Merge remote-tracking branch 'kwolf/for-anthony' into staging
[qemu.git] / linux-user / elfload.c
blobdcfeb7a28698989704629076840d08968b56eb6a
1 /* This is the Linux kernel elf-loading code, ported into user space */
2 #include <sys/time.h>
3 #include <sys/param.h>
5 #include <stdio.h>
6 #include <sys/types.h>
7 #include <fcntl.h>
8 #include <errno.h>
9 #include <unistd.h>
10 #include <sys/mman.h>
11 #include <sys/resource.h>
12 #include <stdlib.h>
13 #include <string.h>
14 #include <time.h>
16 #include "qemu.h"
17 #include "disas.h"
19 #ifdef _ARCH_PPC64
20 #undef ARCH_DLINFO
21 #undef ELF_PLATFORM
22 #undef ELF_HWCAP
23 #undef ELF_CLASS
24 #undef ELF_DATA
25 #undef ELF_ARCH
26 #endif
28 #define ELF_OSABI ELFOSABI_SYSV
30 /* from personality.h */
33 * Flags for bug emulation.
35 * These occupy the top three bytes.
37 enum {
38 ADDR_NO_RANDOMIZE = 0x0040000, /* disable randomization of VA space */
39 FDPIC_FUNCPTRS = 0x0080000, /* userspace function ptrs point to
40 descriptors (signal handling) */
41 MMAP_PAGE_ZERO = 0x0100000,
42 ADDR_COMPAT_LAYOUT = 0x0200000,
43 READ_IMPLIES_EXEC = 0x0400000,
44 ADDR_LIMIT_32BIT = 0x0800000,
45 SHORT_INODE = 0x1000000,
46 WHOLE_SECONDS = 0x2000000,
47 STICKY_TIMEOUTS = 0x4000000,
48 ADDR_LIMIT_3GB = 0x8000000,
52 * Personality types.
54 * These go in the low byte. Avoid using the top bit, it will
55 * conflict with error returns.
57 enum {
58 PER_LINUX = 0x0000,
59 PER_LINUX_32BIT = 0x0000 | ADDR_LIMIT_32BIT,
60 PER_LINUX_FDPIC = 0x0000 | FDPIC_FUNCPTRS,
61 PER_SVR4 = 0x0001 | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
62 PER_SVR3 = 0x0002 | STICKY_TIMEOUTS | SHORT_INODE,
63 PER_SCOSVR3 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS | SHORT_INODE,
64 PER_OSR5 = 0x0003 | STICKY_TIMEOUTS | WHOLE_SECONDS,
65 PER_WYSEV386 = 0x0004 | STICKY_TIMEOUTS | SHORT_INODE,
66 PER_ISCR4 = 0x0005 | STICKY_TIMEOUTS,
67 PER_BSD = 0x0006,
68 PER_SUNOS = 0x0006 | STICKY_TIMEOUTS,
69 PER_XENIX = 0x0007 | STICKY_TIMEOUTS | SHORT_INODE,
70 PER_LINUX32 = 0x0008,
71 PER_LINUX32_3GB = 0x0008 | ADDR_LIMIT_3GB,
72 PER_IRIX32 = 0x0009 | STICKY_TIMEOUTS,/* IRIX5 32-bit */
73 PER_IRIXN32 = 0x000a | STICKY_TIMEOUTS,/* IRIX6 new 32-bit */
74 PER_IRIX64 = 0x000b | STICKY_TIMEOUTS,/* IRIX6 64-bit */
75 PER_RISCOS = 0x000c,
76 PER_SOLARIS = 0x000d | STICKY_TIMEOUTS,
77 PER_UW7 = 0x000e | STICKY_TIMEOUTS | MMAP_PAGE_ZERO,
78 PER_OSF4 = 0x000f, /* OSF/1 v4 */
79 PER_HPUX = 0x0010,
80 PER_MASK = 0x00ff,
84 * Return the base personality without flags.
86 #define personality(pers) (pers & PER_MASK)
88 /* this flag is uneffective under linux too, should be deleted */
89 #ifndef MAP_DENYWRITE
90 #define MAP_DENYWRITE 0
91 #endif
93 /* should probably go in elf.h */
94 #ifndef ELIBBAD
95 #define ELIBBAD 80
96 #endif
98 #ifdef TARGET_WORDS_BIGENDIAN
99 #define ELF_DATA ELFDATA2MSB
100 #else
101 #define ELF_DATA ELFDATA2LSB
102 #endif
104 typedef target_ulong target_elf_greg_t;
105 #ifdef USE_UID16
106 typedef target_ushort target_uid_t;
107 typedef target_ushort target_gid_t;
108 #else
109 typedef target_uint target_uid_t;
110 typedef target_uint target_gid_t;
111 #endif
112 typedef target_int target_pid_t;
114 #ifdef TARGET_I386
116 #define ELF_PLATFORM get_elf_platform()
118 static const char *get_elf_platform(void)
120 static char elf_platform[] = "i386";
121 int family = (thread_env->cpuid_version >> 8) & 0xff;
122 if (family > 6)
123 family = 6;
124 if (family >= 3)
125 elf_platform[1] = '0' + family;
126 return elf_platform;
129 #define ELF_HWCAP get_elf_hwcap()
131 static uint32_t get_elf_hwcap(void)
133 return thread_env->cpuid_features;
136 #ifdef TARGET_X86_64
137 #define ELF_START_MMAP 0x2aaaaab000ULL
138 #define elf_check_arch(x) ( ((x) == ELF_ARCH) )
140 #define ELF_CLASS ELFCLASS64
141 #define ELF_ARCH EM_X86_64
143 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
145 regs->rax = 0;
146 regs->rsp = infop->start_stack;
147 regs->rip = infop->entry;
150 #define ELF_NREG 27
151 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
154 * Note that ELF_NREG should be 29 as there should be place for
155 * TRAPNO and ERR "registers" as well but linux doesn't dump
156 * those.
158 * See linux kernel: arch/x86/include/asm/elf.h
160 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
162 (*regs)[0] = env->regs[15];
163 (*regs)[1] = env->regs[14];
164 (*regs)[2] = env->regs[13];
165 (*regs)[3] = env->regs[12];
166 (*regs)[4] = env->regs[R_EBP];
167 (*regs)[5] = env->regs[R_EBX];
168 (*regs)[6] = env->regs[11];
169 (*regs)[7] = env->regs[10];
170 (*regs)[8] = env->regs[9];
171 (*regs)[9] = env->regs[8];
172 (*regs)[10] = env->regs[R_EAX];
173 (*regs)[11] = env->regs[R_ECX];
174 (*regs)[12] = env->regs[R_EDX];
175 (*regs)[13] = env->regs[R_ESI];
176 (*regs)[14] = env->regs[R_EDI];
177 (*regs)[15] = env->regs[R_EAX]; /* XXX */
178 (*regs)[16] = env->eip;
179 (*regs)[17] = env->segs[R_CS].selector & 0xffff;
180 (*regs)[18] = env->eflags;
181 (*regs)[19] = env->regs[R_ESP];
182 (*regs)[20] = env->segs[R_SS].selector & 0xffff;
183 (*regs)[21] = env->segs[R_FS].selector & 0xffff;
184 (*regs)[22] = env->segs[R_GS].selector & 0xffff;
185 (*regs)[23] = env->segs[R_DS].selector & 0xffff;
186 (*regs)[24] = env->segs[R_ES].selector & 0xffff;
187 (*regs)[25] = env->segs[R_FS].selector & 0xffff;
188 (*regs)[26] = env->segs[R_GS].selector & 0xffff;
191 #else
193 #define ELF_START_MMAP 0x80000000
196 * This is used to ensure we don't load something for the wrong architecture.
198 #define elf_check_arch(x) ( ((x) == EM_386) || ((x) == EM_486) )
201 * These are used to set parameters in the core dumps.
