ui/gtk: Fix build with older versions of gtk
[qemu.git] / qemu-options.hx
blob4536e18ac0761c84e9174e5f69c3a79168dee61b
1 HXCOMM Use DEFHEADING() to define headings in both help text and texi
2 HXCOMM Text between STEXI and ETEXI are copied to texi version and
3 HXCOMM discarded from C version
4 HXCOMM DEF(option, HAS_ARG/0, opt_enum, opt_help, arch_mask) is used to
5 HXCOMM construct option structures, enums and help message for specified
6 HXCOMM architectures.
7 HXCOMM HXCOMM can be used for comments, discarded from both texi and C
9 DEFHEADING(Standard options:)
10 STEXI
11 @table @option
12 ETEXI
14 DEF("help", 0, QEMU_OPTION_h,
15 "-h or -help display this help and exit\n", QEMU_ARCH_ALL)
16 STEXI
17 @item -h
18 @findex -h
19 Display help and exit
20 ETEXI
22 DEF("version", 0, QEMU_OPTION_version,
23 "-version display version information and exit\n", QEMU_ARCH_ALL)
24 STEXI
25 @item -version
26 @findex -version
27 Display version information and exit
28 ETEXI
30 DEF("machine", HAS_ARG, QEMU_OPTION_machine, \
31 "-machine [type=]name[,prop[=value][,...]]\n"
32 " selects emulated machine ('-machine help' for list)\n"
33 " property accel=accel1[:accel2[:...]] selects accelerator\n"
34 " supported accelerators are kvm, xen, tcg (default: tcg)\n"
35 " kernel_irqchip=on|off controls accelerated irqchip support\n"
36 " kernel_irqchip=on|off|split controls accelerated irqchip support (default=off)\n"
37 " vmport=on|off|auto controls emulation of vmport (default: auto)\n"
38 " kvm_shadow_mem=size of KVM shadow MMU in bytes\n"
39 " dump-guest-core=on|off include guest memory in a core dump (default=on)\n"
40 " mem-merge=on|off controls memory merge support (default: on)\n"
41 " igd-passthru=on|off controls IGD GFX passthrough support (default=off)\n"
42 " aes-key-wrap=on|off controls support for AES key wrapping (default=on)\n"
43 " dea-key-wrap=on|off controls support for DEA key wrapping (default=on)\n"
44 " suppress-vmdesc=on|off disables self-describing migration (default=off)\n"
45 " nvdimm=on|off controls NVDIMM support (default=off)\n"
46 " enforce-config-section=on|off enforce configuration section migration (default=off)\n",
47 QEMU_ARCH_ALL)
48 STEXI
49 @item -machine [type=]@var{name}[,prop=@var{value}[,...]]
50 @findex -machine
51 Select the emulated machine by @var{name}. Use @code{-machine help} to list
52 available machines. Supported machine properties are:
53 @table @option
54 @item accel=@var{accels1}[:@var{accels2}[:...]]
55 This is used to enable an accelerator. Depending on the target architecture,
56 kvm, xen, or tcg can be available. By default, tcg is used. If there is more
57 than one accelerator specified, the next one is used if the previous one fails
58 to initialize.
59 @item kernel_irqchip=on|off
60 Controls in-kernel irqchip support for the chosen accelerator when available.
61 @item gfx_passthru=on|off
62 Enables IGD GFX passthrough support for the chosen machine when available.
63 @item vmport=on|off|auto
64 Enables emulation of VMWare IO port, for vmmouse etc. auto says to select the
65 value based on accel. For accel=xen the default is off otherwise the default
66 is on.
67 @item kvm_shadow_mem=size
68 Defines the size of the KVM shadow MMU.
69 @item dump-guest-core=on|off
70 Include guest memory in a core dump. The default is on.
71 @item mem-merge=on|off
72 Enables or disables memory merge support. This feature, when supported by
73 the host, de-duplicates identical memory pages among VMs instances
74 (enabled by default).
75 @item aes-key-wrap=on|off
76 Enables or disables AES key wrapping support on s390-ccw hosts. This feature
77 controls whether AES wrapping keys will be created to allow
78 execution of AES cryptographic functions. The default is on.
79 @item dea-key-wrap=on|off
80 Enables or disables DEA key wrapping support on s390-ccw hosts. This feature
81 controls whether DEA wrapping keys will be created to allow
82 execution of DEA cryptographic functions. The default is on.
83 @item nvdimm=on|off
84 Enables or disables NVDIMM support. The default is off.
85 @end table
86 ETEXI
88 HXCOMM Deprecated by -machine
89 DEF("M", HAS_ARG, QEMU_OPTION_M, "", QEMU_ARCH_ALL)
91 DEF("cpu", HAS_ARG, QEMU_OPTION_cpu,
92 "-cpu cpu select CPU ('-cpu help' for list)\n", QEMU_ARCH_ALL)
93 STEXI
94 @item -cpu @var{model}
95 @findex -cpu
96 Select CPU model (@code{-cpu help} for list and additional feature selection)
97 ETEXI
99 DEF("smp", HAS_ARG, QEMU_OPTION_smp,
100 "-smp [cpus=]n[,maxcpus=cpus][,cores=cores][,threads=threads][,sockets=sockets]\n"
101 " set the number of CPUs to 'n' [default=1]\n"
102 " maxcpus= maximum number of total cpus, including\n"
103 " offline CPUs for hotplug, etc\n"
104 " cores= number of CPU cores on one socket\n"
105 " threads= number of threads on one CPU core\n"
106 " sockets= number of discrete sockets in the system\n",
107 QEMU_ARCH_ALL)
108 STEXI
109 @item -smp [cpus=]@var{n}[,cores=@var{cores}][,threads=@var{threads}][,sockets=@var{sockets}][,maxcpus=@var{maxcpus}]
110 @findex -smp
111 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
112 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
113 to 4.
114 For the PC target, the number of @var{cores} per socket, the number
115 of @var{threads} per cores and the total number of @var{sockets} can be
116 specified. Missing values will be computed. If any on the three values is
117 given, the total number of CPUs @var{n} can be omitted. @var{maxcpus}
118 specifies the maximum number of hotpluggable CPUs.
119 ETEXI
121 DEF("numa", HAS_ARG, QEMU_OPTION_numa,
122 "-numa node[,mem=size][,cpus=cpu[-cpu]][,nodeid=node]\n"
123 "-numa node[,memdev=id][,cpus=cpu[-cpu]][,nodeid=node]\n", QEMU_ARCH_ALL)
124 STEXI
125 @item -numa node[,mem=@var{size}][,cpus=@var{cpu[-cpu]}][,nodeid=@var{node}]
126 @itemx -numa node[,memdev=@var{id}][,cpus=@var{cpu[-cpu]}][,nodeid=@var{node}]
127 @findex -numa
128 Simulate a multi node NUMA system. If @samp{mem}, @samp{memdev}
129 and @samp{cpus} are omitted, resources are split equally. Also, note
130 that the -@option{numa} option doesn't allocate any of the specified
131 resources. That is, it just assigns existing resources to NUMA nodes. This
132 means that one still has to use the @option{-m}, @option{-smp} options
133 to allocate RAM and VCPUs respectively, and possibly @option{-object}
134 to specify the memory backend for the @samp{memdev} suboption.
136 @samp{mem} and @samp{memdev} are mutually exclusive. Furthermore, if one
137 node uses @samp{memdev}, all of them have to use it.
138 ETEXI
140 DEF("add-fd", HAS_ARG, QEMU_OPTION_add_fd,
141 "-add-fd fd=fd,set=set[,opaque=opaque]\n"
142 " Add 'fd' to fd 'set'\n", QEMU_ARCH_ALL)
143 STEXI
144 @item -add-fd fd=@var{fd},set=@var{set}[,opaque=@var{opaque}]
145 @findex -add-fd
147 Add a file descriptor to an fd set. Valid options are:
149 @table @option
150 @item fd=@var{fd}
151 This option defines the file descriptor of which a duplicate is added to fd set.
152 The file descriptor cannot be stdin, stdout, or stderr.
153 @item set=@var{set}
154 This option defines the ID of the fd set to add the file descriptor to.
155 @item opaque=@var{opaque}
156 This option defines a free-form string that can be used to describe @var{fd}.
157 @end table
159 You can open an image using pre-opened file descriptors from an fd set:
160 @example
161 qemu-system-i386
162 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file"
163 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file"
164 -drive file=/dev/fdset/2,index=0,media=disk
165 @end example
166 ETEXI
168 DEF("set", HAS_ARG, QEMU_OPTION_set,
169 "-set group.id.arg=value\n"
170 " set <arg> parameter for item <id> of type <group>\n"
171 " i.e. -set drive.$id.file=/path/to/image\n", QEMU_ARCH_ALL)
172 STEXI
173 @item -set @var{group}.@var{id}.@var{arg}=@var{value}
174 @findex -set
175 Set parameter @var{arg} for item @var{id} of type @var{group}
176 ETEXI
178 DEF("global", HAS_ARG, QEMU_OPTION_global,
179 "-global driver.property=value\n"
180 "-global driver=driver,property=property,value=value\n"
181 " set a global default for a driver property\n",
182 QEMU_ARCH_ALL)
183 STEXI
184 @item -global @var{driver}.@var{prop}=@var{value}
185 @itemx -global driver=@var{driver},property=@var{property},value=@var{value}
186 @findex -global
187 Set default value of @var{driver}'s property @var{prop} to @var{value}, e.g.:
189 @example
190 qemu-system-i386 -global ide-drive.physical_block_size=4096 -drive file=file,if=ide,index=0,media=disk
191 @end example
193 In particular, you can use this to set driver properties for devices which are
194 created automatically by the machine model. To create a device which is not
195 created automatically and set properties on it, use -@option{device}.
197 -global @var{driver}.@var{prop}=@var{value} is shorthand for -global
198 driver=@var{driver},property=@var{prop},value=@var{value}. The
199 longhand syntax works even when @var{driver} contains a dot.
200 ETEXI
202 DEF("boot", HAS_ARG, QEMU_OPTION_boot,
203 "-boot [order=drives][,once=drives][,menu=on|off]\n"
204 " [,splash=sp_name][,splash-time=sp_time][,reboot-timeout=rb_time][,strict=on|off]\n"
205 " 'drives': floppy (a), hard disk (c), CD-ROM (d), network (n)\n"
206 " 'sp_name': the file's name that would be passed to bios as logo picture, if menu=on\n"
207 " 'sp_time': the period that splash picture last if menu=on, unit is ms\n"
208 " 'rb_timeout': the timeout before guest reboot when boot failed, unit is ms\n",
209 QEMU_ARCH_ALL)
210 STEXI
211 @item -boot [order=@var{drives}][,once=@var{drives}][,menu=on|off][,splash=@var{sp_name}][,splash-time=@var{sp_time}][,reboot-timeout=@var{rb_timeout}][,strict=on|off]
212 @findex -boot
213 Specify boot order @var{drives} as a string of drive letters. Valid
214 drive letters depend on the target architecture. The x86 PC uses: a, b
215 (floppy 1 and 2), c (first hard disk), d (first CD-ROM), n-p (Etherboot
216 from network adapter 1-4), hard disk boot is the default. To apply a
217 particular boot order only on the first startup, specify it via
218 @option{once}.
220 Interactive boot menus/prompts can be enabled via @option{menu=on} as far
221 as firmware/BIOS supports them. The default is non-interactive boot.
223 A splash picture could be passed to bios, enabling user to show it as logo,
224 when option splash=@var{sp_name} is given and menu=on, If firmware/BIOS
225 supports them. Currently Seabios for X86 system support it.
226 limitation: The splash file could be a jpeg file or a BMP file in 24 BPP
227 format(true color). The resolution should be supported by the SVGA mode, so
228 the recommended is 320x240, 640x480, 800x640.
230 A timeout could be passed to bios, guest will pause for @var{rb_timeout} ms
231 when boot failed, then reboot. If @var{rb_timeout} is '-1', guest will not
232 reboot, qemu passes '-1' to bios by default. Currently Seabios for X86
233 system support it.
235 Do strict boot via @option{strict=on} as far as firmware/BIOS
236 supports it. This only effects when boot priority is changed by
237 bootindex options. The default is non-strict boot.
239 @example
240 # try to boot from network first, then from hard disk
241 qemu-system-i386 -boot order=nc
242 # boot from CD-ROM first, switch back to default order after reboot
243 qemu-system-i386 -boot once=d
244 # boot with a splash picture for 5 seconds.
245 qemu-system-i386 -boot menu=on,splash=/root/boot.bmp,splash-time=5000
246 @end example
248 Note: The legacy format '-boot @var{drives}' is still supported but its
249 use is discouraged as it may be removed from future versions.
250 ETEXI
252 DEF("m", HAS_ARG, QEMU_OPTION_m,
253 "-m[emory] [size=]megs[,slots=n,maxmem=size]\n"
254 " configure guest RAM\n"
255 " size: initial amount of guest memory\n"
256 " slots: number of hotplug slots (default: none)\n"
257 " maxmem: maximum amount of guest memory (default: none)\n"
258 "NOTE: Some architectures might enforce a specific granularity\n",
259 QEMU_ARCH_ALL)
260 STEXI
261 @item -m [size=]@var{megs}[,slots=n,maxmem=size]
262 @findex -m
263 Sets guest startup RAM size to @var{megs} megabytes. Default is 128 MiB.
264 Optionally, a suffix of ``M'' or ``G'' can be used to signify a value in
265 megabytes or gigabytes respectively. Optional pair @var{slots}, @var{maxmem}
266 could be used to set amount of hotpluggable memory slots and maximum amount of
267 memory. Note that @var{maxmem} must be aligned to the page size.
269 For example, the following command-line sets the guest startup RAM size to
270 1GB, creates 3 slots to hotplug additional memory and sets the maximum
271 memory the guest can reach to 4GB:
273 @example
274 qemu-system-x86_64 -m 1G,slots=3,maxmem=4G
275 @end example
277 If @var{slots} and @var{maxmem} are not specified, memory hotplug won't
278 be enabled and the guest startup RAM will never increase.
279 ETEXI
281 DEF("mem-path", HAS_ARG, QEMU_OPTION_mempath,
282 "-mem-path FILE provide backing storage for guest RAM\n", QEMU_ARCH_ALL)
283 STEXI
284 @item -mem-path @var{path}
285 @findex -mem-path
286 Allocate guest RAM from a temporarily created file in @var{path}.
287 ETEXI
289 DEF("mem-prealloc", 0, QEMU_OPTION_mem_prealloc,
290 "-mem-prealloc preallocate guest memory (use with -mem-path)\n",
291 QEMU_ARCH_ALL)
292 STEXI
293 @item -mem-prealloc
294 @findex -mem-prealloc
295 Preallocate memory when using -mem-path.
296 ETEXI
298 DEF("k", HAS_ARG, QEMU_OPTION_k,
299 "-k language use keyboard layout (for example 'fr' for French)\n",
300 QEMU_ARCH_ALL)
301 STEXI
302 @item -k @var{language}
303 @findex -k
304 Use keyboard layout @var{language} (for example @code{fr} for
305 French). This option is only needed where it is not easy to get raw PC
306 keycodes (e.g. on Macs, with some X11 servers or with a VNC or curses
307 display). You don't normally need to use it on PC/Linux or PC/Windows
308 hosts.
310 The available layouts are:
311 @example
312 ar de-ch es fo fr-ca hu ja mk no pt-br sv
313 da en-gb et fr fr-ch is lt nl pl ru th
314 de en-us fi fr-be hr it lv nl-be pt sl tr
315 @end example
317 The default is @code{en-us}.
318 ETEXI
321 DEF("audio-help", 0, QEMU_OPTION_audio_help,
322 "-audio-help print list of audio drivers and their options\n",
323 QEMU_ARCH_ALL)
324 STEXI
325 @item -audio-help
326 @findex -audio-help
327 Will show the audio subsystem help: list of drivers, tunable
328 parameters.
329 ETEXI
331 DEF("soundhw", HAS_ARG, QEMU_OPTION_soundhw,
332 "-soundhw c1,... enable audio support\n"
333 " and only specified sound cards (comma separated list)\n"
334 " use '-soundhw help' to get the list of supported cards\n"
335 " use '-soundhw all' to enable all of them\n", QEMU_ARCH_ALL)
336 STEXI
337 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
338 @findex -soundhw
339 Enable audio and selected sound hardware. Use 'help' to print all
340 available sound hardware.
342 @example
343 qemu-system-i386 -soundhw sb16,adlib disk.img
344 qemu-system-i386 -soundhw es1370 disk.img
345 qemu-system-i386 -soundhw ac97 disk.img
346 qemu-system-i386 -soundhw hda disk.img
347 qemu-system-i386 -soundhw all disk.img
348 qemu-system-i386 -soundhw help
349 @end example
351 Note that Linux's i810_audio OSS kernel (for AC97) module might
352 require manually specifying clocking.
354 @example
355 modprobe i810_audio clocking=48000
356 @end example
357 ETEXI
359 DEF("balloon", HAS_ARG, QEMU_OPTION_balloon,
360 "-balloon none disable balloon device\n"
361 "-balloon virtio[,addr=str]\n"
362 " enable virtio balloon device (default)\n", QEMU_ARCH_ALL)
363 STEXI
364 @item -balloon none
365 @findex -balloon
366 Disable balloon device.
367 @item -balloon virtio[,addr=@var{addr}]
368 Enable virtio balloon device (default), optionally with PCI address
369 @var{addr}.
370 ETEXI
372 DEF("device", HAS_ARG, QEMU_OPTION_device,
373 "-device driver[,prop[=value][,...]]\n"
374 " add device (based on driver)\n"
375 " prop=value,... sets driver properties\n"
376 " use '-device help' to print all possible drivers\n"
377 " use '-device driver,help' to print all possible properties\n",
378 QEMU_ARCH_ALL)
379 STEXI
380 @item -device @var{driver}[,@var{prop}[=@var{value}][,...]]
381 @findex -device
382 Add device @var{driver}. @var{prop}=@var{value} sets driver
383 properties. Valid properties depend on the driver. To get help on
384 possible drivers and properties, use @code{-device help} and
385 @code{-device @var{driver},help}.
387 Some drivers are:
388 @item -device ipmi-bmc-sim,id=@var{id}[,slave_addr=@var{val}]
390 Add an IPMI BMC. This is a simulation of a hardware management
391 interface processor that normally sits on a system. It provides
392 a watchdog and the ability to reset and power control the system.
393 You need to connect this to an IPMI interface to make it useful
395 The IPMI slave address to use for the BMC. The default is 0x20.
396 This address is the BMC's address on the I2C network of management
397 controllers. If you don't know what this means, it is safe to ignore
400 @item -device ipmi-bmc-extern,id=@var{id},chardev=@var{id}[,slave_addr=@var{val}]
402 Add a connection to an external IPMI BMC simulator. Instead of
403 locally emulating the BMC like the above item, instead connect
404 to an external entity that provides the IPMI services.
406 A connection is made to an external BMC simulator. If you do this, it
407 is strongly recommended that you use the "reconnect=" chardev option
408 to reconnect to the simulator if the connection is lost. Note that if
409 this is not used carefully, it can be a security issue, as the
410 interface has the ability to send resets, NMIs, and power off the VM.
411 It's best if QEMU makes a connection to an external simulator running
412 on a secure port on localhost, so neither the simulator nor QEMU is
413 exposed to any outside network.
415 See the "lanserv/README.vm" file in the OpenIPMI library for more
416 details on the external interface.
418 @item -device isa-ipmi-kcs,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
420 Add a KCS IPMI interafce on the ISA bus. This also adds a
421 corresponding ACPI and SMBIOS entries, if appropriate.
423 @table @option
424 @item bmc=@var{id}
425 The BMC to connect to, one of ipmi-bmc-sim or ipmi-bmc-extern above.
426 @item ioport=@var{val}
427 Define the I/O address of the interface. The default is 0xca0 for KCS.
428 @item irq=@var{val}
429 Define the interrupt to use. The default is 5. To disable interrupts,
430 set this to 0.
431 @end table
433 @item -device isa-ipmi-bt,bmc=@var{id}[,ioport=@var{val}][,irq=@var{val}]
435 Like the KCS interface, but defines a BT interface. The default port is
436 0xe4 and the default interrupt is 5.
438 ETEXI
440 DEF("name", HAS_ARG, QEMU_OPTION_name,
441 "-name string1[,process=string2][,debug-threads=on|off]\n"
442 " set the name of the guest\n"
443 " string1 sets the window title and string2 the process name (on Linux)\n"
444 " When debug-threads is enabled, individual threads are given a separate name (on Linux)\n"
445 " NOTE: The thread names are for debugging and not a stable API.\n",
446 QEMU_ARCH_ALL)
447 STEXI
448 @item -name @var{name}
449 @findex -name
450 Sets the @var{name} of the guest.
451 This name will be displayed in the SDL window caption.
452 The @var{name} will also be used for the VNC server.
453 Also optionally set the top visible process name in Linux.
454 Naming of individual threads can also be enabled on Linux to aid debugging.
455 ETEXI
457 DEF("uuid", HAS_ARG, QEMU_OPTION_uuid,
458 "-uuid %08x-%04x-%04x-%04x-%012x\n"
459 " specify machine UUID\n", QEMU_ARCH_ALL)
460 STEXI
461 @item -uuid @var{uuid}
462 @findex -uuid
463 Set system UUID.
464 ETEXI
466 STEXI
467 @end table
468 ETEXI
469 DEFHEADING()
471 DEFHEADING(Block device options:)
472 STEXI
473 @table @option
474 ETEXI
476 DEF("fda", HAS_ARG, QEMU_OPTION_fda,
477 "-fda/-fdb file use 'file' as floppy disk 0/1 image\n", QEMU_ARCH_ALL)
478 DEF("fdb", HAS_ARG, QEMU_OPTION_fdb, "", QEMU_ARCH_ALL)
479 STEXI
480 @item -fda @var{file}
481 @itemx -fdb @var{file}
482 @findex -fda
483 @findex -fdb
484 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}).
