions if they target a lower EL.
496 * This check should catch any exceptions that would not be taken
497 * but left pending.
499 if (cur_el > target_el) {
500 return false;
503 switch (excp_idx) {
504 case EXCP_FIQ:
505 pstate_unmasked = !(env->daif & PSTATE_F);
506 break;
508 case EXCP_IRQ:
509 pstate_unmasked = !(env->daif & PSTATE_I);
510 break;
512 case EXCP_VFIQ:
513 if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
514 /* VFIQs are only taken when hypervized. */
515 return false;
517 return !(env->daif & PSTATE_F);
518 case EXCP_VIRQ:
519 if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
520 /* VIRQs are only taken when hypervized. */
521 return false;
523 return !(env->daif & PSTATE_I);
524 case EXCP_VSERR:
525 if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
526 /* VIRQs are only taken when hypervized. */
527 return false;
529 return !(env->daif & PSTATE_A);
530 default:
531 g_assert_not_reached();
535 * Use the target EL, current execution state and SCR/HCR settings to
536 * determine whether the corresponding CPSR bit is used to mask the
537 * interrupt.
539 if ((target_el > cur_el) && (target_el != 1)) {
540 /* Exceptions targeting a higher EL may not be maskable */
541 if (arm_feature(env, ARM_FEATURE_AARCH64)) {
543 * 64-bit masking rules are simple: exceptions to EL3
544 * can't be masked, and exceptions to EL2 can only be
545 * masked from Secure state. The HCR and SCR settings
546 * don't affect the masking logic, only the interrupt routing.
548 if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
549 unmasked = true;
551 } else {
553 * The old 32-bit-only environment has a more complicated
554 * masking setup. HCR and SCR bits not only affect interrupt
555 * routing but also change the behaviour of masking.
557 bool hcr, scr;
559 switch (excp_idx) {
560 case EXCP_FIQ:
562 * If FIQs are routed to EL3 or EL2 then there are cases where
563 * we override the CPSR.F in determining if the exception is
564 * masked or not. If neither of these are set then we fall back
565 * to the CPSR.F setting otherwise we further assess the state
566 * below.
568 hcr = hcr_el2 & HCR_FMO;
569 scr = (env->cp15.scr_el3 & SCR_FIQ);
572 * When EL3 is 32-bit, the SCR.FW bit controls whether the
573 * CPSR.F bit masks FIQ interrupts when taken in non-secure
574 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
575 * when non-secure but only when FIQs are only routed to EL3.
577 scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
578 break;
579 case EXCP_IRQ:
581 * When EL3 execution state is 32-bit, if HCR.IMO is set then
582 * we may override the CPSR.I masking when in non-secure state.
583 * The SCR.IRQ setting has already been taken into consideration
584 * when setting the target EL, so it does not have a further
585 * affect here.
587 hcr = hcr_el2 & HCR_IMO;
588 scr = false;
589 break;
590 default:
591 g_assert_not_reached();
594 if ((scr || hcr) && !secure) {
595 unmasked = true;
601 * The PSTATE bits only mask the interrupt if we have not overriden the
602 * ability above.
604 return unmasked || pstate_unmasked;
607 static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
609 CPUClass *cc = CPU_GET_CLASS(cs);
610 CPUARMState *env = cs->env_ptr;
611 uint32_t cur_el = arm_current_el(env);
612 bool secure = arm_is_secure(env);
613 uint64_t hcr_el2 = arm_hcr_el2_eff(env);
614 uint32_t target_el;
615 uint32_t excp_idx;
617 /* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
619 if (interrupt_request & CPU_INTERRUPT_FIQ) {
620 excp_idx = EXCP_FIQ;
621 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
622 if (arm_excp_unmasked(cs, excp_idx, target_el,
623 cur_el, secure, hcr_el2)) {
624 goto found;
627 if (interrupt_request & CPU_INTERRUPT_HARD) {
628 excp_idx = EXCP_IRQ;
629 target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
630 if (arm_excp_unmasked(cs, excp_idx, target_el,
631 cur_el, secure, hcr_el2)) {
632 goto found;
635 if (interrupt_request & CPU_INTERRUPT_VIRQ) {
636 excp_idx = EXCP_VIRQ;
637 target_el = 1;
638 if (arm_excp_unmasked(cs, excp_idx, target_el,
639 cur_el, secure, hcr_el2)) {
640 goto found;
643 if (interrupt_request & CPU_INTERRUPT_VFIQ) {
644 excp_idx = EXCP_VFIQ;
645 target_el = 1;
646 if (arm_excp_unmasked(cs, excp_idx, target_el,
647 cur_el, secure, hcr_el2)) {
648 goto found;
651 if (interrupt_request & CPU_INTERRUPT_VSERR) {
652 excp_idx = EXCP_VSERR;
653 target_el = 1;
654 if (arm_excp_unmasked(cs, excp_idx, target_el,
655 cur_el, secure, hcr_el2)) {
656 /* Taking a virtual abort clears HCR_EL2.VSE */
657 env->cp15.hcr_el2 &= ~HCR_VSE;
658 cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
659 goto found;
662 return false;
664 found:
665 cs->exception_index = excp_idx;
666 env->exception.target_el = target_el;
667 cc->tcg_ops->do_interrupt(cs);
668 return true;
670 #endif /* !CONFIG_USER_ONLY */
672 void arm_cpu_update_virq(ARMCPU *cpu)
675 * Update the interrupt level for VIRQ, which is the logical OR of
676 * the HCR_EL2.VI bit and the input line level from the GIC.
678 CPUARMState *env = &cpu->env;
679 CPUState *cs = CPU(cpu);
681 bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
682 (env->irq_line_state & CPU_INTERRUPT_VIRQ);
684 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
685 if (new_state) {
686 cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
687 } else {
688 cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
693 void arm_cpu_update_vfiq(ARMCPU *cpu)
696 * Update the interrupt level for VFIQ, which is the logical OR of
697 * the HCR_EL2.VF bit and the input line level from the GIC.
