Merge remote-tracking branch 'afaerber/qom-cpu-x86-prop.v3' into staging
[qemu.git] / hw / ne2000.c
blobd02e60c4a670230628069689bd7110966885b84e
1 /*
2 * QEMU NE2000 emulation
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "pci.h"
26 #include "net.h"
27 #include "ne2000.h"
28 #include "loader.h"
29 #include "sysemu.h"
31 /* debug NE2000 card */
32 //#define DEBUG_NE2000
34 #define MAX_ETH_FRAME_SIZE 1514
36 #define E8390_CMD 0x00 /* The command register (for all pages) */
37 /* Page 0 register offsets. */
38 #define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */
39 #define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */
40 #define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */
41 #define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */
42 #define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */
43 #define EN0_TSR 0x04 /* Transmit status reg RD */
44 #define EN0_TPSR 0x04 /* Transmit starting page WR */
45 #define EN0_NCR 0x05 /* Number of collision reg RD */
46 #define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */
47 #define EN0_FIFO 0x06 /* FIFO RD */
48 #define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */
49 #define EN0_ISR 0x07 /* Interrupt status reg RD WR */
50 #define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */
51 #define EN0_RSARLO 0x08 /* Remote start address reg 0 */
52 #define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */
53 #define EN0_RSARHI 0x09 /* Remote start address reg 1 */
54 #define EN0_RCNTLO 0x0a /* Remote byte count reg WR */
55 #define EN0_RTL8029ID0 0x0a /* Realtek ID byte #1 RD */
56 #define EN0_RCNTHI 0x0b /* Remote byte count reg WR */
57 #define EN0_RTL8029ID1 0x0b /* Realtek ID byte #2 RD */
58 #define EN0_RSR 0x0c /* rx status reg RD */
59 #define EN0_RXCR 0x0c /* RX configuration reg WR */
60 #define EN0_TXCR 0x0d /* TX configuration reg WR */
61 #define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */
62 #define EN0_DCFG 0x0e /* Data configuration reg WR */
63 #define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */
64 #define EN0_IMR 0x0f /* Interrupt mask reg WR */
65 #define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */
67 #define EN1_PHYS 0x11
68 #define EN1_CURPAG 0x17
69 #define EN1_MULT 0x18
71 #define EN2_STARTPG 0x21 /* Starting page of ring bfr RD */
72 #define EN2_STOPPG 0x22 /* Ending page +1 of ring bfr RD */
74 #define EN3_CONFIG0 0x33
75 #define EN3_CONFIG1 0x34
76 #define EN3_CONFIG2 0x35
77 #define EN3_CONFIG3 0x36
79 /* Register accessed at EN_CMD, the 8390 base addr. */
80 #define E8390_STOP 0x01 /* Stop and reset the chip */
81 #define E8390_START 0x02 /* Start the chip, clear reset */
82 #define E8390_TRANS 0x04 /* Transmit a frame */
83 #define E8390_RREAD 0x08 /* Remote read */
84 #define E8390_RWRITE 0x10 /* Remote write */
85 #define E8390_NODMA 0x20 /* Remote DMA */
86 #define E8390_PAGE0 0x00 /* Select page chip registers */
87 #define E8390_PAGE1 0x40 /* using the two high-order bits */
88 #define E8390_PAGE2 0x80 /* Page 3 is invalid. */
90 /* Bits in EN0_ISR - Interrupt status register */
91 #define ENISR_RX 0x01 /* Receiver, no error */
92 #define ENISR_TX 0x02 /* Transmitter, no error */
93 #define ENISR_RX_ERR 0x04 /* Receiver, with error */
94 #define ENISR_TX_ERR 0x08 /* Transmitter, with error */
95 #define ENISR_OVER 0x10 /* Receiver overwrote the ring */
96 #define ENISR_COUNTERS 0x20 /* Counters need emptying */