485 ETEXI
487 DEF("hda", HAS_ARG, QEMU_OPTION_hda,
488 "-hda/-hdb file use 'file' as IDE hard disk 0/1 image\n", QEMU_ARCH_ALL)
489 DEF("hdb", HAS_ARG, QEMU_OPTION_hdb, "", QEMU_ARCH_ALL)
490 DEF("hdc", HAS_ARG, QEMU_OPTION_hdc,
491 "-hdc/-hdd file use 'file' as IDE hard disk 2/3 image\n", QEMU_ARCH_ALL)
492 DEF("hdd", HAS_ARG, QEMU_OPTION_hdd, "", QEMU_ARCH_ALL)
493 STEXI
494 @item -hda @var{file}
495 @itemx -hdb @var{file}
496 @itemx -hdc @var{file}
497 @itemx -hdd @var{file}
498 @findex -hda
499 @findex -hdb
500 @findex -hdc
501 @findex -hdd
502 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
503 ETEXI
505 DEF("cdrom", HAS_ARG, QEMU_OPTION_cdrom,
506 "-cdrom file use 'file' as IDE cdrom image (cdrom is ide1 master)\n",
507 QEMU_ARCH_ALL)
508 STEXI
509 @item -cdrom @var{file}
510 @findex -cdrom
511 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
512 @option{-cdrom} at the same time). You can use the host CD-ROM by
513 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
514 ETEXI
516 DEF("drive", HAS_ARG, QEMU_OPTION_drive,
517 "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
518 " [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
519 " [,cache=writethrough|writeback|none|directsync|unsafe][,format=f]\n"
520 " [,serial=s][,addr=A][,rerror=ignore|stop|report]\n"
521 " [,werror=ignore|stop|report|enospc][,id=name][,aio=threads|native]\n"
522 " [,readonly=on|off][,copy-on-read=on|off]\n"
523 " [,discard=ignore|unmap][,detect-zeroes=on|off|unmap]\n"
524 " [[,bps=b]|[[,bps_rd=r][,bps_wr=w]]]\n"
525 " [[,iops=i]|[[,iops_rd=r][,iops_wr=w]]]\n"
526 " [[,bps_max=bm]|[[,bps_rd_max=rm][,bps_wr_max=wm]]]\n"
527 " [[,iops_max=im]|[[,iops_rd_max=irm][,iops_wr_max=iwm]]]\n"
528 " [[,iops_size=is]]\n"
529 " [[,group=g]]\n"
530 " use 'file' as a drive image\n", QEMU_ARCH_ALL)
531 STEXI
532 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
533 @findex -drive
535 Define a new drive. Valid options are:
537 @table @option
538 @item file=@var{file}
539 This option defines which disk image (@pxref{disk_images}) to use with
540 this drive. If the filename contains comma, you must double it
541 (for instance, "file=my,,file" to use file "my,file").
543 Special files such as iSCSI devices can be specified using protocol
544 specific URLs. See the section for "Device URL Syntax" for more information.
545 @item if=@var{interface}
546 This option defines on which type on interface the drive is connected.
547 Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio.
548 @item bus=@var{bus},unit=@var{unit}
549 These options define where is connected the drive by defining the bus number and
550 the unit id.
551 @item index=@var{index}
552 This option defines where is connected the drive by using an index in the list
553 of available connectors of a given interface type.
554 @item media=@var{media}
555 This option defines the type of the media: disk or cdrom.
556 @item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
557 These options have the same definition as they have in @option{-hdachs}.
558 @item snapshot=@var{snapshot}
559 @var{snapshot} is "on" or "off" and controls snapshot mode for the given drive
560 (see @option{-snapshot}).
561 @item cache=@var{cache}
562 @var{cache} is "none", "writeback", "unsafe", "directsync" or "writethrough" and controls how the host cache is used to access block data.
563 @item aio=@var{aio}
564 @var{aio} is "threads", or "native" and selects between pthread based disk I/O and native Linux AIO.
565 @item discard=@var{discard}
566 @var{discard} is one of "ignore" (or "off") or "unmap" (or "on") and controls whether @dfn{discard} (also known as @dfn{trim} or @dfn{unmap}) requests are ignored or passed to the filesystem. Some machine types may not support discard requests.
567 @item format=@var{format}
568 Specify which disk @var{format} will be used rather than detecting
569 the format. Can be used to specify format=raw to avoid interpreting
570 an untrusted format header.
571 @item serial=@var{serial}
572 This option specifies the serial number to assign to the device.
573 @item addr=@var{addr}
574 Specify the controller's PCI address (if=virtio only).
575 @item werror=@var{action},rerror=@var{action}
576 Specify which @var{action} to take on write and read errors. Valid actions are:
577 "ignore" (ignore the error and try to continue), "stop" (pause QEMU),
578 "report" (report the error to the guest), "enospc" (pause QEMU only if the
579 host disk is full; report the error to the guest otherwise).
580 The default setting is @option{werror=enospc} and @option{rerror=report}.
581 @item readonly
582 Open drive @option{file} as read-only. Guest write attempts will fail.
583 @item copy-on-read=@var{copy-on-read}
584 @var{copy-on-read} is "on" or "off" and enables whether to copy read backing
585 file sectors into the image file.
586 @item detect-zeroes=@var{detect-zeroes}
587 @var{detect-zeroes} is "off", "on" or "unmap" and enables the automatic
588 conversion of plain zero writes by the OS to driver specific optimized
589 zero write commands. You may even choose "unmap" if @var{discard} is set
590 to "unmap" to allow a zero write to be converted to an UNMAP operation.
591 @end table
593 By default, the @option{cache=writeback} mode is used. It will report data
594 writes as completed as soon as the data is present in the host page cache.
595 This is safe as long as your guest OS makes sure to correctly flush disk caches
596 where needed. If your guest OS does not handle volatile disk write caches
597 correctly and your host crashes or loses power, then the guest may experience
598 data corruption.
600 For such guests, you should consider using @option{cache=writethrough}. This
601 means that the host page cache will be used to read and write data, but write
602 notification will be sent to the guest only after QEMU has made sure to flush
603 each write to the disk. Be aware that this has a major impact on performance.
605 The host page cache can be avoided entirely with @option{cache=none}. This will
606 attempt to do disk IO directly to the guest's memory. QEMU may still perform
607 an internal copy of the data. Note that this is considered a writeback mode and
608 the guest OS must handle the disk write cache correctly in order to avoid data
609 corruption on host crashes.
611 The host page cache can be avoided while only sending write notifications to
612 the guest when the data has been flushed to the disk using
613 @option{cache=directsync}.
615 In case you don't care about data integrity over host failures, use
616 @option{cache=unsafe}. This option tells QEMU that it never needs to write any
617 data to the disk but can instead keep things in cache. If anything goes wrong,
618 like your host losing power, the disk storage getting disconnected accidentally,
619 etc. your image will most probably be rendered unusable. When using
620 the @option{-snapshot} option, unsafe caching is always used.
622 Copy-on-read avoids accessing the same backing file sectors repeatedly and is
623 useful when the backing file is over a slow network. By default copy-on-read
624 is off.
626 Instead of @option{-cdrom} you can use:
627 @example
628 qemu-system-i386 -drive file=file,index=2,media=cdrom
629 @end example
631 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
632 use:
633 @example
634 qemu-system-i386 -drive file=file,index=0,media=disk
635 qemu-system-i386 -drive file=file,index=1,media=disk
636 qemu-system-i386 -drive file=file,index=2,media=disk
637 qemu-system-i386 -drive file=file,index=3,media=disk
638 @end example
640 You can open an image using pre-opened file descriptors from an fd set:
641 @example
642 qemu-system-i386
643 -add-fd fd=3,set=2,opaque="rdwr:/path/to/file"
644 -add-fd fd=4,set=2,opaque="rdonly:/path/to/file"
645 -drive file=/dev/fdset/2,index=0,media=disk
646 @end example
648 You can connect a CDROM to the slave of ide0:
649 @example
650 qemu-system-i386 -drive file=file,if=ide,index=1,media=cdrom
651 @end example
653 If you don't specify the "file=" argument, you define an empty drive:
654 @example
655 qemu-system-i386 -drive if=ide,index=1,media=cdrom
656 @end example
658 You can connect a SCSI disk with unit ID 6 on the bus #0:
659 @example
660 qemu-system-i386 -drive file=file,if=scsi,bus=0,unit=6
661 @end example
663 Instead of @option{-fda}, @option{-fdb}, you can use:
664 @example
665 qemu-system-i386 -drive file=file,index=0,if=floppy
666 qemu-system-i386 -drive file=file,index=1,if=floppy
667 @end example
669 By default, @var{interface} is "ide" and @var{index} is automatically
670 incremented:
671 @example
672 qemu-system-i386 -drive file=a -drive file=b"
673 @end example
674 is interpreted like:
675 @example
676 qemu-system-i386 -hda a -hdb b
677 @end example
678 ETEXI
680 DEF("mtdblock", HAS_ARG, QEMU_OPTION_mtdblock,
681 "-mtdblock file use 'file' as on-board Flash memory image\n",
682 QEMU_ARCH_ALL)
683 STEXI
684 @item -mtdblock @var{file}
685 @findex -mtdblock
686 Use @var{file} as on-board Flash memory image.
687 ETEXI
689 DEF("sd", HAS_ARG, QEMU_OPTION_sd,
690 "-sd file use 'file' as SecureDigital card image\n", QEMU_ARCH_ALL)
691 STEXI
692 @item -sd @var{file}
693 @findex -sd
694 Use @var{file} as SecureDigital card image.
695 ETEXI
697 DEF("pflash", HAS_ARG, QEMU_OPTION_pflash,
698 "-pflash file use 'file' as a parallel flash image\n", QEMU_ARCH_ALL)
699 STEXI
700 @item -pflash @var{file}
701 @findex -pflash
702 Use @var{file} as a parallel flash image.
703 ETEXI
705 DEF("snapshot", 0, QEMU_OPTION_snapshot,
706 "-snapshot write to temporary files instead of disk image files\n",
707 QEMU_ARCH_ALL)
708 STEXI
709 @item -snapshot
710 @findex -snapshot
711 Write to temporary files instead of disk image files. In this case,
712 the raw disk image you use is not written back. You can however force
713 the write back by pressing @key{C-a s} (@pxref{disk_images}).
714 ETEXI
716 DEF("hdachs", HAS_ARG, QEMU_OPTION_hdachs, \
717 "-hdachs c,h,s[,t]\n" \
718 " force hard disk 0 physical geometry and the optional BIOS\n" \
719 " translation (t=none or lba) (usually QEMU can guess them)\n",
720 QEMU_ARCH_ALL)
721 STEXI
722 @item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
723 @findex -hdachs
724 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
725 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
726 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
727 all those parameters. This option is useful for old MS-DOS disk
728 images.
729 ETEXI
731 DEF("fsdev", HAS_ARG, QEMU_OPTION_fsdev,
732 "-fsdev fsdriver,id=id[,path=path,][security_model={mapped-xattr|mapped-file|passthrough|none}]\n"
733 " [,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd]\n",
734 QEMU_ARCH_ALL)
736 STEXI
738 @item -fsdev @var{fsdriver},id=@var{id},path=@var{path},[security_model=@var{security_model}][,writeout=@var{writeout}][,readonly][,socket=@var{socket}|sock_fd=@var{sock_fd}]
739 @findex -fsdev
740 Define a new file system device. Valid options are:
741 @table @option
742 @item @var{fsdriver}
743 This option specifies the fs driver backend to use.
744 Currently "local", "handle" and "proxy" file system drivers are supported.
745 @item id=@var{id}
746 Specifies identifier for this device
747 @item path=@var{path}
748 Specifies the export path for the file system device. Files under
749 this path will be available to the 9p client on the guest.
750 @item security_model=@var{security_model}
751 Specifies the security model to be used for this export path.
752 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
753 In "passthrough" security model, files are stored using the same
754 credentials as they are created on the guest. This requires QEMU
755 to run as root. In "mapped-xattr" security model, some of the file
756 attributes like uid, gid, mode bits and link target are stored as
757 file attributes. For "mapped-file" these attributes are stored in the
758 hidden .virtfs_metadata directory. Directories exported by this security model cannot
759 interact with other unix tools. "none" security model is same as
760 passthrough except the sever won't report failures if it fails to
761 set file attributes like ownership. Security model is mandatory
762 only for local fsdriver. Other fsdrivers (like handle, proxy) don't take
763 security model as a parameter.
764 @item writeout=@var{writeout}
765 This is an optional argument. The only supported value is "immediate".
766 This means that host page cache will be used to read and write data but
767 write notification will be sent to the guest only when the data has been
768 reported as written by the storage subsystem.
769 @item readonly
770 Enables exporting 9p share as a readonly mount for guests. By default
771 read-write access is given.
772 @item socket=@var{socket}
773 Enables proxy filesystem driver to use passed socket file for communicating
774 with virtfs-proxy-helper
775 @item sock_fd=@var{sock_fd}
776 Enables proxy filesystem driver to use passed socket descriptor for
777 communicating with virtfs-proxy-helper. Usually a helper like libvirt
778 will create socketpair and pass one of the fds as sock_fd
779 @end table
781 -fsdev option is used along with -device driver "virtio-9p-pci".
782 @item -device virtio-9p-pci,fsdev=@var{id},mount_tag=@var{mount_tag}
783 Options for virtio-9p-pci driver are:
784 @table @option
785 @item fsdev=@var{id}
786 Specifies the id value specified along with -fsdev option
787 @item mount_tag=@var{mount_tag}
788 Specifies the tag name to be used by the guest to mount this export point
789 @end table
791 ETEXI
793 DEF("virtfs", HAS_ARG, QEMU_OPTION_virtfs,
794 "-virtfs local,path=path,mount_tag=tag,security_model=[mapped-xattr|mapped-file|passthrough|none]\n"
795 " [,writeout=immediate][,readonly][,socket=socket|sock_fd=sock_fd]\n",
796 QEMU_ARCH_ALL)
798 STEXI
800 @item -virtfs @var{fsdriver}[,path=@var{path}],mount_tag=@var{mount_tag}[,security_model=@var{security_model}][,writeout=@var{writeout}][,readonly][,socket=@var{socket}|sock_fd=@var{sock_fd}]
801 @findex -virtfs
803 The general form of a Virtual File system pass-through options are:
804 @table @option
805 @item @var{fsdriver}
806 This option specifies the fs driver backend to use.
807 Currently "local", "handle" and "proxy" file system drivers are supported.
808 @item id=@var{id}
809 Specifies identifier for this device
810 @item path=@var{path}
811 Specifies the export path for the file system device. Files under
812 this path will be available to the 9p client on the guest.
813 @item security_model=@var{security_model}
814 Specifies the security model to be used for this export path.
815 Supported security models are "passthrough", "mapped-xattr", "mapped-file" and "none".
816 In "passthrough" security model, files are stored using the same
817 credentials as they are created on the guest. This requires QEMU
818 to run as root. In "mapped-xattr" security model, some of the file
819 attributes like uid, gid, mode bits and link target are stored as
820 file attributes. For "mapped-file" these attributes are stored in the
821 hidden .virtfs_metadata directory. Directories exported by this security model cannot
822 interact with other unix tools. "none" security model is same as
823 passthrough except the sever won't report failures if it fails to
824 set file attributes like ownership. Security model is mandatory only
825 for local fsdriver. Other fsdrivers (like handle, proxy) don't take security
826 model as a parameter.
827 @item writeout=@var{writeout}
828 This is an optional argument. The only supported value is "immediate".
829 This means that host page cache will be used to read and write data but
830 write notification will be sent to the guest only when the data has been
831 reported as written by the storage subsystem.
832 @item readonly
833 Enables exporting 9p share as a readonly mount for guests. By default
834 read-write access is given.
835 @item socket=@var{socket}
836 Enables proxy filesystem driver to use passed socket file for
837 communicating with virtfs-proxy-helper. Usually a helper like libvirt
838 will create socketpair and pass one of the fds as sock_fd
839 @item sock_fd
840 Enables proxy filesystem driver to use passed 'sock_fd' as the socket
841 descriptor for interfacing with virtfs-proxy-helper
842 @end table
843 ETEXI
845 DEF("virtfs_synth", 0, QEMU_OPTION_virtfs_synth,
846 "-virtfs_synth Create synthetic file system image\n",
847 QEMU_ARCH_ALL)
848 STEXI
849 @item -virtfs_synth
850 @findex -virtfs_synth
851 Create synthetic file system image
852 ETEXI
854 STEXI
855 @end table
856 ETEXI
857 DEFHEADING()
859 DEFHEADING(USB options:)
860 STEXI
861 @table @option
862 ETEXI
864 DEF("usb", 0, QEMU_OPTION_usb,
865 "-usb enable the USB driver (will be the default soon)\n",
866 QEMU_ARCH_ALL)
867 STEXI
868 @item -usb
869 @findex -usb
870 Enable the USB driver (will be the default soon)
871 ETEXI
873 DEF("usbdevice", HAS_ARG, QEMU_OPTION_usbdevice,
874 "-usbdevice name add the host or guest USB device 'name'\n",
875 QEMU_ARCH_ALL)
876 STEXI
878 @item -usbdevice @var{devname}
879 @findex -usbdevice
880 Add the USB device @var{devname}. @xref{usb_devices}.
882 @table @option
884 @item mouse
885 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
887 @item tablet
888 Pointer device that uses absolute coordinates (like a touchscreen). This
889 means QEMU is able to report the mouse position without having to grab the
890 mouse. Also overrides the PS/2 mouse emulation when activated.
892 @item disk:[format=@var{format}]:@var{file}
893 Mass storage device based on file. The optional @var{format} argument
894 will be used rather than detecting the format. Can be used to specify
895 @code{format=raw} to avoid interpreting an untrusted format header.
897 @item host:@var{bus}.@var{addr}
898 Pass through the host device identified by @var{bus}.@var{addr} (Linux only).
900 @item host:@var{vendor_id}:@var{product_id}
901 Pass through the host device identified by @var{vendor_id}:@var{product_id}
902 (Linux only).
904 @item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
905 Serial converter to host character device @var{dev}, see @code{-serial} for the
906 available devices.
908 @item braille
909 Braille device. This will use BrlAPI to display the braille output on a real
910 or fake device.
912 @item net:@var{options}
913 Network adapter that supports CDC ethernet and RNDIS protocols.
915 @end table
916 ETEXI
918 STEXI
919 @end table
920 ETEXI
921 DEFHEADING()
923 DEFHEADING(Display options:)
924 STEXI
925 @table @option
926 ETEXI
928 DEF("display", HAS_ARG, QEMU_OPTION_display,
929 "-display sdl[,frame=on|off][,alt_grab=on|off][,ctrl_grab=on|off]\n"
930 " [,window_close=on|off][,gl=on|off]|curses|none|\n"
931 "-display gtk[,grab_on_hover=on|off][,gl=on|off]|\n"
932 "-display vnc=<display>[,<optargs>]\n"
933 "-display curses\n"
934 "-display none"
935 " select display type\n"
936 "The default display is equivalent to\n"
937 #if defined(CONFIG_GTK)
938 "\t\"-display gtk\"\n"
939 #elif defined(CONFIG_SDL)
940 "\t\"-display sdl\"\n"
941 #elif defined(CONFIG_COCOA)
942 "\t\"-display cocoa\"\n"
943 #elif defined(CONFIG_VNC)
944 "\t\"-vnc localhost:0,to=99,id=default\"\n"
945 #else
946 "\t\"-display none\"\n"
947 #endif
948 , QEMU_ARCH_ALL)
949 STEXI
950 @item -display @var{type}
951 @findex -display
952 Select type of display to use. This option is a replacement for the
953 old style -sdl/-curses/... options. Valid values for @var{type} are
954 @table @option
955 @item sdl
956 Display video output via SDL (usually in a separate graphics
957 window; see the SDL documentation for other possibilities).
958 @item curses
959 Display video output via curses. For graphics device models which
960 support a text mode, QEMU can display this output using a
961 curses/ncurses interface. Nothing is displayed when the graphics
962 device is in graphical mode or if the graphics device does not support
963 a text mode. Generally only the VGA device models support text mode.
964 @item none
965 Do not display video output. The guest will still see an emulated
966 graphics card, but its output will not be displayed to the QEMU
967 user. This option differs from the -nographic option in that it
968 only affects what is done with video output; -nographic also changes
969 the destination of the serial and parallel port data.
970 @item gtk
971 Display video output in a GTK window. This interface provides drop-down
972 menus and other UI elements to configure and control the VM during
973 runtime.
974 @item vnc
975 Start a VNC server on display <arg>
976 @end table
977 ETEXI
979 DEF("nographic", 0, QEMU_OPTION_nographic,
980 "-nographic disable graphical output and redirect serial I/Os to console\n",
981 QEMU_ARCH_ALL)
982 STEXI
983 @item -nographic
984 @findex -nographic
985 Normally, if QEMU is compiled with graphical window support, it displays
986 output such as guest graphics, guest console, and the QEMU monitor in a
987 window. With this option, you can totally disable graphical output so
988 that QEMU is a simple command line application. The emulated serial port
989 is redirected on the console and muxed with the monitor (unless
990 redirected elsewhere explicitly). Therefore, you can still use QEMU to
991 debug a Linux kernel with a serial console. Use @key{C-a h} for help on
992 switching between the console and monitor.
993 ETEXI
995 DEF("curses", 0, QEMU_OPTION_curses,
996 "-curses shorthand for -display curses\n",
997 QEMU_ARCH_ALL)
998 STEXI
999 @item -curses
1000 @findex -curses
1001 Normally, if QEMU is compiled with graphical window support, it displays
1002 output such as guest graphics, guest console, and the QEMU monitor in a
1003 window. With this option, QEMU can display the VGA output when in text
1004 mode using a curses/ncurses interface. Nothing is displayed in graphical
1005 mode.
1006 ETEXI
1008 DEF("no-frame", 0, QEMU_OPTION_no_frame,
1009 "-no-frame open SDL window without a frame and window decorations\n",
1010 QEMU_ARCH_ALL)
1011 STEXI
1012 @item -no-frame
1013 @findex -no-frame
1014 Do not use decorations for SDL windows and start them using the whole
1015 available screen space. This makes the using QEMU in a dedicated desktop
1016 workspace more convenient.
1017 ETEXI
1019 DEF("alt-grab", 0, QEMU_OPTION_alt_grab,
1020 "-alt-grab use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n",
1021 QEMU_ARCH_ALL)
1022 STEXI
1023 @item -alt-grab
1024 @findex -alt-grab
1025 Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt). Note that this also
1026 affects the special keys (for fullscreen, monitor-mode switching, etc).