699 CPUARMState *env = &cpu->env;
700 CPUState *cs = CPU(cpu);
702 bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
703 (env->irq_line_state & CPU_INTERRUPT_VFIQ);
705 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
706 if (new_state) {
707 cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
708 } else {
709 cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
714 void arm_cpu_update_vserr(ARMCPU *cpu)
717 * Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
719 CPUARMState *env = &cpu->env;
720 CPUState *cs = CPU(cpu);
722 bool new_state = env->cp15.hcr_el2 & HCR_VSE;
724 if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
725 if (new_state) {
726 cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
727 } else {
728 cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
733 #ifndef CONFIG_USER_ONLY
734 static void arm_cpu_set_irq(void *opaque, int irq, int level)
736 ARMCPU *cpu = opaque;
737 CPUARMState *env = &cpu->env;
738 CPUState *cs = CPU(cpu);
739 static const int mask[] = {
740 [ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
741 [ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
742 [ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
743 [ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
746 if (!arm_feature(env, ARM_FEATURE_EL2) &&
747 (irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
749 * The GIC might tell us about VIRQ and VFIQ state, but if we don't
750 * have EL2 support we don't care. (Unless the guest is doing something
751 * silly this will only be calls saying "level is still 0".)
753 return;
756 if (level) {
757 env->irq_line_state |= mask[irq];
758 } else {
759 env->irq_line_state &= ~mask[irq];
762 switch (irq) {
763 case ARM_CPU_VIRQ:
764 arm_cpu_update_virq(cpu);
765 break;
766 case ARM_CPU_VFIQ:
767 arm_cpu_update_vfiq(cpu);
768 break;
769 case ARM_CPU_IRQ:
770 case ARM_CPU_FIQ:
771 if (level) {
772 cpu_interrupt(cs, mask[irq]);
773 } else {
774 cpu_reset_interrupt(cs, mask[irq]);
776 break;
777 default:
778 g_assert_not_reached();
782 static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
784 #ifdef CONFIG_KVM
785 ARMCPU *cpu = opaque;
786 CPUARMState *env = &cpu->env;
787 CPUState *cs = CPU(cpu);
788 uint32_t linestate_bit;
789 int irq_id;
791 switch (irq) {
792 case ARM_CPU_IRQ:
793 irq_id = KVM_ARM_IRQ_CPU_IRQ;
794 linestate_bit = CPU_INTERRUPT_HARD;
795 break;
796 case ARM_CPU_FIQ:
797 irq_id = KVM_ARM_IRQ_CPU_FIQ;
798 linestate_bit = CPU_INTERRUPT_FIQ;
799 break;
800 default:
801 g_assert_not_reached();
804 if (level) {
805 env->irq_line_state |= linestate_bit;
806 } else {
807 env->irq_line_state &= ~linestate_bit;
809 kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
810 #endif
813 static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
815 ARMCPU *cpu = ARM_CPU(cs);
816 CPUARMState *env = &cpu->env;
818 cpu_synchronize_state(cs);
819 return arm_cpu_data_is_big_endian(env);
822 #endif
824 static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
826 ARMCPU *ac = ARM_CPU(cpu);
827 CPUARMState *env = &ac->env;
828 bool sctlr_b;
830 if (is_a64(env)) {
831 info->cap_arch = CS_ARCH_ARM64;
832 info->cap_insn_unit = 4;
833 info->cap_insn_split = 4;
834 } else {
835 int cap_mode;
836 if (env->thumb) {
837 info->cap_insn_unit = 2;
838 info->cap_insn_split = 4;
839 cap_mode = CS_MODE_THUMB;
840 } else {
841 info->cap_insn_unit = 4;
842 info->cap_insn_split = 4;
843 cap_mode = CS_MODE_ARM;
845 if (arm_feature(env, ARM_FEATURE_V8)) {
846 cap_mode |= CS_MODE_V8;
848 if (arm_feature(env, ARM_FEATURE_M)) {
849 cap_mode |= CS_MODE_MCLASS;
851 info->cap_arch = CS_ARCH_ARM;
852 info->cap_mode = cap_mode;
855 sctlr_b = arm_sctlr_b(env);
856 if (bswap_code(sctlr_b)) {
857 #if TARGET_BIG_ENDIAN
858 info->endian = BFD_ENDIAN_LITTLE;
859 #else
860 info->endian = BFD_ENDIAN_BIG;
861 #endif
863 info->flags &= ~INSN_ARM_BE32;
864 #ifndef CONFIG_USER_ONLY
865 if (sctlr_b) {
866 info->flags |= INSN_ARM_BE32;
868 #endif
871 #ifdef TARGET_AARCH64
873 static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
875 ARMCPU *cpu = ARM_CPU(cs);
876 CPUARMState *env = &cpu->env;
877 uint32_t psr = pstate_read(env);
878 int i;
879 int el = arm_current_el(env);
880 const char *ns_status;
882 qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
883 for (i = 0; i < 32; i++) {
884 if (i == 31) {
885 qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
886 } else {
887 qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
888 (i + 2) % 3 ? " " : "\n");
892 if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
893 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
894 } else {
895 ns_status = "";
897 qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
898 psr,
899 psr & PSTATE_N ? 'N' : '-',
900 psr & PSTATE_Z ? 'Z' : '-',
901 psr & PSTATE_C ? 'C' : '-',
902 psr & PSTATE_V ? 'V' : '-',
903 ns_status,
905 psr & PSTATE_SP ? 'h' : 't');
907 if (cpu_isar_feature(aa64_bti, cpu)) {
908 qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
910 if (!(flags & CPU_DUMP_FPU)) {
911 qemu_fprintf(f, "\n");
912 return;
914 if (fp_exception_el(env, el) != 0) {
915 qemu_fprintf(f, " FPU disabled\n");
916 return;
918 qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
919 vfp_get_fpcr(env), vfp_get_fpsr(env));
921 if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
922 int j, zcr_len = sve_vqm1_for_el(env, el);
924 for (i = 0; i <= FFR_PRED_NUM; i++) {
925 bool eol;
926 if (i == FFR_PRED_NUM) {
927 qemu_fprintf(f, "FFR=");
928 /* It's last, so end the line. */
929 eol = true;
930 } else {
931 qemu_fprintf(f, "P%02d=", i);
932 switch (zcr_len) {
933 case 0:
934 eol = i % 8 == 7;