203 #define ELF_CLASS ELFCLASS32
204 #define ELF_ARCH EM_386
206 static inline void init_thread(struct target_pt_regs *regs,
207 struct image_info *infop)
209 regs->esp = infop->start_stack;
210 regs->eip = infop->entry;
212 /* SVR4/i386 ABI (pages 3-31, 3-32) says that when the program
213 starts %edx contains a pointer to a function which might be
214 registered using `atexit'. This provides a mean for the
215 dynamic linker to call DT_FINI functions for shared libraries
216 that have been loaded before the code runs.
218 A value of 0 tells we have no such handler. */
219 regs->edx = 0;
222 #define ELF_NREG 17
223 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
226 * Note that ELF_NREG should be 19 as there should be place for
227 * TRAPNO and ERR "registers" as well but linux doesn't dump
228 * those.
230 * See linux kernel: arch/x86/include/asm/elf.h
232 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
234 (*regs)[0] = env->regs[R_EBX];
235 (*regs)[1] = env->regs[R_ECX];
236 (*regs)[2] = env->regs[R_EDX];
237 (*regs)[3] = env->regs[R_ESI];
238 (*regs)[4] = env->regs[R_EDI];
239 (*regs)[5] = env->regs[R_EBP];
240 (*regs)[6] = env->regs[R_EAX];
241 (*regs)[7] = env->segs[R_DS].selector & 0xffff;
242 (*regs)[8] = env->segs[R_ES].selector & 0xffff;
243 (*regs)[9] = env->segs[R_FS].selector & 0xffff;
244 (*regs)[10] = env->segs[R_GS].selector & 0xffff;
245 (*regs)[11] = env->regs[R_EAX]; /* XXX */
246 (*regs)[12] = env->eip;
247 (*regs)[13] = env->segs[R_CS].selector & 0xffff;
248 (*regs)[14] = env->eflags;
249 (*regs)[15] = env->regs[R_ESP];
250 (*regs)[16] = env->segs[R_SS].selector & 0xffff;
252 #endif
254 #define USE_ELF_CORE_DUMP
255 #define ELF_EXEC_PAGESIZE 4096
257 #endif
259 #ifdef TARGET_ARM
261 #define ELF_START_MMAP 0x80000000
263 #define elf_check_arch(x) ( (x) == EM_ARM )
265 #define ELF_CLASS ELFCLASS32
266 #define ELF_ARCH EM_ARM
268 static inline void init_thread(struct target_pt_regs *regs,
269 struct image_info *infop)
271 abi_long stack = infop->start_stack;
272 memset(regs, 0, sizeof(*regs));
273 regs->ARM_cpsr = 0x10;
274 if (infop->entry & 1)
275 regs->ARM_cpsr |= CPSR_T;
276 regs->ARM_pc = infop->entry & 0xfffffffe;
277 regs->ARM_sp = infop->start_stack;
278 /* FIXME - what to for failure of get_user()? */
279 get_user_ual(regs->ARM_r2, stack + 8); /* envp */
280 get_user_ual(regs->ARM_r1, stack + 4); /* envp */
281 /* XXX: it seems that r0 is zeroed after ! */
282 regs->ARM_r0 = 0;
283 /* For uClinux PIC binaries. */
284 /* XXX: Linux does this only on ARM with no MMU (do we care ?) */
285 regs->ARM_r10 = infop->start_data;
288 #define ELF_NREG 18
289 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
291 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
293 (*regs)[0] = tswapl(env->regs[0]);
294 (*regs)[1] = tswapl(env->regs[1]);
295 (*regs)[2] = tswapl(env->regs[2]);
296 (*regs)[3] = tswapl(env->regs[3]);
297 (*regs)[4] = tswapl(env->regs[4]);
298 (*regs)[5] = tswapl(env->regs[5]);
299 (*regs)[6] = tswapl(env->regs[6]);
300 (*regs)[7] = tswapl(env->regs[7]);
301 (*regs)[8] = tswapl(env->regs[8]);
302 (*regs)[9] = tswapl(env->regs[9]);
303 (*regs)[10] = tswapl(env->regs[10]);
304 (*regs)[11] = tswapl(env->regs[11]);
305 (*regs)[12] = tswapl(env->regs[12]);
306 (*regs)[13] = tswapl(env->regs[13]);
307 (*regs)[14] = tswapl(env->regs[14]);
308 (*regs)[15] = tswapl(env->regs[15]);
310 (*regs)[16] = tswapl(cpsr_read((CPUState *)env));
311 (*regs)[17] = tswapl(env->regs[0]); /* XXX */
314 #define USE_ELF_CORE_DUMP
315 #define ELF_EXEC_PAGESIZE 4096
317 enum
319 ARM_HWCAP_ARM_SWP = 1 << 0,
320 ARM_HWCAP_ARM_HALF = 1 << 1,
321 ARM_HWCAP_ARM_THUMB = 1 << 2,
322 ARM_HWCAP_ARM_26BIT = 1 << 3,
323 ARM_HWCAP_ARM_FAST_MULT = 1 << 4,
324 ARM_HWCAP_ARM_FPA = 1 << 5,
325 ARM_HWCAP_ARM_VFP = 1 << 6,
326 ARM_HWCAP_ARM_EDSP = 1 << 7,
327 ARM_HWCAP_ARM_JAVA = 1 << 8,
328 ARM_HWCAP_ARM_IWMMXT = 1 << 9,
329 ARM_HWCAP_ARM_THUMBEE = 1 << 10,
330 ARM_HWCAP_ARM_NEON = 1 << 11,
331 ARM_HWCAP_ARM_VFPv3 = 1 << 12,
332 ARM_HWCAP_ARM_VFPv3D16 = 1 << 13,
335 #define ELF_HWCAP (ARM_HWCAP_ARM_SWP | ARM_HWCAP_ARM_HALF \
336 | ARM_HWCAP_ARM_THUMB | ARM_HWCAP_ARM_FAST_MULT \
337 | ARM_HWCAP_ARM_FPA | ARM_HWCAP_ARM_VFP \
338 | ARM_HWCAP_ARM_NEON | ARM_HWCAP_ARM_VFPv3 )
340 #endif
342 #ifdef TARGET_UNICORE32
344 #define ELF_START_MMAP 0x80000000
346 #define elf_check_arch(x) ((x) == EM_UNICORE32)
348 #define ELF_CLASS ELFCLASS32
349 #define ELF_DATA ELFDATA2LSB
350 #define ELF_ARCH EM_UNICORE32
352 static inline void init_thread(struct target_pt_regs *regs,
353 struct image_info *infop)
355 abi_long stack = infop->start_stack;
356 memset(regs, 0, sizeof(*regs));
357 regs->UC32_REG_asr = 0x10;
358 regs->UC32_REG_pc = infop->entry & 0xfffffffe;
359 regs->UC32_REG_sp = infop->start_stack;
360 /* FIXME - what to for failure of get_user()? */
361 get_user_ual(regs->UC32_REG_02, stack + 8); /* envp */
362 get_user_ual(regs->UC32_REG_01, stack + 4); /* envp */
363 /* XXX: it seems that r0 is zeroed after ! */
364 regs->UC32_REG_00 = 0;
367 #define ELF_NREG 34
368 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
370 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
372 (*regs)[0] = env->regs[0];
373 (*regs)[1] = env->regs[1];
374 (*regs)[2] = env->regs[2];
375 (*regs)[3] = env->regs[3];
376 (*regs)[4] = env->regs[4];
377 (*regs)[5] = env->regs[5];