1027 ETEXI
1029 DEF("ctrl-grab", 0, QEMU_OPTION_ctrl_grab,
1030 "-ctrl-grab use Right-Ctrl to grab mouse (instead of Ctrl-Alt)\n",
1031 QEMU_ARCH_ALL)
1032 STEXI
1033 @item -ctrl-grab
1034 @findex -ctrl-grab
1035 Use Right-Ctrl to grab mouse (instead of Ctrl-Alt). Note that this also
1036 affects the special keys (for fullscreen, monitor-mode switching, etc).
1037 ETEXI
1039 DEF("no-quit", 0, QEMU_OPTION_no_quit,
1040 "-no-quit disable SDL window close capability\n", QEMU_ARCH_ALL)
1041 STEXI
1042 @item -no-quit
1043 @findex -no-quit
1044 Disable SDL window close capability.
1045 ETEXI
1047 DEF("sdl", 0, QEMU_OPTION_sdl,
1048 "-sdl shorthand for -display sdl\n", QEMU_ARCH_ALL)
1049 STEXI
1050 @item -sdl
1051 @findex -sdl
1052 Enable SDL.
1053 ETEXI
1055 DEF("spice", HAS_ARG, QEMU_OPTION_spice,
1056 "-spice [port=port][,tls-port=secured-port][,x509-dir=<dir>]\n"
1057 " [,x509-key-file=<file>][,x509-key-password=<file>]\n"
1058 " [,x509-cert-file=<file>][,x509-cacert-file=<file>]\n"
1059 " [,x509-dh-key-file=<file>][,addr=addr][,ipv4|ipv6|unix]\n"
1060 " [,tls-ciphers=<list>]\n"
1061 " [,tls-channel=[main|display|cursor|inputs|record|playback]]\n"
1062 " [,plaintext-channel=[main|display|cursor|inputs|record|playback]]\n"
1063 " [,sasl][,password=<secret>][,disable-ticketing]\n"
1064 " [,image-compression=[auto_glz|auto_lz|quic|glz|lz|off]]\n"
1065 " [,jpeg-wan-compression=[auto|never|always]]\n"
1066 " [,zlib-glz-wan-compression=[auto|never|always]]\n"
1067 " [,streaming-video=[off|all|filter]][,disable-copy-paste]\n"
1068 " [,disable-agent-file-xfer][,agent-mouse=[on|off]]\n"
1069 " [,playback-compression=[on|off]][,seamless-migration=[on|off]]\n"
1070 " [,gl=[on|off]]\n"
1071 " enable spice\n"
1072 " at least one of {port, tls-port} is mandatory\n",
1073 QEMU_ARCH_ALL)
1074 STEXI
1075 @item -spice @var{option}[,@var{option}[,...]]
1076 @findex -spice
1077 Enable the spice remote desktop protocol. Valid options are
1079 @table @option
1081 @item port=<nr>
1082 Set the TCP port spice is listening on for plaintext channels.
1084 @item addr=<addr>
1085 Set the IP address spice is listening on. Default is any address.
1087 @item ipv4
1088 @itemx ipv6
1089 @itemx unix
1090 Force using the specified IP version.
1092 @item password=<secret>
1093 Set the password you need to authenticate.
1095 @item sasl
1096 Require that the client use SASL to authenticate with the spice.
1097 The exact choice of authentication method used is controlled from the
1098 system / user's SASL configuration file for the 'qemu' service. This
1099 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1100 unprivileged user, an environment variable SASL_CONF_PATH can be used
1101 to make it search alternate locations for the service config.
1102 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1103 it is recommended that SASL always be combined with the 'tls' and
1104 'x509' settings to enable use of SSL and server certificates. This
1105 ensures a data encryption preventing compromise of authentication
1106 credentials.
1108 @item disable-ticketing
1109 Allow client connects without authentication.
1111 @item disable-copy-paste
1112 Disable copy paste between the client and the guest.
1114 @item disable-agent-file-xfer
1115 Disable spice-vdagent based file-xfer between the client and the guest.
1117 @item tls-port=<nr>
1118 Set the TCP port spice is listening on for encrypted channels.
1120 @item x509-dir=<dir>
1121 Set the x509 file directory. Expects same filenames as -vnc $display,x509=$dir
1123 @item x509-key-file=<file>
1124 @itemx x509-key-password=<file>
1125 @itemx x509-cert-file=<file>
1126 @itemx x509-cacert-file=<file>
1127 @itemx x509-dh-key-file=<file>
1128 The x509 file names can also be configured individually.
1130 @item tls-ciphers=<list>
1131 Specify which ciphers to use.
1133 @item tls-channel=[main|display|cursor|inputs|record|playback]
1134 @itemx plaintext-channel=[main|display|cursor|inputs|record|playback]
1135 Force specific channel to be used with or without TLS encryption. The
1136 options can be specified multiple times to configure multiple
1137 channels. The special name "default" can be used to set the default
1138 mode. For channels which are not explicitly forced into one mode the
1139 spice client is allowed to pick tls/plaintext as he pleases.
1141 @item image-compression=[auto_glz|auto_lz|quic|glz|lz|off]
1142 Configure image compression (lossless).
1143 Default is auto_glz.
1145 @item jpeg-wan-compression=[auto|never|always]
1146 @itemx zlib-glz-wan-compression=[auto|never|always]
1147 Configure wan image compression (lossy for slow links).
1148 Default is auto.
1150 @item streaming-video=[off|all|filter]
1151 Configure video stream detection. Default is off.
1153 @item agent-mouse=[on|off]
1154 Enable/disable passing mouse events via vdagent. Default is on.
1156 @item playback-compression=[on|off]
1157 Enable/disable audio stream compression (using celt 0.5.1). Default is on.
1159 @item seamless-migration=[on|off]
1160 Enable/disable spice seamless migration. Default is off.
1162 @item gl=[on|off]
1163 Enable/disable OpenGL context. Default is off.
1165 @end table
1166 ETEXI
1168 DEF("portrait", 0, QEMU_OPTION_portrait,
1169 "-portrait rotate graphical output 90 deg left (only PXA LCD)\n",
1170 QEMU_ARCH_ALL)
1171 STEXI
1172 @item -portrait
1173 @findex -portrait
1174 Rotate graphical output 90 deg left (only PXA LCD).
1175 ETEXI
1177 DEF("rotate", HAS_ARG, QEMU_OPTION_rotate,
1178 "-rotate <deg> rotate graphical output some deg left (only PXA LCD)\n",
1179 QEMU_ARCH_ALL)
1180 STEXI
1181 @item -rotate @var{deg}
1182 @findex -rotate
1183 Rotate graphical output some deg left (only PXA LCD).
1184 ETEXI
1186 DEF("vga", HAS_ARG, QEMU_OPTION_vga,
1187 "-vga [std|cirrus|vmware|qxl|xenfb|tcx|cg3|virtio|none]\n"
1188 " select video card type\n", QEMU_ARCH_ALL)
1189 STEXI
1190 @item -vga @var{type}
1191 @findex -vga
1192 Select type of VGA card to emulate. Valid values for @var{type} are
1193 @table @option
1194 @item cirrus
1195 Cirrus Logic GD5446 Video card. All Windows versions starting from
1196 Windows 95 should recognize and use this graphic card. For optimal
1197 performances, use 16 bit color depth in the guest and the host OS.
1198 (This one is the default)
1199 @item std
1200 Standard VGA card with Bochs VBE extensions. If your guest OS
1201 supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
1202 to use high resolution modes (>= 1280x1024x16) then you should use
1203 this option.
1204 @item vmware
1205 VMWare SVGA-II compatible adapter. Use it if you have sufficiently
1206 recent XFree86/XOrg server or Windows guest with a driver for this
1207 card.
1208 @item qxl
1209 QXL paravirtual graphic card. It is VGA compatible (including VESA
1210 2.0 VBE support). Works best with qxl guest drivers installed though.
1211 Recommended choice when using the spice protocol.
1212 @item tcx
1213 (sun4m only) Sun TCX framebuffer. This is the default framebuffer for
1214 sun4m machines and offers both 8-bit and 24-bit colour depths at a
1215 fixed resolution of 1024x768.
1216 @item cg3
1217 (sun4m only) Sun cgthree framebuffer. This is a simple 8-bit framebuffer
1218 for sun4m machines available in both 1024x768 (OpenBIOS) and 1152x900 (OBP)
1219 resolutions aimed at people wishing to run older Solaris versions.
1220 @item virtio
1221 Virtio VGA card.
1222 @item none
1223 Disable VGA card.
1224 @end table
1225 ETEXI
1227 DEF("full-screen", 0, QEMU_OPTION_full_screen,
1228 "-full-screen start in full screen\n", QEMU_ARCH_ALL)
1229 STEXI
1230 @item -full-screen
1231 @findex -full-screen
1232 Start in full screen.
1233 ETEXI
1235 DEF("g", 1, QEMU_OPTION_g ,
1236 "-g WxH[xDEPTH] Set the initial graphical resolution and depth\n",
1237 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
1238 STEXI
1239 @item -g @var{width}x@var{height}[x@var{depth}]
1240 @findex -g
1241 Set the initial graphical resolution and depth (PPC, SPARC only).
1242 ETEXI
1244 DEF("vnc", HAS_ARG, QEMU_OPTION_vnc ,
1245 "-vnc <display> shorthand for -display vnc=<display>\n", QEMU_ARCH_ALL)
1246 STEXI
1247 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
1248 @findex -vnc
1249 Normally, if QEMU is compiled with graphical window support, it displays
1250 output such as guest graphics, guest console, and the QEMU monitor in a
1251 window. With this option, you can have QEMU listen on VNC display
1252 @var{display} and redirect the VGA display over the VNC session. It is
1253 very useful to enable the usb tablet device when using this option
1254 (option @option{-usbdevice tablet}). When using the VNC display, you
1255 must use the @option{-k} parameter to set the keyboard layout if you are
1256 not using en-us. Valid syntax for the @var{display} is
1258 @table @option
1260 @item to=@var{L}
1262 With this option, QEMU will try next available VNC @var{display}s, until the
1263 number @var{L}, if the origianlly defined "-vnc @var{display}" is not
1264 available, e.g. port 5900+@var{display} is already used by another
1265 application. By default, to=0.
1267 @item @var{host}:@var{d}
1269 TCP connections will only be allowed from @var{host} on display @var{d}.
1270 By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
1271 be omitted in which case the server will accept connections from any host.
1273 @item unix:@var{path}
1275 Connections will be allowed over UNIX domain sockets where @var{path} is the
1276 location of a unix socket to listen for connections on.
1278 @item none
1280 VNC is initialized but not started. The monitor @code{change} command
1281 can be used to later start the VNC server.
1283 @end table
1285 Following the @var{display} value there may be one or more @var{option} flags
1286 separated by commas. Valid options are
1288 @table @option
1290 @item reverse
1292 Connect to a listening VNC client via a ``reverse'' connection. The
1293 client is specified by the @var{display}. For reverse network
1294 connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
1295 is a TCP port number, not a display number.
1297 @item websocket
1299 Opens an additional TCP listening port dedicated to VNC Websocket connections.
1300 By definition the Websocket port is 5700+@var{display}. If @var{host} is
1301 specified connections will only be allowed from this host.
1302 As an alternative the Websocket port could be specified by using
1303 @code{websocket}=@var{port}.
1304 If no TLS credentials are provided, the websocket connection runs in
1305 unencrypted mode. If TLS credentials are provided, the websocket connection
1306 requires encrypted client connections.
1308 @item password
1310 Require that password based authentication is used for client connections.
1312 The password must be set separately using the @code{set_password} command in
1313 the @ref{pcsys_monitor}. The syntax to change your password is:
1314 @code{set_password <protocol> <password>} where <protocol> could be either
1315 "vnc" or "spice".
1317 If you would like to change <protocol> password expiration, you should use
1318 @code{expire_password <protocol> <expiration-time>} where expiration time could
1319 be one of the following options: now, never, +seconds or UNIX time of
1320 expiration, e.g. +60 to make password expire in 60 seconds, or 1335196800
1321 to make password expire on "Mon Apr 23 12:00:00 EDT 2012" (UNIX time for this
1322 date and time).
1324 You can also use keywords "now" or "never" for the expiration time to
1325 allow <protocol> password to expire immediately or never expire.
1327 @item tls-creds=@var{ID}
1329 Provides the ID of a set of TLS credentials to use to secure the
1330 VNC server. They will apply to both the normal VNC server socket
1331 and the websocket socket (if enabled). Setting TLS credentials
1332 will cause the VNC server socket to enable the VeNCrypt auth
1333 mechanism. The credentials should have been previously created
1334 using the @option{-object tls-creds} argument.
1336 The @option{tls-creds} parameter obsoletes the @option{tls},
1337 @option{x509}, and @option{x509verify} options, and as such
1338 it is not permitted to set both new and old type options at
1339 the same time.
1341 @item tls
1343 Require that client use TLS when communicating with the VNC server. This
1344 uses anonymous TLS credentials so is susceptible to a man-in-the-middle
1345 attack. It is recommended that this option be combined with either the
1346 @option{x509} or @option{x509verify} options.
1348 This option is now deprecated in favor of using the @option{tls-creds}
1349 argument.
1351 @item x509=@var{/path/to/certificate/dir}
1353 Valid if @option{tls} is specified. Require that x509 credentials are used
1354 for negotiating the TLS session. The server will send its x509 certificate
1355 to the client. It is recommended that a password be set on the VNC server
1356 to provide authentication of the client when this is used. The path following
1357 this option specifies where the x509 certificates are to be loaded from.
1358 See the @ref{vnc_security} section for details on generating certificates.
1360 This option is now deprecated in favour of using the @option{tls-creds}
1361 argument.
1363 @item x509verify=@var{/path/to/certificate/dir}
1365 Valid if @option{tls} is specified. Require that x509 credentials are used
1366 for negotiating the TLS session. The server will send its x509 certificate
1367 to the client, and request that the client send its own x509 certificate.
1368 The server will validate the client's certificate against the CA certificate,
1369 and reject clients when validation fails. If the certificate authority is
1370 trusted, this is a sufficient authentication mechanism. You may still wish
1371 to set a password on the VNC server as a second authentication layer. The
1372 path following this option specifies where the x509 certificates are to
1373 be loaded from. See the @ref{vnc_security} section for details on generating
1374 certificates.
1376 This option is now deprecated in favour of using the @option{tls-creds}
1377 argument.
1379 @item sasl
1381 Require that the client use SASL to authenticate with the VNC server.
1382 The exact choice of authentication method used is controlled from the
1383 system / user's SASL configuration file for the 'qemu' service. This
1384 is typically found in /etc/sasl2/qemu.conf. If running QEMU as an
1385 unprivileged user, an environment variable SASL_CONF_PATH can be used
1386 to make it search alternate locations for the service config.
1387 While some SASL auth methods can also provide data encryption (eg GSSAPI),
1388 it is recommended that SASL always be combined with the 'tls' and
1389 'x509' settings to enable use of SSL and server certificates. This
1390 ensures a data encryption preventing compromise of authentication
1391 credentials. See the @ref{vnc_security} section for details on using
1392 SASL authentication.
1394 @item acl
1396 Turn on access control lists for checking of the x509 client certificate
1397 and SASL party. For x509 certs, the ACL check is made against the
1398 certificate's distinguished name. This is something that looks like
1399 @code{C=GB,O=ACME,L=Boston,CN=bob}. For SASL party, the ACL check is
1400 made against the username, which depending on the SASL plugin, may
1401 include a realm component, eg @code{bob} or @code{bob@@EXAMPLE.COM}.
1402 When the @option{acl} flag is set, the initial access list will be
1403 empty, with a @code{deny} policy. Thus no one will be allowed to
1404 use the VNC server until the ACLs have been loaded. This can be
1405 achieved using the @code{acl} monitor command.
1407 @item lossy
1409 Enable lossy compression methods (gradient, JPEG, ...). If this
1410 option is set, VNC client may receive lossy framebuffer updates
1411 depending on its encoding settings. Enabling this option can save
1412 a lot of bandwidth at the expense of quality.
1414 @item non-adaptive
1416 Disable adaptive encodings. Adaptive encodings are enabled by default.
1417 An adaptive encoding will try to detect frequently updated screen regions,
1418 and send updates in these regions using a lossy encoding (like JPEG).
1419 This can be really helpful to save bandwidth when playing videos. Disabling
1420 adaptive encodings restores the original static behavior of encodings
1421 like Tight.
1423 @item share=[allow-exclusive|force-shared|ignore]
1425 Set display sharing policy. 'allow-exclusive' allows clients to ask
1426 for exclusive access. As suggested by the rfb spec this is
1427 implemented by dropping other connections. Connecting multiple
1428 clients in parallel requires all clients asking for a shared session
1429 (vncviewer: -shared switch). This is the default. 'force-shared'
1430 disables exclusive client access. Useful for shared desktop sessions,
1431 where you don't want someone forgetting specify -shared disconnect
1432 everybody else. 'ignore' completely ignores the shared flag and
1433 allows everybody connect unconditionally. Doesn't conform to the rfb
1434 spec but is traditional QEMU behavior.
1436 @item key-delay-ms
1438 Set keyboard delay, for key down and key up events, in milliseconds.
1439 Default is 1. Keyboards are low-bandwidth devices, so this slowdown
1440 can help the device and guest to keep up and not lose events in case
1441 events are arriving in bulk. Possible causes for the latter are flaky
1442 network connections, or scripts for automated testing.
1444 @end table
1445 ETEXI
1447 STEXI
1448 @end table
1449 ETEXI
1450 ARCHHEADING(, QEMU_ARCH_I386)
1452 ARCHHEADING(i386 target only:, QEMU_ARCH_I386)
1453 STEXI
1454 @table @option
1455 ETEXI
1457 DEF("win2k-hack", 0, QEMU_OPTION_win2k_hack,
1458 "-win2k-hack use it when installing Windows 2000 to avoid a disk full bug\n",
1459 QEMU_ARCH_I386)
1460 STEXI
1461 @item -win2k-hack
1462 @findex -win2k-hack
1463 Use it when installing Windows 2000 to avoid a disk full bug. After
1464 Windows 2000 is installed, you no longer need this option (this option
1465 slows down the IDE transfers).
1466 ETEXI
1468 HXCOMM Deprecated by -rtc
1469 DEF("rtc-td-hack", 0, QEMU_OPTION_rtc_td_hack, "", QEMU_ARCH_I386)
1471 DEF("no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk,
1472 "-no-fd-bootchk disable boot signature checking for floppy disks\n",
1473 QEMU_ARCH_I386)
1474 STEXI
1475 @item -no-fd-bootchk
1476 @findex -no-fd-bootchk
1477 Disable boot signature checking for floppy disks in BIOS. May
1478 be needed to boot from old floppy disks.
1479 ETEXI
1481 DEF("no-acpi", 0, QEMU_OPTION_no_acpi,
1482 "-no-acpi disable ACPI\n", QEMU_ARCH_I386 | QEMU_ARCH_ARM)
1483 STEXI
1484 @item -no-acpi
1485 @findex -no-acpi
1486 Disable ACPI (Advanced Configuration and Power Interface) support. Use
1487 it if your guest OS complains about ACPI problems (PC target machine
1488 only).
1489 ETEXI
1491 DEF("no-hpet", 0, QEMU_OPTION_no_hpet,
1492 "-no-hpet disable HPET\n", QEMU_ARCH_I386)
1493 STEXI
1494 @item -no-hpet
1495 @findex -no-hpet
1496 Disable HPET support.
1497 ETEXI
1499 DEF("acpitable", HAS_ARG, QEMU_OPTION_acpitable,
1500 "-acpitable [sig=str][,rev=n][,oem_id=str][,oem_table_id=str][,oem_rev=n][,asl_compiler_id=str][,asl_compiler_rev=n][,{data|file}=file1[:file2]...]\n"
1501 " ACPI table description\n", QEMU_ARCH_I386)
1502 STEXI
1503 @item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...]
1504 @findex -acpitable
1505 Add ACPI table with specified header fields and context from specified files.
1506 For file=, take whole ACPI table from the specified files, including all
1507 ACPI headers (possible overridden by other options).
1508 For data=, only data
1509 portion of the table is used, all header information is specified in the
1510 command line.
1511 If a SLIC table is supplied to QEMU, then the SLIC's oem_id and oem_table_id
1512 fields will override the same in the RSDT and the FADT (a.k.a. FACP), in order
1513 to ensure the field matches required by the Microsoft SLIC spec and the ACPI
1514 spec.
