kvm: x86: Fix initial kvm_has_msr_star
[qemu.git] / target-i386 / kvm.c
blob88b504c34ec82cba350e9e12d5dd179397b2936b
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "sysemu.h"
23 #include "kvm.h"
24 #include "cpu.h"
25 #include "gdbstub.h"
26 #include "host-utils.h"
28 //#define DEBUG_KVM
30 #ifdef DEBUG_KVM
31 #define dprintf(fmt, ...) \
32 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
33 #else
34 #define dprintf(fmt, ...) \
35 do { } while (0)
36 #endif
38 #ifdef KVM_CAP_EXT_CPUID
40 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
42 struct kvm_cpuid2 *cpuid;
43 int r, size;
45 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
46 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
47 cpuid->nent = max;
48 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
49 if (r == 0 && cpuid->nent >= max) {
50 r = -E2BIG;
52 if (r < 0) {
53 if (r == -E2BIG) {
54 qemu_free(cpuid);
55 return NULL;
56 } else {
57 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
58 strerror(-r));
59 exit(1);
62 return cpuid;
65 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
67 struct kvm_cpuid2 *cpuid;
68 int i, max;
69 uint32_t ret = 0;
70 uint32_t cpuid_1_edx;
72 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
73 return -1U;
76 max = 1;
77 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
78 max *= 2;
81 for (i = 0; i < cpuid->nent; ++i) {
82 if (cpuid->entries[i].function == function) {
83 switch (reg) {
84 case R_EAX:
85 ret = cpuid->entries[i].eax;
86 break;
87 case R_EBX:
88 ret = cpuid->entries[i].ebx;
89 break;
90 case R_ECX:
91 ret = cpuid->entries[i].ecx;
92 break;
93 case R_EDX:
94 ret = cpuid->entries[i].edx;
95 if (function == 0x80000001) {
96 /* On Intel, kvm returns cpuid according to the Intel spec,
97 * so add missing bits according to the AMD spec:
99 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX);
100 ret |= cpuid_1_edx & 0xdfeff7ff;
102 break;
107 qemu_free(cpuid);
109 return ret;
112 #else
114 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
116 return -1U;
119 #endif
121 static void kvm_trim_features(uint32_t *features, uint32_t supported)
123 int i;
124 uint32_t mask;
126 for (i = 0; i < 32; ++i) {
127 mask = 1U << i;
128 if ((*features & mask) && !(supported & mask)) {
129 *features &= ~mask;
134 int kvm_arch_init_vcpu(CPUState *env)
136 struct {
137 struct kvm_cpuid2 cpuid;
138 struct kvm_cpuid_entry2 entries[100];
139 } __attribute__((packed)) cpuid_data;
140 uint32_t limit, i, j, cpuid_i;
141 uint32_t unused;
143 env->mp_state = KVM_MP_STATE_RUNNABLE;
145 kvm_trim_features(&env->cpuid_features,
146 kvm_arch_get_supported_cpuid(env, 1, R_EDX));
148 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
149 kvm_trim_features(&env->cpuid_ext_features,
150 kvm_arch_get_supported_cpuid(env, 1, R_ECX));
151 env->cpuid_ext_features |= i;
153 kvm_trim_features(&env->cpuid_ext2_features,
154 kvm_arch_get_supported_cpuid(env, 0x80000001, R_EDX));
155 kvm_trim_features(&env->cpuid_ext3_features,
156 kvm_arch_get_supported_cpuid(env, 0x80000001, R_ECX));
158 cpuid_i = 0;
160 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
162 for (i = 0; i <= limit; i++) {
163 struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
165 switch (i) {
166 case 2: {
167 /* Keep reading function 2 till all the input is received */
168 int times;
170 c->function = i;
171 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
172 KVM_CPUID_FLAG_STATE_READ_NEXT;
173 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
174 times = c->eax & 0xff;
176 for (j = 1; j < times; ++j) {
177 c = &cpuid_data.entries[cpuid_i++];
178 c->function = i;
179 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
180 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
182 break;
184 case 4:
185 case 0xb:
186 case 0xd:
187 for (j = 0; ; j++) {
188 c->function = i;
189 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
190 c->index = j;
191 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
193 if (i == 4 && c->eax == 0)
194 break;
195 if (i == 0xb && !(c->ecx & 0xff00))
196 break;
197 if (i == 0xd && c->eax == 0)
198 break;
200 c = &cpuid_data.entries[cpuid_i++];
202 break;
203 default:
204 c->function = i;
205 c->flags = 0;
206 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
207 break;
210 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
