2 * QEMU Sparc32 DMA controller emulation
4 * Copyright (c) 2006 Fabrice Bellard
7 * 2010-Feb-14 Artyom Tarasenko : reworked irq generation
9 * Permission is hereby granted, free of charge, to any person obtaining a copy
10 * of this software and associated documentation files (the "Software"), to deal
11 * in the Software without restriction, including without limitation the rights
12 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13 * copies of the Software, and to permit persons to whom the Software is
14 * furnished to do so, subject to the following conditions:
16 * The above copyright notice and this permission notice shall be included in
17 * all copies or substantial portions of the Software.
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
29 #include "sparc32_dma.h"
35 * This is the DMA controller part of chip STP2000 (Master I/O), also
36 * produced as NCR89C100. See
37 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
39 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/DMA2.txt
43 #define DMA_SIZE (4 * sizeof(uint32_t))
44 /* We need the mask, because one instance of the device is not page
45 aligned (ledma, start address 0x0010) */
46 #define DMA_MASK (DMA_SIZE - 1)
47 /* OBP says 0x20 bytes for ledma, the extras are aliased to espdma */
48 #define DMA_ETH_SIZE (8 * sizeof(uint32_t))
49 #define DMA_MAX_REG_OFFSET (2 * DMA_SIZE - 1)
51 #define DMA_VER 0xa0000000
53 #define DMA_INTREN 0x10
54 #define DMA_WRITE_MEM 0x100
56 #define DMA_LOADED 0x04000000
57 #define DMA_DRAIN_FIFO 0x40
58 #define DMA_RESET 0x80
60 /* XXX SCSI and ethernet should have different read-only bit masks */
61 #define DMA_CSR_RO_MASK 0xfe000007
63 typedef struct DMAState DMAState
;
67 uint32_t dmaregs
[DMA_REGS
];
79 /* Note: on sparc, the lance 16 bit bus is swapped */
80 void ledma_memory_read(void *opaque
, target_phys_addr_t addr
,
81 uint8_t *buf
, int len
, int do_bswap
)
86 addr
|= s
->dmaregs
[3];
87 trace_ledma_memory_read(addr
);
89 sparc_iommu_memory_read(s
->iommu
, addr
, buf
, len
);
93 sparc_iommu_memory_read(s
->iommu
, addr
, buf
, len
);
94 for(i
= 0; i
< len
; i
+= 2) {
95 bswap16s((uint16_t *)(buf
+ i
));
100 void ledma_memory_write(void *opaque
, target_phys_addr_t addr
,
101 uint8_t *buf
, int len
, int do_bswap
)
103 DMAState
*s
= opaque
;
105 uint16_t tmp_buf
[32];
107 addr
|= s
->dmaregs
[3];
108 trace_ledma_memory_write(addr
);
110 sparc_iommu_memory_write(s
->iommu
, addr
, buf
, len
);
116 if (l
> sizeof(tmp_buf
))
118 for(i
= 0; i
< l
; i
+= 2) {
119 tmp_buf
[i
>> 1] = bswap16(*(uint16_t *)(buf
+ i
));
121 sparc_iommu_memory_write(s
->iommu
, addr
, (uint8_t *)tmp_buf
, l
);
129 static void dma_set_irq(void *opaque
, int irq
, int level
)
131 DMAState
*s
= opaque
;
133 s
->dmaregs
[0] |= DMA_INTR
;
134 if (s
->dmaregs
[0] & DMA_INTREN
) {
135 trace_sparc32_dma_set_irq_raise();
136 qemu_irq_raise(s
->irq
);
139 if (s
->dmaregs
[0] & DMA_INTR
) {
140 s
->dmaregs
[0] &= ~DMA_INTR
;
141 if (s
->dmaregs
[0] & DMA_INTREN
) {
142 trace_sparc32_dma_set_irq_lower();
143 qemu_irq_lower(s
->irq
);
149 void espdma_memory_read(void *opaque
, uint8_t *buf
, int len
)
151 DMAState
*s
= opaque
;
153 trace_espdma_memory_read(s
->dmaregs
[1]);
154 sparc_iommu_memory_read(s
->iommu
, s
->dmaregs
[1], buf
, len
);
155 s
->dmaregs
[1] += len
;
158 void espdma_memory_write(void *opaque
, uint8_t *buf
, int len
)
160 DMAState
*s
= opaque
;
162 trace_espdma_memory_write(s