1515 ETEXI
1517 DEF("smbios", HAS_ARG, QEMU_OPTION_smbios,
1518 "-smbios file=binary\n"
1519 " load SMBIOS entry from binary file\n"
1520 "-smbios type=0[,vendor=str][,version=str][,date=str][,release=%d.%d]\n"
1521 " [,uefi=on|off]\n"
1522 " specify SMBIOS type 0 fields\n"
1523 "-smbios type=1[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
1524 " [,uuid=uuid][,sku=str][,family=str]\n"
1525 " specify SMBIOS type 1 fields\n"
1526 "-smbios type=2[,manufacturer=str][,product=str][,version=str][,serial=str]\n"
1527 " [,asset=str][,location=str]\n"
1528 " specify SMBIOS type 2 fields\n"
1529 "-smbios type=3[,manufacturer=str][,version=str][,serial=str][,asset=str]\n"
1530 " [,sku=str]\n"
1531 " specify SMBIOS type 3 fields\n"
1532 "-smbios type=4[,sock_pfx=str][,manufacturer=str][,version=str][,serial=str]\n"
1533 " [,asset=str][,part=str]\n"
1534 " specify SMBIOS type 4 fields\n"
1535 "-smbios type=17[,loc_pfx=str][,bank=str][,manufacturer=str][,serial=str]\n"
1536 " [,asset=str][,part=str][,speed=%d]\n"
1537 " specify SMBIOS type 17 fields\n",
1538 QEMU_ARCH_I386 | QEMU_ARCH_ARM)
1539 STEXI
1540 @item -smbios file=@var{binary}
1541 @findex -smbios
1542 Load SMBIOS entry from binary file.
1544 @item -smbios type=0[,vendor=@var{str}][,version=@var{str}][,date=@var{str}][,release=@var{%d.%d}][,uefi=on|off]
1545 Specify SMBIOS type 0 fields
1547 @item -smbios type=1[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,uuid=@var{uuid}][,sku=@var{str}][,family=@var{str}]
1548 Specify SMBIOS type 1 fields
1550 @item -smbios type=2[,manufacturer=@var{str}][,product=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,location=@var{str}][,family=@var{str}]
1551 Specify SMBIOS type 2 fields
1553 @item -smbios type=3[,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,sku=@var{str}]
1554 Specify SMBIOS type 3 fields
1556 @item -smbios type=4[,sock_pfx=@var{str}][,manufacturer=@var{str}][,version=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}]
1557 Specify SMBIOS type 4 fields
1559 @item -smbios type=17[,loc_pfx=@var{str}][,bank=@var{str}][,manufacturer=@var{str}][,serial=@var{str}][,asset=@var{str}][,part=@var{str}][,speed=@var{%d}]
1560 Specify SMBIOS type 17 fields
1561 ETEXI
1563 STEXI
1564 @end table
1565 ETEXI
1566 DEFHEADING()
1568 DEFHEADING(Network options:)
1569 STEXI
1570 @table @option
1571 ETEXI
1573 HXCOMM Legacy slirp options (now moved to -net user):
1574 #ifdef CONFIG_SLIRP
1575 DEF("tftp", HAS_ARG, QEMU_OPTION_tftp, "", QEMU_ARCH_ALL)
1576 DEF("bootp", HAS_ARG, QEMU_OPTION_bootp, "", QEMU_ARCH_ALL)
1577 DEF("redir", HAS_ARG, QEMU_OPTION_redir, "", QEMU_ARCH_ALL)
1578 #ifndef _WIN32
1579 DEF("smb", HAS_ARG, QEMU_OPTION_smb, "", QEMU_ARCH_ALL)
1580 #endif
1581 #endif
1583 DEF("netdev", HAS_ARG, QEMU_OPTION_netdev,
1584 #ifdef CONFIG_SLIRP
1585 "-netdev user,id=str[,ipv4[=on|off]][,net=addr[/mask]][,host=addr]\n"
1586 " [,ipv6[=on|off]][,ipv6-net=addr[/int]][,ipv6-host=addr]\n"
1587 " [,restrict=on|off][,hostname=host][,dhcpstart=addr]\n"
1588 " [,dns=addr][,ipv6-dns=addr][,dnssearch=domain][,tftp=dir]\n"
1589 " [,bootfile=f][,hostfwd=rule][,guestfwd=rule]"
1590 #ifndef _WIN32
1591 "[,smb=dir[,smbserver=addr]]\n"
1592 #endif
1593 " configure a user mode network backend with ID 'str',\n"
1594 " its DHCP server and optional services\n"
1595 #endif
1596 #ifdef _WIN32
1597 "-netdev tap,id=str,ifname=name\n"
1598 " configure a host TAP network backend with ID 'str'\n"
1599 #else
1600 "-netdev tap,id=str[,fd=h][,fds=x:y:...:z][,ifname=name][,script=file][,downscript=dfile]\n"
1601 " [,br=bridge][,helper=helper][,sndbuf=nbytes][,vnet_hdr=on|off][,vhost=on|off]\n"
1602 " [,vhostfd=h][,vhostfds=x:y:...:z][,vhostforce=on|off][,queues=n]\n"
1603 " [,poll-us=n]\n"
1604 " configure a host TAP network backend with ID 'str'\n"
1605 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
1606 " use network scripts 'file' (default=" DEFAULT_NETWORK_SCRIPT ")\n"
1607 " to configure it and 'dfile' (default=" DEFAULT_NETWORK_DOWN_SCRIPT ")\n"
1608 " to deconfigure it\n"
1609 " use '[down]script=no' to disable script execution\n"
1610 " use network helper 'helper' (default=" DEFAULT_BRIDGE_HELPER ") to\n"
1611 " configure it\n"
1612 " use 'fd=h' to connect to an already opened TAP interface\n"
1613 " use 'fds=x:y:...:z' to connect to already opened multiqueue capable TAP interfaces\n"
1614 " use 'sndbuf=nbytes' to limit the size of the send buffer (the\n"
1615 " default is disabled 'sndbuf=0' to enable flow control set 'sndbuf=1048576')\n"
1616 " use vnet_hdr=off to avoid enabling the IFF_VNET_HDR tap flag\n"
1617 " use vnet_hdr=on to make the lack of IFF_VNET_HDR support an error condition\n"
1618 " use vhost=on to enable experimental in kernel accelerator\n"
1619 " (only has effect for virtio guests which use MSIX)\n"
1620 " use vhostforce=on to force vhost on for non-MSIX virtio guests\n"
1621 " use 'vhostfd=h' to connect to an already opened vhost net device\n"
1622 " use 'vhostfds=x:y:...:z to connect to multiple already opened vhost net devices\n"
1623 " use 'queues=n' to specify the number of queues to be created for multiqueue TAP\n"
1624 " use 'poll-us=n' to speciy the maximum number of microseconds that could be\n"
1625 " spent on busy polling for vhost net\n"
1626 "-netdev bridge,id=str[,br=bridge][,helper=helper]\n"
1627 " configure a host TAP network backend with ID 'str' that is\n"
1628 " connected to a bridge (default=" DEFAULT_BRIDGE_INTERFACE ")\n"
1629 " using the program 'helper (default=" DEFAULT_BRIDGE_HELPER ")\n"
1630 #endif
1631 #ifdef __linux__
1632 "-netdev l2tpv3,id=str,src=srcaddr,dst=dstaddr[,srcport=srcport][,dstport=dstport]\n"
1633 " [,rxsession=rxsession],txsession=txsession[,ipv6=on/off][,udp=on/off]\n"
1634 " [,cookie64=on/off][,counter][,pincounter][,txcookie=txcookie]\n"
1635 " [,rxcookie=rxcookie][,offset=offset]\n"
1636 " configure a network backend with ID 'str' connected to\n"
1637 " an Ethernet over L2TPv3 pseudowire.\n"
1638 " Linux kernel 3.3+ as well as most routers can talk\n"
1639 " L2TPv3. This transport allows connecting a VM to a VM,\n"
1640 " VM to a router and even VM to Host. It is a nearly-universal\n"
1641 " standard (RFC3391). Note - this implementation uses static\n"
1642 " pre-configured tunnels (same as the Linux kernel).\n"
1643 " use 'src=' to specify source address\n"
1644 " use 'dst=' to specify destination address\n"
1645 " use 'udp=on' to specify udp encapsulation\n"
1646 " use 'srcport=' to specify source udp port\n"
1647 " use 'dstport=' to specify destination udp port\n"
1648 " use 'ipv6=on' to force v6\n"
1649 " L2TPv3 uses cookies to prevent misconfiguration as\n"
1650 " well as a weak security measure\n"
1651 " use 'rxcookie=0x012345678' to specify a rxcookie\n"
1652 " use 'txcookie=0x012345678' to specify a txcookie\n"
1653 " use 'cookie64=on' to set cookie size to 64 bit, otherwise 32\n"
1654 " use 'counter=off' to force a 'cut-down' L2TPv3 with no counter\n"
1655 " use 'pincounter=on' to work around broken counter handling in peer\n"
1656 " use 'offset=X' to add an extra offset between header and data\n"
1657 #endif
1658 "-netdev socket,id=str[,fd=h][,listen=[host]:port][,connect=host:port]\n"
1659 " configure a network backend to connect to another network\n"
1660 " using a socket connection\n"
1661 "-netdev socket,id=str[,fd=h][,mcast=maddr:port[,localaddr=addr]]\n"
1662 " configure a network backend to connect to a multicast maddr and port\n"
1663 " use 'localaddr=addr' to specify the host address to send packets from\n"
1664 "-netdev socket,id=str[,fd=h][,udp=host:port][,localaddr=host:port]\n"
1665 " configure a network backend to connect to another network\n"
1666 " using an UDP tunnel\n"
1667 #ifdef CONFIG_VDE
1668 "-netdev vde,id=str[,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
1669 " configure a network backend to connect to port 'n' of a vde switch\n"
1670 " running on host and listening for incoming connections on 'socketpath'.\n"
1671 " Use group 'groupname' and mode 'octalmode' to change default\n"
1672 " ownership and permissions for communication port.\n"
1673 #endif
1674 #ifdef CONFIG_NETMAP
1675 "-netdev netmap,id=str,ifname=name[,devname=nmname]\n"
1676 " attach to the existing netmap-enabled network interface 'name', or to a\n"
1677 " VALE port (created on the fly) called 'name' ('nmname' is name of the \n"
1678 " netmap device, defaults to '/dev/netmap')\n"
1679 #endif
1680 "-netdev vhost-user,id=str,chardev=dev[,vhostforce=on|off]\n"
1681 " configure a vhost-user network, backed by a chardev 'dev'\n"
1682 "-netdev hubport,id=str,hubid=n\n"
1683 " configure a hub port on QEMU VLAN 'n'\n", QEMU_ARCH_ALL)
1684 DEF("net", HAS_ARG, QEMU_OPTION_net,
1685 "-net nic[,vlan=n][,macaddr=mac][,model=type][,name=str][,addr=str][,vectors=v]\n"
1686 " old way to create a new NIC and connect it to VLAN 'n'\n"
1687 " (use the '-device devtype,netdev=str' option if possible instead)\n"
1688 "-net dump[,vlan=n][,file=f][,len=n]\n"
1689 " dump traffic on vlan 'n' to file 'f' (max n bytes per packet)\n"
1690 "-net none use it alone to have zero network devices. If no -net option\n"
1691 " is provided, the default is '-net nic -net user'\n"
1692 "-net ["
1693 #ifdef CONFIG_SLIRP
1694 "user|"
1695 #endif
1696 "tap|"
1697 "bridge|"
1698 #ifdef CONFIG_VDE
1699 "vde|"
1700 #endif
1701 #ifdef CONFIG_NETMAP
1702 "netmap|"
1703 #endif
1704 "socket][,vlan=n][,option][,option][,...]\n"
1705 " old way to initialize a host network interface\n"
1706 " (use the -netdev option if possible instead)\n", QEMU_ARCH_ALL)
1707 STEXI
1708 @item -net nic[,vlan=@var{n}][,macaddr=@var{mac}][,model=@var{type}] [,name=@var{name}][,addr=@var{addr}][,vectors=@var{v}]
1709 @findex -net
1710 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
1711 = 0 is the default). The NIC is an e1000 by default on the PC
1712 target. Optionally, the MAC address can be changed to @var{mac}, the
1713 device address set to @var{addr} (PCI cards only),
1714 and a @var{name} can be assigned for use in monitor commands.
1715 Optionally, for PCI cards, you can specify the number @var{v} of MSI-X vectors
1716 that the card should have; this option currently only affects virtio cards; set
1717 @var{v} = 0 to disable MSI-X. If no @option{-net} option is specified, a single
1718 NIC is created. QEMU can emulate several different models of network card.
1719 Valid values for @var{type} are
1720 @code{virtio}, @code{i82551}, @code{i82557b}, @code{i82559er},
1721 @code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
1722 @code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
1723 Not all devices are supported on all targets. Use @code{-net nic,model=help}
1724 for a list of available devices for your target.
1726 @item -netdev user,id=@var{id}[,@var{option}][,@var{option}][,...]
1727 @findex -netdev
1728 @item -net user[,@var{option}][,@var{option}][,...]
1729 Use the user mode network stack which requires no administrator
1730 privilege to run. Valid options are:
1732 @table @option
1733 @item vlan=@var{n}
1734 Connect user mode stack to VLAN @var{n} (@var{n} = 0 is the default).
1736 @item id=@var{id}
1737 @itemx name=@var{name}
1738 Assign symbolic name for use in monitor commands.
1740 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must
1741 be enabled. If neither is specified both protocols are enabled.
1743 @item net=@var{addr}[/@var{mask}]
1744 Set IP network address the guest will see. Optionally specify the netmask,
1745 either in the form a.b.c.d or as number of valid top-most bits. Default is
1746 10.0.2.0/24.
1748 @item host=@var{addr}
1749 Specify the guest-visible address of the host. Default is the 2nd IP in the
1750 guest network, i.e. x.x.x.2.
1752 @item ipv6-net=@var{addr}[/@var{int}]
1753 Set IPv6 network address the guest will see (default is fec0::/64). The
1754 network prefix is given in the usual hexadecimal IPv6 address
1755 notation. The prefix size is optional, and is given as the number of
1756 valid top-most bits (default is 64).
1758 @item ipv6-host=@var{addr}
1759 Specify the guest-visible IPv6 address of the host. Default is the 2nd IPv6 in
1760 the guest network, i.e. xxxx::2.
1762 @item restrict=on|off
1763 If this option is enabled, the guest will be isolated, i.e. it will not be
1764 able to contact the host and no guest IP packets will be routed over the host
1765 to the outside. This option does not affect any explicitly set forwarding rules.
1767 @item hostname=@var{name}
1768 Specifies the client hostname reported by the built-in DHCP server.
1770 @item dhcpstart=@var{addr}
1771 Specify the first of the 16 IPs the built-in DHCP server can assign. Default
1772 is the 15th to 31st IP in the guest network, i.e. x.x.x.15 to x.x.x.31.
1774 @item dns=@var{addr}
1775 Specify the guest-visible address of the virtual nameserver. The address must
1776 be different from the host address. Default is the 3rd IP in the guest network,
1777 i.e. x.x.x.3.
1779 @item ipv6-dns=@var{addr}
1780 Specify the guest-visible address of the IPv6 virtual nameserver. The address
1781 must be different from the host address. Default is the 3rd IP in the guest
1782 network, i.e. xxxx::3.
1784 @item dnssearch=@var{domain}
1785 Provides an entry for the domain-search list sent by the built-in
1786 DHCP server. More than one domain suffix can be transmitted by specifying
1787 this option multiple times. If supported, this will cause the guest to
1788 automatically try to append the given domain suffix(es) in case a domain name
1789 can not be resolved.
1791 Example:
1792 @example
1793 qemu -net user,dnssearch=mgmt.example.org,dnssearch=example.org [...]
1794 @end example
1796 @item tftp=@var{dir}
1797 When using the user mode network stack, activate a built-in TFTP
1798 server. The files in @var{dir} will be exposed as the root of a TFTP server.
1799 The TFTP client on the guest must be configured in binary mode (use the command
1800 @code{bin} of the Unix TFTP client).
1802 @item bootfile=@var{file}
1803 When using the user mode network stack, broadcast @var{file} as the BOOTP
1804 filename. In conjunction with @option{tftp}, this can be used to network boot
1805 a guest from a local directory.
1807 Example (using pxelinux):
1808 @example
1809 qemu-system-i386 -hda linux.img -boot n -net user,tftp=/path/to/tftp/files,bootfile=/pxelinux.0
1810 @end example
1812 @item smb=@var{dir}[,smbserver=@var{addr}]
1813 When using the user mode network stack, activate a built-in SMB
1814 server so that Windows OSes can access to the host files in @file{@var{dir}}
1815 transparently. The IP address of the SMB server can be set to @var{addr}. By
1816 default the 4th IP in the guest network is used, i.e. x.x.x.4.
1818 In the guest Windows OS, the line:
1819 @example
1820 10.0.2.4 smbserver
1821 @end example
1822 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
1823 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
1825 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
1827 Note that a SAMBA server must be installed on the host OS.
1828 QEMU was tested successfully with smbd versions from Red Hat 9,
1829 Fedora Core 3 and OpenSUSE 11.x.
1831 @item hostfwd=[tcp|udp]:[@var{hostaddr}]:@var{hostport}-[@var{guestaddr}]:@var{guestport}
1832 Redirect incoming TCP or UDP connections to the host port @var{hostport} to
1833 the guest IP address @var{guestaddr} on guest port @var{guestport}. If
1834 @var{guestaddr} is not specified, its value is x.x.x.15 (default first address
1835 given by the built-in DHCP server). By specifying @var{hostaddr}, the rule can
1836 be bound to a specific host interface. If no connection type is set, TCP is
1837 used. This option can be given multiple times.
1839 For example, to redirect host X11 connection from screen 1 to guest
1840 screen 0, use the following:
1842 @example
1843 # on the host
1844 qemu-system-i386 -net user,hostfwd=tcp:127.0.0.1:6001-:6000 [...]
1845 # this host xterm should open in the guest X11 server
1846 xterm -display :1
1847 @end example
1849 To redirect telnet connections from host port 5555 to telnet port on
1850 the guest, use the following:
1852 @example
1853 # on the host
1854 qemu-system-i386 -net user,hostfwd=tcp::5555-:23 [...]
1855 telnet localhost 5555
1856 @end example
1858 Then when you use on the host @code{telnet localhost 5555}, you
1859 connect to the guest telnet server.
1861 @item guestfwd=[tcp]:@var{server}:@var{port}-@var{dev}
1862 @itemx guestfwd=[tcp]:@var{server}:@var{port}-@var{cmd:command}
1863 Forward guest TCP connections to the IP address @var{server} on port @var{port}
1864 to the character device @var{dev} or to a program executed by @var{cmd:command}
1865 which gets spawned for each connection. This option can be given multiple times.
1867 You can either use a chardev directly and have that one used throughout QEMU's
1868 lifetime, like in the following example:
1870 @example
1871 # open 10.10.1.1:4321 on bootup, connect 10.0.2.100:1234 to it whenever
1872 # the guest accesses it
1873 qemu -net user,guestfwd=tcp:10.0.2.100:1234-tcp:10.10.1.1:4321 [...]
1874 @end example
1876 Or you can execute a command on every TCP connection established by the guest,
1877 so that QEMU behaves similar to an inetd process for that virtual server:
1879 @example
1880 # call "netcat 10.10.1.1 4321" on every TCP connection to 10.0.2.100:1234
1881 # and connect the TCP stream to its stdin/stdout
1882 qemu -net 'user,guestfwd=tcp:10.0.2.100:1234-cmd:netcat 10.10.1.1 4321'
1883 @end example
1885 @end table
1887 Note: Legacy stand-alone options -tftp, -bootp, -smb and -redir are still
1888 processed and applied to -net user. Mixing them with the new configuration
1889 syntax gives undefined results. Their use for new applications is discouraged
1890 as they will be removed from future versions.
1892 @item -netdev tap,id=@var{id}[,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}][,br=@var{bridge}][,helper=@var{helper}]
1893 @itemx -net tap[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}][,br=@var{bridge}][,helper=@var{helper}]
1894 Connect the host TAP network interface @var{name} to VLAN @var{n}.
1896 Use the network script @var{file} to configure it and the network script
1897 @var{dfile} to deconfigure it. If @var{name} is not provided, the OS
1898 automatically provides one. The default network configure script is
1899 @file{/etc/qemu-ifup} and the default network deconfigure script is
1900 @file{/etc/qemu-ifdown}. Use @option{script=no} or @option{downscript=no}
1901 to disable script execution.
1903 If running QEMU as an unprivileged user, use the network helper
1904 @var{helper} to configure the TAP interface and attach it to the bridge.
1905 The default network helper executable is @file{/path/to/qemu-bridge-helper}
1906 and the default bridge device is @file{br0}.
1908 @option{fd}=@var{h} can be used to specify the handle of an already
1909 opened host TAP interface.
1911 Examples:
1913 @example
1914 #launch a QEMU instance with the default network script
1915 qemu-system-i386 linux.img -net nic -net tap
1916 @end example
1918 @example
1919 #launch a QEMU instance with two NICs, each one connected
1920 #to a TAP device
1921 qemu-system-i386 linux.img \
1922 -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
1923 -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
1924 @end example
1926 @example
1927 #launch a QEMU instance with the default network helper to
1928 #connect a TAP device to bridge br0
1929 qemu-system-i386 linux.img \
1930 -net nic -net tap,"helper=/path/to/qemu-bridge-helper"
1931 @end example
1933 @item -netdev bridge,id=@var{id}[,br=@var{bridge}][,helper=@var{helper}]
1934 @itemx -net bridge[,vlan=@var{n}][,name=@var{name}][,br=@var{bridge}][,helper=@var{helper}]
1935 Connect a host TAP network interface to a host bridge device.
1937 Use the network helper @var{helper} to configure the TAP interface and
1938 attach it to the bridge. The default network helper executable is
1939 @file{/path/to/qemu-bridge-helper} and the default bridge
1940 device is @file{br0}.
1942 Examples:
1944 @example
1945 #launch a QEMU instance with the default network helper to
1946 #connect a TAP device to bridge br0
1947 qemu-system-i386 linux.img -net bridge -net nic,model=virtio
1948 @end example
1950 @example
1951 #launch a QEMU instance with the default network helper to
1952 #connect a TAP device to bridge qemubr0
1953 qemu-system-i386 linux.img -net bridge,br=qemubr0 -net nic,model=virtio
1954 @end example
1956 @item -netdev socket,id=@var{id}[,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
1957 @itemx -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}] [,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
1959 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
1960 machine using a TCP socket connection. If @option{listen} is
1961 specified, QEMU waits for incoming connections on @var{port}
1962 (@var{host} is optional). @option{connect} is used to connect to
1963 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
1964 specifies an already opened TCP socket.
1966 Example:
1967 @example
1968 # launch a first QEMU instance
1969 qemu-system-i386 linux.img \
1970 -net nic,macaddr=52:54:00:12:34:56 \
1971 -net socket,listen=:1234
1972 # connect the VLAN 0 of this instance to the VLAN 0
1973 # of the first instance
1974 qemu-system-i386 linux.img \
1975 -net nic,macaddr=52:54:00:12:34:57 \
1976 -net socket,connect=127.0.0.1:1234
1977 @end example
1979 @item -netdev socket,id=@var{id}[,fd=@var{h}][,mcast=@var{maddr}:@var{port}[,localaddr=@var{addr}]]
1980 @itemx -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}[,localaddr=@var{addr}]]
1982 Create a VLAN @var{n} shared with another QEMU virtual
1983 machines using a UDP multicast socket, effectively making a bus for
1984 every QEMU with same multicast address @var{maddr} and @var{port}.
1985 NOTES:
1986 @enumerate
1987 @item
1988 Several QEMU can be running on different hosts and share same bus (assuming
1989 correct multicast setup for these hosts).
1990 @item
1991 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
1992 @url{http://user-mode-linux.sf.net}.