378 (*regs)[6] = env->regs[6];
379 (*regs)[7] = env->regs[7];
380 (*regs)[8] = env->regs[8];
381 (*regs)[9] = env->regs[9];
382 (*regs)[10] = env->regs[10];
383 (*regs)[11] = env->regs[11];
384 (*regs)[12] = env->regs[12];
385 (*regs)[13] = env->regs[13];
386 (*regs)[14] = env->regs[14];
387 (*regs)[15] = env->regs[15];
388 (*regs)[16] = env->regs[16];
389 (*regs)[17] = env->regs[17];
390 (*regs)[18] = env->regs[18];
391 (*regs)[19] = env->regs[19];
392 (*regs)[20] = env->regs[20];
393 (*regs)[21] = env->regs[21];
394 (*regs)[22] = env->regs[22];
395 (*regs)[23] = env->regs[23];
396 (*regs)[24] = env->regs[24];
397 (*regs)[25] = env->regs[25];
398 (*regs)[26] = env->regs[26];
399 (*regs)[27] = env->regs[27];
400 (*regs)[28] = env->regs[28];
401 (*regs)[29] = env->regs[29];
402 (*regs)[30] = env->regs[30];
403 (*regs)[31] = env->regs[31];
405 (*regs)[32] = cpu_asr_read((CPUState *)env);
406 (*regs)[33] = env->regs[0]; /* XXX */
409 #define USE_ELF_CORE_DUMP
410 #define ELF_EXEC_PAGESIZE 4096
412 #define ELF_HWCAP (UC32_HWCAP_CMOV | UC32_HWCAP_UCF64)
414 #endif
416 #ifdef TARGET_SPARC
417 #ifdef TARGET_SPARC64
419 #define ELF_START_MMAP 0x80000000
421 #ifndef TARGET_ABI32
422 #define elf_check_arch(x) ( (x) == EM_SPARCV9 || (x) == EM_SPARC32PLUS )
423 #else
424 #define elf_check_arch(x) ( (x) == EM_SPARC32PLUS || (x) == EM_SPARC )
425 #endif
427 #define ELF_CLASS ELFCLASS64
428 #define ELF_ARCH EM_SPARCV9
430 #define STACK_BIAS 2047
432 static inline void init_thread(struct target_pt_regs *regs,
433 struct image_info *infop)
435 #ifndef TARGET_ABI32
436 regs->tstate = 0;
437 #endif
438 regs->pc = infop->entry;
439 regs->npc = regs->pc + 4;
440 regs->y = 0;
441 #ifdef TARGET_ABI32
442 regs->u_regs[14] = infop->start_stack - 16 * 4;
443 #else
444 if (personality(infop->personality) == PER_LINUX32)
445 regs->u_regs[14] = infop->start_stack - 16 * 4;
446 else
447 regs->u_regs[14] = infop->start_stack - 16 * 8 - STACK_BIAS;
448 #endif
451 #else
452 #define ELF_START_MMAP 0x80000000
454 #define elf_check_arch(x) ( (x) == EM_SPARC )
456 #define ELF_CLASS ELFCLASS32
457 #define ELF_ARCH EM_SPARC
459 static inline void init_thread(struct target_pt_regs *regs,
460 struct image_info *infop)
462 regs->psr = 0;
463 regs->pc = infop->entry;
464 regs->npc = regs->pc + 4;
465 regs->y = 0;
466 regs->u_regs[14] = infop->start_stack - 16 * 4;
469 #endif
470 #endif
472 #ifdef TARGET_PPC
474 #define ELF_START_MMAP 0x80000000
476 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
478 #define elf_check_arch(x) ( (x) == EM_PPC64 )
480 #define ELF_CLASS ELFCLASS64
482 #else
484 #define elf_check_arch(x) ( (x) == EM_PPC )
486 #define ELF_CLASS ELFCLASS32
488 #endif
490 #define ELF_ARCH EM_PPC
492 /* Feature masks for the Aux Vector Hardware Capabilities (AT_HWCAP).
493 See arch/powerpc/include/asm/cputable.h. */
494 enum {
495 QEMU_PPC_FEATURE_32 = 0x80000000,
496 QEMU_PPC_FEATURE_64 = 0x40000000,
497 QEMU_PPC_FEATURE_601_INSTR = 0x20000000,
498 QEMU_PPC_FEATURE_HAS_ALTIVEC = 0x10000000,
499 QEMU_PPC_FEATURE_HAS_FPU = 0x08000000,
500 QEMU_PPC_FEATURE_HAS_MMU = 0x04000000,
501 QEMU_PPC_FEATURE_HAS_4xxMAC = 0x02000000,
502 QEMU_PPC_FEATURE_UNIFIED_CACHE = 0x01000000,
503 QEMU_PPC_FEATURE_HAS_SPE = 0x00800000,
504 QEMU_PPC_FEATURE_HAS_EFP_SINGLE = 0x00400000,
505 QEMU_PPC_FEATURE_HAS_EFP_DOUBLE = 0x00200000,
506 QEMU_PPC_FEATURE_NO_TB = 0x00100000,
507 QEMU_PPC_FEATURE_POWER4 = 0x00080000,
508 QEMU_PPC_FEATURE_POWER5 = 0x00040000,
509 QEMU_PPC_FEATURE_POWER5_PLUS = 0x00020000,
510 QEMU_PPC_FEATURE_CELL = 0x00010000,
511 QEMU_PPC_FEATURE_BOOKE = 0x00008000,
512 QEMU_PPC_FEATURE_SMT = 0x00004000,
513 QEMU_PPC_FEATURE_ICACHE_SNOOP = 0x00002000,
514 QEMU_PPC_FEATURE_ARCH_2_05 = 0x00001000,
515 QEMU_PPC_FEATURE_PA6T = 0x00000800,
516 QEMU_PPC_FEATURE_HAS_DFP = 0x00000400,
517 QEMU_PPC_FEATURE_POWER6_EXT = 0x00000200,
518 QEMU_PPC_FEATURE_ARCH_2_06 = 0x00000100,
519 QEMU_PPC_FEATURE_HAS_VSX = 0x00000080,
520 QEMU_PPC_FEATURE_PSERIES_PERFMON_COMPAT = 0x00000040,
522 QEMU_PPC_FEATURE_TRUE_LE = 0x00000002,
523 QEMU_PPC_FEATURE_PPC_LE = 0x00000001,
526 #define ELF_HWCAP get_elf_hwcap()
528 static uint32_t get_elf_hwcap(void)
530 CPUState *e = thread_env;
531 uint32_t features = 0;
533 /* We don't have to be terribly complete here; the high points are
534 Altivec/FP/SPE support. Anything else is just a bonus. */
535 #define GET_FEATURE(flag, feature) \
536 do {if (e->insns_flags & flag) features |= feature; } while(0)
537 GET_FEATURE(PPC_64B, QEMU_PPC_FEATURE_64);
538 GET_FEATURE(PPC_FLOAT, QEMU_PPC_FEATURE_HAS_FPU);
539 GET_FEATURE(PPC_ALTIVEC, QEMU_PPC_FEATURE_HAS_ALTIVEC);
540 GET_FEATURE(PPC_SPE, QEMU_PPC_FEATURE_HAS_SPE);
541 GET_FEATURE(PPC_SPE_SINGLE, QEMU_PPC_FEATURE_HAS_EFP_SINGLE);
542 GET_FEATURE(PPC_SPE_DOUBLE, QEMU_PPC_FEATURE_HAS_EFP_DOUBLE);
543 GET_FEATURE(PPC_BOOKE, QEMU_PPC_FEATURE_BOOKE);
544 GET_FEATURE(PPC_405_MAC, QEMU_PPC_FEATURE_HAS_4xxMAC);
545 #undef GET_FEATURE
547 return features;
551 * The requirements here are:
552 * - keep the final alignment of sp (sp & 0xf)
553 * - make sure the 32-bit value at the first 16 byte aligned position of
554 * AUXV is greater than 16 for glibc compatibility.
555 * AT_IGNOREPPC is used for that.
556 * - for compatibility with glibc ARCH_DLINFO must always be defined on PPC,
557 * even if DLINFO_ARCH_ITEMS goes to zero or is undefined.