97 #define ENISR_RDC 0x40 /* remote dma complete */
98 #define ENISR_RESET 0x80 /* Reset completed */
99 #define ENISR_ALL 0x3f /* Interrupts we will enable */
101 /* Bits in received packet status byte and EN0_RSR*/
102 #define ENRSR_RXOK 0x01 /* Received a good packet */
103 #define ENRSR_CRC 0x02 /* CRC error */
104 #define ENRSR_FAE 0x04 /* frame alignment error */
105 #define ENRSR_FO 0x08 /* FIFO overrun */
106 #define ENRSR_MPA 0x10 /* missed pkt */
107 #define ENRSR_PHY 0x20 /* physical/multicast address */
108 #define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */
109 #define ENRSR_DEF 0x80 /* deferring */
111 /* Transmitted packet status, EN0_TSR. */
112 #define ENTSR_PTX 0x01 /* Packet transmitted without error */
113 #define ENTSR_ND 0x02 /* The transmit wasn't deferred. */
114 #define ENTSR_COL 0x04 /* The transmit collided at least once. */
115 #define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */
116 #define ENTSR_CRS 0x10 /* The carrier sense was lost. */
117 #define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */
118 #define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */
119 #define ENTSR_OWC 0x80 /* There was an out-of-window collision. */
121 typedef struct PCINE2000State {
122 PCIDevice dev;
123 NE2000State ne2000;
124 } PCINE2000State;
126 void ne2000_reset(NE2000State *s)
128 int i;
130 s->isr = ENISR_RESET;
131 memcpy(s->mem, &s->c.macaddr, 6);
132 s->mem[14] = 0x57;
133 s->mem[15] = 0x57;
135 /* duplicate prom data */
136 for(i = 15;i >= 0; i--) {
137 s->mem[2 * i] = s->mem[i];
138 s->mem[2 * i + 1] = s->mem[i];
142 static void ne2000_update_irq(NE2000State *s)
144 int isr;
145 isr = (s->isr & s->imr) & 0x7f;
146 #if defined(DEBUG_NE2000)
147 printf("NE2000: Set IRQ to %d (%02x %02x)\n",
148 isr ? 1 : 0, s->isr, s->imr);
149 #endif
150 qemu_set_irq(s->irq, (isr != 0));
153 static int ne2000_buffer_full(NE2000State *s)
155 int avail, index, boundary;
157 index = s->curpag << 8;
158 boundary = s->boundary << 8;
159 if (index < boundary)
160 avail = boundary - index;
161 else
162 avail = (s->stop - s->start) - (index - boundary);
163 if (avail < (MAX_ETH_FRAME_SIZE + 4))
164 return 1;
165 return 0;
168 int ne2000_can_receive(VLANClientState *nc)
170 NE2000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
172 if (s->cmd & E8390_STOP)
173 return 1;
174 return !ne2000_buffer_full(s);
177 #define MIN_BUF_SIZE 60
179 ssize_t ne2000_receive(VLANClientState *nc, const uint8_t *buf, size_t size_)
181 NE2000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
182 int size = size_;
183 uint8_t *p;
184 unsigned int total_len, next, avail, len, index, mcast_idx;
185 uint8_t buf1[60];
186 static const uint8_t broadcast_macaddr[6] =
187 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
189 #if defined(DEBUG_NE2000)
190 printf("NE2000: received len=%d\n", size);
191 #endif
193 if (s->cmd & E8390_STOP || ne2000_buffer_full(s))
194 return -1;
196 /* XXX: check this */
197 if (s->rxcr & 0x10) {
198 /* promiscuous: receive all */
199 } else {
200 if (!memcmp(buf, broadcast_macaddr, 6)) {
201 /* broadcast address */
202 if (!(s->rxcr & 0x04))
203 return size;
204 } else if (buf[0] & 0x01) {
205 /* multicast */
206 if (!(s->rxcr & 0x08))
207 return size;
208 mcast_idx = compute_mcast_idx(buf);
209 if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7))))
210 return size;
211 } else if (s->mem[0] == buf[0] &&
212 s->mem[2] == buf[1] &&