1993 @item
1994 Use @option{fd=h} to specify an already opened UDP multicast socket.
1995 @end enumerate
1997 Example:
1998 @example
1999 # launch one QEMU instance
2000 qemu-system-i386 linux.img \
2001 -net nic,macaddr=52:54:00:12:34:56 \
2002 -net socket,mcast=230.0.0.1:1234
2003 # launch another QEMU instance on same "bus"
2004 qemu-system-i386 linux.img \
2005 -net nic,macaddr=52:54:00:12:34:57 \
2006 -net socket,mcast=230.0.0.1:1234
2007 # launch yet another QEMU instance on same "bus"
2008 qemu-system-i386 linux.img \
2009 -net nic,macaddr=52:54:00:12:34:58 \
2010 -net socket,mcast=230.0.0.1:1234
2011 @end example
2013 Example (User Mode Linux compat.):
2014 @example
2015 # launch QEMU instance (note mcast address selected
2016 # is UML's default)
2017 qemu-system-i386 linux.img \
2018 -net nic,macaddr=52:54:00:12:34:56 \
2019 -net socket,mcast=239.192.168.1:1102
2020 # launch UML
2021 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
2022 @end example
2024 Example (send packets from host's 1.2.3.4):
2025 @example
2026 qemu-system-i386 linux.img \
2027 -net nic,macaddr=52:54:00:12:34:56 \
2028 -net socket,mcast=239.192.168.1:1102,localaddr=1.2.3.4
2029 @end example
2031 @item -netdev l2tpv3,id=@var{id},src=@var{srcaddr},dst=@var{dstaddr}[,srcport=@var{srcport}][,dstport=@var{dstport}],txsession=@var{txsession}[,rxsession=@var{rxsession}][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=@var{txcookie}][,rxcookie=@var{rxcookie}][,offset=@var{offset}]
2032 @itemx -net l2tpv3[,vlan=@var{n}][,name=@var{name}],src=@var{srcaddr},dst=@var{dstaddr}[,srcport=@var{srcport}][,dstport=@var{dstport}],txsession=@var{txsession}[,rxsession=@var{rxsession}][,ipv6][,udp][,cookie64][,counter][,pincounter][,txcookie=@var{txcookie}][,rxcookie=@var{rxcookie}][,offset=@var{offset}]
2033 Connect VLAN @var{n} to L2TPv3 pseudowire. L2TPv3 (RFC3391) is a popular
2034 protocol to transport Ethernet (and other Layer 2) data frames between
2035 two systems. It is present in routers, firewalls and the Linux kernel
2036 (from version 3.3 onwards).
2038 This transport allows a VM to communicate to another VM, router or firewall directly.
2040 @item src=@var{srcaddr}
2041 source address (mandatory)
2042 @item dst=@var{dstaddr}
2043 destination address (mandatory)
2044 @item udp
2045 select udp encapsulation (default is ip).
2046 @item srcport=@var{srcport}
2047 source udp port.
2048 @item dstport=@var{dstport}
2049 destination udp port.
2050 @item ipv6
2051 force v6, otherwise defaults to v4.
2052 @item rxcookie=@var{rxcookie}
2053 @itemx txcookie=@var{txcookie}
2054 Cookies are a weak form of security in the l2tpv3 specification.
2055 Their function is mostly to prevent misconfiguration. By default they are 32
2056 bit.
2057 @item cookie64
2058 Set cookie size to 64 bit instead of the default 32
2059 @item counter=off
2060 Force a 'cut-down' L2TPv3 with no counter as in
2061 draft-mkonstan-l2tpext-keyed-ipv6-tunnel-00
2062 @item pincounter=on
2063 Work around broken counter handling in peer. This may also help on
2064 networks which have packet reorder.
2065 @item offset=@var{offset}
2066 Add an extra offset between header and data
2068 For example, to attach a VM running on host 4.3.2.1 via L2TPv3 to the bridge br-lan
2069 on the remote Linux host 1.2.3.4:
2070 @example
2071 # Setup tunnel on linux host using raw ip as encapsulation
2072 # on 1.2.3.4
2073 ip l2tp add tunnel remote 4.3.2.1 local 1.2.3.4 tunnel_id 1 peer_tunnel_id 1 \
2074 encap udp udp_sport 16384 udp_dport 16384
2075 ip l2tp add session tunnel_id 1 name vmtunnel0 session_id \
2076 0xFFFFFFFF peer_session_id 0xFFFFFFFF
2077 ifconfig vmtunnel0 mtu 1500
2078 ifconfig vmtunnel0 up
2079 brctl addif br-lan vmtunnel0
2082 # on 4.3.2.1
2083 # launch QEMU instance - if your network has reorder or is very lossy add ,pincounter
2085 qemu-system-i386 linux.img -net nic -net l2tpv3,src=4.2.3.1,dst=1.2.3.4,udp,srcport=16384,dstport=16384,rxsession=0xffffffff,txsession=0xffffffff,counter
2088 @end example
2090 @item -netdev vde,id=@var{id}[,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
2091 @itemx -net vde[,vlan=@var{n}][,name=@var{name}][,sock=@var{socketpath}] [,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
2092 Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
2093 listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
2094 and MODE @var{octalmode} to change default ownership and permissions for
2095 communication port. This option is only available if QEMU has been compiled
2096 with vde support enabled.
2098 Example:
2099 @example
2100 # launch vde switch
2101 vde_switch -F -sock /tmp/myswitch
2102 # launch QEMU instance
2103 qemu-system-i386 linux.img -net nic -net vde,sock=/tmp/myswitch
2104 @end example
2106 @item -netdev hubport,id=@var{id},hubid=@var{hubid}
2108 Create a hub port on QEMU "vlan" @var{hubid}.
2110 The hubport netdev lets you connect a NIC to a QEMU "vlan" instead of a single
2111 netdev. @code{-net} and @code{-device} with parameter @option{vlan} create the
2112 required hub automatically.
2114 @item -netdev vhost-user,chardev=@var{id}[,vhostforce=on|off][,queues=n]
2116 Establish a vhost-user netdev, backed by a chardev @var{id}. The chardev should
2117 be a unix domain socket backed one. The vhost-user uses a specifically defined
2118 protocol to pass vhost ioctl replacement messages to an application on the other
2119 end of the socket. On non-MSIX guests, the feature can be forced with
2120 @var{vhostforce}. Use 'queues=@var{n}' to specify the number of queues to
2121 be created for multiqueue vhost-user.
2123 Example:
2124 @example
2125 qemu -m 512 -object memory-backend-file,id=mem,size=512M,mem-path=/hugetlbfs,share=on \
2126 -numa node,memdev=mem \
2127 -chardev socket,path=/path/to/socket \
2128 -netdev type=vhost-user,id=net0,chardev=chr0 \
2129 -device virtio-net-pci,netdev=net0
2130 @end example
2132 @item -net dump[,vlan=@var{n}][,file=@var{file}][,len=@var{len}]
2133 Dump network traffic on VLAN @var{n} to file @var{file} (@file{qemu-vlan0.pcap} by default).
2134 At most @var{len} bytes (64k by default) per packet are stored. The file format is
2135 libpcap, so it can be analyzed with tools such as tcpdump or Wireshark.
2136 Note: For devices created with '-netdev', use '-object filter-dump,...' instead.
2138 @item -net none
2139 Indicate that no network devices should be configured. It is used to
2140 override the default configuration (@option{-net nic -net user}) which
2141 is activated if no @option{-net} options are provided.
2142 ETEXI
2144 STEXI
2145 @end table
2146 ETEXI
2147 DEFHEADING()
2149 DEFHEADING(Character device options:)
2150 STEXI
2152 The general form of a character device option is:
2153 @table @option
2154 ETEXI
2156 DEF("chardev", HAS_ARG, QEMU_OPTION_chardev,
2157 "-chardev help\n"
2158 "-chardev null,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2159 "-chardev socket,id=id[,host=host],port=port[,to=to][,ipv4][,ipv6][,nodelay][,reconnect=seconds]\n"
2160 " [,server][,nowait][,telnet][,reconnect=seconds][,mux=on|off]\n"
2161 " [,logfile=PATH][,logappend=on|off][,tls-creds=ID] (tcp)\n"
2162 "-chardev socket,id=id,path=path[,server][,nowait][,telnet][,reconnect=seconds]\n"
2163 " [,mux=on|off][,logfile=PATH][,logappend=on|off] (unix)\n"
2164 "-chardev udp,id=id[,host=host],port=port[,localaddr=localaddr]\n"
2165 " [,localport=localport][,ipv4][,ipv6][,mux=on|off]\n"
2166 " [,logfile=PATH][,logappend=on|off]\n"
2167 "-chardev msmouse,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2168 "-chardev vc,id=id[[,width=width][,height=height]][[,cols=cols][,rows=rows]]\n"
2169 " [,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2170 "-chardev ringbuf,id=id[,size=size][,logfile=PATH][,logappend=on|off]\n"
2171 "-chardev file,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2172 "-chardev pipe,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2173 #ifdef _WIN32
2174 "-chardev console,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2175 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2176 #else
2177 "-chardev pty,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2178 "-chardev stdio,id=id[,mux=on|off][,signal=on|off][,logfile=PATH][,logappend=on|off]\n"
2179 #endif
2180 #ifdef CONFIG_BRLAPI
2181 "-chardev braille,id=id[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2182 #endif
2183 #if defined(__linux__) || defined(__sun__) || defined(__FreeBSD__) \
2184 || defined(__NetBSD__) || defined(__OpenBSD__) || defined(__DragonFly__)
2185 "-chardev serial,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2186 "-chardev tty,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2187 #endif
2188 #if defined(__linux__) || defined(__FreeBSD__) || defined(__DragonFly__)
2189 "-chardev parallel,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2190 "-chardev parport,id=id,path=path[,mux=on|off][,logfile=PATH][,logappend=on|off]\n"
2191 #endif
2192 #if defined(CONFIG_SPICE)
2193 "-chardev spicevmc,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2194 "-chardev spiceport,id=id,name=name[,debug=debug][,logfile=PATH][,logappend=on|off]\n"
2195 #endif
2196 , QEMU_ARCH_ALL
2199 STEXI
2200 @item -chardev @var{backend} ,id=@var{id} [,mux=on|off] [,@var{options}]
2201 @findex -chardev
2202 Backend is one of:
2203 @option{null},
2204 @option{socket},
2205 @option{udp},
2206 @option{msmouse},
2207 @option{vc},
2208 @option{ringbuf},
2209 @option{file},
2210 @option{pipe},
2211 @option{console},
2212 @option{serial},
2213 @option{pty},
2214 @option{stdio},
2215 @option{braille},
2216 @option{tty},
2217 @option{parallel},
2218 @option{parport},
2219 @option{spicevmc}.
2220 @option{spiceport}.
2221 The specific backend will determine the applicable options.
2223 Use "-chardev help" to print all available chardev backend types.
2225 All devices must have an id, which can be any string up to 127 characters long.
2226 It is used to uniquely identify this device in other command line directives.
2228 A character device may be used in multiplexing mode by multiple front-ends.
2229 Specify @option{mux=on} to enable this mode.
2230 A multiplexer is a "1:N" device, and here the "1" end is your specified chardev
2231 backend, and the "N" end is the various parts of QEMU that can talk to a chardev.
2232 If you create a chardev with @option{id=myid} and @option{mux=on}, QEMU will
2233 create a multiplexer with your specified ID, and you can then configure multiple
2234 front ends to use that chardev ID for their input/output. Up to four different
2235 front ends can be connected to a single multiplexed chardev. (Without
2236 multiplexing enabled, a chardev can only be used by a single front end.)
2237 For instance you could use this to allow a single stdio chardev to be used by
2238 two serial ports and the QEMU monitor:
2240 @example
2241 -chardev stdio,mux=on,id=char0 \
2242 -mon chardev=char0,mode=readline \
2243 -serial chardev:char0 \
2244 -serial chardev:char0
2245 @end example
2247 You can have more than one multiplexer in a system configuration; for instance
2248 you could have a TCP port multiplexed between UART 0 and UART 1, and stdio
2249 multiplexed between the QEMU monitor and a parallel port:
2251 @example
2252 -chardev stdio,mux=on,id=char0 \
2253 -mon chardev=char0,mode=readline \
2254 -parallel chardev:char0 \
2255 -chardev tcp,...,mux=on,id=char1 \
2256 -serial chardev:char1 \
2257 -serial chardev:char1
2258 @end example
2260 When you're using a multiplexed character device, some escape sequences are
2261 interpreted in the input. @xref{mux_keys, Keys in the character backend
2262 multiplexer}.
2264 Note that some other command line options may implicitly create multiplexed
2265 character backends; for instance @option{-serial mon:stdio} creates a
2266 multiplexed stdio backend connected to the serial port and the QEMU monitor,
2267 and @option{-nographic} also multiplexes the console and the monitor to
2268 stdio.
2270 There is currently no support for multiplexing in the other direction
2271 (where a single QEMU front end takes input and output from multiple chardevs).
2273 Every backend supports the @option{logfile} option, which supplies the path
2274 to a file to record all data transmitted via the backend. The @option{logappend}
2275 option controls whether the log file will be truncated or appended to when
2276 opened.
2278 Further options to each backend are described below.
2280 @item -chardev null ,id=@var{id}
2281 A void device. This device will not emit any data, and will drop any data it
2282 receives. The null backend does not take any options.
2284 @item -chardev socket ,id=@var{id} [@var{TCP options} or @var{unix options}] [,server] [,nowait] [,telnet] [,reconnect=@var{seconds}] [,tls-creds=@var{id}]
2286 Create a two-way stream socket, which can be either a TCP or a unix socket. A
2287 unix socket will be created if @option{path} is specified. Behaviour is
2288 undefined if TCP options are specified for a unix socket.
2290 @option{server} specifies that the socket shall be a listening socket.
2292 @option{nowait} specifies that QEMU should not block waiting for a client to
2293 connect to a listening socket.
2295 @option{telnet} specifies that traffic on the socket should interpret telnet
2296 escape sequences.
2298 @option{reconnect} sets the timeout for reconnecting on non-server sockets when
2299 the remote end goes away. qemu will delay this many seconds and then attempt
2300 to reconnect. Zero disables reconnecting, and is the default.
2302 @option{tls-creds} requests enablement of the TLS protocol for encryption,
2303 and specifies the id of the TLS credentials to use for the handshake. The
2304 credentials must be previously created with the @option{-object tls-creds}
2305 argument.
2307 TCP and unix socket options are given below:
2309 @table @option
2311 @item TCP options: port=@var{port} [,host=@var{host}] [,to=@var{to}] [,ipv4] [,ipv6] [,nodelay]
2313 @option{host} for a listening socket specifies the local address to be bound.
2314 For a connecting socket species the remote host to connect to. @option{host} is
2315 optional for listening sockets. If not specified it defaults to @code{0.0.0.0}.
2317 @option{port} for a listening socket specifies the local port to be bound. For a
2318 connecting socket specifies the port on the remote host to connect to.
2319 @option{port} can be given as either a port number or a service name.
2320 @option{port} is required.
2322 @option{to} is only relevant to listening sockets. If it is specified, and
2323 @option{port} cannot be bound, QEMU will attempt to bind to subsequent ports up
2324 to and including @option{to} until it succeeds. @option{to} must be specified
2325 as a port number.
2327 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
2328 If neither is specified the socket may use either protocol.
2330 @option{nodelay} disables the Nagle algorithm.
2332 @item unix options: path=@var{path}
2334 @option{path} specifies the local path of the unix socket. @option{path} is
2335 required.
2337 @end table
2339 @item -chardev udp ,id=@var{id} [,host=@var{host}] ,port=@var{port} [,localaddr=@var{localaddr}] [,localport=@var{localport}] [,ipv4] [,ipv6]
2341 Sends all traffic from the guest to a remote host over UDP.
2343 @option{host} specifies the remote host to connect to. If not specified it
2344 defaults to @code{localhost}.
2346 @option{port} specifies the port on the remote host to connect to. @option{port}
2347 is required.
2349 @option{localaddr} specifies the local address to bind to. If not specified it
2350 defaults to @code{0.0.0.0}.
2352 @option{localport} specifies the local port to bind to. If not specified any
2353 available local port will be used.
2355 @option{ipv4} and @option{ipv6} specify that either IPv4 or IPv6 must be used.
2356 If neither is specified the device may use either protocol.
2358 @item -chardev msmouse ,id=@var{id}
2360 Forward QEMU's emulated msmouse events to the guest. @option{msmouse} does not
2361 take any options.
2363 @item -chardev vc ,id=@var{id} [[,width=@var{width}] [,height=@var{height}]] [[,cols=@var{cols}] [,rows=@var{rows}]]
2365 Connect to a QEMU text console. @option{vc} may optionally be given a specific
2366 size.
2368 @option{width} and @option{height} specify the width and height respectively of
2369 the console, in pixels.
2371 @option{cols} and @option{rows} specify that the console be sized to fit a text
2372 console with the given dimensions.
2374 @item -chardev ringbuf ,id=@var{id} [,size=@var{size}]
2376 Create a ring buffer with fixed size @option{size}.
2377 @var{size} must be a power of two and defaults to @code{64K}.
2379 @item -chardev file ,id=@var{id} ,path=@var{path}
2381 Log all traffic received from the guest to a file.
2383 @option{path} specifies the path of the file to be opened. This file will be
2384 created if it does not already exist, and overwritten if it does. @option{path}
2385 is required.
2387 @item -chardev pipe ,id=@var{id} ,path=@var{path}
2389 Create a two-way connection to the guest. The behaviour differs slightly between
2390 Windows hosts and other hosts:
2392 On Windows, a single duplex pipe will be created at
2393 @file{\\.pipe\@option{path}}.
2395 On other hosts, 2 pipes will be created called @file{@option{path}.in} and
2396 @file{@option{path}.out}. Data written to @file{@option{path}.in} will be
2397 received by the guest. Data written by the guest can be read from
2398 @file{@option{path}.out}. QEMU will not create these fifos, and requires them to
2399 be present.
2401 @option{path} forms part of the pipe path as described above. @option{path} is
2402 required.
2404 @item -chardev console ,id=@var{id}
2406 Send traffic from the guest to QEMU's standard output. @option{console} does not
2407 take any options.
2409 @option{console} is only available on Windows hosts.
2411 @item -chardev serial ,id=@var{id} ,path=@option{path}
2413 Send traffic from the guest to a serial device on the host.
2415 On Unix hosts serial will actually accept any tty device,
2416 not only serial lines.
2418 @option{path} specifies the name of the serial device to open.
2420 @item -chardev pty ,id=@var{id}
2422 Create a new pseudo-terminal on the host and connect to it. @option{pty} does
2423 not take any options.
2425 @option{pty} is not available on Windows hosts.
2427 @item -chardev stdio ,id=@var{id} [,signal=on|off]
2428 Connect to standard input and standard output of the QEMU process.
2430 @option{signal} controls if signals are enabled on the terminal, that includes
2431 exiting QEMU with the key sequence @key{Control-c}. This option is enabled by
2432 default, use @option{signal=off} to disable it.
2434 @option{stdio} is not available on Windows hosts.
2436 @item -chardev braille ,id=@var{id}
2438 Connect to a local BrlAPI server. @option{braille} does not take any options.
2440 @item -chardev tty ,id=@var{id} ,path=@var{path}
2442 @option{tty} is only available on Linux, Sun, FreeBSD, NetBSD, OpenBSD and
2443 DragonFlyBSD hosts. It is an alias for @option{serial}.
2445 @option{path} specifies the path to the tty. @option{path} is required.
2447 @item -chardev parallel ,id=@var{id} ,path=@var{path}
2448 @itemx -chardev parport ,id=@var{id} ,path=@var{path}
2450 @option{parallel} is only available on Linux, FreeBSD and DragonFlyBSD hosts.
2452 Connect to a local parallel port.
2454 @option{path} specifies the path to the parallel port device. @option{path} is
2455 required.
2457 @item -chardev spicevmc ,id=@var{id} ,debug=@var{debug}, name=@var{name}
2459 @option{spicevmc} is only available when spice support is built in.
2461 @option{debug} debug level for spicevmc
2463 @option{name} name of spice channel to connect to
2465 Connect to a spice virtual machine channel, such as vdiport.
2467 @item -chardev spiceport ,id=@var{id} ,debug=@var{debug}, name=@var{name}
2469 @option{spiceport} is only available when spice support is built in.
2471 @option{debug} debug level for spicevmc
2473 @option{name} name of spice port to connect to
2475 Connect to a spice port, allowing a Spice client to handle the traffic
2476 identified by a name (preferably a fqdn).
2477 ETEXI
2479 STEXI
2480 @end table
2481 ETEXI
2482 DEFHEADING()
2484 DEFHEADING(Device URL Syntax:)
2485 STEXI
2487 In addition to using normal file images for the emulated storage devices,
2488 QEMU can also use networked resources such as iSCSI devices. These are
2489 specified using a special URL syntax.
2491 @table @option
2492 @item iSCSI
2493 iSCSI support allows QEMU to access iSCSI resources directly and use as
2494 images for the guest storage. Both disk and cdrom images are supported.
2496 Syntax for specifying iSCSI LUNs is
2497 ``iscsi://<target-ip>[:<port>]/<target-iqn>/<lun>''
2499 By default qemu will use the iSCSI initiator-name
2500 'iqn.2008-11.org.linux-kvm[:<name>]' but this can also be set from the command
2501 line or a configuration file.
2503 Since version Qemu 2.4 it is possible to specify a iSCSI request timeout to detect
2504 stalled requests and force a reestablishment of the session. The timeout
2505 is specified in seconds. The default is 0 which means no timeout. Libiscsi
2506 1.15.0 or greater is required for this feature.
2508 Example (without authentication):
2509 @example
2510 qemu-system-i386 -iscsi initiator-name=iqn.2001-04.com.example:my-initiator \
2511 -cdrom iscsi://192.0.2.1/iqn.2001-04.com.example/2 \
2512 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
2513 @end example
2515 Example (CHAP username/password via URL):
2516 @example
2517 qemu-system-i386 -drive file=iscsi://user%password@@192.0.2.1/iqn.2001-04.com.example/1
2518 @end example
2520 Example (CHAP username/password via environment variables):
2521 @example
2522 LIBISCSI_CHAP_USERNAME="user" \
2523 LIBISCSI_CHAP_PASSWORD="password" \
2524 qemu-system-i386 -drive file=iscsi://192.0.2.1/iqn.2001-04.com.example/1
2525 @end example
2527 iSCSI support is an optional feature of QEMU and only available when
2528 compiled and linked against libiscsi.
