qdev: convert tcx to reset + vmsd
[qemu.git] / vl.c
blob215132a552e46b76b5105346c8262d14862450a0
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <unistd.h>
25 #include <fcntl.h>
26 #include <signal.h>
27 #include <time.h>
28 #include <errno.h>
29 #include <sys/time.h>
30 #include <zlib.h>
32 /* Needed early for CONFIG_BSD etc. */
33 #include "config-host.h"
34 /* Needed early to override system queue definitions on BSD */
35 #include "sys-queue.h"
37 #ifndef _WIN32
38 #include <libgen.h>
39 #include <pwd.h>
40 #include <sys/times.h>
41 #include <sys/wait.h>
42 #include <termios.h>
43 #include <sys/mman.h>
44 #include <sys/ioctl.h>
45 #include <sys/resource.h>
46 #include <sys/socket.h>
47 #include <netinet/in.h>
48 #include <net/if.h>
49 #if defined(__NetBSD__)
50 #include <net/if_tap.h>
51 #endif
52 #ifdef __linux__
53 #include <linux/if_tun.h>
54 #endif
55 #include <arpa/inet.h>
56 #include <dirent.h>
57 #include <netdb.h>
58 #include <sys/select.h>
59 #ifdef CONFIG_BSD
60 #include <sys/stat.h>
61 #if defined(__FreeBSD__) || defined(__DragonFly__)
62 #include <libutil.h>
63 #else
64 #include <util.h>
65 #endif
66 #elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
67 #include <freebsd/stdlib.h>
68 #else
69 #ifdef __linux__
70 #include <pty.h>
71 #include <malloc.h>
72 #include <linux/rtc.h>
73 #include <sys/prctl.h>
75 /* For the benefit of older linux systems which don't supply it,
76 we use a local copy of hpet.h. */
77 /* #include <linux/hpet.h> */
78 #include "hpet.h"
80 #include <linux/ppdev.h>
81 #include <linux/parport.h>
82 #endif
83 #ifdef __sun__
84 #include <sys/stat.h>
85 #include <sys/ethernet.h>
86 #include <sys/sockio.h>
87 #include <netinet/arp.h>
88 #include <netinet/in.h>
89 #include <netinet/in_systm.h>
90 #include <netinet/ip.h>
91 #include <netinet/ip_icmp.h> // must come after ip.h
92 #include <netinet/udp.h>
93 #include <netinet/tcp.h>
94 #include <net/if.h>
95 #include <syslog.h>
96 #include <stropts.h>
97 #endif
98 #endif
99 #endif
101 #if defined(__OpenBSD__)
102 #include <util.h>
103 #endif
105 #if defined(CONFIG_VDE)
106 #include <libvdeplug.h>
107 #endif
109 #ifdef _WIN32
110 #include <windows.h>
111 #include <mmsystem.h>
112 #endif
114 #ifdef CONFIG_SDL
115 #if defined(__APPLE__) || defined(main)
116 #include <SDL.h>
117 int qemu_main(int argc, char **argv, char **envp);
118 int main(int argc, char **argv)
120 return qemu_main(argc, argv, NULL);
122 #undef main
123 #define main qemu_main
124 #endif
125 #endif /* CONFIG_SDL */
127 #ifdef CONFIG_COCOA
128 #undef main
129 #define main qemu_main
130 #endif /* CONFIG_COCOA */
132 #include "hw/hw.h"
133 #include "hw/boards.h"
134 #include "hw/usb.h"
135 #include "hw/pcmcia.h"
136 #include "hw/pc.h"
137 #include "hw/audiodev.h"
138 #include "hw/isa.h"
139 #include "hw/baum.h"
140 #include "hw/bt.h"
141 #include "hw/watchdog.h"
142 #include "hw/smbios.h"
143 #include "hw/xen.h"
144 #include "hw/qdev.h"
145 #include "bt-host.h"
146 #include "net.h"
147 #include "monitor.h"
148 #include "console.h"
149 #include "sysemu.h"
150 #include "gdbstub.h"
151 #include "qemu-timer.h"
152 #include "qemu-char.h"
153 #include "cache-utils.h"
154 #include "block.h"
155 #include "dma.h"
156 #include "audio/audio.h"
157 #include "migration.h"
158 #include "kvm.h"
159 #include "balloon.h"
160 #include "qemu-option.h"
161 #include "qemu-config.h"
163 #include "disas.h"
165 #include "exec-all.h"
167 #include "qemu_socket.h"
169 #include "slirp/libslirp.h"
171 //#define DEBUG_NET
172 //#define DEBUG_SLIRP
174 #define DEFAULT_RAM_SIZE 128
176 /* Maximum number of monitor devices */
177 #define MAX_MONITOR_DEVICES 10
179 static const char *data_dir;
180 const char *bios_name = NULL;
181 /* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
182 to store the VM snapshots */
183 struct drivelist drives = TAILQ_HEAD_INITIALIZER(drives);
184 struct driveoptlist driveopts = TAILQ_HEAD_INITIALIZER(driveopts);
185 enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
186 static DisplayState *display_state;
187 DisplayType display_type = DT_DEFAULT;
188 const char* keyboard_layout = NULL;
189 int64_t ticks_per_sec;
190 ram_addr_t ram_size;
191 int nb_nics;
192 NICInfo nd_table[MAX_NICS];
193 int vm_running;
194 int autostart;
195 static int rtc_utc = 1;
196 static int rtc_date_offset = -1; /* -1 means no change */
197 int vga_interface_type = VGA_CIRRUS;
198 #ifdef TARGET_SPARC
199 int graphic_width = 1024;
200 int graphic_height = 768;
201 int graphic_depth = 8;
202 #else
203 int graphic_width = 800;
204 int graphic_height = 600;
205 int graphic_depth = 15;
206 #endif
207 static int full_screen = 0;
208 #ifdef CONFIG_SDL
209 static int no_frame = 0;
210 #endif
211 int no_quit = 0;
212 CharDriverState *serial_hds[MAX_SERIAL_PORTS];
213 CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
214 CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
215 #ifdef TARGET_I386
216 int win2k_install_hack = 0;
217 int rtc_td_hack = 0;
218 #endif
219 int usb_enabled = 0;
220 int singlestep = 0;
221 int smp_cpus = 1;
222 int max_cpus = 0;
223 int smp_cores = 1;
224 int smp_threads = 1;
225 const char *vnc_display;
226 int acpi_enabled = 1;
227 int no_hpet = 0;
228 int fd_bootchk = 1;
229 int no_reboot = 0;
230 int no_shutdown = 0;
231 int cursor_hide = 1;
232 int graphic_rotate = 0;
233 uint8_t irq0override = 1;
234 #ifndef _WIN32
235 int daemonize = 0;
236 #endif
237 const char *watchdog;
238 const char *option_rom[MAX_OPTION_ROMS];
239 int nb_option_roms;
240 int semihosting_enabled = 0;
241 #ifdef TARGET_ARM
242 int old_param = 0;
243 #endif
244 const char *qemu_name;
245 int alt_grab = 0;
246 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
247 unsigned int nb_prom_envs = 0;
248 const char *prom_envs[MAX_PROM_ENVS];
249 #endif
250 int boot_menu;
252 int nb_numa_nodes;
253 uint64_t node_mem[MAX_NODES];
254 uint64_t node_cpumask[MAX_NODES];
256 static CPUState *cur_cpu;
257 static CPUState *next_cpu;
258 static int timer_alarm_pending = 1;
259 /* Conversion factor from emulated instructions to virtual clock ticks. */
260 static int icount_time_shift;
261 /* Arbitrarily pick 1MIPS as the minimum allowable speed. */
262 #define MAX_ICOUNT_SHIFT 10
263 /* Compensate for varying guest execution speed. */
264 static int64_t qemu_icount_bias;
265 static QEMUTimer *icount_rt_timer;
266 static QEMUTimer *icount_vm_timer;
267 static QEMUTimer *nographic_timer;
269 uint8_t qemu_uuid[16];
271 static QEMUBootSetHandler *boot_set_handler;
272 static void *boot_set_opaque;
274 /***********************************************************/
275 /* x86 ISA bus support */
277 target_phys_addr_t isa_mem_base = 0;
278 PicState2 *isa_pic;
280 /***********************************************************/
281 void hw_error(const char *fmt, ...)
283 va_list ap;
284 CPUState *env;
286 va_start(ap, fmt);
287 fprintf(stderr, "qemu: hardware error: ");
288 vfprintf(stderr, fmt, ap);
289 fprintf(stderr, "\n");
290 for(env = first_cpu; env != NULL; env = env->next_cpu) {
291 fprintf(stderr, "CPU #%d:\n", env->cpu_index);
292 #ifdef TARGET_I386
293 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
294 #else
295 cpu_dump_state(env, stderr, fprintf, 0);
296 #endif
298 va_end(ap);
299 abort();
302 static void set_proc_name(const char *s)
304 #if defined(__linux__) && defined(PR_SET_NAME)
305 char name[16];
306 if (!s)
307 return;
308 name[sizeof(name) - 1] = 0;
309 strncpy(name, s, sizeof(name));
310 /* Could rewrite argv[0] too, but that's a bit more complicated.
311 This simple way is enough for `top'. */
312 prctl(PR_SET_NAME, name);
313 #endif
316 /***************/
317 /* ballooning */
319 static QEMUBalloonEvent *qemu_balloon_event;
320 void *qemu_balloon_event_opaque;
322 void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
324 qemu_balloon_event = func;
325 qemu_balloon_event_opaque = opaque;
328 void qemu_balloon(ram_addr_t target)
330 if (qemu_balloon_event)
331 qemu_balloon_event(qemu_balloon_event_opaque, target);
334 ram_addr_t qemu_balloon_status(void)
336 if (qemu_balloon_event)
337 return qemu_balloon_event(qemu_balloon_event_opaque, 0);
338 return 0;
341 /***********************************************************/
342 /* keyboard/mouse */
344 static QEMUPutKBDEvent *qemu_put_kbd_event;
345 static void *qemu_put_kbd_event_opaque;
346 static QEMUPutMouseEntry *qemu_put_mouse_event_head;
347 static QEMUPutMouseEntry *qemu_put_mouse_event_current;
349 void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
351 qemu_put_kbd_event_opaque = opaque;
352 qemu_put_kbd_event = func;
355 QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
356 void *opaque, int absolute,
357 const char *name)
359 QEMUPutMouseEntry *s, *cursor;
361 s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
363 s->qemu_put_mouse_event = func;
364 s->qemu_put_mouse_event_opaque = opaque;
365 s->qemu_put_mouse_event_absolute = absolute;
366 s->qemu_put_mouse_event_name = qemu_strdup(name);
367 s->next = NULL;
369 if (!qemu_put_mouse_event_head) {
370 qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
371 return s;
374 cursor = qemu_put_mouse_event_head;
375 while (cursor->next != NULL)
376 cursor = cursor->next;
378 cursor->next = s;
379 qemu_put_mouse_event_current = s;
381 return s;
384 void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
386 QEMUPutMouseEntry *prev = NULL, *cursor;
388 if (!qemu_put_mouse_event_head || entry == NULL)
389 return;
391 cursor = qemu_put_mouse_event_head;
392 while (cursor != NULL && cursor != entry) {
393 prev = cursor;
394 cursor = cursor->next;
397 if (cursor == NULL) // does not exist or list empty
398 return;
399 else if (prev == NULL) { // entry is head
400 qemu_put_mouse_event_head = cursor->next;
401 if (qemu_put_mouse_event_current == entry)
402 qemu_put_mouse_event_current = cursor->next;
403 qemu_free(entry->qemu_put_mouse_event_name);
404 qemu_free(entry);
405 return;
408 prev->next = entry->next;
410 if (qemu_put_mouse_event_current == entry)
411 qemu_put_mouse_event_current = prev;
413 qemu_free(entry->qemu_put_mouse_event_name);
414 qemu_free(entry);
417 void kbd_put_keycode(int keycode)
419 if (qemu_put_kbd_event) {
420 qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
424 void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
426 QEMUPutMouseEvent *mouse_event;
427 void *mouse_event_opaque;
428 int width;
430 if (!qemu_put_mouse_event_current) {
431 return;
434 mouse_event =
435 qemu_put_mouse_event_current->qemu_put_mouse_event;
436 mouse_event_opaque =
437 qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
439 if (mouse_event) {
440 if (graphic_rotate) {
441 if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
442 width = 0x7fff;
443 else
444 width = graphic_width - 1;
445 mouse_event(mouse_event_opaque,
446 width - dy, dx, dz, buttons_state);
447 } else
448 mouse_event(mouse_event_opaque,
449 dx, dy, dz, buttons_state);
453 int kbd_mouse_is_absolute(void)
455 if (!qemu_put_mouse_event_current)
456 return 0;
458 return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
461 void do_info_mice(Monitor *mon)
463 QEMUPutMouseEntry *cursor;
464 int index = 0;
466 if (!qemu_put_mouse_event_head) {
467 monitor_printf(mon, "No mouse devices connected\n");
468 return;
471 monitor_printf(mon, "Mouse devices available:\n");
472 cursor = qemu_put_mouse_event_head;
473 while (cursor != NULL) {
474 monitor_printf(mon, "%c Mouse #%d: %s\n",
475 (cursor == qemu_put_mouse_event_current ? '*' : ' '),
476 index, cursor->qemu_put_mouse_event_name);
477 index++;
478 cursor = cursor->next;
482 void do_mouse_set(Monitor *mon, const QDict *qdict)
484 QEMUPutMouseEntry *cursor;
485 int i = 0;
486 int index = qdict_get_int(qdict, "index");
488 if (!qemu_put_mouse_event_head) {
489 monitor_printf(mon, "No mouse devices connected\n");
490 return;
493 cursor = qemu_put_mouse_event_head;
494 while (cursor != NULL && index != i) {
495 i++;
496 cursor = cursor->next;
499 if (cursor != NULL)
500 qemu_put_mouse_event_current = cursor;
501 else
502 monitor_printf(mon, "Mouse at given index not found\n");
505 /* compute with 96 bit intermediate result: (a*b)/c */
506 uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
508 union {
509 uint64_t ll;
510 struct {
511 #ifdef HOST_WORDS_BIGENDIAN
512 uint32_t high, low;
513 #else
514 uint32_t low, high;
515 #endif
516 } l;
517 } u, res;
518 uint64_t rl, rh;
520 u.ll = a;
521 rl = (uint64_t)u.l.low * (uint64_t)b;
522 rh = (uint64_t)u.l.high * (uint64_t)b;
523 rh += (rl >> 32);
524 res.l.high = rh / c;
525 res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
526 return res.ll;
529 /***********************************************************/
530 /* real time host monotonic timer */
532 #define QEMU_TIMER_BASE 1000000000LL
534 #ifdef WIN32
536 static int64_t clock_freq;
538 static void init_get_clock(void)
540 LARGE_INTEGER freq;
541 int ret;
542 ret = QueryPerformanceFrequency(&freq);
543 if (ret == 0) {
544 fprintf(stderr, "Could not calibrate ticks\n");
545 exit(1);
547 clock_freq = freq.QuadPart;
550 static int64_t get_clock(void)
552 LARGE_INTEGER ti;
553 QueryPerformanceCounter(&ti);
554 return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
557 #else
559 static int use_rt_clock;
561 static void init_get_clock(void)
563 use_rt_clock = 0;
564 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
565 || defined(__DragonFly__)
567 struct timespec ts;
568 if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
569 use_rt_clock = 1;
572 #endif
575 static int64_t get_clock(void)
577 #if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000) \
578 || defined(__DragonFly__)
579 if (use_rt_clock) {
580 struct timespec ts;
581 clock_gettime(CLOCK_MONOTONIC, &ts);
582 return ts.tv_sec * 1000000000LL + ts.tv_nsec;
583 } else
584 #endif
586 /* XXX: using gettimeofday leads to problems if the date
587 changes, so it should be avoided. */
588 struct timeval tv;
589 gettimeofday(&tv, NULL);
590 return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
593 #endif
595 /* Return the virtual CPU time, based on the instruction counter. */
596 static int64_t cpu_get_icount(void)
598 int64_t icount;
599 CPUState *env = cpu_single_env;;
600 icount = qemu_icount;
601 if (env) {
602 if (!can_do_io(env))
603 fprintf(stderr, "Bad clock read\n");
604 icount -= (env->icount_decr.u16.low + env->icount_extra);
606 return qemu_icount_bias + (icount << icount_time_shift);
609 /***********************************************************/
610 /* guest cycle counter */
612 static int64_t cpu_ticks_prev;
613 static int64_t cpu_ticks_offset;
614 static int64_t cpu_clock_offset;
615 static int cpu_ticks_enabled;
617 /* return the host CPU cycle counter and handle stop/restart */
618 int64_t cpu_get_ticks(void)
620 if (use_icount) {
621 return cpu_get_icount();
623 if (!cpu_ticks_enabled) {
624 return cpu_ticks_offset;
625 } else {
626 int64_t ticks;
627 ticks = cpu_get_real_ticks();
628 if (cpu_ticks_prev > ticks) {
629 /* Note: non increasing ticks may happen if the host uses
630 software suspend */
631 cpu_ticks_offset += cpu_ticks_prev - ticks;
633 cpu_ticks_prev = ticks;
634 return ticks + cpu_ticks_offset;
638 /* return the host CPU monotonic timer and handle stop/restart */
639 static int64_t cpu_get_clock(void)
641 int64_t ti;
642 if (!cpu_ticks_enabled) {
643 return cpu_clock_offset;
644 } else {
645 ti = get_clock();
646 return ti + cpu_clock_offset;
650 /* enable cpu_get_ticks() */
651 void cpu_enable_ticks(void)
653 if (!cpu_ticks_enabled) {
654 cpu_ticks_offset -= cpu_get_real_ticks();
655 cpu_clock_offset -= get_clock();
656 cpu_ticks_enabled = 1;
660 /* disable cpu_get_ticks() : the clock is stopped. You must not call
661 cpu_get_ticks() after that. */
662 void cpu_disable_ticks(void)
664 if (cpu_ticks_enabled) {
665 cpu_ticks_offset = cpu_get_ticks();
666 cpu_clock_offset = cpu_get_clock();
667 cpu_ticks_enabled = 0;
671 /***********************************************************/
672 /* timers */
674 #define QEMU_TIMER_REALTIME 0
675 #define QEMU_TIMER_VIRTUAL 1
677 struct QEMUClock {
678 int type;
679 /* XXX: add frequency */
682 struct QEMUTimer {
683 QEMUClock *clock;
684 int64_t expire_time;
685 QEMUTimerCB *cb;
686 void *opaque;
687 struct QEMUTimer *next;
690 struct qemu_alarm_timer {
691 char const *name;
692 unsigned int flags;
694 int (*start)(struct qemu_alarm_timer *t);
695 void (*stop)(struct qemu_alarm_timer *t);
696 void (*rearm)(struct qemu_alarm_timer *t);
697 void *priv;
700 #define ALARM_FLAG_DYNTICKS 0x1
701 #define ALARM_FLAG_EXPIRED 0x2
703 static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
705 return t && (t->flags & ALARM_FLAG_DYNTICKS);
708 static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
710 if (!alarm_has_dynticks(t))
711 return;
713 t->rearm(t);
716 /* TODO: MIN_TIMER_REARM_US should be optimized */
717 #define MIN_TIMER_REARM_US 250
719 static struct qemu_alarm_timer *alarm_timer;
721 #ifdef _WIN32
723 struct qemu_alarm_win32 {
724 MMRESULT timerId;
725 unsigned int period;
726 } alarm_win32_data = {0, -1};
728 static int win32_start_timer(struct qemu_alarm_timer *t);
729 static void win32_stop_timer(struct qemu_alarm_timer *t);
730 static void win32_rearm_timer(struct qemu_alarm_timer *t);
732 #else
734 static int unix_start_timer(struct qemu_alarm_timer *t);
735 static void unix_stop_timer(struct qemu_alarm_timer *t);
737 #ifdef __linux__
739 static int dynticks_start_timer(struct qemu_alarm_timer *t);
740 static void dynticks_stop_timer(struct qemu_alarm_timer *t);
741 static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
743 static int hpet_start_timer(struct qemu_alarm_timer *t);
744 static void hpet_stop_timer(struct qemu_alarm_timer *t);
746 static int rtc_start_timer(struct qemu_alarm_timer *t);
747 static void rtc_stop_timer(struct qemu_alarm_timer *t);
749 #endif /* __linux__ */
751 #endif /* _WIN32 */
753 /* Correlation between real and virtual time is always going to be
754 fairly approximate, so ignore small variation.