213 s->mem[4] == buf[2] &&
214 s->mem[6] == buf[3] &&
215 s->mem[8] == buf[4] &&
216 s->mem[10] == buf[5]) {
217 /* match */
218 } else {
219 return size;
224 /* if too small buffer, then expand it */
225 if (size < MIN_BUF_SIZE) {
226 memcpy(buf1, buf, size);
227 memset(buf1 + size, 0, MIN_BUF_SIZE - size);
228 buf = buf1;
229 size = MIN_BUF_SIZE;
232 index = s->curpag << 8;
233 /* 4 bytes for header */
234 total_len = size + 4;
235 /* address for next packet (4 bytes for CRC) */
236 next = index + ((total_len + 4 + 255) & ~0xff);
237 if (next >= s->stop)
238 next -= (s->stop - s->start);
239 /* prepare packet header */
240 p = s->mem + index;
241 s->rsr = ENRSR_RXOK; /* receive status */
242 /* XXX: check this */
243 if (buf[0] & 0x01)
244 s->rsr |= ENRSR_PHY;
245 p[0] = s->rsr;
246 p[1] = next >> 8;
247 p[2] = total_len;
248 p[3] = total_len >> 8;
249 index += 4;
251 /* write packet data */
252 while (size > 0) {
253 if (index <= s->stop)
254 avail = s->stop - index;
255 else
256 avail = 0;
257 len = size;
258 if (len > avail)
259 len = avail;
260 memcpy(s->mem + index, buf, len);
261 buf += len;
262 index += len;
263 if (index == s->stop)
264 index = s->start;
265 size -= len;
267 s->curpag = next >> 8;
269 /* now we can signal we have received something */
270 s->isr |= ENISR_RX;
271 ne2000_update_irq(s);
273 return size_;
276 static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val)
278 NE2000State *s = opaque;
279 int offset, page, index;
281 addr &= 0xf;
282 #ifdef DEBUG_NE2000
283 printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
284 #endif
285 if (addr == E8390_CMD) {
286 /* control register */
287 s->cmd = val;
288 if (!(val & E8390_STOP)) { /* START bit makes no sense on RTL8029... */
289 s->isr &= ~ENISR_RESET;
290 /* test specific case: zero length transfer */
291 if ((val & (E8390_RREAD | E8390_RWRITE)) &&
292 s->rcnt == 0) {
293 s->isr |= ENISR_RDC;
294 ne2000_update_irq(s);
296 if (val & E8390_TRANS) {
297 index = (s->tpsr << 8);
298 /* XXX: next 2 lines are a hack to make netware 3.11 work */
299 if (index >= NE2000_PMEM_END)
300 index -= NE2000_PMEM_SIZE;
301 /* fail safe: check range on the transmitted length */
302 if (index + s->tcnt <= NE2000_PMEM_END) {
303 qemu_send_packet(&s->nic->nc, s->mem + index, s->tcnt);
305 /* signal end of transfer */
306 s->tsr = ENTSR_PTX;
307 s->isr |= ENISR_TX;
308 s->cmd &= ~E8390_TRANS;
309 ne2000_update_irq(s);
312 } else {
313 page = s->cmd >> 6;
314 offset = addr | (page << 4);
315 switch(offset) {
316 case EN0_STARTPG:
317 s->start = val << 8;
318 break;
319 case EN0_STOPPG:
320 s->stop = val << 8;
321 break;
322 case EN0_BOUNDARY:
323 s->boundary = val;
324 break;
325 case EN0_IMR:
326 s->imr = val;
327 ne2000_update_irq(s);
328 break;
329 case EN0_TPSR:
330 s->tpsr = val;
331 break;
332 case EN0_TCNTLO:
333 s->tcnt = (s->tcnt & 0xff00) | val;
334 break;
335 case EN0_TCNTHI:
336 s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
337 break;
338 case EN0_RSARLO:
339 s->rsar = (s->rsar & 0xff00) | val;
340 break;
341 case EN0_RSARHI:
342 s->rsar = (s->rsar & 0x00ff) | (val << 8);
343 break;
344 case EN0_RCNTLO:
345 s->rcnt = (s->rcnt & 0xff00) | val;
346 break;
347 case EN0_RCNTHI:
348 s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
349 break;
350 case EN0_RXCR:
351 s->rxcr = val;
352 break;
353 case EN0_DCFG:
354 s->dcfg = val;
355 break;
356 case EN0_ISR:
357 s->isr &= ~(val & 0x7f);