2529 ETEXI
2530 DEF("iscsi", HAS_ARG, QEMU_OPTION_iscsi,
2531 "-iscsi [user=user][,password=password]\n"
2532 " [,header-digest=CRC32C|CR32C-NONE|NONE-CRC32C|NONE\n"
2533 " [,initiator-name=initiator-iqn][,id=target-iqn]\n"
2534 " [,timeout=timeout]\n"
2535 " iSCSI session parameters\n", QEMU_ARCH_ALL)
2536 STEXI
2538 iSCSI parameters such as username and password can also be specified via
2539 a configuration file. See qemu-doc for more information and examples.
2541 @item NBD
2542 QEMU supports NBD (Network Block Devices) both using TCP protocol as well
2543 as Unix Domain Sockets.
2545 Syntax for specifying a NBD device using TCP
2546 ``nbd:<server-ip>:<port>[:exportname=<export>]''
2548 Syntax for specifying a NBD device using Unix Domain Sockets
2549 ``nbd:unix:<domain-socket>[:exportname=<export>]''
2552 Example for TCP
2553 @example
2554 qemu-system-i386 --drive file=nbd:192.0.2.1:30000
2555 @end example
2557 Example for Unix Domain Sockets
2558 @example
2559 qemu-system-i386 --drive file=nbd:unix:/tmp/nbd-socket
2560 @end example
2562 @item SSH
2563 QEMU supports SSH (Secure Shell) access to remote disks.
2565 Examples:
2566 @example
2567 qemu-system-i386 -drive file=ssh://user@@host/path/to/disk.img
2568 qemu-system-i386 -drive file.driver=ssh,file.user=user,file.host=host,file.port=22,file.path=/path/to/disk.img
2569 @end example
2571 Currently authentication must be done using ssh-agent. Other
2572 authentication methods may be supported in future.
2574 @item Sheepdog
2575 Sheepdog is a distributed storage system for QEMU.
2576 QEMU supports using either local sheepdog devices or remote networked
2577 devices.
2579 Syntax for specifying a sheepdog device
2580 @example
2581 sheepdog[+tcp|+unix]://[host:port]/vdiname[?socket=path][#snapid|#tag]
2582 @end example
2584 Example
2585 @example
2586 qemu-system-i386 --drive file=sheepdog://192.0.2.1:30000/MyVirtualMachine
2587 @end example
2589 See also @url{http://http://www.osrg.net/sheepdog/}.
2591 @item GlusterFS
2592 GlusterFS is an user space distributed file system.
2593 QEMU supports the use of GlusterFS volumes for hosting VM disk images using
2594 TCP, Unix Domain Sockets and RDMA transport protocols.
2596 Syntax for specifying a VM disk image on GlusterFS volume is
2597 @example
2598 gluster[+transport]://[server[:port]]/volname/image[?socket=...]
2599 @end example
2602 Example
2603 @example
2604 qemu-system-x86_64 --drive file=gluster://192.0.2.1/testvol/a.img
2605 @end example
2607 See also @url{http://www.gluster.org}.
2609 @item HTTP/HTTPS/FTP/FTPS/TFTP
2610 QEMU supports read-only access to files accessed over http(s), ftp(s) and tftp.
2612 Syntax using a single filename:
2613 @example
2614 <protocol>://[<username>[:<password>]@@]<host>/<path>
2615 @end example
2617 where:
2618 @table @option
2619 @item protocol
2620 'http', 'https', 'ftp', 'ftps', or 'tftp'.
2622 @item username
2623 Optional username for authentication to the remote server.
2625 @item password
2626 Optional password for authentication to the remote server.
2628 @item host
2629 Address of the remote server.
2631 @item path
2632 Path on the remote server, including any query string.
2633 @end table
2635 The following options are also supported:
2636 @table @option
2637 @item url
2638 The full URL when passing options to the driver explicitly.
2640 @item readahead
2641 The amount of data to read ahead with each range request to the remote server.
2642 This value may optionally have the suffix 'T', 'G', 'M', 'K', 'k' or 'b'. If it
2643 does not have a suffix, it will be assumed to be in bytes. The value must be a
2644 multiple of 512 bytes. It defaults to 256k.
2646 @item sslverify
2647 Whether to verify the remote server's certificate when connecting over SSL. It
2648 can have the value 'on' or 'off'. It defaults to 'on'.
2650 @item cookie
2651 Send this cookie (it can also be a list of cookies separated by ';') with
2652 each outgoing request. Only supported when using protocols such as HTTP
2653 which support cookies, otherwise ignored.
2655 @item timeout
2656 Set the timeout in seconds of the CURL connection. This timeout is the time
2657 that CURL waits for a response from the remote server to get the size of the
2658 image to be downloaded. If not set, the default timeout of 5 seconds is used.
2659 @end table
2661 Note that when passing options to qemu explicitly, @option{driver} is the value
2662 of <protocol>.
2664 Example: boot from a remote Fedora 20 live ISO image
2665 @example
2666 qemu-system-x86_64 --drive media=cdrom,file=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
2668 qemu-system-x86_64 --drive media=cdrom,file.driver=http,file.url=http://dl.fedoraproject.org/pub/fedora/linux/releases/20/Live/x86_64/Fedora-Live-Desktop-x86_64-20-1.iso,readonly
2669 @end example
2671 Example: boot from a remote Fedora 20 cloud image using a local overlay for
2672 writes, copy-on-read, and a readahead of 64k
2673 @example
2674 qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"http",, "file.url":"https://dl.fedoraproject.org/pub/fedora/linux/releases/20/Images/x86_64/Fedora-x86_64-20-20131211.1-sda.qcow2",, "file.readahead":"64k"@}' /tmp/Fedora-x86_64-20-20131211.1-sda.qcow2
2676 qemu-system-x86_64 -drive file=/tmp/Fedora-x86_64-20-20131211.1-sda.qcow2,copy-on-read=on
2677 @end example
2679 Example: boot from an image stored on a VMware vSphere server with a self-signed
2680 certificate using a local overlay for writes, a readahead of 64k and a timeout
2681 of 10 seconds.
2682 @example
2683 qemu-img create -f qcow2 -o backing_file='json:@{"file.driver":"https",, "file.url":"https://user:password@@vsphere.example.com/folder/test/test-flat.vmdk?dcPath=Datacenter&dsName=datastore1",, "file.sslverify":"off",, "file.readahead":"64k",, "file.timeout":10@}' /tmp/test.qcow2
2685 qemu-system-x86_64 -drive file=/tmp/test.qcow2
2686 @end example
2687 ETEXI
2689 STEXI
2690 @end table
2691 ETEXI
2693 DEFHEADING(Bluetooth(R) options:)
2694 STEXI
2695 @table @option
2696 ETEXI
2698 DEF("bt", HAS_ARG, QEMU_OPTION_bt, \
2699 "-bt hci,null dumb bluetooth HCI - doesn't respond to commands\n" \
2700 "-bt hci,host[:id]\n" \
2701 " use host's HCI with the given name\n" \
2702 "-bt hci[,vlan=n]\n" \
2703 " emulate a standard HCI in virtual scatternet 'n'\n" \
2704 "-bt vhci[,vlan=n]\n" \
2705 " add host computer to virtual scatternet 'n' using VHCI\n" \
2706 "-bt device:dev[,vlan=n]\n" \
2707 " emulate a bluetooth device 'dev' in scatternet 'n'\n",
2708 QEMU_ARCH_ALL)
2709 STEXI
2710 @item -bt hci[...]
2711 @findex -bt
2712 Defines the function of the corresponding Bluetooth HCI. -bt options
2713 are matched with the HCIs present in the chosen machine type. For
2714 example when emulating a machine with only one HCI built into it, only
2715 the first @code{-bt hci[...]} option is valid and defines the HCI's
2716 logic. The Transport Layer is decided by the machine type. Currently
2717 the machines @code{n800} and @code{n810} have one HCI and all other
2718 machines have none.
2720 @anchor{bt-hcis}
2721 The following three types are recognized:
2723 @table @option
2724 @item -bt hci,null
2725 (default) The corresponding Bluetooth HCI assumes no internal logic
2726 and will not respond to any HCI commands or emit events.
2728 @item -bt hci,host[:@var{id}]
2729 (@code{bluez} only) The corresponding HCI passes commands / events
2730 to / from the physical HCI identified by the name @var{id} (default:
2731 @code{hci0}) on the computer running QEMU. Only available on @code{bluez}
2732 capable systems like Linux.
2734 @item -bt hci[,vlan=@var{n}]
2735 Add a virtual, standard HCI that will participate in the Bluetooth
2736 scatternet @var{n} (default @code{0}). Similarly to @option{-net}
2737 VLANs, devices inside a bluetooth network @var{n} can only communicate
2738 with other devices in the same network (scatternet).
2739 @end table
2741 @item -bt vhci[,vlan=@var{n}]
2742 (Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
2743 to the host bluetooth stack instead of to the emulated target. This
2744 allows the host and target machines to participate in a common scatternet
2745 and communicate. Requires the Linux @code{vhci} driver installed. Can
2746 be used as following:
2748 @example
2749 qemu-system-i386 [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
2750 @end example
2752 @item -bt device:@var{dev}[,vlan=@var{n}]
2753 Emulate a bluetooth device @var{dev} and place it in network @var{n}
2754 (default @code{0}). QEMU can only emulate one type of bluetooth devices
2755 currently:
2757 @table @option
2758 @item keyboard
2759 Virtual wireless keyboard implementing the HIDP bluetooth profile.
2760 @end table
2761 ETEXI
2763 STEXI
2764 @end table
2765 ETEXI
2766 DEFHEADING()
2768 #ifdef CONFIG_TPM
2769 DEFHEADING(TPM device options:)
2771 DEF("tpmdev", HAS_ARG, QEMU_OPTION_tpmdev, \
2772 "-tpmdev passthrough,id=id[,path=path][,cancel-path=path]\n"
2773 " use path to provide path to a character device; default is /dev/tpm0\n"
2774 " use cancel-path to provide path to TPM's cancel sysfs entry; if\n"
2775 " not provided it will be searched for in /sys/class/misc/tpm?/device\n",
2776 QEMU_ARCH_ALL)
2777 STEXI
2779 The general form of a TPM device option is:
2780 @table @option
2782 @item -tpmdev @var{backend} ,id=@var{id} [,@var{options}]
2783 @findex -tpmdev
2784 Backend type must be:
2785 @option{passthrough}.
2787 The specific backend type will determine the applicable options.
2788 The @code{-tpmdev} option creates the TPM backend and requires a
2789 @code{-device} option that specifies the TPM frontend interface model.
2791 Options to each backend are described below.
2793 Use 'help' to print all available TPM backend types.
2794 @example
2795 qemu -tpmdev help
2796 @end example
2798 @item -tpmdev passthrough, id=@var{id}, path=@var{path}, cancel-path=@var{cancel-path}
2800 (Linux-host only) Enable access to the host's TPM using the passthrough
2801 driver.
2803 @option{path} specifies the path to the host's TPM device, i.e., on
2804 a Linux host this would be @code{/dev/tpm0}.
2805 @option{path} is optional and by default @code{/dev/tpm0} is used.
2807 @option{cancel-path} specifies the path to the host TPM device's sysfs
2808 entry allowing for cancellation of an ongoing TPM command.
2809 @option{cancel-path} is optional and by default QEMU will search for the
2810 sysfs entry to use.
2812 Some notes about using the host's TPM with the passthrough driver:
2814 The TPM device accessed by the passthrough driver must not be
2815 used by any other application on the host.
2817 Since the host's firmware (BIOS/UEFI) has already initialized the TPM,
2818 the VM's firmware (BIOS/UEFI) will not be able to initialize the
2819 TPM again and may therefore not show a TPM-specific menu that would
2820 otherwise allow the user to configure the TPM, e.g., allow the user to
2821 enable/disable or activate/deactivate the TPM.
2822 Further, if TPM ownership is released from within a VM then the host's TPM
2823 will get disabled and deactivated. To enable and activate the
2824 TPM again afterwards, the host has to be rebooted and the user is
2825 required to enter the firmware's menu to enable and activate the TPM.
2826 If the TPM is left disabled and/or deactivated most TPM commands will fail.
2828 To create a passthrough TPM use the following two options:
2829 @example
2830 -tpmdev passthrough,id=tpm0 -device tpm-tis,tpmdev=tpm0
2831 @end example
2832 Note that the @code{-tpmdev} id is @code{tpm0} and is referenced by
2833 @code{tpmdev=tpm0} in the device option.
2835 @end table
2837 ETEXI
2839 DEFHEADING()
2841 #endif
2843 DEFHEADING(Linux/Multiboot boot specific:)
2844 STEXI
2846 When using these options, you can use a given Linux or Multiboot
2847 kernel without installing it in the disk image. It can be useful
2848 for easier testing of various kernels.
2850 @table @option
2851 ETEXI
2853 DEF("kernel", HAS_ARG, QEMU_OPTION_kernel, \
2854 "-kernel bzImage use 'bzImage' as kernel image\n", QEMU_ARCH_ALL)
2855 STEXI
2856 @item -kernel @var{bzImage}
2857 @findex -kernel
2858 Use @var{bzImage} as kernel image. The kernel can be either a Linux kernel
2859 or in multiboot format.
2860 ETEXI
2862 DEF("append", HAS_ARG, QEMU_OPTION_append, \
2863 "-append cmdline use 'cmdline' as kernel command line\n", QEMU_ARCH_ALL)
2864 STEXI
2865 @item -append @var{cmdline}
2866 @findex -append
2867 Use @var{cmdline} as kernel command line
2868 ETEXI
2870 DEF("initrd", HAS_ARG, QEMU_OPTION_initrd, \
2871 "-initrd file use 'file' as initial ram disk\n", QEMU_ARCH_ALL)
2872 STEXI
2873 @item -initrd @var{file}
2874 @findex -initrd
2875 Use @var{file} as initial ram disk.
2877 @item -initrd "@var{file1} arg=foo,@var{file2}"
2879 This syntax is only available with multiboot.
2881 Use @var{file1} and @var{file2} as modules and pass arg=foo as parameter to the
2882 first module.
2883 ETEXI
2885 DEF("dtb", HAS_ARG, QEMU_OPTION_dtb, \
2886 "-dtb file use 'file' as device tree image\n", QEMU_ARCH_ALL)
2887 STEXI
2888 @item -dtb @var{file}
2889 @findex -dtb
2890 Use @var{file} as a device tree binary (dtb) image and pass it to the kernel
2891 on boot.
2892 ETEXI
2894 STEXI
2895 @end table
2896 ETEXI
2897 DEFHEADING()
2899 DEFHEADING(Debug/Expert options:)
2900 STEXI
2901 @table @option
2902 ETEXI
2904 DEF("fw_cfg", HAS_ARG, QEMU_OPTION_fwcfg,
2905 "-fw_cfg [name=]<name>,file=<file>\n"
2906 " add named fw_cfg entry with contents from file\n"
2907 "-fw_cfg [name=]<name>,string=<str>\n"
2908 " add named fw_cfg entry with contents from string\n",
2909 QEMU_ARCH_ALL)
2910 STEXI
2912 @item -fw_cfg [name=]@var{name},file=@var{file}
2913 @findex -fw_cfg
2914 Add named fw_cfg entry with contents from file @var{file}.
2916 @item -fw_cfg [name=]@var{name},string=@var{str}
2917 Add named fw_cfg entry with contents from string @var{str}.
2919 The terminating NUL character of the contents of @var{str} will not be
2920 included as part of the fw_cfg item data. To insert contents with
2921 embedded NUL characters, you have to use the @var{file} parameter.
2923 The fw_cfg entries are passed by QEMU through to the guest.
2925 Example:
2926 @example
2927 -fw_cfg name=opt/com.mycompany/blob,file=./my_blob.bin
2928 @end example
2929 creates an fw_cfg entry named opt/com.mycompany/blob with contents
2930 from ./my_blob.bin.
2932 ETEXI
2934 DEF("serial", HAS_ARG, QEMU_OPTION_serial, \
2935 "-serial dev redirect the serial port to char device 'dev'\n",
2936 QEMU_ARCH_ALL)
2937 STEXI
2938 @item -serial @var{dev}
2939 @findex -serial
2940 Redirect the virtual serial port to host character device
2941 @var{dev}. The default device is @code{vc} in graphical mode and
2942 @code{stdio} in non graphical mode.
2944 This option can be used several times to simulate up to 4 serial
2945 ports.
2947 Use @code{-serial none} to disable all serial ports.
2949 Available character devices are:
2950 @table @option
2951 @item vc[:@var{W}x@var{H}]
2952 Virtual console. Optionally, a width and height can be given in pixel with
2953 @example
2954 vc:800x600
2955 @end example
2956 It is also possible to specify width or height in characters:
2957 @example
2958 vc:80Cx24C
2959 @end example
2960 @item pty
2961 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
2962 @item none
2963 No device is allocated.
2964 @item null
2965 void device
2966 @item chardev:@var{id}
2967 Use a named character device defined with the @code{-chardev} option.
2968 @item /dev/XXX
2969 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
2970 parameters are set according to the emulated ones.
2971 @item /dev/parport@var{N}
2972 [Linux only, parallel port only] Use host parallel port
2973 @var{N}. Currently SPP and EPP parallel port features can be used.
2974 @item file:@var{filename}
2975 Write output to @var{filename}. No character can be read.
2976 @item stdio
2977 [Unix only] standard input/output
2978 @item pipe:@var{filename}
2979 name pipe @var{filename}
2980 @item COM@var{n}
2981 [Windows only] Use host serial port @var{n}
2982 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
2983 This implements UDP Net Console.
2984 When @var{remote_host} or @var{src_ip} are not specified
2985 they default to @code{0.0.0.0}.
2986 When not using a specified @var{src_port} a random port is automatically chosen.
2988 If you just want a simple readonly console you can use @code{netcat} or
2989 @code{nc}, by starting QEMU with: @code{-serial udp::4555} and nc as:
2990 @code{nc -u -l -p 4555}. Any time QEMU writes something to that port it
2991 will appear in the netconsole session.
2993 If you plan to send characters back via netconsole or you want to stop
2994 and start QEMU a lot of times, you should have QEMU use the same
2995 source port each time by using something like @code{-serial
2996 udp::4555@@:4556} to QEMU. Another approach is to use a patched
2997 version of netcat which can listen to a TCP port and send and receive
2998 characters via udp. If you have a patched version of netcat which
2999 activates telnet remote echo and single char transfer, then you can
3000 use the following options to step up a netcat redirector to allow
3001 telnet on port 5555 to access the QEMU port.
3002 @table @code
3003 @item QEMU Options:
3004 -serial udp::4555@@:4556
3005 @item netcat options:
3006 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
3007 @item telnet options:
3008 localhost 5555
3009 @end table
3011 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay][,reconnect=@var{seconds}]
3012 The TCP Net Console has two modes of operation. It can send the serial
3013 I/O to a location or wait for a connection from a location. By default
3014 the TCP Net Console is sent to @var{host} at the @var{port}. If you use
3015 the @var{server} option QEMU will wait for a client socket application
3016 to connect to the port before continuing, unless the @code{nowait}
3017 option was specified. The @code{nodelay} option disables the Nagle buffering
3018 algorithm. The @code{reconnect} option only applies if @var{noserver} is
3019 set, if the connection goes down it will attempt to reconnect at the
3020 given interval. If @var{host} is omitted, 0.0.0.0 is assumed. Only
3021 one TCP connection at a time is accepted. You can use @code{telnet} to
3022 connect to the corresponding character device.
3023 @table @code
3024 @item Example to send tcp console to 192.168.0.2 port 4444
3025 -serial tcp:192.168.0.2:4444
3026 @item Example to listen and wait on port 4444 for connection
3027 -serial tcp::4444,server
3028 @item Example to not wait and listen on ip 192.168.0.100 port 4444
3029 -serial tcp:192.168.0.100:4444,server,nowait
3030 @end table
3032 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
3033 The telnet protocol is used instead of raw tcp sockets. The options
3034 work the same as if you had specified @code{-serial tcp}. The
3035 difference is that the port acts like a telnet server or client using
3036 telnet option negotiation. This will also allow you to send the
3037 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
3038 sequence. Typically in unix telnet you do it with Control-] and then
3039 type "send break" followed by pressing the enter key.
3041 @item unix:@var{path}[,server][,nowait][,reconnect=@var{seconds}]
3042 A unix domain socket is used instead of a tcp socket. The option works the
3043 same as if you had specified @code{-serial tcp} except the unix domain socket
3044 @var{path} is used for connections.
3046 @item mon:@var{dev_string}
3047 This is a special option to allow the monitor to be multiplexed onto
3048 another serial port. The monitor is accessed with key sequence of
3049 @key{Control-a} and then pressing @key{c}.
3050 @var{dev_string} should be any one of the serial devices specified
3051 above. An example to multiplex the monitor onto a telnet server
3052 listening on port 4444 would be:
3053 @table @code
3054 @item -serial mon:telnet::4444,server,nowait
3055 @end table
3056 When the monitor is multiplexed to stdio in this way, Ctrl+C will not terminate
3057 QEMU any more but will be passed to the guest instead.
3059 @item braille
3060 Braille device. This will use BrlAPI to display the braille output on a real
3061 or fake device.
3063 @item msmouse
3064 Three button serial mouse. Configure the guest to use Microsoft protocol.
3065 @end table
3066 ETEXI
3068 DEF("parallel", HAS_ARG, QEMU_OPTION_parallel, \
3069 "-parallel dev redirect the parallel port to char device 'dev'\n",
3070 QEMU_ARCH_ALL)
3071 STEXI
3072 @item -parallel @var{dev}
3073 @findex -parallel
3074 Redirect the virtual parallel port to host device @var{dev} (same
3075 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
3076 be used to use hardware devices connected on the corresponding host
3077 parallel port.
3079 This option can be used several times to simulate up to 3 parallel
3080 ports.