755 When the guest is idle real and virtual time will be aligned in
756 the IO wait loop. */
757 #define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
759 static void icount_adjust(void)
761 int64_t cur_time;
762 int64_t cur_icount;
763 int64_t delta;
764 static int64_t last_delta;
765 /* If the VM is not running, then do nothing. */
766 if (!vm_running)
767 return;
769 cur_time = cpu_get_clock();
770 cur_icount = qemu_get_clock(vm_clock);
771 delta = cur_icount - cur_time;
772 /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
773 if (delta > 0
774 && last_delta + ICOUNT_WOBBLE < delta * 2
775 && icount_time_shift > 0) {
776 /* The guest is getting too far ahead. Slow time down. */
777 icount_time_shift--;
779 if (delta < 0
780 && last_delta - ICOUNT_WOBBLE > delta * 2
781 && icount_time_shift < MAX_ICOUNT_SHIFT) {
782 /* The guest is getting too far behind. Speed time up. */
783 icount_time_shift++;
785 last_delta = delta;
786 qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
789 static void icount_adjust_rt(void * opaque)
791 qemu_mod_timer(icount_rt_timer,
792 qemu_get_clock(rt_clock) + 1000);
793 icount_adjust();
796 static void icount_adjust_vm(void * opaque)
798 qemu_mod_timer(icount_vm_timer,
799 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
800 icount_adjust();
803 static void init_icount_adjust(void)
805 /* Have both realtime and virtual time triggers for speed adjustment.
806 The realtime trigger catches emulated time passing too slowly,
807 the virtual time trigger catches emulated time passing too fast.
808 Realtime triggers occur even when idle, so use them less frequently
809 than VM triggers. */
810 icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
811 qemu_mod_timer(icount_rt_timer,
812 qemu_get_clock(rt_clock) + 1000);
813 icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
814 qemu_mod_timer(icount_vm_timer,
815 qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
818 static struct qemu_alarm_timer alarm_timers[] = {
819 #ifndef _WIN32
820 #ifdef __linux__
821 {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
822 dynticks_stop_timer, dynticks_rearm_timer, NULL},
823 /* HPET - if available - is preferred */
824 {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
825 /* ...otherwise try RTC */
826 {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
827 #endif
828 {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
829 #else
830 {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
831 win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
832 {"win32", 0, win32_start_timer,
833 win32_stop_timer, NULL, &alarm_win32_data},
834 #endif
835 {NULL, }
838 static void show_available_alarms(void)
840 int i;
842 printf("Available alarm timers, in order of precedence:\n");
843 for (i = 0; alarm_timers[i].name; i++)
844 printf("%s\n", alarm_timers[i].name);
847 static void configure_alarms(char const *opt)
849 int i;
850 int cur = 0;
851 int count = ARRAY_SIZE(alarm_timers) - 1;
852 char *arg;
853 char *name;
854 struct qemu_alarm_timer tmp;
856 if (!strcmp(opt, "?")) {
857 show_available_alarms();
858 exit(0);
861 arg = strdup(opt);
863 /* Reorder the array */
864 name = strtok(arg, ",");
865 while (name) {
866 for (i = 0; i < count && alarm_timers[i].name; i++) {
867 if (!strcmp(alarm_timers[i].name, name))
868 break;
871 if (i == count) {
872 fprintf(stderr, "Unknown clock %s\n", name);
873 goto next;
876 if (i < cur)
877 /* Ignore */
878 goto next;
880 /* Swap */
881 tmp = alarm_timers[i];
882 alarm_timers[i] = alarm_timers[cur];
883 alarm_timers[cur] = tmp;
885 cur++;
886 next:
887 name = strtok(NULL, ",");
890 free(arg);
892 if (cur) {
893 /* Disable remaining timers */
894 for (i = cur; i < count; i++)
895 alarm_timers[i].name = NULL;
896 } else {
897 show_available_alarms();
898 exit(1);
902 QEMUClock *rt_clock;
903 QEMUClock *vm_clock;
905 static QEMUTimer *active_timers[2];
907 static QEMUClock *qemu_new_clock(int type)
909 QEMUClock *clock;
910 clock = qemu_mallocz(sizeof(QEMUClock));
911 clock->type = type;
912 return clock;
915 QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
917 QEMUTimer *ts;
919 ts = qemu_mallocz(sizeof(QEMUTimer));
920 ts->clock = clock;
921 ts->cb = cb;
922 ts->opaque = opaque;
923 return ts;
926 void qemu_free_timer(QEMUTimer *ts)
928 qemu_free(ts);
931 /* stop a timer, but do not dealloc it */
932 void qemu_del_timer(QEMUTimer *ts)
934 QEMUTimer **pt, *t;
936 /* NOTE: this code must be signal safe because
937 qemu_timer_expired() can be called from a signal. */
938 pt = &active_timers[ts->clock->type];
939 for(;;) {
940 t = *pt;
941 if (!t)
942 break;
943 if (t == ts) {
944 *pt = t->next;
945 break;
947 pt = &t->next;
951 /* modify the current timer so that it will be fired when current_time
952 >= expire_time. The corresponding callback will be called. */
953 void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
955 QEMUTimer **pt, *t;
957 qemu_del_timer(ts);
959 /* add the timer in the sorted list */
960 /* NOTE: this code must be signal safe because
961 qemu_timer_expired() can be called from a signal. */
962 pt = &active_timers[ts->clock->type];
963 for(;;) {
964 t = *pt;
965 if (!t)
966 break;
967 if (t->expire_time > expire_time)
968 break;
969 pt = &t->next;
971 ts->expire_time = expire_time;
972 ts->next = *pt;
973 *pt = ts;
975 /* Rearm if necessary */
976 if (pt == &active_timers[ts->clock->type]) {
977 if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
978 qemu_rearm_alarm_timer(alarm_timer);
980 /* Interrupt execution to force deadline recalculation. */
981 if (use_icount)
982 qemu_notify_event();
986 int qemu_timer_pending(QEMUTimer *ts)
988 QEMUTimer *t;
989 for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
990 if (t == ts)
991 return 1;
993 return 0;
996 int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
998 if (!timer_head)
999 return 0;
1000 return (timer_head->expire_time <= current_time);
1003 static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1005 QEMUTimer *ts;
1007 for(;;) {
1008 ts = *ptimer_head;
1009 if (!ts || ts->expire_time > current_time)
1010 break;
1011 /* remove timer from the list before calling the callback */
1012 *ptimer_head = ts->next;
1013 ts->next = NULL;
1015 /* run the callback (the timer list can be modified) */
1016 ts->cb(ts->opaque);
1020 int64_t qemu_get_clock(QEMUClock *clock)
1022 switch(clock->type) {
1023 case QEMU_TIMER_REALTIME:
1024 return get_clock() / 1000000;
1025 default:
1026 case QEMU_TIMER_VIRTUAL:
1027 if (use_icount) {
1028 return cpu_get_icount();
1029 } else {
1030 return cpu_get_clock();
1035 static void init_timers(void)
1037 init_get_clock();
1038 ticks_per_sec = QEMU_TIMER_BASE;
1039 rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1040 vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1043 /* save a timer */
1044 void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1046 uint64_t expire_time;
1048 if (qemu_timer_pending(ts)) {
1049 expire_time = ts->expire_time;
1050 } else {
1051 expire_time = -1;
1053 qemu_put_be64(f, expire_time);
1056 void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1058 uint64_t expire_time;
1060 expire_time = qemu_get_be64(f);
1061 if (expire_time != -1) {
1062 qemu_mod_timer(ts, expire_time);
1063 } else {
1064 qemu_del_timer(ts);
1068 static void timer_save(QEMUFile *f, void *opaque)
1070 if (cpu_ticks_enabled) {
1071 hw_error("cannot save state if virtual timers are running");
1073 qemu_put_be64(f, cpu_ticks_offset);
1074 qemu_put_be64(f, ticks_per_sec);
1075 qemu_put_be64(f, cpu_clock_offset);
1078 static int timer_load(QEMUFile *f, void *opaque, int version_id)
1080 if (version_id != 1 && version_id != 2)
1081 return -EINVAL;
1082 if (cpu_ticks_enabled) {
1083 return -EINVAL;
1085 cpu_ticks_offset=qemu_get_be64(f);
1086 ticks_per_sec=qemu_get_be64(f);
1087 if (version_id == 2) {
1088 cpu_clock_offset=qemu_get_be64(f);
1090 return 0;
1093 static void qemu_event_increment(void);
1095 #ifdef _WIN32
1096 static void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1097 DWORD_PTR dwUser, DWORD_PTR dw1,
1098 DWORD_PTR dw2)
1099 #else
1100 static void host_alarm_handler(int host_signum)
1101 #endif
1103 #if 0
1104 #define DISP_FREQ 1000
1106 static int64_t delta_min = INT64_MAX;
1107 static int64_t delta_max, delta_cum, last_clock, delta, ti;
1108 static int count;
1109 ti = qemu_get_clock(vm_clock);
1110 if (last_clock != 0) {
1111 delta = ti - last_clock;
1112 if (delta < delta_min)
1113 delta_min = delta;
1114 if (delta > delta_max)
1115 delta_max = delta;
1116 delta_cum += delta;
1117 if (++count == DISP_FREQ) {
1118 printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1119 muldiv64(delta_min, 1000000, ticks_per_sec),
1120 muldiv64(delta_max, 1000000, ticks_per_sec),
1121 muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1122 (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1123 count = 0;
1124 delta_min = INT64_MAX;
1125 delta_max = 0;
1126 delta_cum = 0;
1129 last_clock = ti;
1131 #endif
1132 if (alarm_has_dynticks(alarm_timer) ||
1133 (!use_icount &&
1134 qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1135 qemu_get_clock(vm_clock))) ||
1136 qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1137 qemu_get_clock(rt_clock))) {
1138 qemu_event_increment();
1139 if (alarm_timer) alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1141 #ifndef CONFIG_IOTHREAD
1142 if (next_cpu) {
1143 /* stop the currently executing cpu because a timer occured */
1144 cpu_exit(next_cpu);
1146 #endif
1147 timer_alarm_pending = 1;
1148 qemu_notify_event();
1152 static int64_t qemu_next_deadline(void)
1154 int64_t delta;
1156 if (active_timers[QEMU_TIMER_VIRTUAL]) {
1157 delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1158 qemu_get_clock(vm_clock);
1159 } else {
1160 /* To avoid problems with overflow limit this to 2^32. */
1161 delta = INT32_MAX;
1164 if (delta < 0)
1165 delta = 0;
1167 return delta;
1170 #if defined(__linux__) || defined(_WIN32)
1171 static uint64_t qemu_next_deadline_dyntick(void)
1173 int64_t delta;
1174 int64_t rtdelta;
1176 if (use_icount)
1177 delta = INT32_MAX;
1178 else
1179 delta = (qemu_next_deadline() + 999) / 1000;
1181 if (active_timers[QEMU_TIMER_REALTIME]) {
1182 rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1183 qemu_get_clock(rt_clock))*1000;
1184 if (rtdelta < delta)
1185 delta = rtdelta;
1188 if (delta < MIN_TIMER_REARM_US)
1189 delta = MIN_TIMER_REARM_US;
1191 return delta;
1193 #endif
1195 #ifndef _WIN32
1197 /* Sets a specific flag */
1198 static int fcntl_setfl(int fd, int flag)
1200 int flags;
1202 flags = fcntl(fd, F_GETFL);
1203 if (flags == -1)
1204 return -errno;
1206 if (fcntl(fd, F_SETFL, flags | flag) == -1)
1207 return -errno;
1209 return 0;
1212 #if defined(__linux__)
1214 #define RTC_FREQ 1024
1216 static void enable_sigio_timer(int fd)
1218 struct sigaction act;
1220 /* timer signal */
1221 sigfillset(&act.sa_mask);
1222 act.sa_flags = 0;
1223 act.sa_handler = host_alarm_handler;
1225 sigaction(SIGIO, &act, NULL);
1226 fcntl_setfl(fd, O_ASYNC);
1227 fcntl(fd, F_SETOWN, getpid());
1230 static int hpet_start_timer(struct qemu_alarm_timer *t)
1232 struct hpet_info info;
1233 int r, fd;
1235 fd = open("/dev/hpet", O_RDONLY);
1236 if (fd < 0)
1237 return -1;
1239 /* Set frequency */
1240 r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1241 if (r < 0) {
1242 fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1243 "error, but for better emulation accuracy type:\n"
1244 "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1245 goto fail;
1248 /* Check capabilities */
1249 r = ioctl(fd, HPET_INFO, &info);
1250 if (r < 0)
1251 goto fail;
1253 /* Enable periodic mode */
1254 r = ioctl(fd, HPET_EPI, 0);
1255 if (info.hi_flags && (r < 0))
1256 goto fail;
1258 /* Enable interrupt */
1259 r = ioctl(fd, HPET_IE_ON, 0);
1260 if (r < 0)
1261 goto fail;
1263 enable_sigio_timer(fd);
1264 t->priv = (void *)(long)fd;
1266 return 0;
1267 fail:
1268 close(fd);
1269 return -1;
1272 static void hpet_stop_timer(struct qemu_alarm_timer *t)
1274 int fd = (long)t->priv;
1276 close(fd);
1279 static int rtc_start_timer(struct qemu_alarm_timer *t)
1281 int rtc_fd;
1282 unsigned long current_rtc_freq = 0;
1284 TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1285 if (rtc_fd < 0)
1286 return -1;
1287 ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1288 if (current_rtc_freq != RTC_FREQ &&
1289 ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1290 fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1291 "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1292 "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1293 goto fail;
1295 if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1296 fail:
1297 close(rtc_fd);
1298 return -1;
1301 enable_sigio_timer(rtc_fd);
1303 t->priv = (void *)(long)rtc_fd;
1305 return 0;
1308 static void rtc_stop_timer(struct qemu_alarm_timer *t)
1310 int rtc_fd = (long)t->priv;
1312 close(rtc_fd);
1315 static int dynticks_start_timer(struct qemu_alarm_timer *t)
1317 struct sigevent ev;
1318 timer_t host_timer;
1319 struct sigaction act;
1321 sigfillset(&act.sa_mask);
1322 act.sa_flags = 0;
1323 act.sa_handler = host_alarm_handler;
1325 sigaction(SIGALRM, &act, NULL);
1328 * Initialize ev struct to 0 to avoid valgrind complaining
1329 * about uninitialized data in timer_create call
1331 memset(&ev, 0, sizeof(ev));
1332 ev.sigev_value.sival_int = 0;
1333 ev.sigev_notify = SIGEV_SIGNAL;
1334 ev.sigev_signo = SIGALRM;
1336 if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1337 perror("timer_create");
1339 /* disable dynticks */
1340 fprintf(stderr, "Dynamic Ticks disabled\n");
1342 return -1;
1345 t->priv = (void *)(long)host_timer;
1347 return 0;
1350 static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1352 timer_t host_timer = (timer_t)(long)t->priv;
1354 timer_delete(host_timer);
1357 static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1359 timer_t host_timer = (timer_t)(long)t->priv;
1360 struct itimerspec timeout;
1361 int64_t nearest_delta_us = INT64_MAX;
1362 int64_t current_us;
1364 if (!active_timers[QEMU_TIMER_REALTIME] &&
1365 !active_timers[QEMU_TIMER_VIRTUAL])
1366 return;
1368 nearest_delta_us = qemu_next_deadline_dyntick();
1370 /* check whether a timer is already running */
1371 if (timer_gettime(host_timer, &timeout)) {
1372 perror("gettime");
1373 fprintf(stderr, "Internal timer error: aborting\n");
1374 exit(1);
1376 current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1377 if (current_us && current_us <= nearest_delta_us)
1378 return;
1380 timeout.it_interval.tv_sec = 0;
1381 timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1382 timeout.it_value.tv_sec = nearest_delta_us / 1000000;
1383 timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1384 if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1385 perror("settime");
1386 fprintf(stderr, "Internal timer error: aborting\n");
1387 exit(1);
1391 #endif /* defined(__linux__) */
1393 static int unix_start_timer(struct qemu_alarm_timer *t)
1395 struct sigaction act;
1396 struct itimerval itv;
1397 int err;
1399 /* timer signal */
1400 sigfillset(&act.sa_mask);
1401 act.sa_flags = 0;
1402 act.sa_handler = host_alarm_handler;
1404 sigaction(SIGALRM, &act, NULL);
1406 itv.it_interval.tv_sec = 0;
1407 /* for i386 kernel 2.6 to get 1 ms */
1408 itv.it_interval.tv_usec = 999;
1409 itv.it_value.tv_sec = 0;
1410 itv.it_value.tv_usec = 10 * 1000;
1412 err = setitimer(ITIMER_REAL, &itv, NULL);
1413 if (err)
1414 return -1;
1416 return 0;
1419 static void unix_stop_timer(struct qemu_alarm_timer *t)
1421 struct itimerval itv;
1423 memset(&itv, 0, sizeof(itv));
1424 setitimer(ITIMER_REAL, &itv, NULL);
1427 #endif /* !defined(_WIN32) */
1430 #ifdef _WIN32
1432 static int win32_start_timer(struct qemu_alarm_timer *t)
1434 TIMECAPS tc;
1435 struct qemu_alarm_win32 *data = t->priv;
1436 UINT flags;
1438 memset(&tc, 0, sizeof(tc));
1439 timeGetDevCaps(&tc, sizeof(tc));
1441 if (data->period < tc.wPeriodMin)
1442 data->period = tc.wPeriodMin;
1444 timeBeginPeriod(data->period);
1446 flags = TIME_CALLBACK_FUNCTION;
1447 if (alarm_has_dynticks(t))
1448 flags |= TIME_ONESHOT;
1449 else
1450 flags |= TIME_PERIODIC;
1452 data->timerId = timeSetEvent(1, // interval (ms)
1453 data->period, // resolution
1454 host_alarm_handler, // function
1455 (DWORD)t, // parameter
1456 flags);
1458 if (!data->timerId) {
1459 perror("Failed to initialize win32 alarm timer");
1460 timeEndPeriod(data->period);
1461 return -1;
1464 return 0;
1467 static void win32_stop_timer(struct qemu_alarm_timer *t)
1469 struct qemu_alarm_win32 *data = t->priv;
1471 timeKillEvent(data->timerId);
1472 timeEndPeriod(data->period);
1475 static void win32_rearm_timer(struct qemu_alarm_timer *t)
1477 struct qemu_alarm_win32 *data = t->priv;
1478 uint64_t nearest_delta_us;
1480 if (!active_timers[QEMU_TIMER_REALTIME] &&
1481 !active_timers[QEMU_TIMER_VIRTUAL])
1482 return;
1484 nearest_delta_us = qemu_next_deadline_dyntick();
1485 nearest_delta_us /= 1000;
1487 timeKillEvent(data->timerId);
1489 data->timerId = timeSetEvent(1,
1490 data->period,
1491 host_alarm_handler,
1492 (DWORD)t,
1493 TIME_ONESHOT | TIME_PERIODIC);
1495 if (!data->timerId) {
1496 perror("Failed to re-arm win32 alarm timer");
1498 timeEndPeriod(data->period);
1499 exit(1);
1503 #endif /* _WIN32 */
1505 static int init_timer_alarm(void)
1507 struct qemu_alarm_timer *t = NULL;
1508 int i, err = -1;
1510 for (i = 0; alarm_timers[i].name; i++) {
1511 t = &alarm_timers[i];
1513 err = t->start(t);
1514 if (!err)
1515 break;
1518 if (err) {
1519 err = -ENOENT;
1520 goto fail;
1523 alarm_timer = t;
1525 return 0;
1527 fail:
1528 return err;
1531 static void quit_timers(void)
1533 alarm_timer->stop(alarm_timer);
1534 alarm_timer = NULL;
1537 /***********************************************************/
1538 /* host time/date access */
1539 void qemu_get_timedate(struct tm *tm, int offset)
1541 time_t ti;
1542 struct tm *ret;
1544 time(&ti);
1545 ti += offset;
1546 if (rtc_date_offset == -1) {
1547 if (rtc_utc)
1548 ret = gmtime(&ti);
1549 else
1550 ret = localtime(&ti);
1551 } else {
1552 ti -= rtc_date_offset;
1553 ret = gmtime(&ti);
1556 memcpy(tm, ret, sizeof(struct tm));
1559 int qemu_timedate_diff(struct tm *tm)
1561 time_t seconds;
1563 if (rtc_date_offset == -1)
1564 if (rtc_utc)
1565 seconds = mktimegm(tm);
1566 else
1567 seconds = mktime(tm);
1568 else
1569 seconds = mktimegm(tm) + rtc_date_offset;
1571 return seconds - time(NULL);
1574 #ifdef _WIN32
1575 static void socket_cleanup(void)
1577 WSACleanup();
1580 static int socket_init(void)
1582 WSADATA Data;
1583 int ret, err;
1585 ret = WSAStartup(MAKEWORD(2,2), &Data);
1586 if (ret != 0) {
1587 err = WSAGetLastError();
1588 fprintf(stderr, "WSAStartup: %d\n", err);
1589 return -1;
1591 atexit(socket_cleanup);
1592 return 0;
1594 #endif
1596 /***********************************************************/
1597 /* Bluetooth support */
1598 static int nb_hcis;
1599 static int cur_hci;
1600 static struct HCIInfo *hci_table[MAX_NICS];
1602 static struct bt_vlan_s {
1603 struct bt_scatternet_s net;
1604 int id;
1605 struct bt_vlan_s *next;
1606 } *first_bt_vlan;
1608 /* find or alloc a new bluetooth "VLAN" */
1609 static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1611 struct bt_vlan_s **pvlan, *vlan;
1612 for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1613 if (vlan->id == id)
1614 return &vlan->net;
1616 vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1617 vlan->id = id;
1618 pvlan = &first_bt_vlan;
1619 while (*pvlan != NULL)
1620 pvlan = &(*pvlan)->next;
1621 *pvlan = vlan;
1622 return &vlan->net;
1625 static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1629 static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1631 return -ENOTSUP;
1634 static struct HCIInfo null_hci = {
1635 .cmd_send = null_hci_send,
1636 .sco_send = null_hci_send,
1637 .acl_send = null_hci_send,
1638 .bdaddr_set = null_hci_addr_set,
1641 struct HCIInfo *qemu_next_hci(void)
1643 if (cur_hci == nb_hcis)
1644 return &null_hci;
1646 return hci_table[cur_hci++];
1649 static struct HCIInfo *hci_init(const char *str)
1651 char *endp;
1652 struct bt_scatternet_s *vlan = 0;
1654 if (!strcmp(str, "null"))
1655 /* null */
1656 return &null_hci;
1657 else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
1658 /* host[:hciN] */
1659 return bt_host_hci(str[4] ? str + 5 : "hci0");
1660 else if (!strncmp(str, "hci", 3)) {
1661 /* hci[,vlan=n] */
1662 if (str[3]) {
1663 if (!strncmp(str + 3, ",vlan=", 6)) {
1664 vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
1665 if (*endp)
1666 vlan = 0;
1668 } else
1669 vlan = qemu_find_bt_vlan(0);
1670 if (vlan)
1671 return bt_new_hci(vlan);
1674 fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
1676 return 0;
1679 static int bt_hci_parse(const char *str)
1681 struct HCIInfo *hci;
1682 bdaddr_t bdaddr;
1684 if (nb_hcis >= MAX_NICS) {
1685 fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
1686 return -1;
1689 hci = hci_init(str);
1690 if (!hci)
1691 return -1;
1693 bdaddr.b[0] = 0x52;
1694 bdaddr.b[1] = 0x54;
1695 bdaddr.b[2] = 0x00;
1696 bdaddr.b[3] = 0x12;
1697 bdaddr.b[4] = 0x34;
1698 bdaddr.b[5] = 0x56 + nb_hcis;
1699 hci->bdaddr_set(hci, bdaddr.b);
1701 hci_table[nb_hcis++] = hci;
1703 return 0;
1706 static void bt_vhci_add(int vlan_id)
1708 struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
1710 if (!vlan->slave)
1711 fprintf(stderr, "qemu: warning: adding a VHCI to "
1712 "an empty scatternet %i\n", vlan_id);
1714 bt_vhci_init(bt_new_hci(vlan));
1717 static struct bt_device_s *bt_device_add(const char *opt)
1719 struct bt_scatternet_s *vlan;
1720 int vlan_id = 0;
1721 char *endp = strstr(opt, ",vlan=");
1722 int len = (endp ? endp - opt : strlen(opt)) + 1;
1723 char devname[10];
1725 pstrcpy(devname, MIN(sizeof(devname), len), opt);
1727 if (endp) {
1728 vlan_id = strtol(endp + 6, &endp, 0);
1729 if (*endp) {
1730 fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
1731 return 0;
1735 vlan = qemu_find_bt_vlan(vlan_id);
1737 if (!vlan->slave)
1738 fprintf(stderr, "qemu: warning: adding a slave device to "
1739 "an empty scatternet %i\n", vlan_id);
1741 if (!strcmp(devname, "keyboard"))
1742 return bt_keyboard_init(vlan);
1744 fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
1745 return 0;
1748 static int bt_parse(const char *opt)
1750 const char *endp, *p;
1751 int vlan;
1753 if (strstart(opt, "hci", &endp)) {
1754 if (!*endp || *endp == ',') {
1755 if (*endp)
1756 if (!strstart(endp, ",vlan=", 0))
1757 opt = endp + 1;
1759 return bt_hci_parse(opt);
1761 } else if (strstart(opt, "vhci", &endp)) {
1762 if (!*endp || *endp == ',') {
1763 if (*endp) {
1764 if (strstart(endp, ",vlan=", &p)) {
1765 vlan = strtol(p, (char **) &endp, 0);
1766 if (*endp) {
1767 fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
1768 return 1;
1770 } else {
1771 fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
1772 return 1;
1774 } else
1775 vlan = 0;
1777 bt_vhci_add(vlan);
1778 return 0;
1780 } else if (strstart(opt, "device:", &endp))
1781 return !bt_device_add(endp);
1783 fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
1784 return 1;
1787 /***********************************************************/
1788 /* QEMU Block devices */
1790 #define HD_ALIAS "index=%d,media=disk"
1791 #define CDROM_ALIAS "index=2,media=cdrom"
1792 #define FD_ALIAS "index=%d,if=floppy"
1793 #define PFLASH_ALIAS "if=pflash"
1794 #define MTD_ALIAS "if=mtd"
1795 #define SD_ALIAS "index=0,if=sd"