935 break;
936 case 1:
937 eol = i % 6 == 5;
938 break;
939 case 2:
940 case 3:
941 eol = i % 3 == 2;
942 break;
943 default:
944 /* More than one quadword per predicate. */
945 eol = true;
946 break;
949 for (j = zcr_len / 4; j >= 0; j--) {
950 int digits;
951 if (j * 4 + 4 <= zcr_len + 1) {
952 digits = 16;
953 } else {
954 digits = (zcr_len % 4 + 1) * 4;
956 qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
957 env->vfp.pregs[i].p[j],
958 j ? ":" : eol ? "\n" : " ");
962 for (i = 0; i < 32; i++) {
963 if (zcr_len == 0) {
964 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
965 i, env->vfp.zregs[i].d[1],
966 env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
967 } else if (zcr_len == 1) {
968 qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
969 ":%016" PRIx64 ":%016" PRIx64 "\n",
970 i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
971 env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
972 } else {
973 for (j = zcr_len; j >= 0; j--) {
974 bool odd = (zcr_len - j) % 2 != 0;
975 if (j == zcr_len) {
976 qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
977 } else if (!odd) {
978 if (j > 0) {
979 qemu_fprintf(f, " [%x-%x]=", j, j - 1);
980 } else {
981 qemu_fprintf(f, " [%x]=", j);
984 qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
985 env->vfp.zregs[i].d[j * 2 + 1],
986 env->vfp.zregs[i].d[j * 2],
987 odd || j == 0 ? "\n" : ":");
991 } else {
992 for (i = 0; i < 32; i++) {
993 uint64_t *q = aa64_vfp_qreg(env, i);
994 qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
995 i, q[1], q[0], (i & 1 ? "\n" : " "));
1000 #else
1002 static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1004 g_assert_not_reached();
1007 #endif
1009 static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
1011 ARMCPU *cpu = ARM_CPU(cs);
1012 CPUARMState *env = &cpu->env;
1013 int i;
1015 if (is_a64(env)) {
1016 aarch64_cpu_dump_state(cs, f, flags);
1017 return;
1020 for (i = 0; i < 16; i++) {
1021 qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
1022 if ((i % 4) == 3) {
1023 qemu_fprintf(f, "\n");
1024 } else {
1025 qemu_fprintf(f, " ");
1029 if (arm_feature(env, ARM_FEATURE_M)) {
1030 uint32_t xpsr = xpsr_read(env);
1031 const char *mode;
1032 const char *ns_status = "";
1034 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1035 ns_status = env->v7m.secure ? "S " : "NS ";
1038 if (xpsr & XPSR_EXCP) {
1039 mode = "handler";
1040 } else {
1041 if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
1042 mode = "unpriv-thread";
1043 } else {
1044 mode = "priv-thread";
1048 qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
1049 xpsr,
1050 xpsr & XPSR_N ? 'N' : '-',
1051 xpsr & XPSR_Z ? 'Z' : '-',
1052 xpsr & XPSR_C ? 'C' : '-',
1053 xpsr & XPSR_V ? 'V' : '-',
1054 xpsr & XPSR_T ? 'T' : 'A',
1055 ns_status,
1056 mode);
1057 } else {
1058 uint32_t psr = cpsr_read(env);
1059 const char *ns_status = "";
1061 if (arm_feature(env, ARM_FEATURE_EL3) &&
1062 (psr & CPSR_M) != ARM_CPU_MODE_MON) {
1063 ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
1066 qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
1067 psr,
1068 psr & CPSR_N ? 'N' : '-',
1069 psr & CPSR_Z ? 'Z' : '-',
1070 psr & CPSR_C ? 'C' : '-',
1071 psr & CPSR_V ? 'V' : '-',
1072 psr & CPSR_T ? 'T' : 'A',
1073 ns_status,
1074 aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
1077 if (flags & CPU_DUMP_FPU) {
1078 int numvfpregs = 0;
1079 if (cpu_isar_feature(aa32_simd_r32, cpu)) {
1080 numvfpregs = 32;
1081 } else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
1082 numvfpregs = 16;
1084 for (i = 0; i < numvfpregs; i++) {
1085 uint64_t v = *aa32_vfp_dreg(env, i);
1086 qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
1087 i * 2, (uint32_t)v,
1088 i * 2 + 1, (uint32_t)(v >> 32),
1089 i, v);
1091 qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
1092 if (cpu_isar_feature(aa32_mve, cpu)) {
1093 qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
1098 uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
1100 uint32_t Aff1 = idx / clustersz;
1101 uint32_t Aff0 = idx % clustersz;
1102 return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
1105 static void arm_cpu_initfn(Object *obj)
1107 ARMCPU *cpu = ARM_CPU(obj);
1109 cpu_set_cpustate_pointers(cpu);
1110 cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
1111 NULL, g_free);
1113 QLIST_INIT(&cpu->pre_el_change_hooks);
1114 QLIST_INIT(&cpu->el_change_hooks);
1116 #ifdef CONFIG_USER_ONLY
1117 # ifdef TARGET_AARCH64
1119 * The linux kernel defaults to 512-bit for SVE, and 256-bit for SME.
1120 * These values were chosen to fit within the default signal frame.
1121 * See documentation for /proc/sys/abi/{sve,sme}_default_vector_length,
1122 * and our corresponding cpu property.
1124 cpu->sve_default_vq = 4;
1125 cpu->sme_default_vq = 2;
1126 # endif
1127 #else
1128 /* Our inbound IRQ and FIQ lines */
1129 if (kvm_enabled()) {
1130 /* VIRQ and VFIQ are unused with KVM but we add them to maintain
1131 * the same interface as non-KVM CPUs.
1133 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
1134 } else {
1135 qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
1138 qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
1139 ARRAY_SIZE(cpu->gt_timer_outputs));
1141 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
1142 "gicv3-maintenance-interrupt", 1);
1143 qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
1144 "pmu-interrupt", 1);
1145 #endif
1147 /* DTB consumers generally don't in fact care what the 'compatible'
1148 * string is, so always provide some string and trust that a hypothetical
1149 * picky DTB consumer will also provide a helpful error message.