212 for (i = 0x80000000; i <= limit; i++) {
213 struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
215 c->function = i;
216 c->flags = 0;
217 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
220 cpuid_data.cpuid.nent = cpuid_i;
222 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
225 void kvm_arch_reset_vcpu(CPUState *env)
227 env->interrupt_injected = -1;
228 env->nmi_injected = 0;
229 env->nmi_pending = 0;
232 static int kvm_has_msr_star(CPUState *env)
234 static int has_msr_star;
235 int ret;
237 /* first time */
238 if (has_msr_star == 0) {
239 struct kvm_msr_list msr_list, *kvm_msr_list;
241 has_msr_star = -1;
243 /* Obtain MSR list from KVM. These are the MSRs that we must
244 * save/restore */
245 msr_list.nmsrs = 0;
246 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
247 if (ret < 0 && ret != -E2BIG) {
248 return 0;
250 /* Old kernel modules had a bug and could write beyond the provided
251 memory. Allocate at least a safe amount of 1K. */
252 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
253 msr_list.nmsrs *
254 sizeof(msr_list.indices[0])));
256 kvm_msr_list->nmsrs = msr_list.nmsrs;
257 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
258 if (ret >= 0) {
259 int i;
261 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
262 if (kvm_msr_list->indices[i] == MSR_STAR) {
263 has_msr_star = 1;
264 break;
269 free(kvm_msr_list);
272 if (has_msr_star == 1)
273 return 1;
274 return 0;
277 int kvm_arch_init(KVMState *s, int smp_cpus)
279 int ret;
281 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
282 * directly. In order to use vm86 mode, a TSS is needed. Since this
283 * must be part of guest physical memory, we need to allocate it. Older
284 * versions of KVM just assumed that it would be at the end of physical
285 * memory but that doesn't work with more than 4GB of memory. We simply
286 * refuse to work with those older versions of KVM. */
287 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
288 if (ret <= 0) {
289 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
290 return ret;
293 /* this address is 3 pages before the bios, and the bios should present
294 * as unavaible memory. FIXME, need to ensure the e820 map deals with
295 * this?
297 return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
300 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
302 lhs->selector = rhs->selector;
303 lhs->base = rhs->base;
304 lhs->limit = rhs->limit;
305 lhs->type = 3;
306 lhs->present = 1;
307 lhs->dpl = 3;
308 lhs->db = 0;
309 lhs->s = 1;
310 lhs->l = 0;
311 lhs->g = 0;
312 lhs->avl = 0;
313 lhs->unusable = 0;
316 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
318 unsigned flags = rhs->flags;
319 lhs->selector = rhs->selector;
320 lhs->base = rhs->base;
321 lhs->limit = rhs->limit;
322 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
323 lhs->present = (flags & DESC_P_MASK) != 0;
324 lhs->dpl = rhs->selector & 3;
325 lhs->db = (flags >> DESC_B_SHIFT) & 1;
326 lhs->s = (flags & DESC_S_MASK) != 0;
327 lhs->l = (flags >> DESC_L_SHIFT) & 1;
328 lhs->g = (flags & DESC_G_MASK) != 0;
329 lhs->avl = (flags & DESC_AVL_MASK) != 0;
330 lhs->unusable = 0;
333 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
335 lhs->selector = rhs->selector;
336 lhs->base = rhs->base;
337 lhs->limit = rhs->limit;
338 lhs->flags =
339 (rhs->type << DESC_TYPE_SHIFT)
340 | (rhs->present * DESC_P_MASK)
341 | (rhs->dpl << DESC_DPL_SHIFT)
342 | (rhs->db << DESC_B_SHIFT)
343 | (rhs->s * DESC_S_MASK)
344 | (rhs->l << DESC_L_SHIFT)
345 | (rhs->g * DESC_G_MASK)
346 | (rhs->avl * DESC_AVL_MASK);
349 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
351 if (set)
352 *kvm_reg = *qemu_reg;
353 else
354 *qemu_reg = *kvm_reg;
357 static int kvm_getput_regs(CPUState *env, int set)
359 struct kvm_regs regs;
360 int ret = 0;
362 if (!set) {
363 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
364 if (ret < 0)
365 return ret;
368 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
369 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
370 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
371 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
372 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
373 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