1797 QemuOpts *drive_add(const char *file, const char *fmt, ...)
1799 va_list ap;
1800 char optstr[1024];
1801 QemuOpts *opts;
1803 va_start(ap, fmt);
1804 vsnprintf(optstr, sizeof(optstr), fmt, ap);
1805 va_end(ap);
1807 opts = qemu_opts_parse(&qemu_drive_opts, optstr, NULL);
1808 if (!opts) {
1809 fprintf(stderr, "%s: huh? duplicate? (%s)\n",
1810 __FUNCTION__, optstr);
1811 return NULL;
1813 if (file)
1814 qemu_opt_set(opts, "file", file);
1815 return opts;
1818 DriveInfo *drive_get(BlockInterfaceType type, int bus, int unit)
1820 DriveInfo *dinfo;
1822 /* seek interface, bus and unit */
1824 TAILQ_FOREACH(dinfo, &drives, next) {
1825 if (dinfo->type == type &&
1826 dinfo->bus == bus &&
1827 dinfo->unit == unit)
1828 return dinfo;
1831 return NULL;
1834 DriveInfo *drive_get_by_id(const char *id)
1836 DriveInfo *dinfo;
1838 TAILQ_FOREACH(dinfo, &drives, next) {
1839 if (strcmp(id, dinfo->id))
1840 continue;
1841 return dinfo;
1843 return NULL;
1846 int drive_get_max_bus(BlockInterfaceType type)
1848 int max_bus;
1849 DriveInfo *dinfo;
1851 max_bus = -1;
1852 TAILQ_FOREACH(dinfo, &drives, next) {
1853 if(dinfo->type == type &&
1854 dinfo->bus > max_bus)
1855 max_bus = dinfo->bus;
1857 return max_bus;
1860 const char *drive_get_serial(BlockDriverState *bdrv)
1862 DriveInfo *dinfo;
1864 TAILQ_FOREACH(dinfo, &drives, next) {
1865 if (dinfo->bdrv == bdrv)
1866 return dinfo->serial;
1869 return "\0";
1872 BlockInterfaceErrorAction drive_get_onerror(BlockDriverState *bdrv)
1874 DriveInfo *dinfo;
1876 TAILQ_FOREACH(dinfo, &drives, next) {
1877 if (dinfo->bdrv == bdrv)
1878 return dinfo->onerror;
1881 return BLOCK_ERR_STOP_ENOSPC;
1884 static void bdrv_format_print(void *opaque, const char *name)
1886 fprintf(stderr, " %s", name);
1889 void drive_uninit(BlockDriverState *bdrv)
1891 DriveInfo *dinfo;
1893 TAILQ_FOREACH(dinfo, &drives, next) {
1894 if (dinfo->bdrv != bdrv)
1895 continue;
1896 qemu_opts_del(dinfo->opts);
1897 TAILQ_REMOVE(&drives, dinfo, next);
1898 qemu_free(dinfo);
1899 break;
1903 DriveInfo *drive_init(QemuOpts *opts, void *opaque,
1904 int *fatal_error)
1906 const char *buf;
1907 const char *file = NULL;
1908 char devname[128];
1909 const char *serial;
1910 const char *mediastr = "";
1911 BlockInterfaceType type;
1912 enum { MEDIA_DISK, MEDIA_CDROM } media;
1913 int bus_id, unit_id;
1914 int cyls, heads, secs, translation;
1915 BlockDriver *drv = NULL;
1916 QEMUMachine *machine = opaque;
1917 int max_devs;
1918 int index;
1919 int cache;
1920 int aio = 0;
1921 int bdrv_flags, onerror;
1922 const char *devaddr;
1923 DriveInfo *dinfo;
1924 int snapshot = 0;
1926 *fatal_error = 1;
1928 translation = BIOS_ATA_TRANSLATION_AUTO;
1929 cache = 1;
1931 if (machine && machine->use_scsi) {
1932 type = IF_SCSI;
1933 max_devs = MAX_SCSI_DEVS;
1934 pstrcpy(devname, sizeof(devname), "scsi");
1935 } else {
1936 type = IF_IDE;
1937 max_devs = MAX_IDE_DEVS;
1938 pstrcpy(devname, sizeof(devname), "ide");
1940 media = MEDIA_DISK;
1942 /* extract parameters */
1943 bus_id = qemu_opt_get_number(opts, "bus", 0);
1944 unit_id = qemu_opt_get_number(opts, "unit", -1);
1945 index = qemu_opt_get_number(opts, "index", -1);
1947 cyls = qemu_opt_get_number(opts, "cyls", 0);
1948 heads = qemu_opt_get_number(opts, "heads", 0);
1949 secs = qemu_opt_get_number(opts, "secs", 0);
1951 snapshot = qemu_opt_get_bool(opts, "snapshot", 0);
1953 file = qemu_opt_get(opts, "file");
1954 serial = qemu_opt_get(opts, "serial");
1956 if ((buf = qemu_opt_get(opts, "if")) != NULL) {
1957 pstrcpy(devname, sizeof(devname), buf);
1958 if (!strcmp(buf, "ide")) {
1959 type = IF_IDE;
1960 max_devs = MAX_IDE_DEVS;
1961 } else if (!strcmp(buf, "scsi")) {
1962 type = IF_SCSI;
1963 max_devs = MAX_SCSI_DEVS;
1964 } else if (!strcmp(buf, "floppy")) {
1965 type = IF_FLOPPY;
1966 max_devs = 0;
1967 } else if (!strcmp(buf, "pflash")) {
1968 type = IF_PFLASH;
1969 max_devs = 0;
1970 } else if (!strcmp(buf, "mtd")) {
1971 type = IF_MTD;
1972 max_devs = 0;
1973 } else if (!strcmp(buf, "sd")) {
1974 type = IF_SD;
1975 max_devs = 0;
1976 } else if (!strcmp(buf, "virtio")) {
1977 type = IF_VIRTIO;
1978 max_devs = 0;
1979 } else if (!strcmp(buf, "xen")) {
1980 type = IF_XEN;
1981 max_devs = 0;
1982 } else if (!strcmp(buf, "none")) {
1983 type = IF_NONE;
1984 max_devs = 0;
1985 } else {
1986 fprintf(stderr, "qemu: unsupported bus type '%s'\n", buf);
1987 return NULL;
1991 if (cyls || heads || secs) {
1992 if (cyls < 1 || cyls > 16383) {
1993 fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", buf);
1994 return NULL;
1996 if (heads < 1 || heads > 16) {
1997 fprintf(stderr, "qemu: '%s' invalid physical heads number\n", buf);
1998 return NULL;
2000 if (secs < 1 || secs > 63) {
2001 fprintf(stderr, "qemu: '%s' invalid physical secs number\n", buf);
2002 return NULL;
2006 if ((buf = qemu_opt_get(opts, "trans")) != NULL) {
2007 if (!cyls) {
2008 fprintf(stderr,
2009 "qemu: '%s' trans must be used with cyls,heads and secs\n",
2010 buf);
2011 return NULL;
2013 if (!strcmp(buf, "none"))
2014 translation = BIOS_ATA_TRANSLATION_NONE;
2015 else if (!strcmp(buf, "lba"))
2016 translation = BIOS_ATA_TRANSLATION_LBA;
2017 else if (!strcmp(buf, "auto"))
2018 translation = BIOS_ATA_TRANSLATION_AUTO;
2019 else {
2020 fprintf(stderr, "qemu: '%s' invalid translation type\n", buf);
2021 return NULL;
2025 if ((buf = qemu_opt_get(opts, "media")) != NULL) {
2026 if (!strcmp(buf, "disk")) {
2027 media = MEDIA_DISK;
2028 } else if (!strcmp(buf, "cdrom")) {
2029 if (cyls || secs || heads) {
2030 fprintf(stderr,
2031 "qemu: '%s' invalid physical CHS format\n", buf);
2032 return NULL;
2034 media = MEDIA_CDROM;
2035 } else {
2036 fprintf(stderr, "qemu: '%s' invalid media\n", buf);
2037 return NULL;
2041 if ((buf = qemu_opt_get(opts, "cache")) != NULL) {
2042 if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2043 cache = 0;
2044 else if (!strcmp(buf, "writethrough"))
2045 cache = 1;
2046 else if (!strcmp(buf, "writeback"))
2047 cache = 2;
2048 else {
2049 fprintf(stderr, "qemu: invalid cache option\n");
2050 return NULL;
2054 #ifdef CONFIG_LINUX_AIO
2055 if ((buf = qemu_opt_get(opts, "aio")) != NULL) {
2056 if (!strcmp(buf, "threads"))
2057 aio = 0;
2058 else if (!strcmp(buf, "native"))
2059 aio = 1;
2060 else {
2061 fprintf(stderr, "qemu: invalid aio option\n");
2062 return NULL;
2065 #endif
2067 if ((buf = qemu_opt_get(opts, "format")) != NULL) {
2068 if (strcmp(buf, "?") == 0) {
2069 fprintf(stderr, "qemu: Supported formats:");
2070 bdrv_iterate_format(bdrv_format_print, NULL);
2071 fprintf(stderr, "\n");
2072 return NULL;
2074 drv = bdrv_find_format(buf);
2075 if (!drv) {
2076 fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2077 return NULL;
2081 onerror = BLOCK_ERR_STOP_ENOSPC;
2082 if ((buf = qemu_opt_get(opts, "werror")) != NULL) {
2083 if (type != IF_IDE && type != IF_SCSI && type != IF_VIRTIO) {
2084 fprintf(stderr, "werror is no supported by this format\n");
2085 return NULL;
2087 if (!strcmp(buf, "ignore"))
2088 onerror = BLOCK_ERR_IGNORE;
2089 else if (!strcmp(buf, "enospc"))
2090 onerror = BLOCK_ERR_STOP_ENOSPC;
2091 else if (!strcmp(buf, "stop"))
2092 onerror = BLOCK_ERR_STOP_ANY;
2093 else if (!strcmp(buf, "report"))
2094 onerror = BLOCK_ERR_REPORT;
2095 else {
2096 fprintf(stderr, "qemu: '%s' invalid write error action\n", buf);
2097 return NULL;
2101 if ((devaddr = qemu_opt_get(opts, "addr")) != NULL) {
2102 if (type != IF_VIRTIO) {
2103 fprintf(stderr, "addr is not supported\n");
2104 return NULL;
2108 /* compute bus and unit according index */
2110 if (index != -1) {
2111 if (bus_id != 0 || unit_id != -1) {
2112 fprintf(stderr,
2113 "qemu: index cannot be used with bus and unit\n");
2114 return NULL;
2116 if (max_devs == 0)
2118 unit_id = index;
2119 bus_id = 0;
2120 } else {
2121 unit_id = index % max_devs;
2122 bus_id = index / max_devs;
2126 /* if user doesn't specify a unit_id,
2127 * try to find the first free
2130 if (unit_id == -1) {
2131 unit_id = 0;
2132 while (drive_get(type, bus_id, unit_id) != NULL) {
2133 unit_id++;
2134 if (max_devs && unit_id >= max_devs) {
2135 unit_id -= max_devs;
2136 bus_id++;
2141 /* check unit id */
2143 if (max_devs && unit_id >= max_devs) {
2144 fprintf(stderr, "qemu: unit %d too big (max is %d)\n",
2145 unit_id, max_devs - 1);
2146 return NULL;
2150 * ignore multiple definitions
2153 if (drive_get(type, bus_id, unit_id) != NULL) {
2154 *fatal_error = 0;
2155 return NULL;
2158 /* init */
2160 dinfo = qemu_mallocz(sizeof(*dinfo));
2161 if ((buf = qemu_opts_id(opts)) != NULL) {
2162 dinfo->id = qemu_strdup(buf);
2163 } else {
2164 /* no id supplied -> create one */
2165 dinfo->id = qemu_mallocz(32);
2166 if (type == IF_IDE || type == IF_SCSI)
2167 mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2168 if (max_devs)
2169 snprintf(dinfo->id, 32, "%s%i%s%i",
2170 devname, bus_id, mediastr, unit_id);
2171 else
2172 snprintf(dinfo->id, 32, "%s%s%i",
2173 devname, mediastr, unit_id);
2175 dinfo->bdrv = bdrv_new(dinfo->id);
2176 dinfo->devaddr = devaddr;
2177 dinfo->type = type;
2178 dinfo->bus = bus_id;
2179 dinfo->unit = unit_id;
2180 dinfo->onerror = onerror;
2181 dinfo->opts = opts;
2182 if (serial)
2183 strncpy(dinfo->serial, serial, sizeof(serial));
2184 TAILQ_INSERT_TAIL(&drives, dinfo, next);
2186 switch(type) {
2187 case IF_IDE:
2188 case IF_SCSI:
2189 case IF_XEN:
2190 switch(media) {
2191 case MEDIA_DISK:
2192 if (cyls != 0) {
2193 bdrv_set_geometry_hint(dinfo->bdrv, cyls, heads, secs);
2194 bdrv_set_translation_hint(dinfo->bdrv, translation);
2196 break;
2197 case MEDIA_CDROM:
2198 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_CDROM);
2199 break;
2201 break;
2202 case IF_SD:
2203 /* FIXME: This isn't really a floppy, but it's a reasonable
2204 approximation. */
2205 case IF_FLOPPY:
2206 bdrv_set_type_hint(dinfo->bdrv, BDRV_TYPE_FLOPPY);
2207 break;
2208 case IF_PFLASH:
2209 case IF_MTD:
2210 case IF_NONE:
2211 break;
2212 case IF_VIRTIO:
2213 /* add virtio block device */
2214 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
2215 qemu_opt_set(opts, "driver", "virtio-blk-pci");
2216 qemu_opt_set(opts, "drive", dinfo->id);
2217 if (devaddr)
2218 qemu_opt_set(opts, "addr", devaddr);
2219 break;
2220 case IF_COUNT:
2221 abort();
2223 if (!file) {
2224 *fatal_error = 0;
2225 return NULL;
2227 bdrv_flags = 0;
2228 if (snapshot) {
2229 bdrv_flags |= BDRV_O_SNAPSHOT;
2230 cache = 2; /* always use write-back with snapshot */
2232 if (cache == 0) /* no caching */
2233 bdrv_flags |= BDRV_O_NOCACHE;
2234 else if (cache == 2) /* write-back */
2235 bdrv_flags |= BDRV_O_CACHE_WB;
2237 if (aio == 1) {
2238 bdrv_flags |= BDRV_O_NATIVE_AIO;
2239 } else {
2240 bdrv_flags &= ~BDRV_O_NATIVE_AIO;
2243 if (bdrv_open2(dinfo->bdrv, file, bdrv_flags, drv) < 0) {
2244 fprintf(stderr, "qemu: could not open disk image %s\n",
2245 file);
2246 return NULL;
2249 if (bdrv_key_required(dinfo->bdrv))
2250 autostart = 0;
2251 *fatal_error = 0;
2252 return dinfo;
2255 static int drive_init_func(QemuOpts *opts, void *opaque)
2257 QEMUMachine *machine = opaque;
2258 int fatal_error = 0;
2260 if (drive_init(opts, machine, &fatal_error) == NULL) {
2261 if (fatal_error)
2262 return 1;
2264 return 0;
2267 static int drive_enable_snapshot(QemuOpts *opts, void *opaque)
2269 if (NULL == qemu_opt_get(opts, "snapshot")) {
2270 qemu_opt_set(opts, "snapshot", "on");
2272 return 0;
2275 void qemu_register_boot_set(QEMUBootSetHandler *func, void *opaque)
2277 boot_set_handler = func;
2278 boot_set_opaque = opaque;
2281 int qemu_boot_set(const char *boot_devices)
2283 if (!boot_set_handler) {
2284 return -EINVAL;
2286 return boot_set_handler(boot_set_opaque, boot_devices);
2289 static int parse_bootdevices(char *devices)
2291 /* We just do some generic consistency checks */
2292 const char *p;
2293 int bitmap = 0;
2295 for (p = devices; *p != '\0'; p++) {
2296 /* Allowed boot devices are:
2297 * a-b: floppy disk drives
2298 * c-f: IDE disk drives
2299 * g-m: machine implementation dependant drives
2300 * n-p: network devices
2301 * It's up to each machine implementation to check if the given boot
2302 * devices match the actual hardware implementation and firmware
2303 * features.