3082 Use @code{-parallel none} to disable all parallel ports.
3083 ETEXI
3085 DEF("monitor", HAS_ARG, QEMU_OPTION_monitor, \
3086 "-monitor dev redirect the monitor to char device 'dev'\n",
3087 QEMU_ARCH_ALL)
3088 STEXI
3089 @item -monitor @var{dev}
3090 @findex -monitor
3091 Redirect the monitor to host device @var{dev} (same devices as the
3092 serial port).
3093 The default device is @code{vc} in graphical mode and @code{stdio} in
3094 non graphical mode.
3095 Use @code{-monitor none} to disable the default monitor.
3096 ETEXI
3097 DEF("qmp", HAS_ARG, QEMU_OPTION_qmp, \
3098 "-qmp dev like -monitor but opens in 'control' mode\n",
3099 QEMU_ARCH_ALL)
3100 STEXI
3101 @item -qmp @var{dev}
3102 @findex -qmp
3103 Like -monitor but opens in 'control' mode.
3104 ETEXI
3105 DEF("qmp-pretty", HAS_ARG, QEMU_OPTION_qmp_pretty, \
3106 "-qmp-pretty dev like -qmp but uses pretty JSON formatting\n",
3107 QEMU_ARCH_ALL)
3108 STEXI
3109 @item -qmp-pretty @var{dev}
3110 @findex -qmp-pretty
3111 Like -qmp but uses pretty JSON formatting.
3112 ETEXI
3114 DEF("mon", HAS_ARG, QEMU_OPTION_mon, \
3115 "-mon [chardev=]name[,mode=readline|control]\n", QEMU_ARCH_ALL)
3116 STEXI
3117 @item -mon [chardev=]name[,mode=readline|control]
3118 @findex -mon
3119 Setup monitor on chardev @var{name}.
3120 ETEXI
3122 DEF("debugcon", HAS_ARG, QEMU_OPTION_debugcon, \
3123 "-debugcon dev redirect the debug console to char device 'dev'\n",
3124 QEMU_ARCH_ALL)
3125 STEXI
3126 @item -debugcon @var{dev}
3127 @findex -debugcon
3128 Redirect the debug console to host device @var{dev} (same devices as the
3129 serial port). The debug console is an I/O port which is typically port
3130 0xe9; writing to that I/O port sends output to this device.
3131 The default device is @code{vc} in graphical mode and @code{stdio} in
3132 non graphical mode.
3133 ETEXI
3135 DEF("pidfile", HAS_ARG, QEMU_OPTION_pidfile, \
3136 "-pidfile file write PID to 'file'\n", QEMU_ARCH_ALL)
3137 STEXI
3138 @item -pidfile @var{file}
3139 @findex -pidfile
3140 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
3141 from a script.
3142 ETEXI
3144 DEF("singlestep", 0, QEMU_OPTION_singlestep, \
3145 "-singlestep always run in singlestep mode\n", QEMU_ARCH_ALL)
3146 STEXI
3147 @item -singlestep
3148 @findex -singlestep
3149 Run the emulation in single step mode.
3150 ETEXI
3152 DEF("S", 0, QEMU_OPTION_S, \
3153 "-S freeze CPU at startup (use 'c' to start execution)\n",
3154 QEMU_ARCH_ALL)
3155 STEXI
3156 @item -S
3157 @findex -S
3158 Do not start CPU at startup (you must type 'c' in the monitor).
3159 ETEXI
3161 DEF("realtime", HAS_ARG, QEMU_OPTION_realtime,
3162 "-realtime [mlock=on|off]\n"
3163 " run qemu with realtime features\n"
3164 " mlock=on|off controls mlock support (default: on)\n",
3165 QEMU_ARCH_ALL)
3166 STEXI
3167 @item -realtime mlock=on|off
3168 @findex -realtime
3169 Run qemu with realtime features.
3170 mlocking qemu and guest memory can be enabled via @option{mlock=on}
3171 (enabled by default).
3172 ETEXI
3174 DEF("gdb", HAS_ARG, QEMU_OPTION_gdb, \
3175 "-gdb dev wait for gdb connection on 'dev'\n", QEMU_ARCH_ALL)
3176 STEXI
3177 @item -gdb @var{dev}
3178 @findex -gdb
3179 Wait for gdb connection on device @var{dev} (@pxref{gdb_usage}). Typical
3180 connections will likely be TCP-based, but also UDP, pseudo TTY, or even
3181 stdio are reasonable use case. The latter is allowing to start QEMU from
3182 within gdb and establish the connection via a pipe:
3183 @example
3184 (gdb) target remote | exec qemu-system-i386 -gdb stdio ...
3185 @end example
3186 ETEXI
3188 DEF("s", 0, QEMU_OPTION_s, \
3189 "-s shorthand for -gdb tcp::" DEFAULT_GDBSTUB_PORT "\n",
3190 QEMU_ARCH_ALL)
3191 STEXI
3192 @item -s
3193 @findex -s
3194 Shorthand for -gdb tcp::1234, i.e. open a gdbserver on TCP port 1234
3195 (@pxref{gdb_usage}).
3196 ETEXI
3198 DEF("d", HAS_ARG, QEMU_OPTION_d, \
3199 "-d item1,... enable logging of specified items (use '-d help' for a list of log items)\n",
3200 QEMU_ARCH_ALL)
3201 STEXI
3202 @item -d @var{item1}[,...]
3203 @findex -d
3204 Enable logging of specified items. Use '-d help' for a list of log items.
3205 ETEXI
3207 DEF("D", HAS_ARG, QEMU_OPTION_D, \
3208 "-D logfile output log to logfile (default stderr)\n",
3209 QEMU_ARCH_ALL)
3210 STEXI
3211 @item -D @var{logfile}
3212 @findex -D
3213 Output log in @var{logfile} instead of to stderr
3214 ETEXI
3216 DEF("dfilter", HAS_ARG, QEMU_OPTION_DFILTER, \
3217 "-dfilter range,.. filter debug output to range of addresses (useful for -d cpu,exec,etc..)\n",
3218 QEMU_ARCH_ALL)
3219 STEXI
3220 @item -dfilter @var{range1}[,...]
3221 @findex -dfilter
3222 Filter debug output to that relevant to a range of target addresses. The filter
3223 spec can be either @var{start}+@var{size}, @var{start}-@var{size} or
3224 @var{start}..@var{end} where @var{start} @var{end} and @var{size} are the
3225 addresses and sizes required. For example:
3226 @example
3227 -dfilter 0x8000..0x8fff,0xffffffc000080000+0x200,0xffffffc000060000-0x1000
3228 @end example
3229 Will dump output for any code in the 0x1000 sized block starting at 0x8000 and
3230 the 0x200 sized block starting at 0xffffffc000080000 and another 0x1000 sized
3231 block starting at 0xffffffc00005f000.
3232 ETEXI
3234 DEF("L", HAS_ARG, QEMU_OPTION_L, \
3235 "-L path set the directory for the BIOS, VGA BIOS and keymaps\n",
3236 QEMU_ARCH_ALL)
3237 STEXI
3238 @item -L @var{path}
3239 @findex -L
3240 Set the directory for the BIOS, VGA BIOS and keymaps.
3242 To list all the data directories, use @code{-L help}.
3243 ETEXI
3245 DEF("bios", HAS_ARG, QEMU_OPTION_bios, \
3246 "-bios file set the filename for the BIOS\n", QEMU_ARCH_ALL)
3247 STEXI
3248 @item -bios @var{file}
3249 @findex -bios
3250 Set the filename for the BIOS.
3251 ETEXI
3253 DEF("enable-kvm", 0, QEMU_OPTION_enable_kvm, \
3254 "-enable-kvm enable KVM full virtualization support\n", QEMU_ARCH_ALL)
3255 STEXI
3256 @item -enable-kvm
3257 @findex -enable-kvm
3258 Enable KVM full virtualization support. This option is only available
3259 if KVM support is enabled when compiling.
3260 ETEXI
3262 DEF("xen-domid", HAS_ARG, QEMU_OPTION_xen_domid,
3263 "-xen-domid id specify xen guest domain id\n", QEMU_ARCH_ALL)
3264 DEF("xen-create", 0, QEMU_OPTION_xen_create,
3265 "-xen-create create domain using xen hypercalls, bypassing xend\n"
3266 " warning: should not be used when xend is in use\n",
3267 QEMU_ARCH_ALL)
3268 DEF("xen-attach", 0, QEMU_OPTION_xen_attach,
3269 "-xen-attach attach to existing xen domain\n"
3270 " xend will use this when starting QEMU\n",
3271 QEMU_ARCH_ALL)
3272 STEXI
3273 @item -xen-domid @var{id}
3274 @findex -xen-domid
3275 Specify xen guest domain @var{id} (XEN only).
3276 @item -xen-create
3277 @findex -xen-create
3278 Create domain using xen hypercalls, bypassing xend.
3279 Warning: should not be used when xend is in use (XEN only).
3280 @item -xen-attach
3281 @findex -xen-attach
3282 Attach to existing xen domain.
3283 xend will use this when starting QEMU (XEN only).
3284 ETEXI
3286 DEF("no-reboot", 0, QEMU_OPTION_no_reboot, \
3287 "-no-reboot exit instead of rebooting\n", QEMU_ARCH_ALL)
3288 STEXI
3289 @item -no-reboot
3290 @findex -no-reboot
3291 Exit instead of rebooting.
3292 ETEXI
3294 DEF("no-shutdown", 0, QEMU_OPTION_no_shutdown, \
3295 "-no-shutdown stop before shutdown\n", QEMU_ARCH_ALL)
3296 STEXI
3297 @item -no-shutdown
3298 @findex -no-shutdown
3299 Don't exit QEMU on guest shutdown, but instead only stop the emulation.
3300 This allows for instance switching to monitor to commit changes to the
3301 disk image.
3302 ETEXI
3304 DEF("loadvm", HAS_ARG, QEMU_OPTION_loadvm, \
3305 "-loadvm [tag|id]\n" \
3306 " start right away with a saved state (loadvm in monitor)\n",
3307 QEMU_ARCH_ALL)
3308 STEXI
3309 @item -loadvm @var{file}
3310 @findex -loadvm
3311 Start right away with a saved state (@code{loadvm} in monitor)
3312 ETEXI
3314 #ifndef _WIN32
3315 DEF("daemonize", 0, QEMU_OPTION_daemonize, \
3316 "-daemonize daemonize QEMU after initializing\n", QEMU_ARCH_ALL)
3317 #endif
3318 STEXI
3319 @item -daemonize
3320 @findex -daemonize
3321 Daemonize the QEMU process after initialization. QEMU will not detach from
3322 standard IO until it is ready to receive connections on any of its devices.
3323 This option is a useful way for external programs to launch QEMU without having
3324 to cope with initialization race conditions.
3325 ETEXI
3327 DEF("option-rom", HAS_ARG, QEMU_OPTION_option_rom, \
3328 "-option-rom rom load a file, rom, into the option ROM space\n",
3329 QEMU_ARCH_ALL)
3330 STEXI
3331 @item -option-rom @var{file}
3332 @findex -option-rom
3333 Load the contents of @var{file} as an option ROM.
3334 This option is useful to load things like EtherBoot.
3335 ETEXI
3337 HXCOMM Silently ignored for compatibility
3338 DEF("clock", HAS_ARG, QEMU_OPTION_clock, "", QEMU_ARCH_ALL)
3340 HXCOMM Options deprecated by -rtc
3341 DEF("localtime", 0, QEMU_OPTION_localtime, "", QEMU_ARCH_ALL)
3342 DEF("startdate", HAS_ARG, QEMU_OPTION_startdate, "", QEMU_ARCH_ALL)
3344 DEF("rtc", HAS_ARG, QEMU_OPTION_rtc, \
3345 "-rtc [base=utc|localtime|date][,clock=host|rt|vm][,driftfix=none|slew]\n" \
3346 " set the RTC base and clock, enable drift fix for clock ticks (x86 only)\n",
3347 QEMU_ARCH_ALL)
3349 STEXI
3351 @item -rtc [base=utc|localtime|@var{date}][,clock=host|vm][,driftfix=none|slew]
3352 @findex -rtc
3353 Specify @option{base} as @code{utc} or @code{localtime} to let the RTC start at the current
3354 UTC or local time, respectively. @code{localtime} is required for correct date in
3355 MS-DOS or Windows. To start at a specific point in time, provide @var{date} in the
3356 format @code{2006-06-17T16:01:21} or @code{2006-06-17}. The default base is UTC.
3358 By default the RTC is driven by the host system time. This allows using of the
3359 RTC as accurate reference clock inside the guest, specifically if the host
3360 time is smoothly following an accurate external reference clock, e.g. via NTP.
3361 If you want to isolate the guest time from the host, you can set @option{clock}
3362 to @code{rt} instead. To even prevent it from progressing during suspension,
3363 you can set it to @code{vm}.
3365 Enable @option{driftfix} (i386 targets only) if you experience time drift problems,
3366 specifically with Windows' ACPI HAL. This option will try to figure out how
3367 many timer interrupts were not processed by the Windows guest and will
3368 re-inject them.
3369 ETEXI
3371 DEF("icount", HAS_ARG, QEMU_OPTION_icount, \
3372 "-icount [shift=N|auto][,align=on|off][,sleep=on|off,rr=record|replay,rrfile=<filename>]\n" \
3373 " enable virtual instruction counter with 2^N clock ticks per\n" \
3374 " instruction, enable aligning the host and virtual clocks\n" \
3375 " or disable real time cpu sleeping\n", QEMU_ARCH_ALL)
3376 STEXI
3377 @item -icount [shift=@var{N}|auto][,rr=record|replay,rrfile=@var{filename}]
3378 @findex -icount
3379 Enable virtual instruction counter. The virtual cpu will execute one
3380 instruction every 2^@var{N} ns of virtual time. If @code{auto} is specified
3381 then the virtual cpu speed will be automatically adjusted to keep virtual
3382 time within a few seconds of real time.
3384 When the virtual cpu is sleeping, the virtual time will advance at default
3385 speed unless @option{sleep=on|off} is specified.
3386 With @option{sleep=on|off}, the virtual time will jump to the next timer deadline
3387 instantly whenever the virtual cpu goes to sleep mode and will not advance
3388 if no timer is enabled. This behavior give deterministic execution times from
3389 the guest point of view.
3391 Note that while this option can give deterministic behavior, it does not
3392 provide cycle accurate emulation. Modern CPUs contain superscalar out of
3393 order cores with complex cache hierarchies. The number of instructions
3394 executed often has little or no correlation with actual performance.
3396 @option{align=on} will activate the delay algorithm which will try
3397 to synchronise the host clock and the virtual clock. The goal is to
3398 have a guest running at the real frequency imposed by the shift option.
3399 Whenever the guest clock is behind the host clock and if
3400 @option{align=on} is specified then we print a message to the user
3401 to inform about the delay.
3402 Currently this option does not work when @option{shift} is @code{auto}.
3403 Note: The sync algorithm will work for those shift values for which
3404 the guest clock runs ahead of the host clock. Typically this happens
3405 when the shift value is high (how high depends on the host machine).
3407 When @option{rr} option is specified deterministic record/replay is enabled.
3408 Replay log is written into @var{filename} file in record mode and
3409 read from this file in replay mode.
3410 ETEXI
3412 DEF("watchdog", HAS_ARG, QEMU_OPTION_watchdog, \
3413 "-watchdog model\n" \
3414 " enable virtual hardware watchdog [default=none]\n",
3415 QEMU_ARCH_ALL)
3416 STEXI
3417 @item -watchdog @var{model}
3418 @findex -watchdog
3419 Create a virtual hardware watchdog device. Once enabled (by a guest
3420 action), the watchdog must be periodically polled by an agent inside
3421 the guest or else the guest will be restarted. Choose a model for
3422 which your guest has drivers.
3424 The @var{model} is the model of hardware watchdog to emulate. Use
3425 @code{-watchdog help} to list available hardware models. Only one
3426 watchdog can be enabled for a guest.
3428 The following models may be available:
3429 @table @option
3430 @item ib700
3431 iBASE 700 is a very simple ISA watchdog with a single timer.
3432 @item i6300esb
3433 Intel 6300ESB I/O controller hub is a much more featureful PCI-based
3434 dual-timer watchdog.
3435 @item diag288
3436 A virtual watchdog for s390x backed by the diagnose 288 hypercall
3437 (currently KVM only).
3438 @end table
3439 ETEXI
3441 DEF("watchdog-action", HAS_ARG, QEMU_OPTION_watchdog_action, \
3442 "-watchdog-action reset|shutdown|poweroff|pause|debug|none\n" \
3443 " action when watchdog fires [default=reset]\n",
3444 QEMU_ARCH_ALL)
3445 STEXI
3446 @item -watchdog-action @var{action}
3447 @findex -watchdog-action
3449 The @var{action} controls what QEMU will do when the watchdog timer
3450 expires.
3451 The default is
3452 @code{reset} (forcefully reset the guest).
3453 Other possible actions are:
3454 @code{shutdown} (attempt to gracefully shutdown the guest),
3455 @code{poweroff} (forcefully poweroff the guest),
3456 @code{pause} (pause the guest),
3457 @code{debug} (print a debug message and continue), or
3458 @code{none} (do nothing).
3460 Note that the @code{shutdown} action requires that the guest responds
3461 to ACPI signals, which it may not be able to do in the sort of
3462 situations where the watchdog would have expired, and thus
3463 @code{-watchdog-action shutdown} is not recommended for production use.
3465 Examples:
3467 @table @code
3468 @item -watchdog i6300esb -watchdog-action pause
3469 @itemx -watchdog ib700
3470 @end table
3471 ETEXI
3473 DEF("echr", HAS_ARG, QEMU_OPTION_echr, \
3474 "-echr chr set terminal escape character instead of ctrl-a\n",
3475 QEMU_ARCH_ALL)
3476 STEXI
3478 @item -echr @var{numeric_ascii_value}
3479 @findex -echr
3480 Change the escape character used for switching to the monitor when using
3481 monitor and serial sharing. The default is @code{0x01} when using the
3482 @code{-nographic} option. @code{0x01} is equal to pressing
3483 @code{Control-a}. You can select a different character from the ascii
3484 control keys where 1 through 26 map to Control-a through Control-z. For
3485 instance you could use the either of the following to change the escape
3486 character to Control-t.
3487 @table @code
3488 @item -echr 0x14
3489 @itemx -echr 20
3490 @end table
3491 ETEXI
3493 DEF("virtioconsole", HAS_ARG, QEMU_OPTION_virtiocon, \
3494 "-virtioconsole c\n" \
3495 " set virtio console\n", QEMU_ARCH_ALL)
3496 STEXI
3497 @item -virtioconsole @var{c}
3498 @findex -virtioconsole
3499 Set virtio console.
3501 This option is maintained for backward compatibility.
3503 Please use @code{-device virtconsole} for the new way of invocation.
3504 ETEXI
3506 DEF("show-cursor", 0, QEMU_OPTION_show_cursor, \
3507 "-show-cursor show cursor\n", QEMU_ARCH_ALL)
3508 STEXI
3509 @item -show-cursor
3510 @findex -show-cursor
3511 Show cursor.
3512 ETEXI
3514 DEF("tb-size", HAS_ARG, QEMU_OPTION_tb_size, \
3515 "-tb-size n set TB size\n", QEMU_ARCH_ALL)
3516 STEXI
3517 @item -tb-size @var{n}
3518 @findex -tb-size
3519 Set TB size.
3520 ETEXI
3522 DEF("incoming", HAS_ARG, QEMU_OPTION_incoming, \
3523 "-incoming tcp:[host]:port[,to=maxport][,ipv4][,ipv6]\n" \
3524 "-incoming rdma:host:port[,ipv4][,ipv6]\n" \
3525 "-incoming unix:socketpath\n" \
3526 " prepare for incoming migration, listen on\n" \
3527 " specified protocol and socket address\n" \
3528 "-incoming fd:fd\n" \
3529 "-incoming exec:cmdline\n" \
3530 " accept incoming migration on given file descriptor\n" \
3531 " or from given external command\n" \
3532 "-incoming defer\n" \
3533 " wait for the URI to be specified via migrate_incoming\n",
3534 QEMU_ARCH_ALL)
3535 STEXI
3536 @item -incoming tcp:[@var{host}]:@var{port}[,to=@var{maxport}][,ipv4][,ipv6]
3537 @itemx -incoming rdma:@var{host}:@var{port}[,ipv4][,ipv6]
3538 @findex -incoming
3539 Prepare for incoming migration, listen on a given tcp port.
3541 @item -incoming unix:@var{socketpath}
3542 Prepare for incoming migration, listen on a given unix socket.
3544 @item -incoming fd:@var{fd}
3545 Accept incoming migration from a given filedescriptor.
3547 @item -incoming exec:@var{cmdline}
3548 Accept incoming migration as an output from specified external command.
3550 @item -incoming defer
3551 Wait for the URI to be specified via migrate_incoming. The monitor can
3552 be used to change settings (such as migration parameters) prior to issuing
3553 the migrate_incoming to allow the migration to begin.
3554 ETEXI
3556 DEF("nodefaults", 0, QEMU_OPTION_nodefaults, \
3557 "-nodefaults don't create default devices\n", QEMU_ARCH_ALL)
3558 STEXI
3559 @item -nodefaults
3560 @findex -nodefaults
3561 Don't create default devices. Normally, QEMU sets the default devices like serial
3562 port, parallel port, virtual console, monitor device, VGA adapter, floppy and
3563 CD-ROM drive and others. The @code{-nodefaults} option will disable all those
3564 default devices.
3565 ETEXI
3567 #ifndef _WIN32
3568 DEF("chroot", HAS_ARG, QEMU_OPTION_chroot, \
3569 "-chroot dir chroot to dir just before starting the VM\n",
3570 QEMU_ARCH_ALL)
3571 #endif
3572 STEXI
3573 @item -chroot @var{dir}
3574 @findex -chroot
3575 Immediately before starting guest execution, chroot to the specified
3576 directory. Especially useful in combination with -runas.
3577 ETEXI
3579 #ifndef _WIN32
3580 DEF("runas", HAS_ARG, QEMU_OPTION_runas, \
3581 "-runas user change to user id user just before starting the VM\n",
3582 QEMU_ARCH_ALL)
3583 #endif
3584 STEXI
3585 @item -runas @var{user}
3586 @findex -runas
3587 Immediately before starting guest execution, drop root privileges, switching
3588 to the specified user.