374 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
375 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
376 #ifdef TARGET_X86_64
377 kvm_getput_reg(&regs.r8, &env->regs[8], set);
378 kvm_getput_reg(&regs.r9, &env->regs[9], set);
379 kvm_getput_reg(&regs.r10, &env->regs[10], set);
380 kvm_getput_reg(&regs.r11, &env->regs[11], set);
381 kvm_getput_reg(&regs.r12, &env->regs[12], set);
382 kvm_getput_reg(&regs.r13, &env->regs[13], set);
383 kvm_getput_reg(&regs.r14, &env->regs[14], set);
384 kvm_getput_reg(&regs.r15, &env->regs[15], set);
385 #endif
387 kvm_getput_reg(&regs.rflags, &env->eflags, set);
388 kvm_getput_reg(&regs.rip, &env->eip, set);
390 if (set)
391 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
393 return ret;
396 static int kvm_put_fpu(CPUState *env)
398 struct kvm_fpu fpu;
399 int i;
401 memset(&fpu, 0, sizeof fpu);
402 fpu.fsw = env->fpus & ~(7 << 11);
403 fpu.fsw |= (env->fpstt & 7) << 11;
404 fpu.fcw = env->fpuc;
405 for (i = 0; i < 8; ++i)
406 fpu.ftwx |= (!env->fptags[i]) << i;
407 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
408 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
409 fpu.mxcsr = env->mxcsr;
411 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
414 static int kvm_put_sregs(CPUState *env)
416 struct kvm_sregs sregs;
418 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
419 if (env->interrupt_injected >= 0) {
420 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
421 (uint64_t)1 << (env->interrupt_injected % 64);
424 if ((env->eflags & VM_MASK)) {
425 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
426 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
427 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
428 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
429 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
430 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
431 } else {
432 set_seg(&sregs.cs, &env->segs[R_CS]);
433 set_seg(&sregs.ds, &env->segs[R_DS]);
434 set_seg(&sregs.es, &env->segs[R_ES]);
435 set_seg(&sregs.fs, &env->segs[R_FS]);
436 set_seg(&sregs.gs, &env->segs[R_GS]);
437 set_seg(&sregs.ss, &env->segs[R_SS]);
439 if (env->cr[0] & CR0_PE_MASK) {
440 /* force ss cpl to cs cpl */
441 sregs.ss.selector = (sregs.ss.selector & ~3) |
442 (sregs.cs.selector & 3);
443 sregs.ss.dpl = sregs.ss.selector & 3;
447 set_seg(&sregs.tr, &env->tr);
448 set_seg(&sregs.ldt, &env->ldt);
450 sregs.idt.limit = env->idt.limit;
451 sregs.idt.base = env->idt.base;
452 sregs.gdt.limit = env->gdt.limit;
453 sregs.gdt.base = env->gdt.base;
455 sregs.cr0 = env->cr[0];
456 sregs.cr2 = env->cr[2];
457 sregs.cr3 = env->cr[3];
458 sregs.cr4 = env->cr[4];
460 sregs.cr8 = cpu_get_apic_tpr(env);
461 sregs.apic_base = cpu_get_apic_base(env);
463 sregs.efer = env->efer;
465 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
468 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
469 uint32_t index, uint64_t value)
471 entry->index = index;
472 entry->data = value;
475 static int kvm_put_msrs(CPUState *env)
477 struct {
478 struct kvm_msrs info;
479 struct kvm_msr_entry entries[100];
480 } msr_data;
481 struct kvm_msr_entry *msrs = msr_data.entries;
482 int n = 0;
484 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
485 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
486 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
487 if (kvm_has_msr_star(env))
488 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
489 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
490 #ifdef TARGET_X86_64
491 /* FIXME if lm capable */
492 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
493 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
494 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
495 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
496 #endif
497 msr_data.info.nmsrs = n;
499 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
504 static int kvm_get_fpu(CPUState *env)
506 struct kvm_fpu fpu;
507 int i, ret;
509 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
510 if (ret < 0)
511 return ret;
513 env->fpstt = (fpu.fsw >> 11) & 7;
514 env->fpus = fpu.fsw;
515 env->fpuc = fpu.fcw;
516 for (i = 0; i < 8; ++i)
517 env->fptags[i] = !((fpu.ftwx >> i) & 1);
518 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
519 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