1151 cpu->dtb_compatible = "qemu,unknown";
1152 cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
1153 cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
1155 if (tcg_enabled() || hvf_enabled()) {
1156 /* TCG and HVF implement PSCI 1.1 */
1157 cpu->psci_version = QEMU_PSCI_VERSION_1_1;
1161 static Property arm_cpu_gt_cntfrq_property =
1162 DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
1163 NANOSECONDS_PER_SECOND / GTIMER_SCALE);
1165 static Property arm_cpu_reset_cbar_property =
1166 DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
1168 static Property arm_cpu_reset_hivecs_property =
1169 DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
1171 #ifndef CONFIG_USER_ONLY
1172 static Property arm_cpu_has_el2_property =
1173 DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
1175 static Property arm_cpu_has_el3_property =
1176 DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
1177 #endif
1179 static Property arm_cpu_cfgend_property =
1180 DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
1182 static Property arm_cpu_has_vfp_property =
1183 DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
1185 static Property arm_cpu_has_neon_property =
1186 DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
1188 static Property arm_cpu_has_dsp_property =
1189 DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
1191 static Property arm_cpu_has_mpu_property =
1192 DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
1194 /* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
1195 * because the CPU initfn will have already set cpu->pmsav7_dregion to
1196 * the right value for that particular CPU type, and we don't want
1197 * to override that with an incorrect constant value.
1199 static Property arm_cpu_pmsav7_dregion_property =
1200 DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
1201 pmsav7_dregion,
1202 qdev_prop_uint32, uint32_t);
1204 static bool arm_get_pmu(Object *obj, Error **errp)
1206 ARMCPU *cpu = ARM_CPU(obj);
1208 return cpu->has_pmu;
1211 static void arm_set_pmu(Object *obj, bool value, Error **errp)
1213 ARMCPU *cpu = ARM_CPU(obj);
1215 if (value) {
1216 if (kvm_enabled() && !kvm_arm_pmu_supported()) {
1217 error_setg(errp, "'pmu' feature not supported by KVM on this host");
1218 return;
1220 set_feature(&cpu->env, ARM_FEATURE_PMU);
1221 } else {
1222 unset_feature(&cpu->env, ARM_FEATURE_PMU);
1224 cpu->has_pmu = value;
1227 unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
1230 * The exact approach to calculating guest ticks is:
1232 * muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
1233 * NANOSECONDS_PER_SECOND);
1235 * We don't do that. Rather we intentionally use integer division
1236 * truncation below and in the caller for the conversion of host monotonic
1237 * time to guest ticks to provide the exact inverse for the semantics of
1238 * the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
1239 * it loses precision when representing frequencies where
1240 * `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
1241 * provide an exact inverse leads to scheduling timers with negative
1242 * periods, which in turn leads to sticky behaviour in the guest.
1244 * Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
1245 * cannot become zero.
1247 return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
1248 NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
1251 void arm_cpu_post_init(Object *obj)
1253 ARMCPU *cpu = ARM_CPU(obj);
1255 /* M profile implies PMSA. We have to do this here rather than
1256 * in realize with the other feature-implication checks because
1257 * we look at the PMSA bit to see if we should add some properties.
1259 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1260 set_feature(&cpu->env, ARM_FEATURE_PMSA);
1263 if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
1264 arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
1265 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
1268 if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
1269 qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
1272 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1273 object_property_add_uint64_ptr(obj, "rvbar",
1274 &cpu->rvbar_prop,
1275 OBJ_PROP_FLAG_READWRITE);
1278 #ifndef CONFIG_USER_ONLY
1279 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1280 /* Add the has_el3 state CPU property only if EL3 is allowed. This will
1281 * prevent "has_el3" from existing on CPUs which cannot support EL3.
1283 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
1285 object_property_add_link(obj, "secure-memory",
1286 TYPE_MEMORY_REGION,
1287 (Object **)&cpu->secure_memory,
1288 qdev_prop_allow_set_link_before_realize,
1289 OBJ_PROP_LINK_STRONG);
1292 if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
1293 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
1295 #endif
1297 if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
1298 cpu->has_pmu = true;
1299 object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
1303 * Allow user to turn off VFP and Neon support, but only for TCG --
1304 * KVM does not currently allow us to lie to the guest about its
1305 * ID/feature registers, so the guest always sees what the host has.
1307 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
1308 ? cpu_isar_feature(aa64_fp_simd, cpu)
1309 : cpu_isar_feature(aa32_vfp, cpu)) {
1310 cpu->has_vfp = true;
1311 if (!kvm_enabled()) {
1312 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
1316 if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
1317 cpu->has_neon = true;
1318 if (!kvm_enabled()) {
1319 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
1323 if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
1324 arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
1325 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
1328 if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
1329 qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
1330 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1331 qdev_property_add_static(DEVICE(obj),
1332 &arm_cpu_pmsav7_dregion_property);
1336 if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
1337 object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
1338 qdev_prop_allow_set_link_before_realize,
1339 OBJ_PROP_LINK_STRONG);
1341 * M profile: initial value of the Secure VTOR. We can't just use
1342 * a simple DEFINE_PROP_UINT32 for this because we want to permit
1343 * the property to be set after realize.
1345 object_property_add_uint32_ptr(obj, "init-svtor",
1346 &cpu->init_svtor,
1347 OBJ_PROP_FLAG_READWRITE);
1349 if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
1351 * Initial value of the NS VTOR (for cores without the Security
1352 * extension, this is the only VTOR)
1354 object_property_add_uint32_ptr(obj, "init-nsvtor",
1355 &cpu->init_nsvtor,
1356 OBJ_PROP_FLAG_READWRITE);
1359 /* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
1360 object_property_add_uint32_ptr(obj, "psci-conduit",
1361 &cpu->psci_conduit,
1362 OBJ_PROP_FLAG_READWRITE);
1364 qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
1366 if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
1367 qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
1370 if (kvm_enabled()) {
1371 kvm_arm_add_vcpu_properties(obj);
1374 #ifndef CONFIG_USER_ONLY
1375 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
1376 cpu_isar_feature(aa64_mte, cpu)) {
1377 object_property_add_link(obj, "tag-memory",
1378 TYPE_MEMORY_REGION,
1379 (Object **)&cpu->tag_memory,
1380 qdev_prop_allow_set_link_before_realize,
1381 OBJ_PROP_LINK_STRONG);
1383 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
1384 object_property_add_link(obj, "secure-tag-memory",
1385 TYPE_MEMORY_REGION,
1386 (Object **)&cpu->secure_tag_memory,
1387 qdev_prop_allow_set_link_before_realize,
1388 OBJ_PROP_LINK_STRONG);
1391 #endif
1394 static void arm_cpu_finalizefn(Object *obj)
1396 ARMCPU *cpu = ARM_CPU(obj);
1397 ARMELChangeHook *hook, *next;
1399 g_hash_table_destroy(cpu->cp_regs);
1401 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
1402 QLIST_REMOVE(hook, node);
1403 g_free(hook);
1405 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
1406 QLIST_REMOVE(hook, node);
1407 g_free(hook);
1409 #ifndef CONFIG_USER_ONLY
1410 if (cpu->pmu_timer) {
1411 timer_free(cpu->pmu_timer);
1413 #endif
1416 void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
1418 Error *local_err = NULL;
1420 #ifdef TARGET_AARCH64
1421 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1422 arm_cpu_sve_finalize(cpu, &local_err);
1423 if (local_err != NULL) {
1424 error_propagate(errp, local_err);
1425 return;
1428 arm_cpu_sme_finalize(cpu, &local_err);
1429 if (local_err != NULL) {
1430 error_propagate(errp, local_err);
1431 return;
1434 arm_cpu_pauth_finalize(cpu, &local_err);
1435 if (local_err != NULL) {
1436 error_propagate(errp, local_err);
1437 return;
1440 arm_cpu_lpa2_finalize(cpu, &local_err);
1441 if (local_err != NULL) {
1442 error_propagate(errp, local_err);
1443 return;
1446 #endif
1448 if (kvm_enabled()) {
1449 kvm_arm_steal_time_finalize(cpu, &local_err);
1450 if (local_err != NULL) {
1451 error_propagate(errp, local_err);
1452 return;
1457 static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
1459 CPUState *cs = CPU(dev);
1460 ARMCPU *cpu = ARM_CPU(dev);
1461 ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
1462 CPUARMState *env = &cpu->env;
1463 int pagebits;
1464 Error *local_err = NULL;
1465 bool no_aa32 = false;
1467 /* If we needed to query the host kernel for the CPU features
1468 * then it's possible that might have failed in the initfn, but
1469 * this is the first point where we can report it.