559 #define DLINFO_ARCH_ITEMS 5
560 #define ARCH_DLINFO \
561 do { \
562 NEW_AUX_ENT(AT_DCACHEBSIZE, 0x20); \
563 NEW_AUX_ENT(AT_ICACHEBSIZE, 0x20); \
564 NEW_AUX_ENT(AT_UCACHEBSIZE, 0); \
565 /* \
566 * Now handle glibc compatibility. \
567 */ \
568 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
569 NEW_AUX_ENT(AT_IGNOREPPC, AT_IGNOREPPC); \
570 } while (0)
572 static inline void init_thread(struct target_pt_regs *_regs, struct image_info *infop)
574 _regs->gpr[1] = infop->start_stack;
575 #if defined(TARGET_PPC64) && !defined(TARGET_ABI32)
576 _regs->gpr[2] = ldq_raw(infop->entry + 8) + infop->load_addr;
577 infop->entry = ldq_raw(infop->entry) + infop->load_addr;
578 #endif
579 _regs->nip = infop->entry;
582 /* See linux kernel: arch/powerpc/include/asm/elf.h. */
583 #define ELF_NREG 48
584 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
586 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
588 int i;
589 target_ulong ccr = 0;
591 for (i = 0; i < ARRAY_SIZE(env->gpr); i++) {
592 (*regs)[i] = tswapl(env->gpr[i]);
595 (*regs)[32] = tswapl(env->nip);
596 (*regs)[33] = tswapl(env->msr);
597 (*regs)[35] = tswapl(env->ctr);
598 (*regs)[36] = tswapl(env->lr);
599 (*regs)[37] = tswapl(env->xer);
601 for (i = 0; i < ARRAY_SIZE(env->crf); i++) {
602 ccr |= env->crf[i] << (32 - ((i + 1) * 4));
604 (*regs)[38] = tswapl(ccr);
607 #define USE_ELF_CORE_DUMP
608 #define ELF_EXEC_PAGESIZE 4096
610 #endif
612 #ifdef TARGET_MIPS
614 #define ELF_START_MMAP 0x80000000
616 #define elf_check_arch(x) ( (x) == EM_MIPS )
618 #ifdef TARGET_MIPS64
619 #define ELF_CLASS ELFCLASS64
620 #else
621 #define ELF_CLASS ELFCLASS32
622 #endif
623 #define ELF_ARCH EM_MIPS
625 static inline void init_thread(struct target_pt_regs *regs,
626 struct image_info *infop)
628 regs->cp0_status = 2 << CP0St_KSU;
629 regs->cp0_epc = infop->entry;
630 regs->regs[29] = infop->start_stack;
633 /* See linux kernel: arch/mips/include/asm/elf.h. */
634 #define ELF_NREG 45
635 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
637 /* See linux kernel: arch/mips/include/asm/reg.h. */
638 enum {
639 #ifdef TARGET_MIPS64
640 TARGET_EF_R0 = 0,
641 #else
642 TARGET_EF_R0 = 6,
643 #endif
644 TARGET_EF_R26 = TARGET_EF_R0 + 26,
645 TARGET_EF_R27 = TARGET_EF_R0 + 27,
646 TARGET_EF_LO = TARGET_EF_R0 + 32,
647 TARGET_EF_HI = TARGET_EF_R0 + 33,
648 TARGET_EF_CP0_EPC = TARGET_EF_R0 + 34,
649 TARGET_EF_CP0_BADVADDR = TARGET_EF_R0 + 35,
650 TARGET_EF_CP0_STATUS = TARGET_EF_R0 + 36,
651 TARGET_EF_CP0_CAUSE = TARGET_EF_R0 + 37
654 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
655 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
657 int i;
659 for (i = 0; i < TARGET_EF_R0; i++) {
660 (*regs)[i] = 0;
662 (*regs)[TARGET_EF_R0] = 0;
664 for (i = 1; i < ARRAY_SIZE(env->active_tc.gpr); i++) {
665 (*regs)[TARGET_EF_R0 + i] = tswapl(env->active_tc.gpr[i]);
668 (*regs)[TARGET_EF_R26] = 0;
669 (*regs)[TARGET_EF_R27] = 0;
670 (*regs)[TARGET_EF_LO] = tswapl(env->active_tc.LO[0]);
671 (*regs)[TARGET_EF_HI] = tswapl(env->active_tc.HI[0]);
672 (*regs)[TARGET_EF_CP0_EPC] = tswapl(env->active_tc.PC);
673 (*regs)[TARGET_EF_CP0_BADVADDR] = tswapl(env->CP0_BadVAddr);
674 (*regs)[TARGET_EF_CP0_STATUS] = tswapl(env->CP0_Status);
675 (*regs)[TARGET_EF_CP0_CAUSE] = tswapl(env->CP0_Cause);
678 #define USE_ELF_CORE_DUMP
679 #define ELF_EXEC_PAGESIZE 4096
681 #endif /* TARGET_MIPS */
683 #ifdef TARGET_MICROBLAZE
685 #define ELF_START_MMAP 0x80000000
687 #define elf_check_arch(x) ( (x) == EM_MICROBLAZE || (x) == EM_MICROBLAZE_OLD)
689 #define ELF_CLASS ELFCLASS32
690 #define ELF_ARCH EM_MICROBLAZE
692 static inline void init_thread(struct target_pt_regs *regs,
693 struct image_info *infop)
695 regs->pc = infop->entry;
696 regs->r1 = infop->start_stack;
700 #define ELF_EXEC_PAGESIZE 4096
702 #define USE_ELF_CORE_DUMP
703 #define ELF_NREG 38
704 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
706 /* See linux kernel: arch/mips/kernel/process.c:elf_dump_regs. */
707 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
709 int i, pos = 0;
711 for (i = 0; i < 32; i++) {
712 (*regs)[pos++] = tswapl(env->regs[i]);
715 for (i = 0; i < 6; i++) {
716 (*regs)[pos++] = tswapl(env->sregs[i]);
720 #endif /* TARGET_MICROBLAZE */
722 #ifdef TARGET_SH4
724 #define ELF_START_MMAP 0x80000000
726 #define elf_check_arch(x) ( (x) == EM_SH )
728 #define ELF_CLASS ELFCLASS32
729 #define ELF_ARCH EM_SH
731 static inline void init_thread(struct target_pt_regs *regs,
732 struct image_info *infop)
734 /* Check other registers XXXXX */
735 regs->pc = infop->entry;
736 regs->regs[15] = infop->start_stack;
739 /* See linux kernel: arch/sh/include/asm/elf.h. */
740 #define ELF_NREG 23
741 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
743 /* See linux kernel: arch/sh/include/asm/ptrace.h. */
744 enum {
745 TARGET_REG_PC = 16,
746 TARGET_REG_PR = 17,
747 TARGET_REG_SR = 18,
748 TARGET_REG_GBR = 19,
749 TARGET_REG_MACH = 20,
750 TARGET_REG_MACL = 21,
751 TARGET_REG_SYSCALL = 22
754 static inline void elf_core_copy_regs(target_elf_gregset_t *regs,
755 const CPUState *env)
757 int i;
759 for (i = 0; i < 16; i++) {
760 (*regs[i]) = tswapl(env->gregs[i]);
763 (*regs)[TARGET_REG_PC] = tswapl(env->pc);
764 (*regs)[TARGET_REG_PR] = tswapl(env->pr);
765 (*regs)[TARGET_REG_SR] = tswapl(env->sr);
766 (*regs)[TARGET_REG_GBR] = tswapl(env->gbr);
767 (*regs)[TARGET_REG_MACH] = tswapl(env->mach);
768 (*regs)[TARGET_REG_MACL] = tswapl(env->macl);
769 (*regs)[TARGET_REG_SYSCALL] = 0; /* FIXME */
772 #define USE_ELF_CORE_DUMP
773 #define ELF_EXEC_PAGESIZE 4096
775 #endif
777 #ifdef TARGET_CRIS
779 #define ELF_START_MMAP 0x80000000
781 #define elf_check_arch(x) ( (x) == EM_CRIS )
783 #define ELF_CLASS ELFCLASS32
784 #define ELF_ARCH EM_CRIS
786 static inline void init_thread(struct target_pt_regs *regs,
787 struct image_info *infop)
789 regs->erp = infop->entry;
792 #define ELF_EXEC_PAGESIZE 8192
794 #endif
796 #ifdef TARGET_M68K
798 #define ELF_START_MMAP 0x80000000
800 #define elf_check_arch(x) ( (x) == EM_68K )
802 #define ELF_CLASS ELFCLASS32
803 #define ELF_ARCH EM_68K
805 /* ??? Does this need to do anything?