520 env->mxcsr = fpu.mxcsr;
522 return 0;
525 static int kvm_get_sregs(CPUState *env)
527 struct kvm_sregs sregs;
528 uint32_t hflags;
529 int bit, i, ret;
531 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
532 if (ret < 0)
533 return ret;
535 /* There can only be one pending IRQ set in the bitmap at a time, so try
536 to find it and save its number instead (-1 for none). */
537 env->interrupt_injected = -1;
538 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
539 if (sregs.interrupt_bitmap[i]) {
540 bit = ctz64(sregs.interrupt_bitmap[i]);
541 env->interrupt_injected = i * 64 + bit;
542 break;
546 get_seg(&env->segs[R_CS], &sregs.cs);
547 get_seg(&env->segs[R_DS], &sregs.ds);
548 get_seg(&env->segs[R_ES], &sregs.es);
549 get_seg(&env->segs[R_FS], &sregs.fs);
550 get_seg(&env->segs[R_GS], &sregs.gs);
551 get_seg(&env->segs[R_SS], &sregs.ss);
553 get_seg(&env->tr, &sregs.tr);
554 get_seg(&env->ldt, &sregs.ldt);
556 env->idt.limit = sregs.idt.limit;
557 env->idt.base = sregs.idt.base;
558 env->gdt.limit = sregs.gdt.limit;
559 env->gdt.base = sregs.gdt.base;
561 env->cr[0] = sregs.cr0;
562 env->cr[2] = sregs.cr2;
563 env->cr[3] = sregs.cr3;
564 env->cr[4] = sregs.cr4;
566 cpu_set_apic_base(env, sregs.apic_base);
568 env->efer = sregs.efer;
569 //cpu_set_apic_tpr(env, sregs.cr8);
571 #define HFLAG_COPY_MASK ~( \
572 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
573 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
574 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
575 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
579 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
580 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
581 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
582 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
583 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
584 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
585 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
587 if (env->efer & MSR_EFER_LMA) {
588 hflags |= HF_LMA_MASK;
591 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
592 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
593 } else {
594 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
595 (DESC_B_SHIFT - HF_CS32_SHIFT);
596 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
597 (DESC_B_SHIFT - HF_SS32_SHIFT);
598 if (!(env->cr[0] & CR0_PE_MASK) ||
599 (env->eflags & VM_MASK) ||
600 !(hflags & HF_CS32_MASK)) {
601 hflags |= HF_ADDSEG_MASK;
602 } else {
603 hflags |= ((env->segs[R_DS].base |
604 env->segs[R_ES].base |
605 env->segs[R_SS].base) != 0) <<
606 HF_ADDSEG_SHIFT;
609 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
611 return 0;
614 static int kvm_get_msrs(CPUState *env)
616 struct {
617 struct kvm_msrs info;
618 struct kvm_msr_entry entries[100];
619 } msr_data;
620 struct kvm_msr_entry *msrs = msr_data.entries;
621 int ret, i, n;
623 n = 0;
624 msrs[n++].index = MSR_IA32_SYSENTER_CS;
625 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
626 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
627 if (kvm_has_msr_star(env))
628 msrs[n++].index = MSR_STAR;
629 msrs[n++].index = MSR_IA32_TSC;
630 #ifdef TARGET_X86_64
631 /* FIXME lm_capable_kernel */
632 msrs[n++].index = MSR_CSTAR;
633 msrs[n++].index = MSR_KERNELGSBASE;
634 msrs[n++].index = MSR_FMASK;
635 msrs[n++].index = MSR_LSTAR;
636 #endif
637 msr_data.info.nmsrs = n;
638 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
639 if (ret < 0)
640 return ret;
642 for (i = 0; i < ret; i++) {
643 switch (msrs[i].index) {
644 case MSR_IA32_SYSENTER_CS:
645 env->sysenter_cs = msrs[i].data;
646 break;
647 case MSR_IA32_SYSENTER_ESP:
648 env->sysenter_esp = msrs[i].data;
649 break;
650 case MSR_IA32_SYSENTER_EIP:
651 env->sysenter_eip = msrs[i].data;
652 break;
653 case MSR_STAR:
654 env->star = msrs[i].data;
655 break;
656 #ifdef TARGET_X86_64
657 case MSR_CSTAR:
658 env->cstar = msrs[i].data;
659 break;
660 case MSR_KERNELGSBASE:
661 env->kernelgsbase = msrs[i].data;
662 break;
663 case MSR_FMASK:
664 env->fmask = msrs[i].data;
665 break;
666 case MSR_LSTAR:
667 env->lstar = msrs[i].data;
668 break;
669 #endif
670 case MSR_IA32_TSC:
671 env->tsc = msrs[i].data;
672 break;
676 return 0;
679 static int kvm_put_mp_state(CPUState *env)
681 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