2305 if (*p < 'a' || *p > 'p') {
2306 fprintf(stderr, "Invalid boot device '%c'\n", *p);
2307 exit(1);
2309 if (bitmap & (1 << (*p - 'a'))) {
2310 fprintf(stderr, "Boot device '%c' was given twice\n", *p);
2311 exit(1);
2313 bitmap |= 1 << (*p - 'a');
2315 return bitmap;
2318 static void restore_boot_devices(void *opaque)
2320 char *standard_boot_devices = opaque;
2322 qemu_boot_set(standard_boot_devices);
2324 qemu_unregister_reset(restore_boot_devices, standard_boot_devices);
2325 qemu_free(standard_boot_devices);
2328 static void numa_add(const char *optarg)
2330 char option[128];
2331 char *endptr;
2332 unsigned long long value, endvalue;
2333 int nodenr;
2335 optarg = get_opt_name(option, 128, optarg, ',') + 1;
2336 if (!strcmp(option, "node")) {
2337 if (get_param_value(option, 128, "nodeid", optarg) == 0) {
2338 nodenr = nb_numa_nodes;
2339 } else {
2340 nodenr = strtoull(option, NULL, 10);
2343 if (get_param_value(option, 128, "mem", optarg) == 0) {
2344 node_mem[nodenr] = 0;
2345 } else {
2346 value = strtoull(option, &endptr, 0);
2347 switch (*endptr) {
2348 case 0: case 'M': case 'm':
2349 value <<= 20;
2350 break;
2351 case 'G': case 'g':
2352 value <<= 30;
2353 break;
2355 node_mem[nodenr] = value;
2357 if (get_param_value(option, 128, "cpus", optarg) == 0) {
2358 node_cpumask[nodenr] = 0;
2359 } else {
2360 value = strtoull(option, &endptr, 10);
2361 if (value >= 64) {
2362 value = 63;
2363 fprintf(stderr, "only 64 CPUs in NUMA mode supported.\n");
2364 } else {
2365 if (*endptr == '-') {
2366 endvalue = strtoull(endptr+1, &endptr, 10);
2367 if (endvalue >= 63) {
2368 endvalue = 62;
2369 fprintf(stderr,
2370 "only 63 CPUs in NUMA mode supported.\n");
2372 value = (1 << (endvalue + 1)) - (1 << value);
2373 } else {
2374 value = 1 << value;
2377 node_cpumask[nodenr] = value;
2379 nb_numa_nodes++;
2381 return;
2384 static void smp_parse(const char *optarg)
2386 int smp, sockets = 0, threads = 0, cores = 0;
2387 char *endptr;
2388 char option[128];
2390 smp = strtoul(optarg, &endptr, 10);
2391 if (endptr != optarg) {
2392 if (*endptr == ',') {
2393 endptr++;
2396 if (get_param_value(option, 128, "sockets", endptr) != 0)
2397 sockets = strtoull(option, NULL, 10);
2398 if (get_param_value(option, 128, "cores", endptr) != 0)
2399 cores = strtoull(option, NULL, 10);
2400 if (get_param_value(option, 128, "threads", endptr) != 0)
2401 threads = strtoull(option, NULL, 10);
2402 if (get_param_value(option, 128, "maxcpus", endptr) != 0)
2403 max_cpus = strtoull(option, NULL, 10);
2405 /* compute missing values, prefer sockets over cores over threads */
2406 if (smp == 0 || sockets == 0) {
2407 sockets = sockets > 0 ? sockets : 1;
2408 cores = cores > 0 ? cores : 1;
2409 threads = threads > 0 ? threads : 1;
2410 if (smp == 0) {
2411 smp = cores * threads * sockets;
2412 } else {
2413 sockets = smp / (cores * threads);
2415 } else {
2416 if (cores == 0) {
2417 threads = threads > 0 ? threads : 1;
2418 cores = smp / (sockets * threads);
2419 } else {
2420 if (sockets == 0) {
2421 sockets = smp / (cores * threads);
2422 } else {
2423 threads = smp / (cores * sockets);
2427 smp_cpus = smp;
2428 smp_cores = cores > 0 ? cores : 1;
2429 smp_threads = threads > 0 ? threads : 1;
2430 if (max_cpus == 0)
2431 max_cpus = smp_cpus;
2434 /***********************************************************/
2435 /* USB devices */
2437 static void usb_msd_password_cb(void *opaque, int err)
2439 USBDevice *dev = opaque;
2441 if (!err)
2442 usb_device_attach(dev);
2443 else
2444 dev->info->handle_destroy(dev);
2447 static struct {
2448 const char *name;
2449 const char *qdev;
2450 } usbdevs[] = {
2452 .name = "mouse",
2453 .qdev = "QEMU USB Mouse",
2455 .name = "tablet",
2456 .qdev = "QEMU USB Tablet",
2458 .name = "keyboard",
2459 .qdev = "QEMU USB Keyboard",
2461 .name = "wacom-tablet",
2462 .qdev = "QEMU PenPartner Tablet",
2466 static int usb_device_add(const char *devname, int is_hotplug)
2468 const char *p;
2469 USBBus *bus = usb_bus_find(-1 /* any */);
2470 USBDevice *dev = NULL;
2471 int i;
2473 if (!usb_enabled)
2474 return -1;
2476 /* simple devices which don't need extra care */
2477 for (i = 0; i < ARRAY_SIZE(usbdevs); i++) {
2478 if (strcmp(devname, usbdevs[i].name) != 0)
2479 continue;
2480 dev = usb_create_simple(bus, usbdevs[i].qdev);
2481 goto done;
2484 /* the other ones */
2485 if (strstart(devname, "host:", &p)) {
2486 dev = usb_host_device_open(p);
2487 } else if (strstart(devname, "disk:", &p)) {
2488 BlockDriverState *bs;
2490 dev = usb_msd_init(p);
2491 if (!dev)
2492 return -1;
2493 bs = usb_msd_get_bdrv(dev);
2494 if (bdrv_key_required(bs)) {
2495 autostart = 0;
2496 if (is_hotplug) {
2497 monitor_read_bdrv_key_start(cur_mon, bs, usb_msd_password_cb,
2498 dev);
2499 return 0;
2502 } else if (strstart(devname, "serial:", &p)) {
2503 dev = usb_serial_init(p);
2504 #ifdef CONFIG_BRLAPI
2505 } else if (!strcmp(devname, "braille")) {
2506 dev = usb_baum_init();
2507 #endif
2508 } else if (strstart(devname, "net:", &p)) {
2509 int nic = nb_nics;
2511 if (net_client_init(NULL, "nic", p) < 0)
2512 return -1;
2513 nd_table[nic].model = "usb";
2514 dev = usb_net_init(&nd_table[nic]);
2515 } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2516 dev = usb_bt_init(devname[2] ? hci_init(p) :
2517 bt_new_hci(qemu_find_bt_vlan(0)));
2518 } else {
2519 return -1;
2521 if (!dev)
2522 return -1;
2524 done:
2525 return 0;
2528 static int usb_device_del(const char *devname)
2530 int bus_num, addr;
2531 const char *p;
2533 if (strstart(devname, "host:", &p))
2534 return usb_host_device_close(p);
2536 if (!usb_enabled)
2537 return -1;
2539 p = strchr(devname, '.');
2540 if (!p)
2541 return -1;
2542 bus_num = strtoul(devname, NULL, 0);
2543 addr = strtoul(p + 1, NULL, 0);
2545 return usb_device_delete_addr(bus_num, addr);
2548 static int usb_parse(const char *cmdline)
2550 return usb_device_add(cmdline, 0);
2553 void do_usb_add(Monitor *mon, const QDict *qdict)
2555 usb_device_add(qdict_get_str(qdict, "devname"), 1);
2558 void do_usb_del(Monitor *mon, const QDict *qdict)
2560 usb_device_del(qdict_get_str(qdict, "devname"));
2563 /***********************************************************/
2564 /* PCMCIA/Cardbus */
2566 static struct pcmcia_socket_entry_s {
2567 PCMCIASocket *socket;
2568 struct pcmcia_socket_entry_s *next;
2569 } *pcmcia_sockets = 0;
2571 void pcmcia_socket_register(PCMCIASocket *socket)
2573 struct pcmcia_socket_entry_s *entry;
2575 entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2576 entry->socket = socket;
2577 entry->next = pcmcia_sockets;
2578 pcmcia_sockets = entry;
2581 void pcmcia_socket_unregister(PCMCIASocket *socket)
2583 struct pcmcia_socket_entry_s *entry, **ptr;
2585 ptr = &pcmcia_sockets;
2586 for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2587 if (entry->socket == socket) {
2588 *ptr = entry->next;
2589 qemu_free(entry);
2593 void pcmcia_info(Monitor *mon)
2595 struct pcmcia_socket_entry_s *iter;
2597 if (!pcmcia_sockets)
2598 monitor_printf(mon, "No PCMCIA sockets\n");
2600 for (iter = pcmcia_sockets; iter; iter = iter->next)
2601 monitor_printf(mon, "%s: %s\n", iter->socket->slot_string,
2602 iter->socket->attached ? iter->socket->card_string :
2603 "Empty");
2606 /***********************************************************/
2607 /* register display */
2609 struct DisplayAllocator default_allocator = {
2610 defaultallocator_create_displaysurface,
2611 defaultallocator_resize_displaysurface,
2612 defaultallocator_free_displaysurface
2615 void register_displaystate(DisplayState *ds)
2617 DisplayState **s;
2618 s = &display_state;
2619 while (*s != NULL)
2620 s = &(*s)->next;
2621 ds->next = NULL;
2622 *s = ds;
2625 DisplayState *get_displaystate(void)
2627 return display_state;
2630 DisplayAllocator *register_displayallocator(DisplayState *ds, DisplayAllocator *da)
2632 if(ds->allocator == &default_allocator) ds->allocator = da;
2633 return ds->allocator;
2636 /* dumb display */
2638 static void dumb_display_init(void)
2640 DisplayState *ds = qemu_mallocz(sizeof(DisplayState));
2641 ds->allocator = &default_allocator;
2642 ds->surface = qemu_create_displaysurface(ds, 640, 480);
2643 register_displaystate(ds);
2646 /***********************************************************/
2647 /* I/O handling */
2649 typedef struct IOHandlerRecord {
2650 int fd;
2651 IOCanRWHandler *fd_read_poll;
2652 IOHandler *fd_read;
2653 IOHandler *fd_write;
2654 int deleted;
2655 void *opaque;
2656 /* temporary data */
2657 struct pollfd *ufd;
2658 struct IOHandlerRecord *next;
2659 } IOHandlerRecord;
2661 static IOHandlerRecord *first_io_handler;
2663 /* XXX: fd_read_poll should be suppressed, but an API change is
2664 necessary in the character devices to suppress fd_can_read(). */
2665 int qemu_set_fd_handler2(int fd,
2666 IOCanRWHandler *fd_read_poll,
2667 IOHandler *fd_read,
2668 IOHandler *fd_write,
2669 void *opaque)
2671 IOHandlerRecord **pioh, *ioh;
2673 if (!fd_read && !fd_write) {
2674 pioh = &first_io_handler;
2675 for(;;) {
2676 ioh = *pioh;
2677 if (ioh == NULL)
2678 break;
2679 if (ioh->fd == fd) {
2680 ioh->deleted = 1;
2681 break;
2683 pioh = &ioh->next;
2685 } else {
2686 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2687 if (ioh->fd == fd)
2688 goto found;
2690 ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2691 ioh->next = first_io_handler;
2692 first_io_handler = ioh;
2693 found:
2694 ioh->fd = fd;
2695 ioh->fd_read_poll = fd_read_poll;
2696 ioh->fd_read = fd_read;
2697 ioh->fd_write = fd_write;
2698 ioh->opaque = opaque;
2699 ioh->deleted = 0;
2701 return 0;
2704 int qemu_set_fd_handler(int fd,
2705 IOHandler *fd_read,
2706 IOHandler *fd_write,
2707 void *opaque)
2709 return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2712 #ifdef _WIN32
2713 /***********************************************************/
2714 /* Polling handling */
2716 typedef struct PollingEntry {
2717 PollingFunc *func;
2718 void *opaque;
2719 struct PollingEntry *next;
2720 } PollingEntry;
2722 static PollingEntry *first_polling_entry;
2724 int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2726 PollingEntry **ppe, *pe;
2727 pe = qemu_mallocz(sizeof(PollingEntry));
2728 pe->func = func;
2729 pe->opaque = opaque;
2730 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2731 *ppe = pe;
2732 return 0;
2735 void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2737 PollingEntry **ppe, *pe;
2738 for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2739 pe = *ppe;
2740 if (pe->func == func && pe->opaque == opaque) {
2741 *ppe = pe->next;
2742 qemu_free(pe);
2743 break;
2748 /***********************************************************/
2749 /* Wait objects support */
2750 typedef struct WaitObjects {
2751 int num;
2752 HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2753 WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2754 void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2755 } WaitObjects;
2757 static WaitObjects wait_objects = {0};
2759 int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2761 WaitObjects *w = &wait_objects;
2763 if (w->num >= MAXIMUM_WAIT_OBJECTS)
2764 return -1;
2765 w->events[w->num] = handle;
2766 w->func[w->num] = func;
2767 w->opaque[w->num] = opaque;
2768 w->num++;
2769 return 0;
2772 void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2774 int i, found;
2775 WaitObjects *w = &wait_objects;
2777 found = 0;
2778 for (i = 0; i < w->num; i++) {
2779 if (w->events[i] == handle)
2780 found = 1;
2781 if (found) {
2782 w->events[i] = w->events[i + 1];
2783 w->func[i] = w->func[i + 1];
2784 w->opaque[i] = w->opaque[i + 1];
2787 if (found)
2788 w->num--;
2790 #endif
2792 /***********************************************************/
2793 /* ram save/restore */
2795 static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
2797 int v;
2799 v = qemu_get_byte(f);
2800 switch(v) {
2801 case 0:
2802 if (qemu_get_buffer(f, buf, len) != len)
2803 return -EIO;
2804 break;
2805 case 1:
2806 v = qemu_get_byte(f);
2807 memset(buf, v, len);
2808 break;
2809 default:
2810 return -EINVAL;
2813 if (qemu_file_has_error(f))
2814 return -EIO;
2816 return 0;
2819 static int ram_load_v1(QEMUFile *f, void *opaque)
2821 int ret;
2822 ram_addr_t i;
2824 if (qemu_get_be32(f) != last_ram_offset)
2825 return -EINVAL;
2826 for(i = 0; i < last_ram_offset; i+= TARGET_PAGE_SIZE) {
2827 ret = ram_get_page(f, qemu_get_ram_ptr(i), TARGET_PAGE_SIZE);
2828 if (ret)
2829 return ret;
2831 return 0;
2834 #define BDRV_HASH_BLOCK_SIZE 1024
2835 #define IOBUF_SIZE 4096
2836 #define RAM_CBLOCK_MAGIC 0xfabe
2838 typedef struct RamDecompressState {
2839 z_stream zstream;
2840 QEMUFile *f;
2841 uint8_t buf[IOBUF_SIZE];
2842 } RamDecompressState;
2844 static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
2846 int ret;
2847 memset(s, 0, sizeof(*s));
2848 s->f = f;
2849 ret = inflateInit(&s->zstream);
2850 if (ret != Z_OK)
2851 return -1;
2852 return 0;
2855 static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
2857 int ret, clen;
2859 s->zstream.avail_out = len;
2860 s->zstream.next_out = buf;
2861 while (s->zstream.avail_out > 0) {
2862 if (s->zstream.avail_in == 0) {
2863 if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
2864 return -1;
2865 clen = qemu_get_be16(s->f);
2866 if (clen > IOBUF_SIZE)
2867 return -1;
2868 qemu_get_buffer(s->f, s->buf, clen);
2869 s->zstream.avail_in = clen;
2870 s->zstream.next_in = s->buf;
2872 ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
2873 if (ret != Z_OK && ret != Z_STREAM_END) {
2874 return -1;
2877 return 0;
2880 static void ram_decompress_close(RamDecompressState *s)
2882 inflateEnd(&s->zstream);
2885 #define RAM_SAVE_FLAG_FULL 0x01
2886 #define RAM_SAVE_FLAG_COMPRESS 0x02
2887 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
2888 #define RAM_SAVE_FLAG_PAGE 0x08
2889 #define RAM_SAVE_FLAG_EOS 0x10
2891 static int is_dup_page(uint8_t *page, uint8_t ch)
2893 uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
2894 uint32_t *array = (uint32_t *)page;
2895 int i;
2897 for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
2898 if (array[i] != val)
2899 return 0;
2902 return 1;
2905 static int ram_save_block(QEMUFile *f)
2907 static ram_addr_t current_addr = 0;
2908 ram_addr_t saved_addr = current_addr;
2909 ram_addr_t addr = 0;
2910 int found = 0;
2912 while (addr < last_ram_offset) {
2913 if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
2914 uint8_t *p;
2916 cpu_physical_memory_reset_dirty(current_addr,
2917 current_addr + TARGET_PAGE_SIZE,
2918 MIGRATION_DIRTY_FLAG);
2920 p = qemu_get_ram_ptr(current_addr);
2922 if (is_dup_page(p, *p)) {
2923 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
2924 qemu_put_byte(f, *p);
2925 } else {
2926 qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
2927 qemu_put_buffer(f, p, TARGET_PAGE_SIZE);
2930 found = 1;
2931 break;
2933 addr += TARGET_PAGE_SIZE;
2934 current_addr = (saved_addr + addr) % last_ram_offset;
2937 return found;
2940 static uint64_t bytes_transferred = 0;
2942 static ram_addr_t ram_save_remaining(void)
2944 ram_addr_t addr;
2945 ram_addr_t count = 0;
2947 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
2948 if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
2949 count++;
2952 return count;
2955 uint64_t ram_bytes_remaining(void)
2957 return ram_save_remaining() * TARGET_PAGE_SIZE;
2960 uint64_t ram_bytes_transferred(void)
2962 return bytes_transferred;
2965 uint64_t ram_bytes_total(void)
2967 return last_ram_offset;
2970 static int ram_save_live(QEMUFile *f, int stage, void *opaque)
2972 ram_addr_t addr;
2973 uint64_t bytes_transferred_last;
2974 double bwidth = 0;
2975 uint64_t expected_time = 0;
2977 if (cpu_physical_sync_dirty_bitmap(0, TARGET_PHYS_ADDR_MAX) != 0) {
2978 qemu_file_set_error(f);
2979 return 0;
2982 if (stage == 1) {
2983 /* Make sure all dirty bits are set */
2984 for (addr = 0; addr < last_ram_offset; addr += TARGET_PAGE_SIZE) {
2985 if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
2986 cpu_physical_memory_set_dirty(addr);
2989 /* Enable dirty memory tracking */
2990 cpu_physical_memory_set_dirty_tracking(1);
2992 qemu_put_be64(f, last_ram_offset | RAM_SAVE_FLAG_MEM_SIZE);
2995 bytes_transferred_last = bytes_transferred;
2996 bwidth = get_clock();
2998 while (!qemu_file_rate_limit(f)) {
2999 int ret;
3001 ret = ram_save_block(f);
3002 bytes_transferred += ret * TARGET_PAGE_SIZE;
3003 if (ret == 0) /* no more blocks */
3004 break;
3007 bwidth = get_clock() - bwidth;
3008 bwidth = (bytes_transferred - bytes_transferred_last) / bwidth;
3010 /* if we haven't transferred anything this round, force expected_time to a
3011 * a very high value, but without crashing */
3012 if (bwidth == 0)
3013 bwidth = 0.000001;
3015 /* try transferring iterative blocks of memory */
3017 if (stage == 3) {
3019 /* flush all remaining blocks regardless of rate limiting */
3020 while (ram_save_block(f) != 0) {
3021 bytes_transferred += TARGET_PAGE_SIZE;
3023 cpu_physical_memory_set_dirty_tracking(0);
3026 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3028 expected_time = ram_save_remaining() * TARGET_PAGE_SIZE / bwidth;
3030 return (stage == 2) && (expected_time <= migrate_max_downtime());
3033 static int ram_load_dead(QEMUFile *f, void *opaque)
3035 RamDecompressState s1, *s = &s1;
3036 uint8_t buf[10];
3037 ram_addr_t i;
3039 if (ram_decompress_open(s, f) < 0)
3040 return -EINVAL;
3041 for(i = 0; i < last_ram_offset; i+= BDRV_HASH_BLOCK_SIZE) {
3042 if (ram_decompress_buf(s, buf, 1) < 0) {
3043 fprintf(stderr, "Error while reading ram block header\n");