1471 if (cpu->host_cpu_probe_failed) {
1472 if (!kvm_enabled() && !hvf_enabled()) {
1473 error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
1474 } else {
1475 error_setg(errp, "Failed to retrieve host CPU features");
1477 return;
1480 #ifndef CONFIG_USER_ONLY
1481 /* The NVIC and M-profile CPU are two halves of a single piece of
1482 * hardware; trying to use one without the other is a command line
1483 * error and will result in segfaults if not caught here.
1485 if (arm_feature(env, ARM_FEATURE_M)) {
1486 if (!env->nvic) {
1487 error_setg(errp, "This board cannot be used with Cortex-M CPUs");
1488 return;
1490 } else {
1491 if (env->nvic) {
1492 error_setg(errp, "This board can only be used with Cortex-M CPUs");
1493 return;
1497 if (!tcg_enabled() && !qtest_enabled()) {
1499 * We assume that no accelerator except TCG (and the "not really an
1500 * accelerator" qtest) can handle these features, because Arm hardware
1501 * virtualization can't virtualize them.
1503 * Catch all the cases which might cause us to create more than one
1504 * address space for the CPU (otherwise we will assert() later in
1505 * cpu_address_space_init()).
1507 if (arm_feature(env, ARM_FEATURE_M)) {
1508 error_setg(errp,
1509 "Cannot enable %s when using an M-profile guest CPU",
1510 current_accel_name());
1511 return;
1513 if (cpu->has_el3) {
1514 error_setg(errp,
1515 "Cannot enable %s when guest CPU has EL3 enabled",
1516 current_accel_name());
1517 return;
1519 if (cpu->tag_memory) {
1520 error_setg(errp,
1521 "Cannot enable %s when guest CPUs has MTE enabled",
1522 current_accel_name());
1523 return;
1528 uint64_t scale;
1530 if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
1531 if (!cpu->gt_cntfrq_hz) {
1532 error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
1533 cpu->gt_cntfrq_hz);
1534 return;
1536 scale = gt_cntfrq_period_ns(cpu);
1537 } else {
1538 scale = GTIMER_SCALE;
1541 cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1542 arm_gt_ptimer_cb, cpu);
1543 cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1544 arm_gt_vtimer_cb, cpu);
1545 cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1546 arm_gt_htimer_cb, cpu);
1547 cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1548 arm_gt_stimer_cb, cpu);
1549 cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
1550 arm_gt_hvtimer_cb, cpu);
1552 #endif
1554 cpu_exec_realizefn(cs, &local_err);
1555 if (local_err != NULL) {
1556 error_propagate(errp, local_err);
1557 return;
1560 arm_cpu_finalize_features(cpu, &local_err);
1561 if (local_err != NULL) {
1562 error_propagate(errp, local_err);
1563 return;
1566 if (arm_feature(env, ARM_FEATURE_AARCH64) &&
1567 cpu->has_vfp != cpu->has_neon) {
1569 * This is an architectural requirement for AArch64; AArch32 is
1570 * more flexible and permits VFP-no-Neon and Neon-no-VFP.