358 ne2000_update_irq(s);
359 break;
360 case EN1_PHYS ... EN1_PHYS + 5:
361 s->phys[offset - EN1_PHYS] = val;
362 break;
363 case EN1_CURPAG:
364 s->curpag = val;
365 break;
366 case EN1_MULT ... EN1_MULT + 7:
367 s->mult[offset - EN1_MULT] = val;
368 break;
373 static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr)
375 NE2000State *s = opaque;
376 int offset, page, ret;
378 addr &= 0xf;
379 if (addr == E8390_CMD) {
380 ret = s->cmd;
381 } else {
382 page = s->cmd >> 6;
383 offset = addr | (page << 4);
384 switch(offset) {
385 case EN0_TSR:
386 ret = s->tsr;
387 break;
388 case EN0_BOUNDARY:
389 ret = s->boundary;
390 break;
391 case EN0_ISR:
392 ret = s->isr;
393 break;
394 case EN0_RSARLO:
395 ret = s->rsar & 0x00ff;
396 break;
397 case EN0_RSARHI:
398 ret = s->rsar >> 8;
399 break;
400 case EN1_PHYS ... EN1_PHYS + 5:
401 ret = s->phys[offset - EN1_PHYS];
402 break;
403 case EN1_CURPAG:
404 ret = s->curpag;
405 break;
406 case EN1_MULT ... EN1_MULT + 7:
407 ret = s->mult[offset - EN1_MULT];
408 break;
409 case EN0_RSR:
410 ret = s->rsr;
411 break;
412 case EN2_STARTPG:
413 ret = s->start >> 8;
414 break;
415 case EN2_STOPPG:
416 ret = s->stop >> 8;
417 break;
418 case EN0_RTL8029ID0:
419 ret = 0x50;
420 break;
421 case EN0_RTL8029ID1:
422 ret = 0x43;
423 break;
424 case EN3_CONFIG0:
425 ret = 0; /* 10baseT media */
426 break;
427 case EN3_CONFIG2:
428 ret = 0x40; /* 10baseT active */
429 break;
430 case EN3_CONFIG3:
431 ret = 0x40; /* Full duplex */
432 break;
433 default:
434 ret = 0x00;
435 break;
438 #ifdef DEBUG_NE2000
439 printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
440 #endif
441 return ret;
444 static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr,
445 uint32_t val)
447 if (addr < 32 ||
448 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
449 s->mem[addr] = val;
453 static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr,
454 uint32_t val)
456 addr &= ~1; /* XXX: check exact behaviour if not even */
457 if (addr < 32 ||
458 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
459 *(uint16_t *)(s->mem + addr) = cpu_to_le16(val);
463 static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr,
464 uint32_t val)
466 addr &= ~1; /* XXX: check exact behaviour if not even */
467 if (addr < 32 ||
468 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
469 cpu_to_le32wu((uint32_t *)(s->mem + addr), val);
473 static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr)
475 if (addr < 32 ||
476 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
477 return s->mem[addr];
478 } else {
479 return 0xff;
483 static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr)
485 addr &= ~1; /* XXX: check exact behaviour if not even */
486 if (addr < 32 ||
487 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
488 return le16_to_cpu(*(uint16_t *)(s->mem + addr));
489 } else {
490 return 0xffff;
494 static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr)
496 addr &= ~1; /* XXX: check exact behaviour if not even */
497 if (addr < 32 ||
498 (addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) {
499 return le32_to_cpupu((uint32_t *)(s->mem + addr));
500 } else {
501 return 0xffffffff;
505 static inline void ne2000_dma_update(NE2000State *s, int len)
507 s->rsar += len;
508 /* wrap */
509 /* XXX: check what to do if rsar > stop */
510 if (s->rsar == s->stop)
511 s->rsar = s->start;
513 if (s->rcnt <= len) {
514 s->rcnt = 0;