3589 ETEXI
3591 DEF("prom-env", HAS_ARG, QEMU_OPTION_prom_env,
3592 "-prom-env variable=value\n"
3593 " set OpenBIOS nvram variables\n",
3594 QEMU_ARCH_PPC | QEMU_ARCH_SPARC)
3595 STEXI
3596 @item -prom-env @var{variable}=@var{value}
3597 @findex -prom-env
3598 Set OpenBIOS nvram @var{variable} to given @var{value} (PPC, SPARC only).
3599 ETEXI
3600 DEF("semihosting", 0, QEMU_OPTION_semihosting,
3601 "-semihosting semihosting mode\n",
3602 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
3603 QEMU_ARCH_MIPS)
3604 STEXI
3605 @item -semihosting
3606 @findex -semihosting
3607 Enable semihosting mode (ARM, M68K, Xtensa, MIPS only).
3608 ETEXI
3609 DEF("semihosting-config", HAS_ARG, QEMU_OPTION_semihosting_config,
3610 "-semihosting-config [enable=on|off][,target=native|gdb|auto][,arg=str[,...]]\n" \
3611 " semihosting configuration\n",
3612 QEMU_ARCH_ARM | QEMU_ARCH_M68K | QEMU_ARCH_XTENSA | QEMU_ARCH_LM32 |
3613 QEMU_ARCH_MIPS)
3614 STEXI
3615 @item -semihosting-config [enable=on|off][,target=native|gdb|auto][,arg=str[,...]]
3616 @findex -semihosting-config
3617 Enable and configure semihosting (ARM, M68K, Xtensa, MIPS only).
3618 @table @option
3619 @item target=@code{native|gdb|auto}
3620 Defines where the semihosting calls will be addressed, to QEMU (@code{native})
3621 or to GDB (@code{gdb}). The default is @code{auto}, which means @code{gdb}
3622 during debug sessions and @code{native} otherwise.
3623 @item arg=@var{str1},arg=@var{str2},...
3624 Allows the user to pass input arguments, and can be used multiple times to build
3625 up a list. The old-style @code{-kernel}/@code{-append} method of passing a
3626 command line is still supported for backward compatibility. If both the
3627 @code{--semihosting-config arg} and the @code{-kernel}/@code{-append} are
3628 specified, the former is passed to semihosting as it always takes precedence.
3629 @end table
3630 ETEXI
3631 DEF("old-param", 0, QEMU_OPTION_old_param,
3632 "-old-param old param mode\n", QEMU_ARCH_ARM)
3633 STEXI
3634 @item -old-param
3635 @findex -old-param (ARM)
3636 Old param mode (ARM only).
3637 ETEXI
3639 DEF("sandbox", HAS_ARG, QEMU_OPTION_sandbox, \
3640 "-sandbox <arg> Enable seccomp mode 2 system call filter (default 'off').\n",
3641 QEMU_ARCH_ALL)
3642 STEXI
3643 @item -sandbox @var{arg}
3644 @findex -sandbox
3645 Enable Seccomp mode 2 system call filter. 'on' will enable syscall filtering and 'off' will
3646 disable it. The default is 'off'.
3647 ETEXI
3649 DEF("readconfig", HAS_ARG, QEMU_OPTION_readconfig,
3650 "-readconfig <file>\n", QEMU_ARCH_ALL)
3651 STEXI
3652 @item -readconfig @var{file}
3653 @findex -readconfig
3654 Read device configuration from @var{file}. This approach is useful when you want to spawn
3655 QEMU process with many command line options but you don't want to exceed the command line
3656 character limit.
3657 ETEXI
3658 DEF("writeconfig", HAS_ARG, QEMU_OPTION_writeconfig,
3659 "-writeconfig <file>\n"
3660 " read/write config file\n", QEMU_ARCH_ALL)
3661 STEXI
3662 @item -writeconfig @var{file}
3663 @findex -writeconfig
3664 Write device configuration to @var{file}. The @var{file} can be either filename to save
3665 command line and device configuration into file or dash @code{-}) character to print the
3666 output to stdout. This can be later used as input file for @code{-readconfig} option.
3667 ETEXI
3668 DEF("nodefconfig", 0, QEMU_OPTION_nodefconfig,
3669 "-nodefconfig\n"
3670 " do not load default config files at startup\n",
3671 QEMU_ARCH_ALL)
3672 STEXI
3673 @item -nodefconfig
3674 @findex -nodefconfig
3675 Normally QEMU loads configuration files from @var{sysconfdir} and @var{datadir} at startup.
3676 The @code{-nodefconfig} option will prevent QEMU from loading any of those config files.
3677 ETEXI
3678 DEF("no-user-config", 0, QEMU_OPTION_nouserconfig,
3679 "-no-user-config\n"
3680 " do not load user-provided config files at startup\n",
3681 QEMU_ARCH_ALL)
3682 STEXI
3683 @item -no-user-config
3684 @findex -no-user-config
3685 The @code{-no-user-config} option makes QEMU not load any of the user-provided
3686 config files on @var{sysconfdir}, but won't make it skip the QEMU-provided config
3687 files from @var{datadir}.
3688 ETEXI
3689 DEF("trace", HAS_ARG, QEMU_OPTION_trace,
3690 "-trace [[enable=]<pattern>][,events=<file>][,file=<file>]\n"
3691 " specify tracing options\n",
3692 QEMU_ARCH_ALL)
3693 STEXI
3694 HXCOMM This line is not accurate, as some sub-options are backend-specific but
3695 HXCOMM HX does not support conditional compilation of text.
3696 @item -trace [[enable=]@var{pattern}][,events=@var{file}][,file=@var{file}]
3697 @findex -trace
3698 @include qemu-option-trace.texi
3699 ETEXI
3701 HXCOMM Internal use
3702 DEF("qtest", HAS_ARG, QEMU_OPTION_qtest, "", QEMU_ARCH_ALL)
3703 DEF("qtest-log", HAS_ARG, QEMU_OPTION_qtest_log, "", QEMU_ARCH_ALL)
3705 #ifdef __linux__
3706 DEF("enable-fips", 0, QEMU_OPTION_enablefips,
3707 "-enable-fips enable FIPS 140-2 compliance\n",
3708 QEMU_ARCH_ALL)
3709 #endif
3710 STEXI
3711 @item -enable-fips
3712 @findex -enable-fips
3713 Enable FIPS 140-2 compliance mode.
3714 ETEXI
3716 HXCOMM Deprecated by -machine accel=tcg property
3717 DEF("no-kvm", 0, QEMU_OPTION_no_kvm, "", QEMU_ARCH_I386)
3719 HXCOMM Deprecated by kvm-pit driver properties
3720 DEF("no-kvm-pit-reinjection", 0, QEMU_OPTION_no_kvm_pit_reinjection,
3721 "", QEMU_ARCH_I386)
3723 HXCOMM Deprecated (ignored)
3724 DEF("no-kvm-pit", 0, QEMU_OPTION_no_kvm_pit, "", QEMU_ARCH_I386)
3726 HXCOMM Deprecated by -machine kernel_irqchip=on|off property
3727 DEF("no-kvm-irqchip", 0, QEMU_OPTION_no_kvm_irqchip, "", QEMU_ARCH_I386)
3729 HXCOMM Deprecated (ignored)
3730 DEF("tdf", 0, QEMU_OPTION_tdf,"", QEMU_ARCH_ALL)
3732 DEF("msg", HAS_ARG, QEMU_OPTION_msg,
3733 "-msg timestamp[=on|off]\n"
3734 " change the format of messages\n"
3735 " on|off controls leading timestamps (default:on)\n",
3736 QEMU_ARCH_ALL)
3737 STEXI
3738 @item -msg timestamp[=on|off]
3739 @findex -msg
3740 prepend a timestamp to each log message.(default:on)
3741 ETEXI
3743 DEF("dump-vmstate", HAS_ARG, QEMU_OPTION_dump_vmstate,
3744 "-dump-vmstate <file>\n"
3745 " Output vmstate information in JSON format to file.\n"
3746 " Use the scripts/vmstate-static-checker.py file to\n"
3747 " check for possible regressions in migration code\n"
3748 " by comparing two such vmstate dumps.\n",
3749 QEMU_ARCH_ALL)
3750 STEXI
3751 @item -dump-vmstate @var{file}
3752 @findex -dump-vmstate
3753 Dump json-encoded vmstate information for current machine type to file
3754 in @var{file}
3755 ETEXI
3757 DEFHEADING(Generic object creation)
3759 DEF("object", HAS_ARG, QEMU_OPTION_object,
3760 "-object TYPENAME[,PROP1=VALUE1,...]\n"
3761 " create a new object of type TYPENAME setting properties\n"
3762 " in the order they are specified. Note that the 'id'\n"
3763 " property must be set. These objects are placed in the\n"
3764 " '/objects' path.\n",
3765 QEMU_ARCH_ALL)
3766 STEXI
3767 @item -object @var{typename}[,@var{prop1}=@var{value1},...]
3768 @findex -object
3769 Create a new object of type @var{typename} setting properties
3770 in the order they are specified. Note that the 'id'
3771 property must be set. These objects are placed in the
3772 '/objects' path.
3774 @table @option
3776 @item -object memory-backend-file,id=@var{id},size=@var{size},mem-path=@var{dir},share=@var{on|off}
3778 Creates a memory file backend object, which can be used to back
3779 the guest RAM with huge pages. The @option{id} parameter is a
3780 unique ID that will be used to reference this memory region
3781 when configuring the @option{-numa} argument. The @option{size}
3782 option provides the size of the memory region, and accepts
3783 common suffixes, eg @option{500M}. The @option{mem-path} provides
3784 the path to either a shared memory or huge page filesystem mount.
3785 The @option{share} boolean option determines whether the memory
3786 region is marked as private to QEMU, or shared. The latter allows
3787 a co-operating external process to access the QEMU memory region.
3789 @item -object rng-random,id=@var{id},filename=@var{/dev/random}
3791 Creates a random number generator backend which obtains entropy from
3792 a device on the host. The @option{id} parameter is a unique ID that
3793 will be used to reference this entropy backend from the @option{virtio-rng}
3794 device. The @option{filename} parameter specifies which file to obtain
3795 entropy from and if omitted defaults to @option{/dev/random}.
3797 @item -object rng-egd,id=@var{id},chardev=@var{chardevid}
3799 Creates a random number generator backend which obtains entropy from
3800 an external daemon running on the host. The @option{id} parameter is
3801 a unique ID that will be used to reference this entropy backend from
3802 the @option{virtio-rng} device. The @option{chardev} parameter is
3803 the unique ID of a character device backend that provides the connection
3804 to the RNG daemon.
3806 @item -object tls-creds-anon,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},verify-peer=@var{on|off}
3808 Creates a TLS anonymous credentials object, which can be used to provide
3809 TLS support on network backends. The @option{id} parameter is a unique
3810 ID which network backends will use to access the credentials. The
3811 @option{endpoint} is either @option{server} or @option{client} depending
3812 on whether the QEMU network backend that uses the credentials will be
3813 acting as a client or as a server. If @option{verify-peer} is enabled
3814 (the default) then once the handshake is completed, the peer credentials
3815 will be verified, though this is a no-op for anonymous credentials.
3817 The @var{dir} parameter tells QEMU where to find the credential
3818 files. For server endpoints, this directory may contain a file
3819 @var{dh-params.pem} providing diffie-hellman parameters to use
3820 for the TLS server. If the file is missing, QEMU will generate
3821 a set of DH parameters at startup. This is a computationally
3822 expensive operation that consumes random pool entropy, so it is
3823 recommended that a persistent set of parameters be generated
3824 upfront and saved.
3826 @item -object tls-creds-x509,id=@var{id},endpoint=@var{endpoint},dir=@var{/path/to/cred/dir},verify-peer=@var{on|off},passwordid=@var{id}
3828 Creates a TLS anonymous credentials object, which can be used to provide
3829 TLS support on network backends. The @option{id} parameter is a unique
3830 ID which network backends will use to access the credentials. The
3831 @option{endpoint} is either @option{server} or @option{client} depending
3832 on whether the QEMU network backend that uses the credentials will be
3833 acting as a client or as a server. If @option{verify-peer} is enabled
3834 (the default) then once the handshake is completed, the peer credentials
3835 will be verified. With x509 certificates, this implies that the clients
3836 must be provided with valid client certificates too.
3838 The @var{dir} parameter tells QEMU where to find the credential
3839 files. For server endpoints, this directory may contain a file
3840 @var{dh-params.pem} providing diffie-hellman parameters to use
3841 for the TLS server. If the file is missing, QEMU will generate
3842 a set of DH parameters at startup. This is a computationally
3843 expensive operation that consumes random pool entropy, so it is
3844 recommended that a persistent set of parameters be generated
3845 upfront and saved.
3847 For x509 certificate credentials the directory will contain further files
3848 providing the x509 certificates. The certificates must be stored
3849 in PEM format, in filenames @var{ca-cert.pem}, @var{ca-crl.pem} (optional),
3850 @var{server-cert.pem} (only servers), @var{server-key.pem} (only servers),
3851 @var{client-cert.pem} (only clients), and @var{client-key.pem} (only clients).
3853 For the @var{server-key.pem} and @var{client-key.pem} files which
3854 contain sensitive private keys, it is possible to use an encrypted
3855 version by providing the @var{passwordid} parameter. This provides
3856 the ID of a previously created @code{secret} object containing the
3857 password for decryption.
3859 @item -object filter-buffer,id=@var{id},netdev=@var{netdevid},interval=@var{t}[,queue=@var{all|rx|tx}][,status=@var{on|off}]
3861 Interval @var{t} can't be 0, this filter batches the packet delivery: all
3862 packets arriving in a given interval on netdev @var{netdevid} are delayed
3863 until the end of the interval. Interval is in microseconds.
3864 @option{status} is optional that indicate whether the netfilter is
3865 on (enabled) or off (disabled), the default status for netfilter will be 'on'.
3867 queue @var{all|rx|tx} is an option that can be applied to any netfilter.
3869 @option{all}: the filter is attached both to the receive and the transmit
3870 queue of the netdev (default).
3872 @option{rx}: the filter is attached to the receive queue of the netdev,
3873 where it will receive packets sent to the netdev.
3875 @option{tx}: the filter is attached to the transmit queue of the netdev,
3876 where it will receive packets sent by the netdev.
3878 @item -object filter-mirror,id=@var{id},netdev=@var{netdevid},outdev=@var{chardevid}[,queue=@var{all|rx|tx}]
3880 filter-mirror on netdev @var{netdevid},mirror net packet to chardev
3881 @var{chardevid}
3883 @item -object filter-redirector,id=@var{id},netdev=@var{netdevid},indev=@var{chardevid},
3884 outdev=@var{chardevid}[,queue=@var{all|rx|tx}]
3886 filter-redirector on netdev @var{netdevid},redirect filter's net packet to chardev
3887 @var{chardevid},and redirect indev's packet to filter.
3888 Create a filter-redirector we need to differ outdev id from indev id, id can not
3889 be the same. we can just use indev or outdev, but at least one of indev or outdev
3890 need to be specified.
3892 @item -object filter-rewriter,id=@var{id},netdev=@var{netdevid},rewriter-mode=@var{mode}[,queue=@var{all|rx|tx}]
3894 Filter-rewriter is a part of COLO project.It will rewrite tcp packet to
3895 secondary from primary to keep secondary tcp connection,and rewrite
3896 tcp packet to primary from secondary make tcp packet can be handled by
3897 client.
3899 usage:
3900 colo secondary:
3901 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
3902 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
3903 -object filter-rewriter,id=rew0,netdev=hn0,queue=all
3905 @item -object filter-dump,id=@var{id},netdev=@var{dev}[,file=@var{filename}][,maxlen=@var{len}]
3907 Dump the network traffic on netdev @var{dev} to the file specified by
3908 @var{filename}. At most @var{len} bytes (64k by default) per packet are stored.
3909 The file format is libpcap, so it can be analyzed with tools such as tcpdump
3910 or Wireshark.
3912 @item -object colo-compare,id=@var{id},primary_in=@var{chardevid},secondary_in=@var{chardevid},
3913 outdev=@var{chardevid}
3915 Colo-compare gets packet from primary_in@var{chardevid} and secondary_in@var{chardevid}, than compare primary packet with
3916 secondary packet. If the packets are same, we will output primary
3917 packet to outdev@var{chardevid}, else we will notify colo-frame
3918 do checkpoint and send primary packet to outdev@var{chardevid}.
3920 we must use it with the help of filter-mirror and filter-redirector.
3922 @example
3924 primary:
3925 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,downscript=/etc/qemu-ifdown
3926 -device e1000,id=e0,netdev=hn0,mac=52:a4:00:12:78:66
3927 -chardev socket,id=mirror0,host=3.3.3.3,port=9003,server,nowait
3928 -chardev socket,id=compare1,host=3.3.3.3,port=9004,server,nowait
3929 -chardev socket,id=compare0,host=3.3.3.3,port=9001,server,nowait
3930 -chardev socket,id=compare0-0,host=3.3.3.3,port=9001
3931 -chardev socket,id=compare_out,host=3.3.3.3,port=9005,server,nowait
3932 -chardev socket,id=compare_out0,host=3.3.3.3,port=9005
3933 -object filter-mirror,id=m0,netdev=hn0,queue=tx,outdev=mirror0
3934 -object filter-redirector,netdev=hn0,id=redire0,queue=rx,indev=compare_out
3935 -object filter-redirector,netdev=hn0,id=redire1,queue=rx,outdev=compare0
3936 -object colo-compare,id=comp0,primary_in=compare0-0,secondary_in=compare1,outdev=compare_out0
3938 secondary:
3939 -netdev tap,id=hn0,vhost=off,script=/etc/qemu-ifup,down script=/etc/qemu-ifdown
3940 -device e1000,netdev=hn0,mac=52:a4:00:12:78:66
3941 -chardev socket,id=red0,host=3.3.3.3,port=9003
3942 -chardev socket,id=red1,host=3.3.3.3,port=9004
3943 -object filter-redirector,id=f1,netdev=hn0,queue=tx,indev=red0
3944 -object filter-redirector,id=f2,netdev=hn0,queue=rx,outdev=red1
3946 @end example
3948 If you want to know the detail of above command line, you can read
3949 the colo-compare git log.
3951 @item -object cryptodev-backend-builtin,id=@var{id}[,queues=@var{queues}]
3953 Creates a cryptodev backend which executes crypto opreation from
3954 the QEMU cipher APIS. The @var{id} parameter is
3955 a unique ID that will be used to reference this cryptodev backend from
3956 the @option{virtio-crypto} device. The @var{queues} parameter is optional,
3957 which specify the queue number of cryptodev backend, the default of
3958 @var{queues} is 1.
3960 @example
3962 # qemu-system-x86_64 \
3963 [...] \
3964 -object cryptodev-backend-builtin,id=cryptodev0 \
3965 -device virtio-crypto-pci,id=crypto0,cryptodev=cryptodev0 \
3966 [...]
3967 @end example
3969 @item -object secret,id=@var{id},data=@var{string},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
3970 @item -object secret,id=@var{id},file=@var{filename},format=@var{raw|base64}[,keyid=@var{secretid},iv=@var{string}]
3972 Defines a secret to store a password, encryption key, or some other sensitive
3973 data. The sensitive data can either be passed directly via the @var{data}
3974 parameter, or indirectly via the @var{file} parameter. Using the @var{data}
3975 parameter is insecure unless the sensitive data is encrypted.
3977 The sensitive data can be provided in raw format (the default), or base64.
3978 When encoded as JSON, the raw format only supports valid UTF-8 characters,
3979 so base64 is recommended for sending binary data. QEMU will convert from
3980 which ever format is provided to the format it needs internally. eg, an
3981 RBD password can be provided in raw format, even though it will be base64
3982 encoded when passed onto the RBD sever.
3984 For added protection, it is possible to encrypt the data associated with
3985 a secret using the AES-256-CBC cipher. Use of encryption is indicated
3986 by providing the @var{keyid} and @var{iv} parameters. The @var{keyid}
3987 parameter provides the ID of a previously defined secret that contains
3988 the AES-256 decryption key. This key should be 32-bytes long and be
3989 base64 encoded. The @var{iv} parameter provides the random initialization
3990 vector used for encryption of this particular secret and should be a
3991 base64 encrypted string of the 16-byte IV.
3993 The simplest (insecure) usage is to provide the secret inline
3995 @example
3997 # $QEMU -object secret,id=sec0,data=letmein,format=raw
3999 @end example
4001 The simplest secure usage is to provide the secret via a file
4003 # echo -n "letmein" > mypasswd.txt
4004 # $QEMU -object secret,id=sec0,file=mypasswd.txt,format=raw
4006 For greater security, AES-256-CBC should be used. To illustrate usage,
4007 consider the openssl command line tool which can encrypt the data. Note
4008 that when encrypting, the plaintext must be padded to the cipher block
4009 size (32 bytes) using the standard PKCS#5/6 compatible padding algorithm.
4011 First a master key needs to be created in base64 encoding:
4013 @example
4014 # openssl rand -base64 32 > key.b64
4015 # KEY=$(base64 -d key.b64 | hexdump -v -e '/1 "%02X"')
4016 @end example
4018 Each secret to be encrypted needs to have a random initialization vector
4019 generated. These do not need to be kept secret
4021 @example
4022 # openssl rand -base64 16 > iv.b64
4023 # IV=$(base64 -d iv.b64 | hexdump -v -e '/1 "%02X"')
4024 @end example
4026 The secret to be defined can now be encrypted, in this case we're
4027 telling openssl to base64 encode the result, but it could be left
4028 as raw bytes if desired.
4030 @example
4031 # SECRET=$(echo -n "letmein" |
4032 openssl enc -aes-256-cbc -a -K $KEY -iv $IV)
4033 @end example
4035 When launching QEMU, create a master secret pointing to @code{key.b64}
4036 and specify that to be used to decrypt the user password. Pass the
4037 contents of @code{iv.b64} to the second secret
4039 @example
4040 # $QEMU \
4041 -object secret,id=secmaster0,format=base64,file=key.b64 \
4042 -object secret,id=sec0,keyid=secmaster0,format=base64,\
4043 data=$SECRET,iv=$(<iv.b64)
4044 @end example
4046 @end table
4048 ETEXI
4051 HXCOMM This is the last statement. Insert new options before this line!
4052 STEXI
4053 @end table
4054 ETEXI