1572 error_setg(errp,
1573 "AArch64 CPUs must have both VFP and Neon or neither");
1574 return;
1577 if (!cpu->has_vfp) {
1578 uint64_t t;
1579 uint32_t u;
1581 t = cpu->isar.id_aa64isar1;
1582 t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
1583 cpu->isar.id_aa64isar1 = t;
1585 t = cpu->isar.id_aa64pfr0;
1586 t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
1587 cpu->isar.id_aa64pfr0 = t;
1589 u = cpu->isar.id_isar6;
1590 u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
1591 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1592 cpu->isar.id_isar6 = u;
1594 u = cpu->isar.mvfr0;
1595 u = FIELD_DP32(u, MVFR0, FPSP, 0);
1596 u = FIELD_DP32(u, MVFR0, FPDP, 0);
1597 u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
1598 u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
1599 u = FIELD_DP32(u, MVFR0, FPROUND, 0);
1600 if (!arm_feature(env, ARM_FEATURE_M)) {
1601 u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
1602 u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
1604 cpu->isar.mvfr0 = u;
1606 u = cpu->isar.mvfr1;
1607 u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
1608 u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
1609 u = FIELD_DP32(u, MVFR1, FPHP, 0);
1610 if (arm_feature(env, ARM_FEATURE_M)) {
1611 u = FIELD_DP32(u, MVFR1, FP16, 0);
1613 cpu->isar.mvfr1 = u;
1615 u = cpu->isar.mvfr2;
1616 u = FIELD_DP32(u, MVFR2, FPMISC, 0);
1617 cpu->isar.mvfr2 = u;
1620 if (!cpu->has_neon) {
1621 uint64_t t;
1622 uint32_t u;
1624 unset_feature(env, ARM_FEATURE_NEON);
1626 t = cpu->isar.id_aa64isar0;
1627 t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
1628 t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
1629 t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
1630 t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
1631 t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
1632 t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
1633 t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
1634 cpu->isar.id_aa64isar0 = t;
1636 t = cpu->isar.id_aa64isar1;
1637 t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
1638 t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
1639 t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
1640 cpu->isar.id_aa64isar1 = t;
1642 t = cpu->isar.id_aa64pfr0;
1643 t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
1644 cpu->isar.id_aa64pfr0 = t;
1646 u = cpu->isar.id_isar5;
1647 u = FIELD_DP32(u, ID_ISAR5, AES, 0);
1648 u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
1649 u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
1650 u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
1651 u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
1652 cpu->isar.id_isar5 = u;
1654 u = cpu->isar.id_isar6;
1655 u = FIELD_DP32(u, ID_ISAR6, DP, 0);
1656 u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
1657 u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
1658 u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
1659 cpu->isar.id_isar6 = u;
1661 if (!arm_feature(env, ARM_FEATURE_M)) {
1662 u = cpu->isar.mvfr1;
1663 u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
1664 u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
1665 u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
1666 u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
1667 cpu->isar.mvfr1 = u;
1669 u = cpu->isar.mvfr2;
1670 u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
1671 cpu->isar.mvfr2 = u;
1675 if (!cpu->has_neon && !cpu->has_vfp) {
1676 uint64_t t;
1677 uint32_t u;
1679 t = cpu->isar.id_aa64isar0;
1680 t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
1681 cpu->isar.id_aa64isar0 = t;
1683 t = cpu->isar.id_aa64isar1;
1684 t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
1685 cpu->isar.id_aa64isar1 = t;
1687 u = cpu->isar.mvfr0;
1688 u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
1689 cpu->isar.mvfr0 = u;
1691 /* Despite the name, this field covers both VFP and Neon */
1692 u = cpu->isar.mvfr1;
1693 u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
1694 cpu->isar.mvfr1 = u;
1697 if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
1698 uint32_t u;
1700 unset_feature(env, ARM_FEATURE_THUMB_DSP);
1702 u = cpu->isar.id_isar1;
1703 u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
1704 cpu->isar.id_isar1 = u;
1706 u = cpu->isar.id_isar2;
1707 u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
1708 u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
1709 cpu->isar.id_isar2 = u;
1711 u = cpu->isar.id_isar3;
1712 u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
1713 u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
1714 cpu->isar.id_isar3 = u;
1717 /* Some features automatically imply others: */
1718 if (arm_feature(env, ARM_FEATURE_V8)) {
1719 if (arm_feature(env, ARM_FEATURE_M)) {
1720 set_feature(env, ARM_FEATURE_V7);
1721 } else {
1722 set_feature(env, ARM_FEATURE_V7VE);
1727 * There exist AArch64 cpus without AArch32 support. When KVM
1728 * queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
1729 * Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
1730 * As a general principle, we also do not make ID register
1731 * consistency checks anywhere unless using TCG, because only
1732 * for TCG would a consistency-check failure be a QEMU bug.
1734 if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
1735 no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
1738 if (arm_feature(env, ARM_FEATURE_V7VE)) {
1739 /* v7 Virtualization Extensions. In real hardware this implies
1740 * EL2 and also the presence of the Security Extensions.
1741 * For QEMU, for backwards-compatibility we implement some
1742 * CPUs or CPU configs which have no actual EL2 or EL3 but do
1743 * include the various other features that V7VE implies.
1744 * Presence of EL2 itself is ARM_FEATURE_EL2, and of the
1745 * Security Extensions is ARM_FEATURE_EL3.
1747 assert(!tcg_enabled() || no_aa32 ||
1748 cpu_isar_feature(aa32_arm_div, cpu));
1749 set_feature(env, ARM_FEATURE_LPAE);
1750 set_feature(env, ARM_FEATURE_V7);
1752 if (arm_feature(env, ARM_FEATURE_V7)) {
1753 set_feature(env, ARM_FEATURE_VAPA);
1754 set_feature(env, ARM_FEATURE_THUMB2);
1755 set_feature(env, ARM_FEATURE_MPIDR);
1756 if (!arm_feature(env, ARM_FEATURE_M)) {
1757 set_feature(env, ARM_FEATURE_V6K);
1758 } else {
1759 set_feature(env, ARM_FEATURE_V6);
1762 /* Always define VBAR for V7 CPUs even if it doesn't exist in
1763 * non-EL3 configs. This is needed by some legacy boards.
1765 set_feature(env, ARM_FEATURE_VBAR);
1767 if (arm_feature(env, ARM_FEATURE_V6K)) {
1768 set_feature(env, ARM_FEATURE_V6);
1769 set_feature(env, ARM_FEATURE_MVFR);
1771 if (arm_feature(env, ARM_FEATURE_V6)) {
1772 set_feature(env, ARM_FEATURE_V5);
1773 if (!arm_feature(env, ARM_FEATURE_M)) {
1774 assert(!tcg_enabled() || no_aa32 ||
1775 cpu_isar_feature(aa32_jazelle, cpu));
1776 set_feature(env, ARM_FEATURE_AUXCR);
1779 if (arm_feature(env, ARM_FEATURE_V5)) {
1780 set_feature(env, ARM_FEATURE_V4T);
1782 if (arm_feature(env, ARM_FEATURE_LPAE)) {
1783 set_feature(env, ARM_FEATURE_V7MP);
1785 if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
1786 set_feature(env, ARM_FEATURE_CBAR);
1788 if (arm_feature(env, ARM_FEATURE_THUMB2) &&
1789 !arm_feature(env, ARM_FEATURE_M)) {
1790 set_feature(env, ARM_FEATURE_THUMB_DSP);
1794 * We rely on no XScale CPU having VFP so we can use the same bits in the
1795 * TB flags field for VECSTRIDE and XSCALE_CPAR.
1797 assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
1798 !cpu_isar_feature(aa32_vfp_simd, cpu) ||
1799 !arm_feature(env, ARM_FEATURE_XSCALE));
1801 if (arm_feature(env, ARM_FEATURE_V7) &&
1802 !arm_feature(env, ARM_FEATURE_M) &&
1803 !arm_feature(env, ARM_FEATURE_PMSA)) {
1804 /* v7VMSA drops support for the old ARMv5 tiny pages, so we
1805 * can use 4K pages.