515 /* signal end of transfer */
516 s->isr |= ENISR_RDC;
517 ne2000_update_irq(s);
518 } else {
519 s->rcnt -= len;
523 static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val)
525 NE2000State *s = opaque;
527 #ifdef DEBUG_NE2000
528 printf("NE2000: asic write val=0x%04x\n", val);
529 #endif
530 if (s->rcnt == 0)
531 return;
532 if (s->dcfg & 0x01) {
533 /* 16 bit access */
534 ne2000_mem_writew(s, s->rsar, val);
535 ne2000_dma_update(s, 2);
536 } else {
537 /* 8 bit access */
538 ne2000_mem_writeb(s, s->rsar, val);
539 ne2000_dma_update(s, 1);
543 static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr)
545 NE2000State *s = opaque;
546 int ret;
548 if (s->dcfg & 0x01) {
549 /* 16 bit access */
550 ret = ne2000_mem_readw(s, s->rsar);
551 ne2000_dma_update(s, 2);
552 } else {
553 /* 8 bit access */
554 ret = ne2000_mem_readb(s, s->rsar);
555 ne2000_dma_update(s, 1);
557 #ifdef DEBUG_NE2000
558 printf("NE2000: asic read val=0x%04x\n", ret);
559 #endif
560 return ret;
563 static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val)
565 NE2000State *s = opaque;
567 #ifdef DEBUG_NE2000
568 printf("NE2000: asic writel val=0x%04x\n", val);
569 #endif
570 if (s->rcnt == 0)
571 return;
572 /* 32 bit access */
573 ne2000_mem_writel(s, s->rsar, val);
574 ne2000_dma_update(s, 4);
577 static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr)
579 NE2000State *s = opaque;
580 int ret;
582 /* 32 bit access */
583 ret = ne2000_mem_readl(s, s->rsar);
584 ne2000_dma_update(s, 4);
585 #ifdef DEBUG_NE2000
586 printf("NE2000: asic readl val=0x%04x\n", ret);
587 #endif
588 return ret;
591 static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val)
593 /* nothing to do (end of reset pulse) */
596 static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr)
598 NE2000State *s = opaque;
599 ne2000_reset(s);
600 return 0;
603 static int ne2000_post_load(void* opaque, int version_id)
605 NE2000State* s = opaque;
607 if (version_id < 2) {
608 s->rxcr = 0x0c;
610 return 0;
613 const VMStateDescription vmstate_ne2000 = {
614 .name = "ne2000",
615 .version_id = 2,
616 .minimum_version_id = 0,
617 .minimum_version_id_old = 0,
618 .post_load = ne2000_post_load,
619 .fields = (VMStateField []) {
620 VMSTATE_UINT8_V(rxcr, NE2000State, 2),
621 VMSTATE_UINT8(cmd, NE2000State),
622 VMSTATE_UINT32(start, NE2000State),
623 VMSTATE_UINT32(stop, NE2000State),
624 VMSTATE_UINT8(boundary, NE2000State),
625 VMSTATE_UINT8(tsr, NE2000State),
626 VMSTATE_UINT8(tpsr, NE2000State),
627 VMSTATE_UINT16(tcnt, NE2000State),
628 VMSTATE_UINT16(rcnt, NE2000State),
629 VMSTATE_UINT32(rsar, NE2000State),
630 VMSTATE_UINT8(rsr, NE2000State),
631 VMSTATE_UINT8(isr, NE2000State),
632 VMSTATE_UINT8(dcfg, NE2000State),
633 VMSTATE_UINT8(imr, NE2000State),
634 VMSTATE_BUFFER(phys, NE2000State),
635 VMSTATE_UINT8(curpag, NE2000State),
636 VMSTATE_BUFFER(mult, NE2000State),
637 VMSTATE_UNUSED(4), /* was irq */
638 VMSTATE_BUFFER(mem, NE2000State),
639 VMSTATE_END_OF_LIST()
643 static const VMStateDescription vmstate_pci_ne2000 = {
644 .name = "ne2000",
645 .version_id = 3,
646 .minimum_version_id = 3,
647 .minimum_version_id_old = 3,
648 .fields = (VMStateField []) {
649 VMSTATE_PCI_DEVICE(dev, PCINE2000State),
650 VMSTATE_STRUCT(ne2000, PCINE2000State, 0, vmstate_ne2000, NE2000State),
651 VMSTATE_END_OF_LIST()
655 static uint64_t ne2000_read(void *opaque, target_phys_addr_t addr,
656 unsigned size)
658 NE2000State *s = opaque;