3044 goto error;
3046 if (buf[0] == 0) {
3047 if (ram_decompress_buf(s, qemu_get_ram_ptr(i),
3048 BDRV_HASH_BLOCK_SIZE) < 0) {
3049 fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3050 goto error;
3052 } else {
3053 error:
3054 printf("Error block header\n");
3055 return -EINVAL;
3058 ram_decompress_close(s);
3060 return 0;
3063 static int ram_load(QEMUFile *f, void *opaque, int version_id)
3065 ram_addr_t addr;
3066 int flags;
3068 if (version_id == 1)
3069 return ram_load_v1(f, opaque);
3071 if (version_id == 2) {
3072 if (qemu_get_be32(f) != last_ram_offset)
3073 return -EINVAL;
3074 return ram_load_dead(f, opaque);
3077 if (version_id != 3)
3078 return -EINVAL;
3080 do {
3081 addr = qemu_get_be64(f);
3083 flags = addr & ~TARGET_PAGE_MASK;
3084 addr &= TARGET_PAGE_MASK;
3086 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3087 if (addr != last_ram_offset)
3088 return -EINVAL;
3091 if (flags & RAM_SAVE_FLAG_FULL) {
3092 if (ram_load_dead(f, opaque) < 0)
3093 return -EINVAL;
3096 if (flags & RAM_SAVE_FLAG_COMPRESS) {
3097 uint8_t ch = qemu_get_byte(f);
3098 memset(qemu_get_ram_ptr(addr), ch, TARGET_PAGE_SIZE);
3099 #ifndef _WIN32
3100 if (ch == 0 &&
3101 (!kvm_enabled() || kvm_has_sync_mmu())) {
3102 madvise(qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE, MADV_DONTNEED);
3104 #endif
3105 } else if (flags & RAM_SAVE_FLAG_PAGE)
3106 qemu_get_buffer(f, qemu_get_ram_ptr(addr), TARGET_PAGE_SIZE);
3107 } while (!(flags & RAM_SAVE_FLAG_EOS));
3109 return 0;
3112 void qemu_service_io(void)
3114 qemu_notify_event();
3117 /***********************************************************/
3118 /* bottom halves (can be seen as timers which expire ASAP) */
3120 struct QEMUBH {
3121 QEMUBHFunc *cb;
3122 void *opaque;
3123 int scheduled;
3124 int idle;
3125 int deleted;
3126 QEMUBH *next;
3129 static QEMUBH *first_bh = NULL;
3131 QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3133 QEMUBH *bh;
3134 bh = qemu_mallocz(sizeof(QEMUBH));
3135 bh->cb = cb;
3136 bh->opaque = opaque;
3137 bh->next = first_bh;
3138 first_bh = bh;
3139 return bh;
3142 int qemu_bh_poll(void)
3144 QEMUBH *bh, **bhp;
3145 int ret;
3147 ret = 0;
3148 for (bh = first_bh; bh; bh = bh->next) {
3149 if (!bh->deleted && bh->scheduled) {
3150 bh->scheduled = 0;
3151 if (!bh->idle)
3152 ret = 1;
3153 bh->idle = 0;
3154 bh->cb(bh->opaque);
3158 /* remove deleted bhs */
3159 bhp = &first_bh;
3160 while (*bhp) {
3161 bh = *bhp;
3162 if (bh->deleted) {
3163 *bhp = bh->next;
3164 qemu_free(bh);
3165 } else
3166 bhp = &bh->next;
3169 return ret;
3172 void qemu_bh_schedule_idle(QEMUBH *bh)
3174 if (bh->scheduled)
3175 return;
3176 bh->scheduled = 1;
3177 bh->idle = 1;
3180 void qemu_bh_schedule(QEMUBH *bh)
3182 if (bh->scheduled)
3183 return;
3184 bh->scheduled = 1;
3185 bh->idle = 0;
3186 /* stop the currently executing CPU to execute the BH ASAP */
3187 qemu_notify_event();
3190 void qemu_bh_cancel(QEMUBH *bh)
3192 bh->scheduled = 0;
3195 void qemu_bh_delete(QEMUBH *bh)
3197 bh->scheduled = 0;
3198 bh->deleted = 1;
3201 static void qemu_bh_update_timeout(int *timeout)
3203 QEMUBH *bh;
3205 for (bh = first_bh; bh; bh = bh->next) {
3206 if (!bh->deleted && bh->scheduled) {
3207 if (bh->idle) {
3208 /* idle bottom halves will be polled at least
3209 * every 10ms */
3210 *timeout = MIN(10, *timeout);
3211 } else {
3212 /* non-idle bottom halves will be executed
3213 * immediately */
3214 *timeout = 0;
3215 break;
3221 /***********************************************************/
3222 /* machine registration */
3224 static QEMUMachine *first_machine = NULL;
3225 QEMUMachine *current_machine = NULL;
3227 int qemu_register_machine(QEMUMachine *m)
3229 QEMUMachine **pm;
3230 pm = &first_machine;
3231 while (*pm != NULL)
3232 pm = &(*pm)->next;
3233 m->next = NULL;
3234 *pm = m;
3235 return 0;
3238 static QEMUMachine *find_machine(const char *name)
3240 QEMUMachine *m;
3242 for(m = first_machine; m != NULL; m = m->next) {
3243 if (!strcmp(m->name, name))
3244 return m;
3245 if (m->alias && !strcmp(m->alias, name))
3246 return m;
3248 return NULL;
3251 static QEMUMachine *find_default_machine(void)
3253 QEMUMachine *m;
3255 for(m = first_machine; m != NULL; m = m->next) {
3256 if (m->is_default) {
3257 return m;
3260 return NULL;
3263 /***********************************************************/
3264 /* main execution loop */
3266 static void gui_update(void *opaque)
3268 uint64_t interval = GUI_REFRESH_INTERVAL;
3269 DisplayState *ds = opaque;
3270 DisplayChangeListener *dcl = ds->listeners;
3272 dpy_refresh(ds);
3274 while (dcl != NULL) {
3275 if (dcl->gui_timer_interval &&
3276 dcl->gui_timer_interval < interval)
3277 interval = dcl->gui_timer_interval;
3278 dcl = dcl->next;
3280 qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3283 static void nographic_update(void *opaque)
3285 uint64_t interval = GUI_REFRESH_INTERVAL;
3287 qemu_mod_timer(nographic_timer, interval + qemu_get_clock(rt_clock));
3290 struct vm_change_state_entry {
3291 VMChangeStateHandler *cb;
3292 void *opaque;
3293 LIST_ENTRY (vm_change_state_entry) entries;
3296 static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3298 VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3299 void *opaque)
3301 VMChangeStateEntry *e;
3303 e = qemu_mallocz(sizeof (*e));
3305 e->cb = cb;
3306 e->opaque = opaque;
3307 LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3308 return e;
3311 void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3313 LIST_REMOVE (e, entries);
3314 qemu_free (e);
3317 static void vm_state_notify(int running, int reason)
3319 VMChangeStateEntry *e;
3321 for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3322 e->cb(e->opaque, running, reason);
3326 static void resume_all_vcpus(void);
3327 static void pause_all_vcpus(void);
3329 void vm_start(void)
3331 if (!vm_running) {
3332 cpu_enable_ticks();
3333 vm_running = 1;
3334 vm_state_notify(1, 0);
3335 qemu_rearm_alarm_timer(alarm_timer);
3336 resume_all_vcpus();
3340 /* reset/shutdown handler */
3342 typedef struct QEMUResetEntry {
3343 TAILQ_ENTRY(QEMUResetEntry) entry;
3344 QEMUResetHandler *func;
3345 void *opaque;
3346 } QEMUResetEntry;
3348 static TAILQ_HEAD(reset_handlers, QEMUResetEntry) reset_handlers =
3349 TAILQ_HEAD_INITIALIZER(reset_handlers);
3350 static int reset_requested;
3351 static int shutdown_requested;
3352 static int powerdown_requested;
3353 static int debug_requested;
3354 static int vmstop_requested;
3356 int qemu_shutdown_requested(void)
3358 int r = shutdown_requested;
3359 shutdown_requested = 0;
3360 return r;
3363 int qemu_reset_requested(void)
3365 int r = reset_requested;
3366 reset_requested = 0;
3367 return r;
3370 int qemu_powerdown_requested(void)
3372 int r = powerdown_requested;
3373 powerdown_requested = 0;
3374 return r;
3377 static int qemu_debug_requested(void)
3379 int r = debug_requested;
3380 debug_requested = 0;
3381 return r;
3384 static int qemu_vmstop_requested(void)
3386 int r = vmstop_requested;
3387 vmstop_requested = 0;
3388 return r;
3391 static void do_vm_stop(int reason)
3393 if (vm_running) {
3394 cpu_disable_ticks();
3395 vm_running = 0;
3396 pause_all_vcpus();
3397 vm_state_notify(0, reason);
3401 void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3403 QEMUResetEntry *re = qemu_mallocz(sizeof(QEMUResetEntry));
3405 re->func = func;
3406 re->opaque = opaque;
3407 TAILQ_INSERT_TAIL(&reset_handlers, re, entry);
3410 void qemu_unregister_reset(QEMUResetHandler *func, void *opaque)
3412 QEMUResetEntry *re;
3414 TAILQ_FOREACH(re, &reset_handlers, entry) {
3415 if (re->func == func && re->opaque == opaque) {
3416 TAILQ_REMOVE(&reset_handlers, re, entry);
3417 qemu_free(re);
3418 return;
3423 void qemu_system_reset(void)
3425 QEMUResetEntry *re, *nre;
3427 /* reset all devices */
3428 TAILQ_FOREACH_SAFE(re, &reset_handlers, entry, nre) {
3429 re->func(re->opaque);
3433 void qemu_system_reset_request(void)
3435 if (no_reboot) {
3436 shutdown_requested = 1;
3437 } else {
3438 reset_requested = 1;
3440 qemu_notify_event();
3443 void qemu_system_shutdown_request(void)
3445 shutdown_requested = 1;
3446 qemu_notify_event();
3449 void qemu_system_powerdown_request(void)
3451 powerdown_requested = 1;
3452 qemu_notify_event();
3455 #ifdef CONFIG_IOTHREAD
3456 static void qemu_system_vmstop_request(int reason)
3458 vmstop_requested = reason;
3459 qemu_notify_event();
3461 #endif
3463 #ifndef _WIN32
3464 static int io_thread_fd = -1;
3466 static void qemu_event_increment(void)
3468 static const char byte = 0;
3470 if (io_thread_fd == -1)
3471 return;
3473 write(io_thread_fd, &byte, sizeof(byte));
3476 static void qemu_event_read(void *opaque)
3478 int fd = (unsigned long)opaque;
3479 ssize_t len;
3481 /* Drain the notify pipe */
3482 do {
3483 char buffer[512];
3484 len = read(fd, buffer, sizeof(buffer));
3485 } while ((len == -1 && errno == EINTR) || len > 0);
3488 static int qemu_event_init(void)
3490 int err;
3491 int fds[2];
3493 err = pipe(fds);
3494 if (err == -1)
3495 return -errno;
3497 err = fcntl_setfl(fds[0], O_NONBLOCK);
3498 if (err < 0)
3499 goto fail;
3501 err = fcntl_setfl(fds[1], O_NONBLOCK);
3502 if (err < 0)
3503 goto fail;
3505 qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
3506 (void *)(unsigned long)fds[0]);
3508 io_thread_fd = fds[1];
3509 return 0;
3511 fail:
3512 close(fds[0]);
3513 close(fds[1]);
3514 return err;
3516 #else
3517 HANDLE qemu_event_handle;
3519 static void dummy_event_handler(void *opaque)
3523 static int qemu_event_init(void)
3525 qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
3526 if (!qemu_event_handle) {
3527 perror("Failed CreateEvent");
3528 return -1;
3530 qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
3531 return 0;
3534 static void qemu_event_increment(void)
3536 SetEvent(qemu_event_handle);
3538 #endif
3540 static int cpu_can_run(CPUState *env)
3542 if (env->stop)
3543 return 0;
3544 if (env->stopped)
3545 return 0;
3546 return 1;
3549 #ifndef CONFIG_IOTHREAD
3550 static int qemu_init_main_loop(void)
3552 return qemu_event_init();
3555 void qemu_init_vcpu(void *_env)
3557 CPUState *env = _env;
3559 if (kvm_enabled())
3560 kvm_init_vcpu(env);
3561 env->nr_cores = smp_cores;
3562 env->nr_threads = smp_threads;
3563 return;
3566 int qemu_cpu_self(void *env)
3568 return 1;
3571 static void resume_all_vcpus(void)
3575 static void pause_all_vcpus(void)
3579 void qemu_cpu_kick(void *env)
3581 return;
3584 void qemu_notify_event(void)
3586 CPUState *env = cpu_single_env;
3588 if (env) {
3589 cpu_exit(env);
3593 #define qemu_mutex_lock_iothread() do { } while (0)
3594 #define qemu_mutex_unlock_iothread() do { } while (0)
3596 void vm_stop(int reason)
3598 do_vm_stop(reason);
3601 #else /* CONFIG_IOTHREAD */
3603 #include "qemu-thread.h"
3605 QemuMutex qemu_global_mutex;
3606 static QemuMutex qemu_fair_mutex;
3608 static QemuThread io_thread;
3610 static QemuThread *tcg_cpu_thread;
3611 static QemuCond *tcg_halt_cond;
3613 static int qemu_system_ready;
3614 /* cpu creation */
3615 static QemuCond qemu_cpu_cond;
3616 /* system init */
3617 static QemuCond qemu_system_cond;
3618 static QemuCond qemu_pause_cond;
3620 static void block_io_signals(void);
3621 static void unblock_io_signals(void);
3622 static int tcg_has_work(void);
3624 static int qemu_init_main_loop(void)
3626 int ret;
3628 ret = qemu_event_init();
3629 if (ret)
3630 return ret;
3632 qemu_cond_init(&qemu_pause_cond);
3633 qemu_mutex_init(&qemu_fair_mutex);
3634 qemu_mutex_init(&qemu_global_mutex);
3635 qemu_mutex_lock(&qemu_global_mutex);
3637 unblock_io_signals();
3638 qemu_thread_self(&io_thread);
3640 return 0;
3643 static void qemu_wait_io_event(CPUState *env)
3645 while (!tcg_has_work())
3646 qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
3648 qemu_mutex_unlock(&qemu_global_mutex);
3651 * Users of qemu_global_mutex can be starved, having no chance
3652 * to acquire it since this path will get to it first.
3653 * So use another lock to provide fairness.
3655 qemu_mutex_lock(&qemu_fair_mutex);
3656 qemu_mutex_unlock(&qemu_fair_mutex);
3658 qemu_mutex_lock(&qemu_global_mutex);
3659 if (env->stop) {
3660 env->stop = 0;
3661 env->stopped = 1;
3662 qemu_cond_signal(&qemu_pause_cond);
3666 static int qemu_cpu_exec(CPUState *env);
3668 static void *kvm_cpu_thread_fn(void *arg)
3670 CPUState *env = arg;
3672 block_io_signals();
3673 qemu_thread_self(env->thread);
3674 kvm_init_vcpu(env);
3676 /* signal CPU creation */
3677 qemu_mutex_lock(&qemu_global_mutex);
3678 env->created = 1;
3679 qemu_cond_signal(&qemu_cpu_cond);
3681 /* and wait for machine initialization */
3682 while (!qemu_system_ready)
3683 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3685 while (1) {
3686 if (cpu_can_run(env))
3687 qemu_cpu_exec(env);
3688 qemu_wait_io_event(env);
3691 return NULL;
3694 static void tcg_cpu_exec(void);
3696 static void *tcg_cpu_thread_fn(void *arg)
3698 CPUState *env = arg;
3700 block_io_signals();
3701 qemu_thread_self(env->thread);
3703 /* signal CPU creation */
3704 qemu_mutex_lock(&qemu_global_mutex);
3705 for (env = first_cpu; env != NULL; env = env->next_cpu)
3706 env->created = 1;
3707 qemu_cond_signal(&qemu_cpu_cond);
3709 /* and wait for machine initialization */
3710 while (!qemu_system_ready)
3711 qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
3713 while (1) {
3714 tcg_cpu_exec();
3715 qemu_wait_io_event(cur_cpu);
3718 return NULL;
3721 void qemu_cpu_kick(void *_env)
3723 CPUState *env = _env;
3724 qemu_cond_broadcast(env->halt_cond);
3725 if (kvm_enabled())
3726 qemu_thread_signal(env->thread, SIGUSR1);
3729 int qemu_cpu_self(void *env)
3731 return (cpu_single_env != NULL);
3734 static void cpu_signal(int sig)
3736 if (cpu_single_env)
3737 cpu_exit(cpu_single_env);
3740 static void block_io_signals(void)
3742 sigset_t set;
3743 struct sigaction sigact;
3745 sigemptyset(&set);
3746 sigaddset(&set, SIGUSR2);
3747 sigaddset(&set, SIGIO);
3748 sigaddset(&set, SIGALRM);
3749 pthread_sigmask(SIG_BLOCK, &set, NULL);
3751 sigemptyset(&set);
3752 sigaddset(&set, SIGUSR1);
3753 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3755 memset(&sigact, 0, sizeof(sigact));
3756 sigact.sa_handler = cpu_signal;
3757 sigaction(SIGUSR1, &sigact, NULL);
3760 static void unblock_io_signals(void)
3762 sigset_t set;
3764 sigemptyset(&set);
3765 sigaddset(&set, SIGUSR2);
3766 sigaddset(&set, SIGIO);
3767 sigaddset(&set, SIGALRM);
3768 pthread_sigmask(SIG_UNBLOCK, &set, NULL);
3770 sigemptyset(&set);
3771 sigaddset(&set, SIGUSR1);
3772 pthread_sigmask(SIG_BLOCK, &set, NULL);
3775 static void qemu_signal_lock(unsigned int msecs)
3777 qemu_mutex_lock(&qemu_fair_mutex);
3779 while (qemu_mutex_trylock(&qemu_global_mutex)) {
3780 qemu_thread_signal(tcg_cpu_thread, SIGUSR1);
3781 if (!qemu_mutex_timedlock(&qemu_global_mutex, msecs))
3782 break;
3784 qemu_mutex_unlock(&qemu_fair_mutex);
3787 static void qemu_mutex_lock_iothread(void)
3789 if (kvm_enabled()) {
3790 qemu_mutex_lock(&qemu_fair_mutex);
3791 qemu_mutex_lock(&qemu_global_mutex);
3792 qemu_mutex_unlock(&qemu_fair_mutex);
3793 } else
3794 qemu_signal_lock(100);
3797 static void qemu_mutex_unlock_iothread(void)
3799 qemu_mutex_unlock(&qemu_global_mutex);
3802 static int all_vcpus_paused(void)
3804 CPUState *penv = first_cpu;
3806 while (penv) {
3807 if (!penv->stopped)
3808 return 0;
3809 penv = (CPUState *)penv->next_cpu;
3812 return 1;
3815 static void pause_all_vcpus(void)
3817 CPUState *penv = first_cpu;
3819 while (penv) {
3820 penv->stop = 1;
3821 qemu_thread_signal(penv->thread, SIGUSR1);
3822 qemu_cpu_kick(penv);
3823 penv = (CPUState *)penv->next_cpu;
3826 while (!all_vcpus_paused()) {
3827 qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
3828 penv = first_cpu;
3829 while (penv) {
3830 qemu_thread_signal(penv->thread, SIGUSR1);
3831 penv = (CPUState *)penv->next_cpu;
3836 static void resume_all_vcpus(void)
3838 CPUState *penv = first_cpu;
3840 while (penv) {
3841 penv->stop = 0;
3842 penv->stopped = 0;
3843 qemu_thread_signal(penv->thread, SIGUSR1);
3844 qemu_cpu_kick(penv);
3845 penv = (CPUState *)penv->next_cpu;
3849 static void tcg_init_vcpu(void *_env)
3851 CPUState *env = _env;
3852 /* share a single thread for all cpus with TCG */
3853 if (!tcg_cpu_thread) {
3854 env->thread = qemu_mallocz(sizeof(QemuThread));
3855 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3856 qemu_cond_init(env->halt_cond);
3857 qemu_thread_create(env->thread, tcg_cpu_thread_fn, env);
3858 while (env->created == 0)
3859 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3860 tcg_cpu_thread = env->thread;
3861 tcg_halt_cond = env->halt_cond;
3862 } else {
3863 env->thread = tcg_cpu_thread;
3864 env->halt_cond = tcg_halt_cond;
3868 static void kvm_start_vcpu(CPUState *env)
3870 env->thread = qemu_mallocz(sizeof(QemuThread));
3871 env->halt_cond = qemu_mallocz(sizeof(QemuCond));
3872 qemu_cond_init(env->halt_cond);
3873 qemu_thread_create(env->thread, kvm_cpu_thread_fn, env);
3874 while (env->created == 0)
3875 qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
3878 void qemu_init_vcpu(void *_env)
3880 CPUState *env = _env;
3882 if (kvm_enabled())
3883 kvm_start_vcpu(env);
3884 else
3885 tcg_init_vcpu(env);
3886 env->nr_cores = smp_cores;
3887 env->nr_threads = smp_threads;
3890 void qemu_notify_event(void)
3892 qemu_event_increment();
3895 void vm_stop(int reason)
3897 QemuThread me;
3898 qemu_thread_self(&me);
3900 if (!qemu_thread_equal(&me, &io_thread)) {
3901 qemu_system_vmstop_request(reason);
3903 * FIXME: should not return to device code in case
3904 * vm_stop() has been requested.