1807 pagebits = 12;
1808 } else {
1809 /* For CPUs which might have tiny 1K pages, or which have an
1810 * MPU and might have small region sizes, stick with 1K pages.
1812 pagebits = 10;
1814 if (!set_preferred_target_page_bits(pagebits)) {
1815 /* This can only ever happen for hotplugging a CPU, or if
1816 * the board code incorrectly creates a CPU which it has
1817 * promised via minimum_page_size that it will not.
1819 error_setg(errp, "This CPU requires a smaller page size than the "
1820 "system is using");
1821 return;
1824 /* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
1825 * We don't support setting cluster ID ([16..23]) (known as Aff2
1826 * in later ARM ARM versions), or any of the higher affinity level fields,
1827 * so these bits always RAZ.
1829 if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
1830 cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
1831 ARM_DEFAULT_CPUS_PER_CLUSTER);
1834 if (cpu->reset_hivecs) {
1835 cpu->reset_sctlr |= (1 << 13);
1838 if (cpu->cfgend) {
1839 if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
1840 cpu->reset_sctlr |= SCTLR_EE;
1841 } else {
1842 cpu->reset_sctlr |= SCTLR_B;
1846 if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
1847 /* If the has_el3 CPU property is disabled then we need to disable the
1848 * feature.
1850 unset_feature(env, ARM_FEATURE_EL3);
1853 * Disable the security extension feature bits in the processor
1854 * feature registers as well.
1856 cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
1857 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
1858 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1859 ID_AA64PFR0, EL3, 0);
1862 if (!cpu->has_el2) {
1863 unset_feature(env, ARM_FEATURE_EL2);
1866 if (!cpu->has_pmu) {
1867 unset_feature(env, ARM_FEATURE_PMU);
1869 if (arm_feature(env, ARM_FEATURE_PMU)) {
1870 pmu_init(cpu);
1872 if (!kvm_enabled()) {
1873 arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
1874 arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
1877 #ifndef CONFIG_USER_ONLY
1878 cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
1879 cpu);
1880 #endif
1881 } else {
1882 cpu->isar.id_aa64dfr0 =
1883 FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
1884 cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
1885 cpu->pmceid0 = 0;
1886 cpu->pmceid1 = 0;
1889 if (!arm_feature(env, ARM_FEATURE_EL2)) {
1891 * Disable the hypervisor feature bits in the processor feature
1892 * registers if we don't have EL2.
1894 cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
1895 ID_AA64PFR0, EL2, 0);
1896 cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
1897 ID_PFR1, VIRTUALIZATION, 0);
1900 #ifndef CONFIG_USER_ONLY
1901 if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
1903 * Disable the MTE feature bits if we do not have tag-memory
1904 * provided by the machine.
1906 cpu->isar.id_aa64pfr1 =
1907 FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
1909 #endif
1911 /* MPU can be configured out of a PMSA CPU either by setting has-mpu
1912 * to false or by setting pmsav7-dregion to 0.
1914 if (!cpu->has_mpu) {
1915 cpu->pmsav7_dregion = 0;
1917 if (cpu->pmsav7_dregion == 0) {
1918 cpu->has_mpu = false;
1921 if (arm_feature(env, ARM_FEATURE_PMSA) &&
1922 arm_feature(env, ARM_FEATURE_V7)) {
1923 uint32_t nr = cpu->pmsav7_dregion;
1925 if (nr > 0xff) {
1926 error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
1927 return;
1930 if (nr) {
1931 if (arm_feature(env, ARM_FEATURE_V8)) {
1932 /* PMSAv8 */
1933 env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
1934 env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
1935 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1936 env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
1937 env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
1939 } else {
1940 env->pmsav7.drbar = g_new0(uint32_t, nr);
1941 env->pmsav7.drsr = g_new0(uint32_t, nr);
1942 env->pmsav7.dracr = g_new0(uint32_t, nr);
1947 if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
1948 uint32_t nr = cpu->sau_sregion;
1950 if (nr > 0xff) {
1951 error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
1952 return;
1955 if (nr) {
1956 env->sau.rbar = g_new0(uint32_t, nr);
1957 env->sau.rlar = g_new0(uint32_t, nr);
1961 if (arm_feature(env, ARM_FEATURE_EL3)) {
1962 set_feature(env, ARM_FEATURE_VBAR);
1965 register_cp_regs_for_features(cpu);
1966 arm_cpu_register_gdb_regs_for_features(cpu);
1968 init_cpreg_list(cpu);
1970 #ifndef CONFIG_USER_ONLY
1971 MachineState *ms = MACHINE(qdev_get_machine());
1972 unsigned int smp_cpus = ms->smp.cpus;
1973 bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
1976 * We must set cs->num_ases to the final value before
1977 * the first call to cpu_address_space_init.
1979 if (cpu->tag_memory != NULL) {
1980 cs->num_ases = 3 + has_secure;
1981 } else {
1982 cs->num_ases = 1 + has_secure;
1985 if (has_secure) {
1986 if (!cpu->secure_memory) {
1987 cpu->secure_memory = cs->memory;
1989 cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
1990 cpu->secure_memory);
1993 if (cpu->tag_memory != NULL) {
1994 cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
1995 cpu->tag_memory);
1996 if (has_secure) {
1997 cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
1998 cpu->secure_tag_memory);
2002 cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
2004 /* No core_count specified, default to smp_cpus. */
2005 if (cpu->core_count == -1) {
2006 cpu->core_count = smp_cpus;
2008 #endif
2010 if (tcg_enabled()) {
2011 int dcz_blocklen = 4 << cpu->dcz_blocksize;
2014 * We only support DCZ blocklen that fits on one page.
2016 * Architectually this is always true. However TARGET_PAGE_SIZE
2017 * is variable and, for compatibility with -machine virt-2.7,
2018 * is only 1KiB, as an artifact of legacy ARMv5 subpage support.
2019 * But even then, while the largest architectural DCZ blocklen
2020 * is 2KiB, no cpu actually uses such a large blocklen.
2022 assert(dcz_blocklen <= TARGET_PAGE_SIZE);
2025 * We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
2026 * both nibbles of each byte storing tag data may be written at once.