660 if (addr < 0x10 && size == 1) {
661 return ne2000_ioport_read(s, addr);
662 } else if (addr == 0x10) {
663 if (size <= 2) {
664 return ne2000_asic_ioport_read(s, addr);
665 } else {
666 return ne2000_asic_ioport_readl(s, addr);
668 } else if (addr == 0x1f && size == 1) {
669 return ne2000_reset_ioport_read(s, addr);
671 return ((uint64_t)1 << (size * 8)) - 1;
674 static void ne2000_write(void *opaque, target_phys_addr_t addr,
675 uint64_t data, unsigned size)
677 NE2000State *s = opaque;
679 if (addr < 0x10 && size == 1) {
680 return ne2000_ioport_write(s, addr, data);
681 } else if (addr == 0x10) {
682 if (size <= 2) {
683 return ne2000_asic_ioport_write(s, addr, data);
684 } else {
685 return ne2000_asic_ioport_writel(s, addr, data);
687 } else if (addr == 0x1f && size == 1) {
688 return ne2000_reset_ioport_write(s, addr, data);
692 static const MemoryRegionOps ne2000_ops = {
693 .read = ne2000_read,
694 .write = ne2000_write,
695 .endianness = DEVICE_NATIVE_ENDIAN,
698 /***********************************************************/
699 /* PCI NE2000 definitions */
701 void ne2000_setup_io(NE2000State *s, unsigned size)
703 memory_region_init_io(&s->io, &ne2000_ops, s, "ne2000", size);
706 static void ne2000_cleanup(VLANClientState *nc)
708 NE2000State *s = DO_UPCAST(NICState, nc, nc)->opaque;
710 s->nic = NULL;
713 static NetClientInfo net_ne2000_info = {
714 .type = NET_CLIENT_TYPE_NIC,
715 .size = sizeof(NICState),
716 .can_receive = ne2000_can_receive,
717 .receive = ne2000_receive,
718 .cleanup = ne2000_cleanup,
721 static int pci_ne2000_init(PCIDevice *pci_dev)
723 PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
724 NE2000State *s;
725 uint8_t *pci_conf;
727 pci_conf = d->dev.config;
728 pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */
730 s = &d->ne2000;
731 ne2000_setup_io(s, 0x100);
732 pci_register_bar(&d->dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->io);
733 s->irq = d->dev.irq[0];
735 qemu_macaddr_default_if_unset(&s->c.macaddr);
736 ne2000_reset(s);
738 s->nic = qemu_new_nic(&net_ne2000_info, &s->c,
739 object_get_typename(OBJECT(pci_dev)), pci_dev->qdev.id, s);
740 qemu_format_nic_info_str(&s->nic->nc, s->c.macaddr.a);
742 add_boot_device_path(s->c.bootindex, &pci_dev->qdev, "/ethernet-phy@0");
744 return 0;
747 static int pci_ne2000_exit(PCIDevice *pci_dev)
749 PCINE2000State *d = DO_UPCAST(PCINE2000State, dev, pci_dev);
750 NE2000State *s = &d->ne2000;
752 memory_region_destroy(&s->io);
753 qemu_del_vlan_client(&s->nic->nc);
754 return 0;
757 static Property ne2000_properties[] = {
758 DEFINE_NIC_PROPERTIES(PCINE2000State, ne2000.c),
759 DEFINE_PROP_END_OF_LIST(),
762 static void ne2000_class_init(ObjectClass *klass, void *data)
764 DeviceClass *dc = DEVICE_CLASS(klass);
765 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
767 k->init = pci_ne2000_init;
768 k->exit = pci_ne2000_exit;
769 k->romfile = "pxe-ne2k_pci.rom",
770 k->vendor_id = PCI_VENDOR_ID_REALTEK;
771 k->device_id = PCI_DEVICE_ID_REALTEK_8029;
772 k->class_id = PCI_CLASS_NETWORK_ETHERNET;
773 dc->vmsd = &vmstate_pci_ne2000;
774 dc->props = ne2000_properties;
777 static TypeInfo ne2000_info = {
778 .name = "ne2k_pci",
779 .parent = TYPE_PCI_DEVICE,
780 .instance_size = sizeof(PCINE2000State),
781 .class_init = ne2000_class_init,
784 static void ne2000_register_types(void)
786 type_register_static(&ne2000_info);
789 type_init(ne2000_register_types)