806 #define ELF_PLAT_INIT(_r) */
808 static inline void init_thread(struct target_pt_regs *regs,
809 struct image_info *infop)
811 regs->usp = infop->start_stack;
812 regs->sr = 0;
813 regs->pc = infop->entry;
816 /* See linux kernel: arch/m68k/include/asm/elf.h. */
817 #define ELF_NREG 20
818 typedef target_elf_greg_t target_elf_gregset_t[ELF_NREG];
820 static void elf_core_copy_regs(target_elf_gregset_t *regs, const CPUState *env)
822 (*regs)[0] = tswapl(env->dregs[1]);
823 (*regs)[1] = tswapl(env->dregs[2]);
824 (*regs)[2] = tswapl(env->dregs[3]);
825 (*regs)[3] = tswapl(env->dregs[4]);
826 (*regs)[4] = tswapl(env->dregs[5]);
827 (*regs)[5] = tswapl(env->dregs[6]);
828 (*regs)[6] = tswapl(env->dregs[7]);
829 (*regs)[7] = tswapl(env->aregs[0]);
830 (*regs)[8] = tswapl(env->aregs[1]);
831 (*regs)[9] = tswapl(env->aregs[2]);
832 (*regs)[10] = tswapl(env->aregs[3]);
833 (*regs)[11] = tswapl(env->aregs[4]);
834 (*regs)[12] = tswapl(env->aregs[5]);
835 (*regs)[13] = tswapl(env->aregs[6]);
836 (*regs)[14] = tswapl(env->dregs[0]);
837 (*regs)[15] = tswapl(env->aregs[7]);
838 (*regs)[16] = tswapl(env->dregs[0]); /* FIXME: orig_d0 */
839 (*regs)[17] = tswapl(env->sr);
840 (*regs)[18] = tswapl(env->pc);
841 (*regs)[19] = 0; /* FIXME: regs->format | regs->vector */
844 #define USE_ELF_CORE_DUMP
845 #define ELF_EXEC_PAGESIZE 8192
847 #endif
849 #ifdef TARGET_ALPHA
851 #define ELF_START_MMAP (0x30000000000ULL)
853 #define elf_check_arch(x) ( (x) == ELF_ARCH )
855 #define ELF_CLASS ELFCLASS64
856 #define ELF_ARCH EM_ALPHA
858 static inline void init_thread(struct target_pt_regs *regs,
859 struct image_info *infop)
861 regs->pc = infop->entry;
862 regs->ps = 8;
863 regs->usp = infop->start_stack;
866 #define ELF_EXEC_PAGESIZE 8192
868 #endif /* TARGET_ALPHA */
870 #ifdef TARGET_S390X
872 #define ELF_START_MMAP (0x20000000000ULL)
874 #define elf_check_arch(x) ( (x) == ELF_ARCH )
876 #define ELF_CLASS ELFCLASS64
877 #define ELF_DATA ELFDATA2MSB
878 #define ELF_ARCH EM_S390
880 static inline void init_thread(struct target_pt_regs *regs, struct image_info *infop)
882 regs->psw.addr = infop->entry;
883 regs->psw.mask = PSW_MASK_64 | PSW_MASK_32;
884 regs->gprs[15] = infop->start_stack;
887 #endif /* TARGET_S390X */
889 #ifndef ELF_PLATFORM
890 #define ELF_PLATFORM (NULL)
891 #endif
893 #ifndef ELF_HWCAP
894 #define ELF_HWCAP 0
895 #endif
897 #ifdef TARGET_ABI32
898 #undef ELF_CLASS
899 #define ELF_CLASS ELFCLASS32
900 #undef bswaptls
901 #define bswaptls(ptr) bswap32s(ptr)
902 #endif
904 #include "elf.h"
906 struct exec
908 unsigned int a_info; /* Use macros N_MAGIC, etc for access */
909 unsigned int a_text; /* length of text, in bytes */
910 unsigned int a_data; /* length of data, in bytes */
911 unsigned int a_bss; /* length of uninitialized data area, in bytes */
912 unsigned int a_syms; /* length of symbol table data in file, in bytes */
913 unsigned int a_entry; /* start address */
914 unsigned int a_trsize; /* length of relocation info for text, in bytes */
915 unsigned int a_drsize; /* length of relocation info for data, in bytes */
919 #define N_MAGIC(exec) ((exec).a_info & 0xffff)
920 #define OMAGIC 0407
921 #define NMAGIC 0410
922 #define ZMAGIC 0413
923 #define QMAGIC 0314
925 /* Necessary parameters */
926 #define TARGET_ELF_EXEC_PAGESIZE TARGET_PAGE_SIZE
927 #define TARGET_ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(TARGET_ELF_EXEC_PAGESIZE-1))
928 #define TARGET_ELF_PAGEOFFSET(_v) ((_v) & (TARGET_ELF_EXEC_PAGESIZE-1))
930 #define DLINFO_ITEMS 12
932 static inline void memcpy_fromfs(void * to, const void * from, unsigned long n)
934 memcpy(to, from, n);
937 #ifdef BSWAP_NEEDED
938 static void bswap_ehdr(struct elfhdr *ehdr)
940 bswap16s(&ehdr->e_type); /* Object file type */
941 bswap16s(&ehdr->e_machine); /* Architecture */
942 bswap32s(&ehdr->e_version); /* Object file version */
943 bswaptls(&ehdr->e_entry); /* Entry point virtual address */
944 bswaptls(&ehdr->e_phoff); /* Program header table file offset */
945 bswaptls(&ehdr->e_shoff); /* Section header table file offset */
946 bswap32s(&ehdr->e_flags); /* Processor-specific flags */
947 bswap16s(&ehdr->e_ehsize); /* ELF header size in bytes */
948 bswap16s(&ehdr->e_phentsize); /* Program header table entry size */
949 bswap16s(&ehdr->e_phnum); /* Program header table entry count */
950 bswap16s(&ehdr->e_shentsize); /* Section header table entry size */
951 bswap16s(&ehdr->e_shnum); /* Section header table entry count */
952 bswap16s(&ehdr->e_shstrndx); /* Section header string table index */
955 static void bswap_phdr(struct elf_phdr *phdr, int phnum)
957 int i;
958 for (i = 0; i < phnum; ++i, ++phdr) {
959 bswap32s(&phdr->p_type); /* Segment type */
960 bswap32s(&phdr->p_flags); /* Segment flags */
961 bswaptls(&phdr->p_offset); /* Segment file offset */
962 bswaptls(&phdr->p_vaddr); /* Segment virtual address */
963 bswaptls(&phdr->p_paddr); /* Segment physical address */
964 bswaptls(&phdr->p_filesz); /* Segment size in file */
965 bswaptls(&phdr->p_memsz); /* Segment size in memory */
966 bswaptls(&phdr->p_align); /* Segment alignment */
970 static void bswap_shdr(struct elf_shdr *shdr, int shnum)
972 int i;
973 for (i = 0; i < shnum; ++i, ++shdr) {
974 bswap32s(&shdr->sh_name);
975 bswap32s(&shdr->sh_type);
976 bswaptls(&shdr->sh_flags);
977 bswaptls(&shdr->sh_addr);
978 bswaptls(&shdr->sh_offset);
979 bswaptls(&shdr->sh_size);
980 bswap32s(&shdr->sh_link);
981 bswap32s(&shdr->sh_info);
982 bswaptls(&shdr->sh_addralign);
983 bswaptls(&shdr->sh_entsize);
987 static void bswap_sym(struct elf_sym *sym)
989 bswap32s(&sym->st_name);
990 bswaptls(&sym->st_value);
991 bswaptls(&sym->st_size);
992 bswap16s(&sym->st_shndx);
994 #else
995 static inline void bswap_ehdr(struct elfhdr *ehdr) { }
996 static inline void bswap_phdr(struct elf_phdr *phdr, int phnum) { }
997 static inline void bswap_shdr(struct elf_shdr *shdr, int shnum) { }
998 static inline void bswap_sym(struct elf_sym *sym) { }
999 #endif
1001 #ifdef USE_ELF_CORE_DUMP
1002 static int elf_core_dump(int, const CPUState *);
1003 #endif /* USE_ELF_CORE_DUMP */
1004 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias);
1006 /* Verify the portions of EHDR within E_IDENT for the target.