2027 * Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
2029 if (cpu_isar_feature(aa64_mte, cpu)) {
2030 assert(dcz_blocklen >= 2 * TAG_GRANULE);
2034 qemu_init_vcpu(cs);
2035 cpu_reset(cs);
2037 acc->parent_realize(dev, errp);
2040 static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
2042 ObjectClass *oc;
2043 char *typename;
2044 char **cpuname;
2045 const char *cpunamestr;
2047 cpuname = g_strsplit(cpu_model, ",", 1);
2048 cpunamestr = cpuname[0];
2049 #ifdef CONFIG_USER_ONLY
2050 /* For backwards compatibility usermode emulation allows "-cpu any",
2051 * which has the same semantics as "-cpu max".
2053 if (!strcmp(cpunamestr, "any")) {
2054 cpunamestr = "max";
2056 #endif
2057 typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
2058 oc = object_class_by_name(typename);
2059 g_strfreev(cpuname);
2060 g_free(typename);
2061 if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
2062 object_class_is_abstract(oc)) {
2063 return NULL;
2065 return oc;
2068 static Property arm_cpu_properties[] = {
2069 DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
2070 DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
2071 mp_affinity, ARM64_AFFINITY_INVALID),
2072 DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
2073 DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
2074 DEFINE_PROP_END_OF_LIST()
2077 static gchar *arm_gdb_arch_name(CPUState *cs)
2079 ARMCPU *cpu = ARM_CPU(cs);
2080 CPUARMState *env = &cpu->env;
2082 if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
2083 return g_strdup("iwmmxt");
2085 return g_strdup("arm");
2088 #ifndef CONFIG_USER_ONLY
2089 #include "hw/core/sysemu-cpu-ops.h"
2091 static const struct SysemuCPUOps arm_sysemu_ops = {
2092 .get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
2093 .asidx_from_attrs = arm_asidx_from_attrs,
2094 .write_elf32_note = arm_cpu_write_elf32_note,
2095 .write_elf64_note = arm_cpu_write_elf64_note,
2096 .virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
2097 .legacy_vmsd = &vmstate_arm_cpu,
2099 #endif
2101 #ifdef CONFIG_TCG
2102 static const struct TCGCPUOps arm_tcg_ops = {
2103 .initialize = arm_translate_init,
2104 .synchronize_from_tb = arm_cpu_synchronize_from_tb,
2105 .debug_excp_handler = arm_debug_excp_handler,
2107 #ifdef CONFIG_USER_ONLY
2108 .record_sigsegv = arm_cpu_record_sigsegv,
2109 .record_sigbus = arm_cpu_record_sigbus,
2110 #else
2111 .tlb_fill = arm_cpu_tlb_fill,
2112 .cpu_exec_interrupt = arm_cpu_exec_interrupt,
2113 .do_interrupt = arm_cpu_do_interrupt,
2114 .do_transaction_failed = arm_cpu_do_transaction_failed,
2115 .do_unaligned_access = arm_cpu_do_unaligned_access,
2116 .adjust_watchpoint_address = arm_adjust_watchpoint_address,
2117 .debug_check_watchpoint = arm_debug_check_watchpoint,
2118 .debug_check_breakpoint = arm_debug_check_breakpoint,
2119 #endif /* !CONFIG_USER_ONLY */
2121 #endif /* CONFIG_TCG */
2123 static void arm_cpu_class_init(ObjectClass *oc, void *data)
2125 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2126 CPUClass *cc = CPU_CLASS(acc);
2127 DeviceClass *dc = DEVICE_CLASS(oc);
2129 device_class_set_parent_realize(dc, arm_cpu_realizefn,
2130 &acc->parent_realize);
2132 device_class_set_props(dc, arm_cpu_properties);
2133 device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
2135 cc->class_by_name = arm_cpu_class_by_name;
2136 cc->has_work = arm_cpu_has_work;
2137 cc->dump_state = arm_cpu_dump_state;
2138 cc->set_pc = arm_cpu_set_pc;
2139 cc->gdb_read_register = arm_cpu_gdb_read_register;
2140 cc->gdb_write_register = arm_cpu_gdb_write_register;
2141 #ifndef CONFIG_USER_ONLY
2142 cc->sysemu_ops = &arm_sysemu_ops;
2143 #endif
2144 cc->gdb_num_core_regs = 26;
2145 cc->gdb_core_xml_file = "arm-core.xml";
2146 cc->gdb_arch_name = arm_gdb_arch_name;
2147 cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
2148 cc->gdb_stop_before_watchpoint = true;
2149 cc->disas_set_info = arm_disas_set_info;
2151 #ifdef CONFIG_TCG
2152 cc->tcg_ops = &arm_tcg_ops;
2153 #endif /* CONFIG_TCG */
2156 static void arm_cpu_instance_init(Object *obj)
2158 ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
2160 acc->info->initfn(obj);
2161 arm_cpu_post_init(obj);
2164 static void cpu_register_class_init(ObjectClass *oc, void *data)
2166 ARMCPUClass *acc = ARM_CPU_CLASS(oc);
2168 acc->info = data;
2171 void arm_cpu_register(const ARMCPUInfo *info)
2173 TypeInfo type_info = {
2174 .parent = TYPE_ARM_CPU,
2175 .instance_size = sizeof(ARMCPU),
2176 .instance_align = __alignof__(ARMCPU),
2177 .instance_init = arm_cpu_instance_init,
2178 .class_size = sizeof(ARMCPUClass),
2179 .class_init = info->class_init ?: cpu_register_class_init,
2180 .class_data = (void *)info,
2183 type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
2184 type_register(&type_info);
2185 g_free((void *)type_info.name);
2188 static const TypeInfo arm_cpu_type_info = {
2189 .name = TYPE_ARM_CPU,
2190 .parent = TYPE_CPU,
2191 .instance_size = sizeof(ARMCPU),
2192 .instance_align = __alignof__(ARMCPU),
2193 .instance_init = arm_cpu_initfn,
2194 .instance_finalize = arm_cpu_finalizefn,
2195 .abstract = true,
2196 .class_size = sizeof(ARMCPUClass),
2197 .class_init = arm_cpu_class_init,
2200 static void arm_cpu_register_types(void)
2202 type_register_static(&arm_cpu_type_info);
2205 type_init(arm_cpu_register_types)