3906 if (cpu_single_env) {
3907 cpu_exit(cpu_single_env);
3908 cpu_single_env->stop = 1;
3910 return;
3912 do_vm_stop(reason);
3915 #endif
3918 #ifdef _WIN32
3919 static void host_main_loop_wait(int *timeout)
3921 int ret, ret2, i;
3922 PollingEntry *pe;
3925 /* XXX: need to suppress polling by better using win32 events */
3926 ret = 0;
3927 for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3928 ret |= pe->func(pe->opaque);
3930 if (ret == 0) {
3931 int err;
3932 WaitObjects *w = &wait_objects;
3934 ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3935 if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3936 if (w->func[ret - WAIT_OBJECT_0])
3937 w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3939 /* Check for additional signaled events */
3940 for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3942 /* Check if event is signaled */
3943 ret2 = WaitForSingleObject(w->events[i], 0);
3944 if(ret2 == WAIT_OBJECT_0) {
3945 if (w->func[i])
3946 w->func[i](w->opaque[i]);
3947 } else if (ret2 == WAIT_TIMEOUT) {
3948 } else {
3949 err = GetLastError();
3950 fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3953 } else if (ret == WAIT_TIMEOUT) {
3954 } else {
3955 err = GetLastError();
3956 fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3960 *timeout = 0;
3962 #else
3963 static void host_main_loop_wait(int *timeout)
3966 #endif
3968 void main_loop_wait(int timeout)
3970 IOHandlerRecord *ioh;
3971 fd_set rfds, wfds, xfds;
3972 int ret, nfds;
3973 struct timeval tv;
3975 qemu_bh_update_timeout(&timeout);
3977 host_main_loop_wait(&timeout);
3979 /* poll any events */
3980 /* XXX: separate device handlers from system ones */
3981 nfds = -1;
3982 FD_ZERO(&rfds);
3983 FD_ZERO(&wfds);
3984 FD_ZERO(&xfds);
3985 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3986 if (ioh->deleted)
3987 continue;
3988 if (ioh->fd_read &&
3989 (!ioh->fd_read_poll ||
3990 ioh->fd_read_poll(ioh->opaque) != 0)) {
3991 FD_SET(ioh->fd, &rfds);
3992 if (ioh->fd > nfds)
3993 nfds = ioh->fd;
3995 if (ioh->fd_write) {
3996 FD_SET(ioh->fd, &wfds);
3997 if (ioh->fd > nfds)
3998 nfds = ioh->fd;
4002 tv.tv_sec = timeout / 1000;
4003 tv.tv_usec = (timeout % 1000) * 1000;
4005 slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
4007 qemu_mutex_unlock_iothread();
4008 ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
4009 qemu_mutex_lock_iothread();
4010 if (ret > 0) {
4011 IOHandlerRecord **pioh;
4013 for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4014 if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
4015 ioh->fd_read(ioh->opaque);
4017 if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
4018 ioh->fd_write(ioh->opaque);
4022 /* remove deleted IO handlers */
4023 pioh = &first_io_handler;
4024 while (*pioh) {
4025 ioh = *pioh;
4026 if (ioh->deleted) {
4027 *pioh = ioh->next;
4028 qemu_free(ioh);
4029 } else
4030 pioh = &ioh->next;
4034 slirp_select_poll(&rfds, &wfds, &xfds, (ret < 0));
4036 /* rearm timer, if not periodic */
4037 if (alarm_timer->flags & ALARM_FLAG_EXPIRED) {
4038 alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
4039 qemu_rearm_alarm_timer(alarm_timer);
4042 /* vm time timers */
4043 if (vm_running) {
4044 if (!cur_cpu || likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
4045 qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
4046 qemu_get_clock(vm_clock));
4049 /* real time timers */
4050 qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
4051 qemu_get_clock(rt_clock));
4053 /* Check bottom-halves last in case any of the earlier events triggered
4054 them. */
4055 qemu_bh_poll();
4059 static int qemu_cpu_exec(CPUState *env)
4061 int ret;
4062 #ifdef CONFIG_PROFILER
4063 int64_t ti;
4064 #endif
4066 #ifdef CONFIG_PROFILER
4067 ti = profile_getclock();
4068 #endif
4069 if (use_icount) {
4070 int64_t count;
4071 int decr;
4072 qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
4073 env->icount_decr.u16.low = 0;
4074 env->icount_extra = 0;
4075 count = qemu_next_deadline();
4076 count = (count + (1 << icount_time_shift) - 1)
4077 >> icount_time_shift;
4078 qemu_icount += count;
4079 decr = (count > 0xffff) ? 0xffff : count;
4080 count -= decr;
4081 env->icount_decr.u16.low = decr;
4082 env->icount_extra = count;
4084 ret = cpu_exec(env);
4085 #ifdef CONFIG_PROFILER
4086 qemu_time += profile_getclock() - ti;
4087 #endif
4088 if (use_icount) {
4089 /* Fold pending instructions back into the
4090 instruction counter, and clear the interrupt flag. */
4091 qemu_icount -= (env->icount_decr.u16.low
4092 + env->icount_extra);
4093 env->icount_decr.u32 = 0;
4094 env->icount_extra = 0;
4096 return ret;
4099 static void tcg_cpu_exec(void)
4101 int ret = 0;
4103 if (next_cpu == NULL)
4104 next_cpu = first_cpu;
4105 for (; next_cpu != NULL; next_cpu = next_cpu->next_cpu) {
4106 CPUState *env = cur_cpu = next_cpu;
4108 if (!vm_running)
4109 break;
4110 if (timer_alarm_pending) {
4111 timer_alarm_pending = 0;
4112 break;
4114 if (cpu_can_run(env))
4115 ret = qemu_cpu_exec(env);
4116 if (ret == EXCP_DEBUG) {
4117 gdb_set_stop_cpu(env);
4118 debug_requested = 1;
4119 break;
4124 static int cpu_has_work(CPUState *env)
4126 if (env->stop)
4127 return 1;
4128 if (env->stopped)
4129 return 0;
4130 if (!env->halted)
4131 return 1;
4132 if (qemu_cpu_has_work(env))
4133 return 1;
4134 return 0;
4137 static int tcg_has_work(void)
4139 CPUState *env;
4141 for (env = first_cpu; env != NULL; env = env->next_cpu)
4142 if (cpu_has_work(env))
4143 return 1;
4144 return 0;
4147 static int qemu_calculate_timeout(void)
4149 #ifndef CONFIG_IOTHREAD
4150 int timeout;
4152 if (!vm_running)
4153 timeout = 5000;
4154 else if (tcg_has_work())
4155 timeout = 0;
4156 else if (!use_icount)
4157 timeout = 5000;
4158 else {
4159 /* XXX: use timeout computed from timers */
4160 int64_t add;
4161 int64_t delta;
4162 /* Advance virtual time to the next event. */
4163 if (use_icount == 1) {
4164 /* When not using an adaptive execution frequency
4165 we tend to get badly out of sync with real time,
4166 so just delay for a reasonable amount of time. */
4167 delta = 0;
4168 } else {
4169 delta = cpu_get_icount() - cpu_get_clock();
4171 if (delta > 0) {
4172 /* If virtual time is ahead of real time then just
4173 wait for IO. */
4174 timeout = (delta / 1000000) + 1;
4175 } else {
4176 /* Wait for either IO to occur or the next
4177 timer event. */
4178 add = qemu_next_deadline();
4179 /* We advance the timer before checking for IO.
4180 Limit the amount we advance so that early IO
4181 activity won't get the guest too far ahead. */
4182 if (add > 10000000)
4183 add = 10000000;
4184 delta += add;
4185 add = (add + (1 << icount_time_shift) - 1)
4186 >> icount_time_shift;
4187 qemu_icount += add;
4188 timeout = delta / 1000000;
4189 if (timeout < 0)
4190 timeout = 0;
4194 return timeout;
4195 #else /* CONFIG_IOTHREAD */
4196 return 1000;
4197 #endif
4200 static int vm_can_run(void)
4202 if (powerdown_requested)
4203 return 0;
4204 if (reset_requested)
4205 return 0;
4206 if (shutdown_requested)
4207 return 0;
4208 if (debug_requested)
4209 return 0;
4210 return 1;
4213 qemu_irq qemu_system_powerdown;
4215 static void main_loop(void)
4217 int r;
4219 #ifdef CONFIG_IOTHREAD
4220 qemu_system_ready = 1;
4221 qemu_cond_broadcast(&qemu_system_cond);
4222 #endif
4224 for (;;) {
4225 do {
4226 #ifdef CONFIG_PROFILER
4227 int64_t ti;
4228 #endif
4229 #ifndef CONFIG_IOTHREAD
4230 tcg_cpu_exec();
4231 #endif
4232 #ifdef CONFIG_PROFILER
4233 ti = profile_getclock();
4234 #endif
4235 main_loop_wait(qemu_calculate_timeout());
4236 #ifdef CONFIG_PROFILER
4237 dev_time += profile_getclock() - ti;
4238 #endif
4239 } while (vm_can_run());
4241 if (qemu_debug_requested())
4242 vm_stop(EXCP_DEBUG);
4243 if (qemu_shutdown_requested()) {
4244 if (no_shutdown) {
4245 vm_stop(0);
4246 no_shutdown = 0;
4247 } else
4248 break;
4250 if (qemu_reset_requested()) {
4251 pause_all_vcpus();
4252 qemu_system_reset();
4253 resume_all_vcpus();
4255 if (qemu_powerdown_requested()) {
4256 qemu_irq_raise(qemu_system_powerdown);
4258 if ((r = qemu_vmstop_requested()))
4259 vm_stop(r);
4261 pause_all_vcpus();
4264 static void version(void)
4266 printf("QEMU PC emulator version " QEMU_VERSION QEMU_PKGVERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n");
4269 static void help(int exitcode)
4271 version();
4272 printf("usage: %s [options] [disk_image]\n"
4273 "\n"
4274 "'disk_image' is a raw hard image image for IDE hard disk 0\n"
4275 "\n"
4276 #define DEF(option, opt_arg, opt_enum, opt_help) \
4277 opt_help
4278 #define DEFHEADING(text) stringify(text) "\n"
4279 #include "qemu-options.h"
4280 #undef DEF
4281 #undef DEFHEADING
4282 #undef GEN_DOCS
4283 "\n"
4284 "During emulation, the following keys are useful:\n"
4285 "ctrl-alt-f toggle full screen\n"
4286 "ctrl-alt-n switch to virtual console 'n'\n"
4287 "ctrl-alt toggle mouse and keyboard grab\n"
4288 "\n"
4289 "When using -nographic, press 'ctrl-a h' to get some help.\n"
4291 "qemu",
4292 DEFAULT_RAM_SIZE,
4293 #ifndef _WIN32
4294 DEFAULT_NETWORK_SCRIPT,
4295 DEFAULT_NETWORK_DOWN_SCRIPT,
4296 #endif
4297 DEFAULT_GDBSTUB_PORT,
4298 "/tmp/qemu.log");
4299 exit(exitcode);
4302 #define HAS_ARG 0x0001
4304 enum {
4305 #define DEF(option, opt_arg, opt_enum, opt_help) \
4306 opt_enum,
4307 #define DEFHEADING(text)
4308 #include "qemu-options.h"
4309 #undef DEF
4310 #undef DEFHEADING
4311 #undef GEN_DOCS
4314 typedef struct QEMUOption {
4315 const char *name;
4316 int flags;
4317 int index;
4318 } QEMUOption;
4320 static const QEMUOption qemu_options[] = {
4321 { "h", 0, QEMU_OPTION_h },
4322 #define DEF(option, opt_arg, opt_enum, opt_help) \
4323 { option, opt_arg, opt_enum },
4324 #define DEFHEADING(text)
4325 #include "qemu-options.h"
4326 #undef DEF
4327 #undef DEFHEADING
4328 #undef GEN_DOCS
4329 { NULL },
4332 #ifdef HAS_AUDIO
4333 struct soundhw soundhw[] = {
4334 #ifdef HAS_AUDIO_CHOICE
4335 #if defined(TARGET_I386) || defined(TARGET_MIPS)
4337 "pcspk",
4338 "PC speaker",
4341 { .init_isa = pcspk_audio_init }
4343 #endif
4345 #ifdef CONFIG_SB16
4347 "sb16",
4348 "Creative Sound Blaster 16",
4351 { .init_isa = SB16_init }
4353 #endif
4355 #ifdef CONFIG_CS4231A
4357 "cs4231a",
4358 "CS4231A",
4361 { .init_isa = cs4231a_init }
4363 #endif
4365 #ifdef CONFIG_ADLIB
4367 "adlib",
4368 #ifdef HAS_YMF262
4369 "Yamaha YMF262 (OPL3)",
4370 #else
4371 "Yamaha YM3812 (OPL2)",
4372 #endif
4375 { .init_isa = Adlib_init }
4377 #endif
4379 #ifdef CONFIG_GUS
4381 "gus",
4382 "Gravis Ultrasound GF1",
4385 { .init_isa = GUS_init }
4387 #endif
4389 #ifdef CONFIG_AC97
4391 "ac97",
4392 "Intel 82801AA AC97 Audio",
4395 { .init_pci = ac97_init }
4397 #endif
4399 #ifdef CONFIG_ES1370
4401 "es1370",
4402 "ENSONIQ AudioPCI ES1370",
4405 { .init_pci = es1370_init }
4407 #endif
4409 #endif /* HAS_AUDIO_CHOICE */
4411 { NULL, NULL, 0, 0, { NULL } }
4414 static void select_soundhw (const char *optarg)
4416 struct soundhw *c;
4418 if (*optarg == '?') {
4419 show_valid_cards:
4421 printf ("Valid sound card names (comma separated):\n");
4422 for (c = soundhw; c->name; ++c) {
4423 printf ("%-11s %s\n", c->name, c->descr);
4425 printf ("\n-soundhw all will enable all of the above\n");
4426 exit (*optarg != '?');
4428 else {
4429 size_t l;
4430 const char *p;
4431 char *e;
4432 int bad_card = 0;
4434 if (!strcmp (optarg, "all")) {
4435 for (c = soundhw; c->name; ++c) {
4436 c->enabled = 1;
4438 return;
4441 p = optarg;
4442 while (*p) {
4443 e = strchr (p, ',');
4444 l = !e ? strlen (p) : (size_t) (e - p);
4446 for (c = soundhw; c->name; ++c) {
4447 if (!strncmp (c->name, p, l) && !c->name[l]) {
4448 c->enabled = 1;
4449 break;
4453 if (!c->name) {
4454 if (l > 80) {
4455 fprintf (stderr,
4456 "Unknown sound card name (too big to show)\n");
4458 else {
4459 fprintf (stderr, "Unknown sound card name `%.*s'\n",
4460 (int) l, p);
4462 bad_card = 1;
4464 p += l + (e != NULL);
4467 if (bad_card)
4468 goto show_valid_cards;
4471 #endif
4473 static void select_vgahw (const char *p)
4475 const char *opts;
4477 vga_interface_type = VGA_NONE;
4478 if (strstart(p, "std", &opts)) {
4479 vga_interface_type = VGA_STD;
4480 } else if (strstart(p, "cirrus", &opts)) {
4481 vga_interface_type = VGA_CIRRUS;
4482 } else if (strstart(p, "vmware", &opts)) {
4483 vga_interface_type = VGA_VMWARE;
4484 } else if (strstart(p, "xenfb", &opts)) {
4485 vga_interface_type = VGA_XENFB;
4486 } else if (!strstart(p, "none", &opts)) {
4487 invalid_vga:
4488 fprintf(stderr, "Unknown vga type: %s\n", p);
4489 exit(1);
4491 while (*opts) {
4492 const char *nextopt;
4494 if (strstart(opts, ",retrace=", &nextopt)) {
4495 opts = nextopt;
4496 if (strstart(opts, "dumb", &nextopt))
4497 vga_retrace_method = VGA_RETRACE_DUMB;
4498 else if (strstart(opts, "precise", &nextopt))
4499 vga_retrace_method = VGA_RETRACE_PRECISE;
4500 else goto invalid_vga;
4501 } else goto invalid_vga;
4502 opts = nextopt;
4506 #ifdef TARGET_I386
4507 static int balloon_parse(const char *arg)
4509 QemuOpts *opts;
4511 if (strcmp(arg, "none") == 0) {
4512 return 0;
4515 if (!strncmp(arg, "virtio", 6)) {
4516 if (arg[6] == ',') {
4517 /* have params -> parse them */
4518 opts = qemu_opts_parse(&qemu_device_opts, arg+7, NULL);
4519 if (!opts)
4520 return -1;
4521 } else {
4522 /* create empty opts */
4523 opts = qemu_opts_create(&qemu_device_opts, NULL, 0);
4525 qemu_opt_set(opts, "driver", "virtio-balloon-pci");
4526 return 0;
4529 return -1;
4531 #endif
4533 #ifdef _WIN32
4534 static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4536 exit(STATUS_CONTROL_C_EXIT);
4537 return TRUE;
4539 #endif
4541 int qemu_uuid_parse(const char *str, uint8_t *uuid)
4543 int ret;
4545 if(strlen(str) != 36)
4546 return -1;
4548 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4549 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4550 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4552 if(ret != 16)
4553 return -1;
4555 #ifdef TARGET_I386
4556 smbios_add_field(1, offsetof(struct smbios_type_1, uuid), 16, uuid);
4557 #endif
4559 return 0;
4562 #define MAX_NET_CLIENTS 32
4564 #ifndef _WIN32
4566 static void termsig_handler(int signal)
4568 qemu_system_shutdown_request();
4571 static void sigchld_handler(int signal)
4573 waitpid(-1, NULL, WNOHANG);
4576 static void sighandler_setup(void)
4578 struct sigaction act;
4580 memset(&act, 0, sizeof(act));
4581 act.sa_handler = termsig_handler;
4582 sigaction(SIGINT, &act, NULL);
4583 sigaction(SIGHUP, &act, NULL);
4584 sigaction(SIGTERM, &act, NULL);
4586 act.sa_handler = sigchld_handler;
4587 act.sa_flags = SA_NOCLDSTOP;
4588 sigaction(SIGCHLD, &act, NULL);
4591 #endif
4593 #ifdef _WIN32
4594 /* Look for support files in the same directory as the executable. */
4595 static char *find_datadir(const char *argv0)
4597 char *p;
4598 char buf[MAX_PATH];
4599 DWORD len;
4601 len = GetModuleFileName(NULL, buf, sizeof(buf) - 1);
4602 if (len == 0) {
4603 return NULL;
4606 buf[len] = 0;
4607 p = buf + len - 1;
4608 while (p != buf && *p != '\\')
4609 p--;
4610 *p = 0;
4611 if (access(buf, R_OK) == 0) {
4612 return qemu_strdup(buf);
4614 return NULL;
4616 #else /* !_WIN32 */
4618 /* Find a likely location for support files using the location of the binary.