1007 This can be performed before bswapping the entire header. */
1008 static bool elf_check_ident(struct elfhdr *ehdr)
1010 return (ehdr->e_ident[EI_MAG0] == ELFMAG0
1011 && ehdr->e_ident[EI_MAG1] == ELFMAG1
1012 && ehdr->e_ident[EI_MAG2] == ELFMAG2
1013 && ehdr->e_ident[EI_MAG3] == ELFMAG3
1014 && ehdr->e_ident[EI_CLASS] == ELF_CLASS
1015 && ehdr->e_ident[EI_DATA] == ELF_DATA
1016 && ehdr->e_ident[EI_VERSION] == EV_CURRENT);
1019 /* Verify the portions of EHDR outside of E_IDENT for the target.
1020 This has to wait until after bswapping the header. */
1021 static bool elf_check_ehdr(struct elfhdr *ehdr)
1023 return (elf_check_arch(ehdr->e_machine)
1024 && ehdr->e_ehsize == sizeof(struct elfhdr)
1025 && ehdr->e_phentsize == sizeof(struct elf_phdr)
1026 && ehdr->e_shentsize == sizeof(struct elf_shdr)
1027 && (ehdr->e_type == ET_EXEC || ehdr->e_type == ET_DYN));
1031 * 'copy_elf_strings()' copies argument/envelope strings from user
1032 * memory to free pages in kernel mem. These are in a format ready
1033 * to be put directly into the top of new user memory.
1036 static abi_ulong copy_elf_strings(int argc,char ** argv, void **page,
1037 abi_ulong p)
1039 char *tmp, *tmp1, *pag = NULL;
1040 int len, offset = 0;
1042 if (!p) {
1043 return 0; /* bullet-proofing */
1045 while (argc-- > 0) {
1046 tmp = argv[argc];
1047 if (!tmp) {
1048 fprintf(stderr, "VFS: argc is wrong");
1049 exit(-1);
1051 tmp1 = tmp;
1052 while (*tmp++);
1053 len = tmp - tmp1;
1054 if (p < len) { /* this shouldn't happen - 128kB */
1055 return 0;
1057 while (len) {
1058 --p; --tmp; --len;
1059 if (--offset < 0) {
1060 offset = p % TARGET_PAGE_SIZE;
1061 pag = (char *)page[p/TARGET_PAGE_SIZE];
1062 if (!pag) {
1063 pag = (char *)malloc(TARGET_PAGE_SIZE);
1064 memset(pag, 0, TARGET_PAGE_SIZE);
1065 page[p/TARGET_PAGE_SIZE] = pag;
1066 if (!pag)
1067 return 0;
1070 if (len == 0 || offset == 0) {
1071 *(pag + offset) = *tmp;
1073 else {
1074 int bytes_to_copy = (len > offset) ? offset : len;
1075 tmp -= bytes_to_copy;
1076 p -= bytes_to_copy;
1077 offset -= bytes_to_copy;
1078 len -= bytes_to_copy;
1079 memcpy_fromfs(pag + offset, tmp, bytes_to_copy + 1);
1083 return p;
1086 static abi_ulong setup_arg_pages(abi_ulong p, struct linux_binprm *bprm,
1087 struct image_info *info)
1089 abi_ulong stack_base, size, error, guard;
1090 int i;
1092 /* Create enough stack to hold everything. If we don't use
1093 it for args, we'll use it for something else. */
1094 size = guest_stack_size;
1095 if (size < MAX_ARG_PAGES*TARGET_PAGE_SIZE) {
1096 size = MAX_ARG_PAGES*TARGET_PAGE_SIZE;
1098 guard = TARGET_PAGE_SIZE;
1099 if (guard < qemu_real_host_page_size) {
1100 guard = qemu_real_host_page_size;
1103 error = target_mmap(0, size + guard, PROT_READ | PROT_WRITE,
1104 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1105 if (error == -1) {
1106 perror("mmap stack");
1107 exit(-1);
1110 /* We reserve one extra page at the top of the stack as guard. */
1111 target_mprotect(error, guard, PROT_NONE);
1113 info->stack_limit = error + guard;
1114 stack_base = info->stack_limit + size - MAX_ARG_PAGES*TARGET_PAGE_SIZE;
1115 p += stack_base;
1117 for (i = 0 ; i < MAX_ARG_PAGES ; i++) {
1118 if (bprm->page[i]) {
1119 info->rss++;
1120 /* FIXME - check return value of memcpy_to_target() for failure */
1121 memcpy_to_target(stack_base, bprm->page[i], TARGET_PAGE_SIZE);
1122 free(bprm->page[i]);
1124 stack_base += TARGET_PAGE_SIZE;
1126 return p;
1129 /* Map and zero the bss. We need to explicitly zero any fractional pages
1130 after the data section (i.e. bss). */
1131 static void zero_bss(abi_ulong elf_bss, abi_ulong last_bss, int prot)
1133 uintptr_t host_start, host_map_start, host_end;
1135 last_bss = TARGET_PAGE_ALIGN(last_bss);
1137 /* ??? There is confusion between qemu_real_host_page_size and
1138 qemu_host_page_size here and elsewhere in target_mmap, which
1139 may lead to the end of the data section mapping from the file
1140 not being mapped. At least there was an explicit test and
1141 comment for that here, suggesting that "the file size must
1142 be known". The comment probably pre-dates the introduction
1143 of the fstat system call in target_mmap which does in fact
1144 find out the size. What isn't clear is if the workaround
1145 here is still actually needed. For now, continue with it,
1146 but merge it with the "normal" mmap that would allocate the bss. */
1148 host_start = (uintptr_t) g2h(elf_bss);
1149 host_end = (uintptr_t) g2h(last_bss);
1150 host_map_start = (host_start + qemu_real_host_page_size - 1);
1151 host_map_start &= -qemu_real_host_page_size;
1153 if (host_map_start < host_end) {
1154 void *p = mmap((void *)host_map_start, host_end - host_map_start,
1155 prot, MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
1156 if (p == MAP_FAILED) {
1157 perror("cannot mmap brk");
1158 exit(-1);
1161 /* Since we didn't use target_mmap, make sure to record
1162 the validity of the pages with qemu. */
1163 page_set_flags(elf_bss & TARGET_PAGE_MASK, last_bss, prot|PAGE_VALID);
1166 if (host_start < host_map_start) {
1167 memset((void *)host_start, 0, host_map_start - host_start);
1171 #ifdef CONFIG_USE_FDPIC
1172 static abi_ulong loader_build_fdpic_loadmap(struct image_info *info, abi_ulong sp)
1174 uint16_t n;
1175 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs;
1177 /* elf32_fdpic_loadseg */
1178 n = info->nsegs;
1179 while (n--) {
1180 sp -= 12;
1181 put_user_u32(loadsegs[n].addr, sp+0);
1182 put_user_u32(loadsegs[n].p_vaddr, sp+4);
1183 put_user_u32(loadsegs[n].p_memsz, sp+8);
1186 /* elf32_fdpic_loadmap */
1187 sp -= 4;
1188 put_user_u16(0, sp+0); /* version */
1189 put_user_u16(info->nsegs, sp+2); /* nsegs */
1191 info->personality = PER_LINUX_FDPIC;
1192 info->loadmap_addr = sp;
1194 return sp;
1196 #endif
1198 static abi_ulong create_elf_tables(abi_ulong p, int argc, int envc,
1199 struct elfhdr *exec,
1200 struct image_info *info,
1201 struct image_info *interp_info)
1203 abi_ulong sp;
1204 int size;
1205 abi_ulong u_platform;
1206 const char *k_platform;
1207 const int n = sizeof(elf_addr_t);
1209 sp = p;
1211 #ifdef CONFIG_USE_FDPIC
1212 /* Needs to be before we load the env/argc/... */
1213 if (elf_is_fdpic(exec)) {
1214 /* Need 4 byte alignment for these structs */
1215 sp &= ~3;
1216 sp = loader_build_fdpic_loadmap(info, sp);
1217 info->other_info = interp_info;
1218 if (interp_info) {
1219 interp_info->other_info = info;
1220 sp = loader_build_fdpic_loadmap(interp_info, sp);
1223 #endif
1225 u_platform = 0;
1226 k_platform = ELF_PLATFORM;
1227 if (k_platform) {
1228 size_t len = strlen(k_platform) + 1;
1229 sp -= (len + n - 1) & ~(n - 1);
1230 u_platform = sp;
1231 /* FIXME - check return value of memcpy_to_target() for failure */
1232 memcpy_to_target(sp, k_platform, len);
1235 * Force 16 byte _final_ alignment here for generality.