683 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
686 static int kvm_get_mp_state(CPUState *env)
688 struct kvm_mp_state mp_state;
689 int ret;
691 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
692 if (ret < 0) {
693 return ret;
695 env->mp_state = mp_state.mp_state;
696 return 0;
699 static int kvm_put_vcpu_events(CPUState *env)
701 #ifdef KVM_CAP_VCPU_EVENTS
702 struct kvm_vcpu_events events;
704 if (!kvm_has_vcpu_events()) {
705 return 0;
708 events.exception.injected = (env->exception_index >= 0);
709 events.exception.nr = env->exception_index;
710 events.exception.has_error_code = env->has_error_code;
711 events.exception.error_code = env->error_code;
713 events.interrupt.injected = (env->interrupt_injected >= 0);
714 events.interrupt.nr = env->interrupt_injected;
715 events.interrupt.soft = env->soft_interrupt;
717 events.nmi.injected = env->nmi_injected;
718 events.nmi.pending = env->nmi_pending;
719 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
721 events.sipi_vector = env->sipi_vector;
723 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
724 #else
725 return 0;
726 #endif
729 static int kvm_get_vcpu_events(CPUState *env)
731 #ifdef KVM_CAP_VCPU_EVENTS
732 struct kvm_vcpu_events events;
733 int ret;
735 if (!kvm_has_vcpu_events()) {
736 return 0;
739 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
740 if (ret < 0) {
741 return ret;
743 env->exception_index =
744 events.exception.injected ? events.exception.nr : -1;
745 env->has_error_code = events.exception.has_error_code;
746 env->error_code = events.exception.error_code;
748 env->interrupt_injected =
749 events.interrupt.injected ? events.interrupt.nr : -1;
750 env->soft_interrupt = events.interrupt.soft;
752 env->nmi_injected = events.nmi.injected;
753 env->nmi_pending = events.nmi.pending;
754 if (events.nmi.masked) {
755 env->hflags2 |= HF2_NMI_MASK;
756 } else {
757 env->hflags2 &= ~HF2_NMI_MASK;
760 env->sipi_vector = events.sipi_vector;
761 #endif
763 return 0;
766 int kvm_arch_put_registers(CPUState *env)
768 int ret;
770 ret = kvm_getput_regs(env, 1);
771 if (ret < 0)
772 return ret;
774 ret = kvm_put_fpu(env);
775 if (ret < 0)
776 return ret;
778 ret = kvm_put_sregs(env);
779 if (ret < 0)
780 return ret;
782 ret = kvm_put_msrs(env);
783 if (ret < 0)
784 return ret;
786 ret = kvm_put_mp_state(env);
787 if (ret < 0)
788 return ret;
790 ret = kvm_put_vcpu_events(env);
791 if (ret < 0)
792 return ret;
794 return 0;
797 int kvm_arch_get_registers(CPUState *env)
799 int ret;
801 ret = kvm_getput_regs(env, 0);
802 if (ret < 0)
803 return ret;
805 ret = kvm_get_fpu(env);
806 if (ret < 0)
807 return ret;
809 ret = kvm_get_sregs(env);
810 if (ret < 0)
811 return ret;
813 ret = kvm_get_msrs(env);
814 if (ret < 0)
815 return ret;
817 ret = kvm_get_mp_state(env);
818 if (ret < 0)
819 return ret;
821 ret = kvm_get_vcpu_events(env);
822 if (ret < 0)
823 return ret;
825 return 0;
828 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
830 /* Try to inject an interrupt if the guest can accept it */
831 if (run->ready_for_interrupt_injection &&
832 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
833 (env->eflags & IF_MASK)) {
834 int irq;
836 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
837 irq = cpu_get_pic_interrupt(env);
838 if (irq >= 0) {
839 struct kvm_interrupt intr;
840 intr.irq = irq;
841 /* FIXME: errors */
842 dprintf("injected interrupt %d\n", irq);
843 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
847 /* If we have an interrupt but the guest is not ready to receive an
848 * interrupt, request an interrupt window exit. This will
849 * cause a return to userspace as soon as the guest is ready to
850 * receive interrupts. */
851 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
852 run->request_interrupt_window = 1;
853 else
854 run->request_interrupt_window = 0;
856 dprintf("setting tpr\n");
857 run->cr8 = cpu_get_apic_tpr(env);
859 return 0;
862 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
864 if (run->if_flag)
865 env->eflags |= IF_MASK;
866 else
867 env->eflags &= ~IF_MASK;
869 cpu_set_apic_tpr(env, run->cr8);
870 cpu_set_apic_base(env, run->apic_base);
872 return 0;
875 static int kvm_handle_halt(CPUState *env)
877 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