4619 For installed binaries this will be "$bindir/../share/qemu". When
4620 running from the build tree this will be "$bindir/../pc-bios". */
4621 #define SHARE_SUFFIX "/share/qemu"
4622 #define BUILD_SUFFIX "/pc-bios"
4623 static char *find_datadir(const char *argv0)
4625 char *dir;
4626 char *p = NULL;
4627 char *res;
4628 #ifdef PATH_MAX
4629 char buf[PATH_MAX];
4630 #endif
4631 size_t max_len;
4633 #if defined(__linux__)
4635 int len;
4636 len = readlink("/proc/self/exe", buf, sizeof(buf) - 1);
4637 if (len > 0) {
4638 buf[len] = 0;
4639 p = buf;
4642 #elif defined(__FreeBSD__)
4644 int len;
4645 len = readlink("/proc/curproc/file", buf, sizeof(buf) - 1);
4646 if (len > 0) {
4647 buf[len] = 0;
4648 p = buf;
4651 #endif
4652 /* If we don't have any way of figuring out the actual executable
4653 location then try argv[0]. */
4654 if (!p) {
4655 #ifdef PATH_MAX
4656 p = buf;
4657 #endif
4658 p = realpath(argv0, p);
4659 if (!p) {
4660 return NULL;
4663 dir = dirname(p);
4664 dir = dirname(dir);
4666 max_len = strlen(dir) +
4667 MAX(strlen(SHARE_SUFFIX), strlen(BUILD_SUFFIX)) + 1;
4668 res = qemu_mallocz(max_len);
4669 snprintf(res, max_len, "%s%s", dir, SHARE_SUFFIX);
4670 if (access(res, R_OK)) {
4671 snprintf(res, max_len, "%s%s", dir, BUILD_SUFFIX);
4672 if (access(res, R_OK)) {
4673 qemu_free(res);
4674 res = NULL;
4677 #ifndef PATH_MAX
4678 free(p);
4679 #endif
4680 return res;
4682 #undef SHARE_SUFFIX
4683 #undef BUILD_SUFFIX
4684 #endif
4686 char *qemu_find_file(int type, const char *name)
4688 int len;
4689 const char *subdir;
4690 char *buf;
4692 /* If name contains path separators then try it as a straight path. */
4693 if ((strchr(name, '/') || strchr(name, '\\'))
4694 && access(name, R_OK) == 0) {
4695 return strdup(name);
4697 switch (type) {
4698 case QEMU_FILE_TYPE_BIOS:
4699 subdir = "";
4700 break;
4701 case QEMU_FILE_TYPE_KEYMAP:
4702 subdir = "keymaps/";
4703 break;
4704 default:
4705 abort();
4707 len = strlen(data_dir) + strlen(name) + strlen(subdir) + 2;
4708 buf = qemu_mallocz(len);
4709 snprintf(buf, len, "%s/%s%s", data_dir, subdir, name);
4710 if (access(buf, R_OK)) {
4711 qemu_free(buf);
4712 return NULL;
4714 return buf;
4717 static int device_init_func(QemuOpts *opts, void *opaque)
4719 DeviceState *dev;
4721 dev = qdev_device_add(opts);
4722 if (!dev)
4723 return -1;
4724 return 0;
4727 struct device_config {
4728 enum {
4729 DEV_USB, /* -usbdevice */
4730 DEV_BT, /* -bt */
4731 } type;
4732 const char *cmdline;
4733 TAILQ_ENTRY(device_config) next;
4735 TAILQ_HEAD(, device_config) device_configs = TAILQ_HEAD_INITIALIZER(device_configs);
4737 static void add_device_config(int type, const char *cmdline)
4739 struct device_config *conf;
4741 conf = qemu_mallocz(sizeof(*conf));
4742 conf->type = type;
4743 conf->cmdline = cmdline;
4744 TAILQ_INSERT_TAIL(&device_configs, conf, next);
4747 static int foreach_device_config(int type, int (*func)(const char *cmdline))
4749 struct device_config *conf;
4750 int rc;
4752 TAILQ_FOREACH(conf, &device_configs, next) {
4753 if (conf->type != type)
4754 continue;
4755 rc = func(conf->cmdline);
4756 if (0 != rc)
4757 return rc;
4759 return 0;
4762 int main(int argc, char **argv, char **envp)
4764 const char *gdbstub_dev = NULL;
4765 uint32_t boot_devices_bitmap = 0;
4766 int i;
4767 int snapshot, linux_boot, net_boot;
4768 const char *initrd_filename;
4769 const char *kernel_filename, *kernel_cmdline;
4770 char boot_devices[33] = "cad"; /* default to HD->floppy->CD-ROM */
4771 DisplayState *ds;
4772 DisplayChangeListener *dcl;
4773 int cyls, heads, secs, translation;
4774 const char *net_clients[MAX_NET_CLIENTS];
4775 int nb_net_clients;
4776 QemuOpts *hda_opts = NULL, *opts;
4777 int optind;
4778 const char *r, *optarg;
4779 CharDriverState *monitor_hds[MAX_MONITOR_DEVICES];
4780 const char *monitor_devices[MAX_MONITOR_DEVICES];
4781 int monitor_device_index;
4782 const char *serial_devices[MAX_SERIAL_PORTS];
4783 int serial_device_index;
4784 const char *parallel_devices[MAX_PARALLEL_PORTS];
4785 int parallel_device_index;
4786 const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4787 int virtio_console_index;
4788 const char *loadvm = NULL;
4789 QEMUMachine *machine;
4790 const char *cpu_model;
4791 #ifndef _WIN32
4792 int fds[2];
4793 #endif
4794 int tb_size;
4795 const char *pid_file = NULL;
4796 const char *incoming = NULL;
4797 #ifndef _WIN32
4798 int fd = 0;
4799 struct passwd *pwd = NULL;
4800 const char *chroot_dir = NULL;
4801 const char *run_as = NULL;
4802 #endif
4803 CPUState *env;
4804 int show_vnc_port = 0;
4806 qemu_errors_to_file(stderr);
4807 qemu_cache_utils_init(envp);
4809 LIST_INIT (&vm_change_state_head);
4810 #ifndef _WIN32
4812 struct sigaction act;
4813 sigfillset(&act.sa_mask);
4814 act.sa_flags = 0;
4815 act.sa_handler = SIG_IGN;
4816 sigaction(SIGPIPE, &act, NULL);
4818 #else
4819 SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4820 /* Note: cpu_interrupt() is currently not SMP safe, so we force
4821 QEMU to run on a single CPU */
4823 HANDLE h;
4824 DWORD mask, smask;
4825 int i;
4826 h = GetCurrentProcess();
4827 if (GetProcessAffinityMask(h, &mask, &smask)) {
4828 for(i = 0; i < 32; i++) {
4829 if (mask & (1 << i))
4830 break;
4832 if (i != 32) {
4833 mask = 1 << i;
4834 SetProcessAffinityMask(h, mask);
4838 #endif
4840 module_call_init(MODULE_INIT_MACHINE);
4841 machine = find_default_machine();
4842 cpu_model = NULL;
4843 initrd_filename = NULL;
4844 ram_size = 0;
4845 snapshot = 0;
4846 kernel_filename = NULL;
4847 kernel_cmdline = "";
4848 cyls = heads = secs = 0;
4849 translation = BIOS_ATA_TRANSLATION_AUTO;
4851 serial_devices[0] = "vc:80Cx24C";
4852 for(i = 1; i < MAX_SERIAL_PORTS; i++)
4853 serial_devices[i] = NULL;
4854 serial_device_index = 0;
4856 parallel_devices[0] = "vc:80Cx24C";
4857 for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4858 parallel_devices[i] = NULL;
4859 parallel_device_index = 0;
4861 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++)
4862 virtio_consoles[i] = NULL;
4863 virtio_console_index = 0;
4865 monitor_devices[0] = "vc:80Cx24C";
4866 for (i = 1; i < MAX_MONITOR_DEVICES; i++) {
4867 monitor_devices[i] = NULL;
4869 monitor_device_index = 0;
4871 for (i = 0; i < MAX_NODES; i++) {
4872 node_mem[i] = 0;
4873 node_cpumask[i] = 0;
4876 nb_net_clients = 0;
4877 nb_numa_nodes = 0;
4878 nb_nics = 0;
4880 tb_size = 0;
4881 autostart= 1;
4883 optind = 1;
4884 for(;;) {
4885 if (optind >= argc)
4886 break;
4887 r = argv[optind];
4888 if (r[0] != '-') {
4889 hda_opts = drive_add(argv[optind++], HD_ALIAS, 0);
4890 } else {
4891 const QEMUOption *popt;
4893 optind++;
4894 /* Treat --foo the same as -foo. */
4895 if (r[1] == '-')
4896 r++;
4897 popt = qemu_options;
4898 for(;;) {
4899 if (!popt->name) {
4900 fprintf(stderr, "%s: invalid option -- '%s'\n",
4901 argv[0], r);
4902 exit(1);
4904 if (!strcmp(popt->name, r + 1))
4905 break;
4906 popt++;
4908 if (popt->flags & HAS_ARG) {
4909 if (optind >= argc) {
4910 fprintf(stderr, "%s: option '%s' requires an argument\n",
4911 argv[0], r);
4912 exit(1);
4914 optarg = argv[optind++];
4915 } else {
4916 optarg = NULL;
4919 switch(popt->index) {
4920 case QEMU_OPTION_M:
4921 machine = find_machine(optarg);
4922 if (!machine) {
4923 QEMUMachine *m;
4924 printf("Supported machines are:\n");
4925 for(m = first_machine; m != NULL; m = m->next) {
4926 if (m->alias)
4927 printf("%-10s %s (alias of %s)\n",
4928 m->alias, m->desc, m->name);
4929 printf("%-10s %s%s\n",
4930 m->name, m->desc,
4931 m->is_default ? " (default)" : "");
4933 exit(*optarg != '?');
4935 break;
4936 case QEMU_OPTION_cpu:
4937 /* hw initialization will check this */
4938 if (*optarg == '?') {
4939 /* XXX: implement xxx_cpu_list for targets that still miss it */
4940 #if defined(cpu_list)
4941 cpu_list(stdout, &fprintf);
4942 #endif
4943 exit(0);
4944 } else {
4945 cpu_model = optarg;
4947 break;
4948 case QEMU_OPTION_initrd:
4949 initrd_filename = optarg;
4950 break;
4951 case QEMU_OPTION_hda:
4952 if (cyls == 0)
4953 hda_opts = drive_add(optarg, HD_ALIAS, 0);
4954 else
4955 hda_opts = drive_add(optarg, HD_ALIAS
4956 ",cyls=%d,heads=%d,secs=%d%s",
4957 0, cyls, heads, secs,
4958 translation == BIOS_ATA_TRANSLATION_LBA ?
4959 ",trans=lba" :
4960 translation == BIOS_ATA_TRANSLATION_NONE ?
4961 ",trans=none" : "");
4962 break;
4963 case QEMU_OPTION_hdb:
4964 case QEMU_OPTION_hdc:
4965 case QEMU_OPTION_hdd:
4966 drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4967 break;
4968 case QEMU_OPTION_drive:
4969 drive_add(NULL, "%s", optarg);
4970 break;
4971 case QEMU_OPTION_set:
4972 if (qemu_set_option(optarg) != 0)
4973 exit(1);
4974 break;
4975 case QEMU_OPTION_mtdblock:
4976 drive_add(optarg, MTD_ALIAS);
4977 break;
4978 case QEMU_OPTION_sd:
4979 drive_add(optarg, SD_ALIAS);
4980 break;
4981 case QEMU_OPTION_pflash:
4982 drive_add(optarg, PFLASH_ALIAS);
4983 break;
4984 case QEMU_OPTION_snapshot:
4985 snapshot = 1;
4986 break;
4987 case QEMU_OPTION_hdachs:
4989 const char *p;
4990 p = optarg;
4991 cyls = strtol(p, (char **)&p, 0);
4992 if (cyls < 1 || cyls > 16383)
4993 goto chs_fail;
4994 if (*p != ',')
4995 goto chs_fail;
4996 p++;
4997 heads = strtol(p, (char **)&p, 0);
4998 if (heads < 1 || heads > 16)
4999 goto chs_fail;
5000 if (*p != ',')
5001 goto chs_fail;
5002 p++;
5003 secs = strtol(p, (char **)&p, 0);
5004 if (secs < 1 || secs > 63)
5005 goto chs_fail;
5006 if (*p == ',') {
5007 p++;
5008 if (!strcmp(p, "none"))
5009 translation = BIOS_ATA_TRANSLATION_NONE;
5010 else if (!strcmp(p, "lba"))
5011 translation = BIOS_ATA_TRANSLATION_LBA;
5012 else if (!strcmp(p, "auto"))
5013 translation = BIOS_ATA_TRANSLATION_AUTO;
5014 else
5015 goto chs_fail;
5016 } else if (*p != '\0') {
5017 chs_fail:
5018 fprintf(stderr, "qemu: invalid physical CHS format\n");
5019 exit(1);
5021 if (hda_opts != NULL) {
5022 char num[16];
5023 snprintf(num, sizeof(num), "%d", cyls);
5024 qemu_opt_set(hda_opts, "cyls", num);
5025 snprintf(num, sizeof(num), "%d", heads);
5026 qemu_opt_set(hda_opts, "heads", num);
5027 snprintf(num, sizeof(num), "%d", secs);
5028 qemu_opt_set(hda_opts, "secs", num);
5029 if (translation == BIOS_ATA_TRANSLATION_LBA)
5030 qemu_opt_set(hda_opts, "trans", "lba");
5031 if (translation == BIOS_ATA_TRANSLATION_NONE)
5032 qemu_opt_set(hda_opts, "trans", "none");
5035 break;
5036 case QEMU_OPTION_numa:
5037 if (nb_numa_nodes >= MAX_NODES) {
5038 fprintf(stderr, "qemu: too many NUMA nodes\n");
5039 exit(1);
5041 numa_add(optarg);
5042 break;
5043 case QEMU_OPTION_nographic:
5044 display_type = DT_NOGRAPHIC;
5045 break;
5046 #ifdef CONFIG_CURSES
5047 case QEMU_OPTION_curses:
5048 display_type = DT_CURSES;
5049 break;
5050 #endif
5051 case QEMU_OPTION_portrait:
5052 graphic_rotate = 1;
5053 break;
5054 case QEMU_OPTION_kernel:
5055 kernel_filename = optarg;
5056 break;
5057 case QEMU_OPTION_append:
5058 kernel_cmdline = optarg;
5059 break;
5060 case QEMU_OPTION_cdrom:
5061 drive_add(optarg, CDROM_ALIAS);
5062 break;
5063 case QEMU_OPTION_boot:
5065 static const char * const params[] = {
5066 "order", "once", "menu", NULL
5068 char buf[sizeof(boot_devices)];
5069 char *standard_boot_devices;
5070 int legacy = 0;
5072 if (!strchr(optarg, '=')) {
5073 legacy = 1;
5074 pstrcpy(buf, sizeof(buf), optarg);
5075 } else if (check_params(buf, sizeof(buf), params, optarg) < 0) {
5076 fprintf(stderr,
5077 "qemu: unknown boot parameter '%s' in '%s'\n",
5078 buf, optarg);
5079 exit(1);
5082 if (legacy ||
5083 get_param_value(buf, sizeof(buf), "order", optarg)) {
5084 boot_devices_bitmap = parse_bootdevices(buf);
5085 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5087 if (!legacy) {
5088 if (get_param_value(buf, sizeof(buf),
5089 "once", optarg)) {
5090 boot_devices_bitmap |= parse_bootdevices(buf);
5091 standard_boot_devices = qemu_strdup(boot_devices);
5092 pstrcpy(boot_devices, sizeof(boot_devices), buf);
5093 qemu_register_reset(restore_boot_devices,
5094 standard_boot_devices);
5096 if (get_param_value(buf, sizeof(buf),
5097 "menu", optarg)) {
5098 if (!strcmp(buf, "on")) {
5099 boot_menu = 1;
5100 } else if (!strcmp(buf, "off")) {
5101 boot_menu = 0;
5102 } else {
5103 fprintf(stderr,
5104 "qemu: invalid option value '%s'\n",
5105 buf);
5106 exit(1);
5111 break;
5112 case QEMU_OPTION_fda:
5113 case QEMU_OPTION_fdb:
5114 drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
5115 break;
5116 #ifdef TARGET_I386
5117 case QEMU_OPTION_no_fd_bootchk:
5118 fd_bootchk = 0;
5119 break;
5120 #endif
5121 case QEMU_OPTION_net:
5122 if (nb_net_clients >= MAX_NET_CLIENTS) {
5123 fprintf(stderr, "qemu: too many network clients\n");
5124 exit(1);
5126 net_clients[nb_net_clients] = optarg;
5127 nb_net_clients++;
5128 break;
5129 #ifdef CONFIG_SLIRP
5130 case QEMU_OPTION_tftp:
5131 legacy_tftp_prefix = optarg;
5132 break;
5133 case QEMU_OPTION_bootp:
5134 legacy_bootp_filename = optarg;
5135 break;
5136 #ifndef _WIN32
5137 case QEMU_OPTION_smb:
5138 net_slirp_smb(optarg);
5139 break;
5140 #endif
5141 case QEMU_OPTION_redir:
5142 net_slirp_redir(optarg);
5143 break;
5144 #endif
5145 case QEMU_OPTION_bt:
5146 add_device_config(DEV_BT, optarg);
5147 break;
5148 #ifdef HAS_AUDIO
5149 case QEMU_OPTION_audio_help:
5150 AUD_help ();
5151 exit (0);
5152 break;
5153 case QEMU_OPTION_soundhw:
5154 select_soundhw (optarg);
5155 break;
5156 #endif
5157 case QEMU_OPTION_h:
5158 help(0);
5159 break;
5160 case QEMU_OPTION_version:
5161 version();
5162 exit(0);
5163 break;
5164 case QEMU_OPTION_m: {
5165 uint64_t value;
5166 char *ptr;
5168 value = strtoul(optarg, &ptr, 10);
5169 switch (*ptr) {
5170 case 0: case 'M': case 'm':
5171 value <<= 20;
5172 break;
5173 case 'G': case 'g':
5174 value <<= 30;
5175 break;
5176 default:
5177 fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
5178 exit(1);
5181 /* On 32-bit hosts, QEMU is limited by virtual address space */
5182 if (value > (2047 << 20) && HOST_LONG_BITS == 32) {
5183 fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
5184 exit(1);
5186 if (value != (uint64_t)(ram_addr_t)value) {
5187 fprintf(stderr, "qemu: ram size too large\n");
5188 exit(1);
5190 ram_size = value;
5191 break;
5193 case QEMU_OPTION_d:
5195 int mask;
5196 const CPULogItem *item;
5198 mask = cpu_str_to_log_mask(optarg);
5199 if (!mask) {
5200 printf("Log items (comma separated):\n");
5201 for(item = cpu_log_items; item->mask != 0; item++) {
5202 printf("%-10s %s\n", item->name, item->help);
5204 exit(1);
5206 cpu_set_log(mask);
5208 break;
5209 case QEMU_OPTION_s:
5210 gdbstub_dev = "tcp::" DEFAULT_GDBSTUB_PORT;
5211 break;
5212 case QEMU_OPTION_gdb:
5213 gdbstub_dev = optarg;
5214 break;
5215 case QEMU_OPTION_L:
5216 data_dir = optarg;
5217 break;
5218 case QEMU_OPTION_bios:
5219 bios_name = optarg;
5220 break;
5221 case QEMU_OPTION_singlestep:
5222 singlestep = 1;
5223 break;
5224 case QEMU_OPTION_S:
5225 autostart = 0;
5226 break;
5227 #ifndef _WIN32
5228 case QEMU_OPTION_k:
5229 keyboard_layout = optarg;
5230 break;
5231 #endif
5232 case QEMU_OPTION_localtime:
5233 rtc_utc = 0;
5234 break;
5235 case QEMU_OPTION_vga:
5236 select_vgahw (optarg);
5237 break;
5238 #if defined(TARGET_PPC) || defined(TARGET_SPARC)
5239 case QEMU_OPTION_g:
5241 const char *p;
5242 int w, h, depth;
5243 p = optarg;
5244 w = strtol(p, (char **)&p, 10);
5245 if (w <= 0) {
5246 graphic_error:
5247 fprintf(stderr, "qemu: invalid resolution or depth\n");
5248 exit(1);
5250 if (*p != 'x')
5251 goto graphic_error;
5252 p++;
5253 h = strtol(p, (char **)&p, 10);
5254 if (h <= 0)
5255 goto graphic_error;
5256 if (*p == 'x') {
5257 p++;
5258 depth = strtol(p, (char **)&p, 10);
5259 if (depth != 8 && depth != 15 && depth != 16 &&
5260 depth != 24 && depth != 32)
5261 goto graphic_error;
5262 } else if (*p == '\0') {
5263 depth = graphic_depth;
5264 } else {
5265 goto graphic_error;
5268 graphic_width = w;
5269 graphic_height = h;
5270 graphic_depth = depth;
5272 break;
5273 #endif
5274 case QEMU_OPTION_echr:
5276 char *r;
5277 term_escape_char = strtol(optarg, &r, 0);
5278 if (r == optarg)
5279 printf("Bad argument to echr\n");
5280 break;
5282 case QEMU_OPTION_monitor:
5283 if (monitor_device_index >= MAX_MONITOR_DEVICES) {
5284 fprintf(stderr, "qemu: too many monitor devices\n");
5285 exit(1);
5287 monitor_devices[monitor_device_index] = optarg;
5288 monitor_device_index++;
5289 break;
5290 case QEMU_OPTION_serial:
5291 if (serial_device_index >= MAX_SERIAL_PORTS) {
5292 fprintf(stderr, "qemu: too many serial ports\n");
5293 exit(1);
5295 serial_devices[serial_device_index] = optarg;
5296 serial_device_index++;
5297 break;
5298 case QEMU_OPTION_watchdog:
5299 if (watchdog) {
5300 fprintf(stderr,
5301 "qemu: only one watchdog option may be given\n");
5302 return 1;
5304 watchdog = optarg;
5305 break;
5306 case QEMU_OPTION_watchdog_action:
5307 if (select_watchdog_action(optarg) == -1) {
5308 fprintf(stderr, "Unknown -watchdog-action parameter\n");
5309 exit(1);
5311 break;
5312 case QEMU_OPTION_virtiocon:
5313 if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5314 fprintf(stderr, "qemu: too many virtio consoles\n");
5315 exit(1);
5317 virtio_consoles[virtio_console_index] = optarg;
5318 virtio_console_index++;
5319 break;
5320 case QEMU_OPTION_parallel:
5321 if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5322 fprintf(stderr, "qemu: too many parallel ports\n");
5323 exit(1);
5325 parallel_devices[parallel_device_index] = optarg;
5326 parallel_device_index++;
5327 break;
5328 case QEMU_OPTION_loadvm:
5329 loadvm = optarg;
5330 break;
5331 case QEMU_OPTION_full_screen:
5332 full_screen = 1;
5333 break;
5334 #ifdef CONFIG_SDL
5335 case QEMU_OPTION_no_frame:
5336 no_frame = 1;
5337 break;
5338 case QEMU_OPTION_alt_grab:
5339 alt_grab = 1;
5340 break;
5341 case QEMU_OPTION_no_quit:
5342 no_quit = 1;
5343 break;
5344 case QEMU_OPTION_sdl:
5345 display_type = DT_SDL;
5346 break;
5347 #endif
5348 case QEMU_OPTION_pidfile:
5349 pid_file = optarg;
5350 break;
5351 #ifdef TARGET_I386
5352 case QEMU_OPTION_win2k_hack:
5353 win2k_install_hack = 1;
5354 break;
5355 case QEMU_OPTION_rtc_td_hack:
5356 rtc_td_hack = 1;
5357 break;
5358 case QEMU_OPTION_acpitable:
5359 if(acpi_table_add(optarg) < 0) {
5360 fprintf(stderr, "Wrong acpi table provided\n");
5361 exit(1);
5363 break;
5364 case QEMU_OPTION_smbios:
5365 if(smbios_entry_add(optarg) < 0) {
5366 fprintf(stderr, "Wrong smbios provided\n");
5367 exit(1);
5369 break;
5370 #endif
5371 #ifdef CONFIG_KVM
5372 case QEMU_OPTION_enable_kvm:
5373 kvm_allowed = 1;
5374 break;
5375 #endif
5376 case QEMU_OPTION_usb:
5377 usb_enabled = 1;
5378 break;
5379 case QEMU_OPTION_usbdevice:
5380 usb_enabled = 1;
5381 add_device_config(DEV_USB, optarg);
5382 break;
5383 case QEMU_OPTION_device:
5384 opts = qemu_opts_parse(&qemu_device_opts, optarg, "driver");
5385 if (!opts) {
5386 fprintf(stderr, "parse error: %s\n", optarg);
5387 exit(1);
5389 break;
5390 case QEMU_OPTION_smp:
5391 smp_parse(optarg);
5392 if (smp_cpus < 1) {
5393 fprintf(stderr, "Invalid number of CPUs\n");
5394 exit(1);
5396 if (max_cpus < smp_cpus) {
5397 fprintf(stderr, "maxcpus must be equal to or greater than "
5398 "smp\n");
5399 exit(1);
5401 if (max_cpus > 255) {
5402 fprintf(stderr, "Unsupported number of maxcpus\n");
5403 exit(1);
5405 break;
5406 case QEMU_OPTION_vnc:
5407 display_type = DT_VNC;
5408 vnc_display = optarg;
5409 break;
5410 #ifdef TARGET_I386
5411 case QEMU_OPTION_no_acpi:
5412 acpi_enabled = 0;
5413 break;
5414 case QEMU_OPTION_no_hpet:
5415 no_hpet = 1;
5416 break;
5417 case QEMU_OPTION_balloon:
5418 if (balloon_parse(optarg) < 0) {
5419 fprintf(stderr, "Unknown -balloon argument %s\n", optarg);
5420 exit(1);
5422 break;
5423 #endif
5424 case QEMU_OPTION_no_reboot:
5425 no_reboot = 1;
5426 break;
5427 case QEMU_OPTION_no_shutdown:
5428 no_shutdown = 1;
5429 break;
5430 case QEMU_OPTION_show_cursor:
5431 cursor_hide = 0;
5432 break;
5433 case QEMU_OPTION_uuid:
5434 if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5435 fprintf(stderr, "Fail to parse UUID string."