1237 sp = sp &~ (abi_ulong)15;
1238 size = (DLINFO_ITEMS + 1) * 2;
1239 if (k_platform)
1240 size += 2;
1241 #ifdef DLINFO_ARCH_ITEMS
1242 size += DLINFO_ARCH_ITEMS * 2;
1243 #endif
1244 size += envc + argc + 2;
1245 size += 1; /* argc itself */
1246 size *= n;
1247 if (size & 15)
1248 sp -= 16 - (size & 15);
1250 /* This is correct because Linux defines
1251 * elf_addr_t as Elf32_Off / Elf64_Off
1253 #define NEW_AUX_ENT(id, val) do { \
1254 sp -= n; put_user_ual(val, sp); \
1255 sp -= n; put_user_ual(id, sp); \
1256 } while(0)
1258 NEW_AUX_ENT (AT_NULL, 0);
1260 /* There must be exactly DLINFO_ITEMS entries here. */
1261 NEW_AUX_ENT(AT_PHDR, (abi_ulong)(info->load_addr + exec->e_phoff));
1262 NEW_AUX_ENT(AT_PHENT, (abi_ulong)(sizeof (struct elf_phdr)));
1263 NEW_AUX_ENT(AT_PHNUM, (abi_ulong)(exec->e_phnum));
1264 NEW_AUX_ENT(AT_PAGESZ, (abi_ulong)(TARGET_PAGE_SIZE));
1265 NEW_AUX_ENT(AT_BASE, (abi_ulong)(interp_info ? interp_info->load_addr : 0));
1266 NEW_AUX_ENT(AT_FLAGS, (abi_ulong)0);
1267 NEW_AUX_ENT(AT_ENTRY, info->entry);
1268 NEW_AUX_ENT(AT_UID, (abi_ulong) getuid());
1269 NEW_AUX_ENT(AT_EUID, (abi_ulong) geteuid());
1270 NEW_AUX_ENT(AT_GID, (abi_ulong) getgid());
1271 NEW_AUX_ENT(AT_EGID, (abi_ulong) getegid());
1272 NEW_AUX_ENT(AT_HWCAP, (abi_ulong) ELF_HWCAP);
1273 NEW_AUX_ENT(AT_CLKTCK, (abi_ulong) sysconf(_SC_CLK_TCK));
1274 if (k_platform)
1275 NEW_AUX_ENT(AT_PLATFORM, u_platform);
1276 #ifdef ARCH_DLINFO
1278 * ARCH_DLINFO must come last so platform specific code can enforce
1279 * special alignment requirements on the AUXV if necessary (eg. PPC).
1281 ARCH_DLINFO;
1282 #endif
1283 #undef NEW_AUX_ENT
1285 info->saved_auxv = sp;
1287 sp = loader_build_argptr(envc, argc, sp, p, 0);
1288 return sp;
1291 /* Load an ELF image into the address space.
1293 IMAGE_NAME is the filename of the image, to use in error messages.
1294 IMAGE_FD is the open file descriptor for the image.
1296 BPRM_BUF is a copy of the beginning of the file; this of course
1297 contains the elf file header at offset 0. It is assumed that this
1298 buffer is sufficiently aligned to present no problems to the host
1299 in accessing data at aligned offsets within the buffer.
1301 On return: INFO values will be filled in, as necessary or available. */
1303 static void load_elf_image(const char *image_name, int image_fd,
1304 struct image_info *info, char **pinterp_name,
1305 char bprm_buf[BPRM_BUF_SIZE])
1307 struct elfhdr *ehdr = (struct elfhdr *)bprm_buf;
1308 struct elf_phdr *phdr;
1309 abi_ulong load_addr, load_bias, loaddr, hiaddr, error;
1310 int i, retval;
1311 const char *errmsg;
1313 /* First of all, some simple consistency checks */
1314 errmsg = "Invalid ELF image for this architecture";
1315 if (!elf_check_ident(ehdr)) {
1316 goto exit_errmsg;
1318 bswap_ehdr(ehdr);
1319 if (!elf_check_ehdr(ehdr)) {
1320 goto exit_errmsg;
1323 i = ehdr->e_phnum * sizeof(struct elf_phdr);
1324 if (ehdr->e_phoff + i <= BPRM_BUF_SIZE) {
1325 phdr = (struct elf_phdr *)(bprm_buf + ehdr->e_phoff);
1326 } else {
1327 phdr = (struct elf_phdr *) alloca(i);
1328 retval = pread(image_fd, phdr, i, ehdr->e_phoff);
1329 if (retval != i) {
1330 goto exit_read;
1333 bswap_phdr(phdr, ehdr->e_phnum);
1335 #ifdef CONFIG_USE_FDPIC
1336 info->nsegs = 0;
1337 info->pt_dynamic_addr = 0;
1338 #endif
1340 /* Find the maximum size of the image and allocate an appropriate
1341 amount of memory to handle that. */
1342 loaddr = -1, hiaddr = 0;
1343 for (i = 0; i < ehdr->e_phnum; ++i) {
1344 if (phdr[i].p_type == PT_LOAD) {
1345 abi_ulong a = phdr[i].p_vaddr;
1346 if (a < loaddr) {
1347 loaddr = a;
1349 a += phdr[i].p_memsz;
1350 if (a > hiaddr) {
1351 hiaddr = a;
1353 #ifdef CONFIG_USE_FDPIC
1354 ++info->nsegs;
1355 #endif
1359 load_addr = loaddr;
1360 if (ehdr->e_type == ET_DYN) {
1361 /* The image indicates that it can be loaded anywhere. Find a
1362 location that can hold the memory space required. If the
1363 image is pre-linked, LOADDR will be non-zero. Since we do
1364 not supply MAP_FIXED here we'll use that address if and
1365 only if it remains available. */
1366 load_addr = target_mmap(loaddr, hiaddr - loaddr, PROT_NONE,
1367 MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
1368 -1, 0);
1369 if (load_addr == -1) {
1370 goto exit_perror;
1372 } else if (pinterp_name != NULL) {
1373 /* This is the main executable. Make sure that the low
1374 address does not conflict with MMAP_MIN_ADDR or the
1375 QEMU application itself. */
1376 #if defined(CONFIG_USE_GUEST_BASE)
1378 * In case where user has not explicitly set the guest_base, we
1379 * probe here that should we set it automatically.