878 (env->eflags & IF_MASK)) &&
879 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
880 env->halted = 1;
881 env->exception_index = EXCP_HLT;
882 return 0;
885 return 1;
888 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
890 int ret = 0;
892 switch (run->exit_reason) {
893 case KVM_EXIT_HLT:
894 dprintf("handle_hlt\n");
895 ret = kvm_handle_halt(env);
896 break;
899 return ret;
902 #ifdef KVM_CAP_SET_GUEST_DEBUG
903 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
905 static const uint8_t int3 = 0xcc;
907 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
908 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
909 return -EINVAL;
910 return 0;
913 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
915 uint8_t int3;
917 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
918 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
919 return -EINVAL;
920 return 0;
923 static struct {
924 target_ulong addr;
925 int len;
926 int type;
927 } hw_breakpoint[4];
929 static int nb_hw_breakpoint;
931 static int find_hw_breakpoint(target_ulong addr, int len, int type)
933 int n;
935 for (n = 0; n < nb_hw_breakpoint; n++)
936 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
937 (hw_breakpoint[n].len == len || len == -1))
938 return n;
939 return -1;
942 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
943 target_ulong len, int type)
945 switch (type) {
946 case GDB_BREAKPOINT_HW:
947 len = 1;
948 break;
949 case GDB_WATCHPOINT_WRITE:
950 case GDB_WATCHPOINT_ACCESS:
951 switch (len) {
952 case 1:
953 break;
954 case 2:
955 case 4:
956 case 8:
957 if (addr & (len - 1))
958 return -EINVAL;
959 break;
960 default:
961 return -EINVAL;
963 break;
964 default:
965 return -ENOSYS;
968 if (nb_hw_breakpoint == 4)
969 return -ENOBUFS;
971 if (find_hw_breakpoint(addr, len, type) >= 0)
972 return -EEXIST;
974 hw_breakpoint[nb_hw_breakpoint].addr = addr;
975 hw_breakpoint[nb_hw_breakpoint].len = len;
976 hw_breakpoint[nb_hw_breakpoint].type = type;
977 nb_hw_breakpoint++;
979 return 0;
982 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
983 target_ulong len, int type)
985 int n;
987 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
988 if (n < 0)
989 return -ENOENT;
991 nb_hw_breakpoint--;
992 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
994 return 0;
997 void kvm_arch_remove_all_hw_breakpoints(void)
999 nb_hw_breakpoint = 0;
1002 static CPUWatchpoint hw_watchpoint;
1004 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1006 int handle = 0;
1007 int n;
1009 if (arch_info->exception == 1) {
1010 if (arch_info->dr6 & (1 << 14)) {
1011 if (cpu_single_env->singlestep_enabled)
1012 handle = 1;
1013 } else {
1014 for (n = 0; n < 4; n++)
1015 if (arch_info->dr6 & (1 << n))
1016 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1017 case 0x0:
1018 handle = 1;
1019 break;
1020 case 0x1:
1021 handle = 1;
1022 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1023 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1024 hw_watchpoint.flags = BP_MEM_WRITE;
1025 break;
1026 case 0x3:
1027 handle = 1;
1028 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1029 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1030 hw_watchpoint.flags = BP_MEM_ACCESS;
1031 break;
1034 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1035 handle = 1;
1037 if (!handle)
1038 kvm_update_guest_debug(cpu_single_env,
1039 (arch_info->exception == 1) ?
1040 KVM_GUESTDBG_INJECT_DB : KVM_GUESTDBG_INJECT_BP);
1042 return handle;
1045 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1047 const uint8_t type_code[] = {
1048 [GDB_BREAKPOINT_HW] = 0x0,
1049 [GDB_WATCHPOINT_WRITE] = 0x1,
1050 [GDB_WATCHPOINT_ACCESS] = 0x3
1052 const uint8_t len_code[] = {
1053 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1055 int n;
1057 if (kvm_sw_breakpoints_active(env))
1058 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1060 if (nb_hw_breakpoint > 0) {
1061 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1062 dbg->arch.debugreg[7] = 0x0600;
1063 for (n = 0; n < nb_hw_breakpoint; n++) {
1064 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1065 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1066 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1067 (len_code[hw_breakpoint[n].len] << (18 + n*4));
1071 #endif /* KVM_CAP_SET_GUEST_DEBUG */