5436 " Wrong format.\n");
5437 exit(1);
5439 break;
5440 #ifndef _WIN32
5441 case QEMU_OPTION_daemonize:
5442 daemonize = 1;
5443 break;
5444 #endif
5445 case QEMU_OPTION_option_rom:
5446 if (nb_option_roms >= MAX_OPTION_ROMS) {
5447 fprintf(stderr, "Too many option ROMs\n");
5448 exit(1);
5450 option_rom[nb_option_roms] = optarg;
5451 nb_option_roms++;
5452 break;
5453 #if defined(TARGET_ARM) || defined(TARGET_M68K)
5454 case QEMU_OPTION_semihosting:
5455 semihosting_enabled = 1;
5456 break;
5457 #endif
5458 case QEMU_OPTION_name:
5459 qemu_name = qemu_strdup(optarg);
5461 char *p = strchr(qemu_name, ',');
5462 if (p != NULL) {
5463 *p++ = 0;
5464 if (strncmp(p, "process=", 8)) {
5465 fprintf(stderr, "Unknown subargument %s to -name", p);
5466 exit(1);
5468 p += 8;
5469 set_proc_name(p);
5472 break;
5473 #if defined(TARGET_SPARC) || defined(TARGET_PPC)
5474 case QEMU_OPTION_prom_env:
5475 if (nb_prom_envs >= MAX_PROM_ENVS) {
5476 fprintf(stderr, "Too many prom variables\n");
5477 exit(1);
5479 prom_envs[nb_prom_envs] = optarg;
5480 nb_prom_envs++;
5481 break;
5482 #endif
5483 #ifdef TARGET_ARM
5484 case QEMU_OPTION_old_param:
5485 old_param = 1;
5486 break;
5487 #endif
5488 case QEMU_OPTION_clock:
5489 configure_alarms(optarg);
5490 break;
5491 case QEMU_OPTION_startdate:
5493 struct tm tm;
5494 time_t rtc_start_date;
5495 if (!strcmp(optarg, "now")) {
5496 rtc_date_offset = -1;
5497 } else {
5498 if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5499 &tm.tm_year,
5500 &tm.tm_mon,
5501 &tm.tm_mday,
5502 &tm.tm_hour,
5503 &tm.tm_min,
5504 &tm.tm_sec) == 6) {
5505 /* OK */
5506 } else if (sscanf(optarg, "%d-%d-%d",
5507 &tm.tm_year,
5508 &tm.tm_mon,
5509 &tm.tm_mday) == 3) {
5510 tm.tm_hour = 0;
5511 tm.tm_min = 0;
5512 tm.tm_sec = 0;
5513 } else {
5514 goto date_fail;
5516 tm.tm_year -= 1900;
5517 tm.tm_mon--;
5518 rtc_start_date = mktimegm(&tm);
5519 if (rtc_start_date == -1) {
5520 date_fail:
5521 fprintf(stderr, "Invalid date format. Valid format are:\n"
5522 "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5523 exit(1);
5525 rtc_date_offset = time(NULL) - rtc_start_date;
5528 break;
5529 case QEMU_OPTION_tb_size:
5530 tb_size = strtol(optarg, NULL, 0);
5531 if (tb_size < 0)
5532 tb_size = 0;
5533 break;
5534 case QEMU_OPTION_icount:
5535 use_icount = 1;
5536 if (strcmp(optarg, "auto") == 0) {
5537 icount_time_shift = -1;
5538 } else {
5539 icount_time_shift = strtol(optarg, NULL, 0);
5541 break;
5542 case QEMU_OPTION_incoming:
5543 incoming = optarg;
5544 break;
5545 #ifndef _WIN32
5546 case QEMU_OPTION_chroot:
5547 chroot_dir = optarg;
5548 break;
5549 case QEMU_OPTION_runas:
5550 run_as = optarg;
5551 break;
5552 #endif
5553 #ifdef CONFIG_XEN
5554 case QEMU_OPTION_xen_domid:
5555 xen_domid = atoi(optarg);
5556 break;
5557 case QEMU_OPTION_xen_create:
5558 xen_mode = XEN_CREATE;
5559 break;
5560 case QEMU_OPTION_xen_attach:
5561 xen_mode = XEN_ATTACH;
5562 break;
5563 #endif
5568 /* If no data_dir is specified then try to find it relative to the
5569 executable path. */
5570 if (!data_dir) {
5571 data_dir = find_datadir(argv[0]);
5573 /* If all else fails use the install patch specified when building. */
5574 if (!data_dir) {
5575 data_dir = CONFIG_QEMU_SHAREDIR;
5579 * Default to max_cpus = smp_cpus, in case the user doesn't
5580 * specify a max_cpus value.
5582 if (!max_cpus)
5583 max_cpus = smp_cpus;
5585 machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5586 if (smp_cpus > machine->max_cpus) {
5587 fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5588 "supported by machine `%s' (%d)\n", smp_cpus, machine->name,
5589 machine->max_cpus);
5590 exit(1);
5593 if (display_type == DT_NOGRAPHIC) {
5594 if (serial_device_index == 0)
5595 serial_devices[0] = "stdio";
5596 if (parallel_device_index == 0)
5597 parallel_devices[0] = "null";
5598 if (strncmp(monitor_devices[0], "vc", 2) == 0) {
5599 monitor_devices[0] = "stdio";
5603 #ifndef _WIN32
5604 if (daemonize) {
5605 pid_t pid;
5607 if (pipe(fds) == -1)
5608 exit(1);
5610 pid = fork();
5611 if (pid > 0) {
5612 uint8_t status;
5613 ssize_t len;
5615 close(fds[1]);
5617 again:
5618 len = read(fds[0], &status, 1);
5619 if (len == -1 && (errno == EINTR))
5620 goto again;
5622 if (len != 1)
5623 exit(1);
5624 else if (status == 1) {
5625 fprintf(stderr, "Could not acquire pidfile\n");
5626 exit(1);
5627 } else
5628 exit(0);
5629 } else if (pid < 0)
5630 exit(1);
5632 setsid();
5634 pid = fork();
5635 if (pid > 0)
5636 exit(0);
5637 else if (pid < 0)
5638 exit(1);
5640 umask(027);
5642 signal(SIGTSTP, SIG_IGN);
5643 signal(SIGTTOU, SIG_IGN);
5644 signal(SIGTTIN, SIG_IGN);
5647 if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5648 if (daemonize) {
5649 uint8_t status = 1;
5650 write(fds[1], &status, 1);
5651 } else
5652 fprintf(stderr, "Could not acquire pid file\n");
5653 exit(1);
5655 #endif
5657 if (qemu_init_main_loop()) {
5658 fprintf(stderr, "qemu_init_main_loop failed\n");
5659 exit(1);
5661 linux_boot = (kernel_filename != NULL);
5663 if (!linux_boot && *kernel_cmdline != '\0') {
5664 fprintf(stderr, "-append only allowed with -kernel option\n");
5665 exit(1);
5668 if (!linux_boot && initrd_filename != NULL) {
5669 fprintf(stderr, "-initrd only allowed with -kernel option\n");
5670 exit(1);
5673 #ifndef _WIN32
5674 /* Win32 doesn't support line-buffering and requires size >= 2 */
5675 setvbuf(stdout, NULL, _IOLBF, 0);
5676 #endif
5678 init_timers();
5679 if (init_timer_alarm() < 0) {
5680 fprintf(stderr, "could not initialize alarm timer\n");
5681 exit(1);
5683 if (use_icount && icount_time_shift < 0) {
5684 use_icount = 2;
5685 /* 125MIPS seems a reasonable initial guess at the guest speed.
5686 It will be corrected fairly quickly anyway. */
5687 icount_time_shift = 3;
5688 init_icount_adjust();
5691 #ifdef _WIN32
5692 socket_init();
5693 #endif
5695 /* init network clients */
5696 if (nb_net_clients == 0) {
5697 /* if no clients, we use a default config */
5698 net_clients[nb_net_clients++] = "nic";
5699 #ifdef CONFIG_SLIRP
5700 net_clients[nb_net_clients++] = "user";
5701 #endif
5704 for(i = 0;i < nb_net_clients; i++) {
5705 if (net_client_parse(net_clients[i]) < 0)
5706 exit(1);
5709 net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5710 net_set_boot_mask(net_boot);
5712 net_client_check();
5714 /* init the bluetooth world */
5715 if (foreach_device_config(DEV_BT, bt_parse))
5716 exit(1);
5718 /* init the memory */
5719 if (ram_size == 0)
5720 ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5722 /* init the dynamic translator */
5723 cpu_exec_init_all(tb_size * 1024 * 1024);
5725 bdrv_init();
5727 /* we always create the cdrom drive, even if no disk is there */
5728 drive_add(NULL, CDROM_ALIAS);
5730 /* we always create at least one floppy */
5731 drive_add(NULL, FD_ALIAS, 0);
5733 /* we always create one sd slot, even if no card is in it */
5734 drive_add(NULL, SD_ALIAS);
5736 /* open the virtual block devices */
5737 if (snapshot)
5738 qemu_opts_foreach(&qemu_drive_opts, drive_enable_snapshot, NULL, 0);
5739 if (qemu_opts_foreach(&qemu_drive_opts, drive_init_func, machine, 1) != 0)
5740 exit(1);
5742 register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5743 register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5745 /* Maintain compatibility with multiple stdio monitors */
5746 if (!strcmp(monitor_devices[0],"stdio")) {
5747 for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5748 const char *devname = serial_devices[i];
5749 if (devname && !strcmp(devname,"mon:stdio")) {
5750 monitor_devices[0] = NULL;
5751 break;
5752 } else if (devname && !strcmp(devname,"stdio")) {
5753 monitor_devices[0] = NULL;
5754 serial_devices[i] = "mon:stdio";
5755 break;
5760 if (nb_numa_nodes > 0) {
5761 int i;
5763 if (nb_numa_nodes > smp_cpus) {
5764 nb_numa_nodes = smp_cpus;
5767 /* If no memory size if given for any node, assume the default case
5768 * and distribute the available memory equally across all nodes
5770 for (i = 0; i < nb_numa_nodes; i++) {
5771 if (node_mem[i] != 0)
5772 break;
5774 if (i == nb_numa_nodes) {
5775 uint64_t usedmem = 0;
5777 /* On Linux, the each node's border has to be 8MB aligned,
5778 * the final node gets the rest.
5780 for (i = 0; i < nb_numa_nodes - 1; i++) {
5781 node_mem[i] = (ram_size / nb_numa_nodes) & ~((1 << 23UL) - 1);
5782 usedmem += node_mem[i];
5784 node_mem[i] = ram_size - usedmem;
5787 for (i = 0; i < nb_numa_nodes; i++) {
5788 if (node_cpumask[i] != 0)
5789 break;
5791 /* assigning the VCPUs round-robin is easier to implement, guest OSes
5792 * must cope with this anyway, because there are BIOSes out there in
5793 * real machines which also use this scheme.
5795 if (i == nb_numa_nodes) {
5796 for (i = 0; i < smp_cpus; i++) {
5797 node_cpumask[i % nb_numa_nodes] |= 1 << i;
5802 if (kvm_enabled()) {
5803 int ret;
5805 ret = kvm_init(smp_cpus);
5806 if (ret < 0) {
5807 fprintf(stderr, "failed to initialize KVM\n");
5808 exit(1);
5812 for (i = 0; i < MAX_MONITOR_DEVICES; i++) {
5813 const char *devname = monitor_devices[i];
5814 if (devname && strcmp(devname, "none")) {
5815 char label[32];
5816 if (i == 0) {
5817 snprintf(label, sizeof(label), "monitor");
5818 } else {
5819 snprintf(label, sizeof(label), "monitor%d", i);
5821 monitor_hds[i] = qemu_chr_open(label, devname, NULL);
5822 if (!monitor_hds[i]) {
5823 fprintf(stderr, "qemu: could not open monitor device '%s'\n",
5824 devname);
5825 exit(1);
5830 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5831 const char *devname = serial_devices[i];
5832 if (devname && strcmp(devname, "none")) {
5833 char label[32];
5834 snprintf(label, sizeof(label), "serial%d", i);
5835 serial_hds[i] = qemu_chr_open(label, devname, NULL);
5836 if (!serial_hds[i]) {
5837 fprintf(stderr, "qemu: could not open serial device '%s'\n",
5838 devname);
5839 exit(1);
5844 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5845 const char *devname = parallel_devices[i];
5846 if (devname && strcmp(devname, "none")) {
5847 char label[32];
5848 snprintf(label, sizeof(label), "parallel%d", i);
5849 parallel_hds[i] = qemu_chr_open(label, devname, NULL);
5850 if (!parallel_hds[i]) {
5851 fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5852 devname);
5853 exit(1);
5858 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5859 const char *devname = virtio_consoles[i];
5860 if (devname && strcmp(devname, "none")) {
5861 char label[32];
5862 snprintf(label, sizeof(label), "virtcon%d", i);
5863 virtcon_hds[i] = qemu_chr_open(label, devname, NULL);
5864 if (!virtcon_hds[i]) {
5865 fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5866 devname);
5867 exit(1);
5872 module_call_init(MODULE_INIT_DEVICE);
5874 if (watchdog) {
5875 i = select_watchdog(watchdog);
5876 if (i > 0)
5877 exit (i == 1 ? 1 : 0);
5880 if (machine->compat_props) {
5881 qdev_prop_register_compat(machine->compat_props);
5883 machine->init(ram_size, boot_devices,
5884 kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5887 #ifndef _WIN32
5888 /* must be after terminal init, SDL library changes signal handlers */
5889 sighandler_setup();
5890 #endif
5892 for (env = first_cpu; env != NULL; env = env->next_cpu) {
5893 for (i = 0; i < nb_numa_nodes; i++) {
5894 if (node_cpumask[i] & (1 << env->cpu_index)) {
5895 env->numa_node = i;
5900 current_machine = machine;
5902 /* init USB devices */
5903 if (usb_enabled) {
5904 foreach_device_config(DEV_USB, usb_parse);
5907 /* init generic devices */
5908 if (qemu_opts_foreach(&qemu_device_opts, device_init_func, NULL, 1) != 0)
5909 exit(1);
5911 if (!display_state)
5912 dumb_display_init();
5913 /* just use the first displaystate for the moment */
5914 ds = display_state;
5916 if (display_type == DT_DEFAULT) {
5917 #if defined(CONFIG_SDL) || defined(CONFIG_COCOA)
5918 display_type = DT_SDL;
5919 #else
5920 display_type = DT_VNC;
5921 vnc_display = "localhost:0,to=99";
5922 show_vnc_port = 1;
5923 #endif
5927 switch (display_type) {
5928 case DT_NOGRAPHIC:
5929 break;
5930 #if defined(CONFIG_CURSES)
5931 case DT_CURSES:
5932 curses_display_init(ds, full_screen);
5933 break;
5934 #endif
5935 #if defined(CONFIG_SDL)
5936 case DT_SDL:
5937 sdl_display_init(ds, full_screen, no_frame);
5938 break;
5939 #elif defined(CONFIG_COCOA)
5940 case DT_SDL:
5941 cocoa_display_init(ds, full_screen);
5942 break;
5943 #endif
5944 case DT_VNC:
5945 vnc_display_init(ds);
5946 if (vnc_display_open(ds, vnc_display) < 0)
5947 exit(1);
5949 if (show_vnc_port) {
5950 printf("VNC server running on `%s'\n", vnc_display_local_addr(ds));
5952 break;
5953 default:
5954 break;
5956 dpy_resize(ds);
5958 dcl = ds->listeners;
5959 while (dcl != NULL) {
5960 if (dcl->dpy_refresh != NULL) {
5961 ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5962 qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5964 dcl = dcl->next;
5967 if (display_type == DT_NOGRAPHIC || display_type == DT_VNC) {
5968 nographic_timer = qemu_new_timer(rt_clock, nographic_update, NULL);
5969 qemu_mod_timer(nographic_timer, qemu_get_clock(rt_clock));
5972 text_consoles_set_display(display_state);
5973 qemu_chr_initial_reset();
5975 for (i = 0; i < MAX_MONITOR_DEVICES; i++) {
5976 if (monitor_devices[i] && monitor_hds[i]) {
5977 monitor_init(monitor_hds[i],
5978 MONITOR_USE_READLINE |
5979 ((i == 0) ? MONITOR_IS_DEFAULT : 0));
5983 for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5984 const char *devname = serial_devices[i];
5985 if (devname && strcmp(devname, "none")) {
5986 if (strstart(devname, "vc", 0))
5987 qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5991 for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5992 const char *devname = parallel_devices[i];
5993 if (devname && strcmp(devname, "none")) {
5994 if (strstart(devname, "vc", 0))
5995 qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5999 for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
6000 const char *devname = virtio_consoles[i];
6001 if (virtcon_hds[i] && devname) {
6002 if (strstart(devname, "vc", 0))
6003 qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
6007 if (gdbstub_dev && gdbserver_start(gdbstub_dev) < 0) {
6008 fprintf(stderr, "qemu: could not open gdbserver on device '%s'\n",
6009 gdbstub_dev);
6010 exit(1);
6013 if (loadvm) {
6014 if (load_vmstate(cur_mon, loadvm) < 0) {
6015 autostart = 0;
6019 if (incoming) {
6020 qemu_start_incoming_migration(incoming);
6021 } else if (autostart) {
6022 vm_start();
6025 #ifndef _WIN32
6026 if (daemonize) {
6027 uint8_t status = 0;
6028 ssize_t len;
6030 again1:
6031 len = write(fds[1], &status, 1);
6032 if (len == -1 && (errno == EINTR))
6033 goto again1;
6035 if (len != 1)
6036 exit(1);
6038 chdir("/");
6039 TFR(fd = open("/dev/null", O_RDWR));
6040 if (fd == -1)
6041 exit(1);
6044 if (run_as) {
6045 pwd = getpwnam(run_as);
6046 if (!pwd) {
6047 fprintf(stderr, "User \"%s\" doesn't exist\n", run_as);
6048 exit(1);
6052 if (chroot_dir) {
6053 if (chroot(chroot_dir) < 0) {
6054 fprintf(stderr, "chroot failed\n");
6055 exit(1);
6057 chdir("/");
6060 if (run_as) {
6061 if (setgid(pwd->pw_gid) < 0) {
6062 fprintf(stderr, "Failed to setgid(%d)\n", pwd->pw_gid);
6063 exit(1);
6065 if (setuid(pwd->pw_uid) < 0) {
6066 fprintf(stderr, "Failed to setuid(%d)\n", pwd->pw_uid);
6067 exit(1);
6069 if (setuid(0) != -1) {
6070 fprintf(stderr, "Dropping privileges failed\n");
6071 exit(1);
6075 if (daemonize) {
6076 dup2(fd, 0);
6077 dup2(fd, 1);
6078 dup2(fd, 2);
6080 close(fd);
6082 #endif
6084 main_loop();
6085 quit_timers();
6086 net_cleanup();
6088 return 0;