->dmaregs
[1]);
163 sparc_iommu_memory_write(s
->iommu
, s
->dmaregs
[1], buf
, len
);
164 s
->dmaregs
[1] += len
;
167 static uint32_t dma_mem_readl(void *opaque
, target_phys_addr_t addr
)
169 DMAState
*s
= opaque
;
172 if (s
->is_ledma
&& (addr
> DMA_MAX_REG_OFFSET
)) {
173 /* aliased to espdma, but we can't get there from here */
174 /* buggy driver if using undocumented behavior, just return 0 */
175 trace_sparc32_dma_mem_readl(addr
, 0);
178 saddr
= (addr
& DMA_MASK
) >> 2;
179 trace_sparc32_dma_mem_readl(addr
, s
->dmaregs
[saddr
]);
180 return s
->dmaregs
[saddr
];
183 static void dma_mem_writel(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
185 DMAState
*s
= opaque
;
188 if (s
->is_ledma
&& (addr
> DMA_MAX_REG_OFFSET
)) {
189 /* aliased to espdma, but we can't get there from here */
190 trace_sparc32_dma_mem_writel(addr
, 0, val
);
193 saddr
= (addr
& DMA_MASK
) >> 2;
194 trace_sparc32_dma_mem_writel(addr
, s
->dmaregs
[saddr
], val
);
197 if (val
& DMA_INTREN
) {
198 if (s
->dmaregs
[0] & DMA_INTR
) {
199 trace_sparc32_dma_set_irq_raise();
200 qemu_irq_raise(s
->irq
);
203 if (s
->dmaregs
[0] & (DMA_INTR
| DMA_INTREN
)) {
204 trace_sparc32_dma_set_irq_lower();
205 qemu_irq_lower(s
->irq
);
208 if (val
& DMA_RESET
) {
209 qemu_irq_raise(s
->gpio
[GPIO_RESET
]);
210 qemu_irq_lower(s
->gpio
[GPIO_RESET
]);
211 } else if (val
& DMA_DRAIN_FIFO
) {
212 val
&= ~DMA_DRAIN_FIFO
;
214 val
= DMA_DRAIN_FIFO
;
216 if (val
& DMA_EN
&& !(s
->dmaregs
[0] & DMA_EN
)) {
217 trace_sparc32_dma_enable_raise();
218 qemu_irq_raise(s
->gpio
[GPIO_DMA
]);
219 } else if (!(val
& DMA_EN
) && !!(s
->dmaregs
[0] & DMA_EN
)) {
220 trace_sparc32_dma_enable_lower();
221 qemu_irq_lower(s
->gpio
[GPIO_DMA
]);
224 val
&= ~DMA_CSR_RO_MASK
;
226 s
->dmaregs
[0] = (s
->dmaregs
[0] & DMA_CSR_RO_MASK
) | val
;
229 s
->dmaregs
[0] |= DMA_LOADED
;
232 s
->dmaregs
[saddr
] = val
;
237 static CPUReadMemoryFunc
* const dma_mem_read
[3] = {
243 static CPUWriteMemoryFunc
* const dma_mem_write
[3] = {
249 static void dma_reset(DeviceState
*d
)
251 DMAState
*s
= container_of(d
, DMAState
, busdev
.qdev
);
253 memset(s
->dmaregs
, 0, DMA_SIZE
);
254 s
->dmaregs
[0] = DMA_VER
;
257 static const VMStateDescription vmstate_dma
= {
258 .name
="sparc32_dma",
260 .minimum_version_id
= 2,
261 .minimum_version_id_old
= 2,
262 .fields
= (VMStateField
[]) {
263 VMSTATE_UINT32_ARRAY(dmaregs
, DMAState
, DMA_REGS
),
264 VMSTATE_END_OF_LIST()
268 static int sparc32_dma_init1(SysBusDevice
*dev
)
270 DMAState
*s
= FROM_SYSBUS(DMAState
, dev
);
274 sysbus_init_irq(dev
, &s
->irq
);
276 dma_io_memory
= cpu_register_io_memory(dma_mem_read
, dma_mem_write
, s
,
277 DEVICE_NATIVE_ENDIAN
);
278 reg_size
= s
->is_ledma
? DMA_ETH_SIZE
: DMA_SIZE
;
279 sysbus_init_mmio(dev
, reg_size
, dma_io_memory
);
281 qdev_init_gpio_in(&dev
->qdev
, dma_set_irq
, 1);
282 qdev_init_gpio_out(&dev
->qdev
, s
->gpio
, 2);
287 static SysBusDeviceInfo sparc32_dma_info
= {
288 .init
= sparc32_dma_init1
,
289 .qdev
.name
= "sparc32_dma",
290 .qdev
.size
= sizeof(DMAState
),
291 .qdev
.vmsd
= &vmstate_dma
,
292 .qdev
.reset
= dma_reset
,
293 .qdev
.props
= (Property
[]) {
294 DEFINE_PROP_PTR("iommu_opaque", DMAState
, iommu
),
295 DEFINE_PROP_UINT32("is_ledma", DMAState
, is_ledma
, 0),
296 DEFINE_PROP_END_OF_LIST(),
300 static void sparc32_dma_register_devices(void)
302 sysbus_register_withprop(&sparc32_dma_info
);
305 device_init(sparc32_dma_register_devices
)