1381 if (!have_guest_base && !reserved_va) {
1382 unsigned long host_start, real_start, host_size;
1384 /* Round addresses to page boundaries. */
1385 loaddr &= qemu_host_page_mask;
1386 hiaddr = HOST_PAGE_ALIGN(hiaddr);
1388 if (loaddr < mmap_min_addr) {
1389 host_start = HOST_PAGE_ALIGN(mmap_min_addr);
1390 } else {
1391 host_start = loaddr;
1392 if (host_start != loaddr) {
1393 errmsg = "Address overflow loading ELF binary";
1394 goto exit_errmsg;
1397 host_size = hiaddr - loaddr;
1398 while (1) {
1399 /* Do not use mmap_find_vma here because that is limited to the
1400 guest address space. We are going to make the
1401 guest address space fit whatever we're given. */
1402 real_start = (unsigned long)
1403 mmap((void *)host_start, host_size, PROT_NONE,
1404 MAP_ANONYMOUS | MAP_PRIVATE | MAP_NORESERVE, -1, 0);
1405 if (real_start == (unsigned long)-1) {
1406 goto exit_perror;
1408 if (real_start == host_start) {
1409 break;
1411 /* That address didn't work. Unmap and try a different one.
1412 The address the host picked because is typically right at
1413 the top of the host address space and leaves the guest with
1414 no usable address space. Resort to a linear search. We
1415 already compensated for mmap_min_addr, so this should not
1416 happen often. Probably means we got unlucky and host
1417 address space randomization put a shared library somewhere
1418 inconvenient. */
1419 munmap((void *)real_start, host_size);
1420 host_start += qemu_host_page_size;
1421 if (host_start == loaddr) {
1422 /* Theoretically possible if host doesn't have any suitably
1423 aligned areas. Normally the first mmap will fail. */
1424 errmsg = "Unable to find space for application";
1425 goto exit_errmsg;
1428 qemu_log("Relocating guest address space from 0x"
1429 TARGET_ABI_FMT_lx " to 0x%lx\n", loaddr, real_start);
1430 guest_base = real_start - loaddr;
1432 #endif
1434 load_bias = load_addr - loaddr;
1436 #ifdef CONFIG_USE_FDPIC
1438 struct elf32_fdpic_loadseg *loadsegs = info->loadsegs =
1439 qemu_malloc(sizeof(*loadsegs) * info->nsegs);
1441 for (i = 0; i < ehdr->e_phnum; ++i) {
1442 switch (phdr[i].p_type) {
1443 case PT_DYNAMIC:
1444 info->pt_dynamic_addr = phdr[i].p_vaddr + load_bias;
1445 break;
1446 case PT_LOAD:
1447 loadsegs->addr = phdr[i].p_vaddr + load_bias;
1448 loadsegs->p_vaddr = phdr[i].p_vaddr;
1449 loadsegs->p_memsz = phdr[i].p_memsz;
1450 ++loadsegs;
1451 break;
1455 #endif
1457 info->load_bias = load_bias;
1458 info->load_addr = load_addr;
1459 info->entry = ehdr->e_entry + load_bias;
1460 info->start_code = -1;
1461 info->end_code = 0;
1462 info->start_data = -1;
1463 info->end_data = 0;
1464 info->brk = 0;
1466 for (i = 0; i < ehdr->e_phnum; i++) {
1467 struct elf_phdr *eppnt = phdr + i;
1468 if (eppnt->p_type == PT_LOAD) {
1469 abi_ulong vaddr, vaddr_po, vaddr_ps, vaddr_ef, vaddr_em;
1470 int elf_prot = 0;
1472 if (eppnt->p_flags & PF_R) elf_prot = PROT_READ;
1473 if (eppnt->p_flags & PF_W) elf_prot |= PROT_WRITE;
1474 if (eppnt->p_flags & PF_X) elf_prot |= PROT_EXEC;
1476 vaddr = load_bias + eppnt->p_vaddr;
1477 vaddr_po = TARGET_ELF_PAGEOFFSET(vaddr);
1478 vaddr_ps = TARGET_ELF_PAGESTART(vaddr);
1480 error = target_mmap(vaddr_ps, eppnt->p_filesz + vaddr_po,
1481 elf_prot, MAP_PRIVATE | MAP_FIXED,
1482 image_fd, eppnt->p_offset - vaddr_po);
1483 if (error == -1) {
1484 goto exit_perror;
1487 vaddr_ef = vaddr + eppnt->p_filesz;
1488 vaddr_em = vaddr + eppnt->p_memsz;
1490 /* If the load segment requests extra zeros (e.g. bss), map it. */
1491 if (vaddr_ef < vaddr_em) {
1492 zero_bss(vaddr_ef, vaddr_em, elf_prot);
1495 /* Find the full program boundaries. */
1496 if (elf_prot & PROT_EXEC) {
1497 if (vaddr < info->start_code) {
1498 info->start_code = vaddr;
1500 if (vaddr_ef > info->end_code) {
1501 info->end_code = vaddr_ef;
1504 if (elf_prot & PROT_WRITE) {
1505 if (vaddr < info->start_data) {
1506 info->start_data = vaddr;
1508 if (vaddr_ef > info->end_data) {
1509 info->end_data = vaddr_ef;
1511 if (vaddr_em > info->brk) {
1512 info->brk = vaddr_em;
1515 } else if (eppnt->p_type == PT_INTERP && pinterp_name) {
1516 char *interp_name;
1518 if (*pinterp_name) {
1519 errmsg = "Multiple PT_INTERP entries";
1520 goto exit_errmsg;
1522 interp_name = malloc(eppnt->p_filesz);
1523 if (!interp_name) {
1524 goto exit_perror;
1527 if (eppnt->p_offset + eppnt->p_filesz <= BPRM_BUF_SIZE) {
1528 memcpy(interp_name, bprm_buf + eppnt->p_offset,
1529 eppnt->p_filesz);
1530 } else {
1531 retval = pread(image_fd, interp_name, eppnt->p_filesz,
1532 eppnt->p_offset);
1533 if (retval != eppnt->p_filesz) {
1534 goto exit_perror;
1537 if (interp_name[eppnt->p_filesz - 1] != 0) {
1538 errmsg = "Invalid PT_INTERP entry";
1539 goto exit_errmsg;
1541 *pinterp_name = interp_name;
1545 if (info->end_data == 0) {
1546 info->start_data = info->end_code;
1547 info->end_data = info->end_code;
1548 info->brk = info->end_code;
1551 if (qemu_log_enabled()) {
1552 load_symbols(ehdr, image_fd, load_bias);
1555 close(image_fd);
1556 return;
1558 exit_read:
1559 if (retval >= 0) {
1560 errmsg = "Incomplete read of file header";
1561 goto exit_errmsg;
1563 exit_perror:
1564 errmsg = strerror(errno);
1565 exit_errmsg:
1566 fprintf(stderr, "%s: %s\n", image_name, errmsg);
1567 exit(-1);
1570 static void load_elf_interp(const char *filename, struct image_info *info,
1571 char bprm_buf[BPRM_BUF_SIZE])
1573 int fd, retval;
1575 fd = open(path(filename), O_RDONLY);
1576 if (fd < 0) {
1577 goto exit_perror;
1580 retval = read(fd, bprm_buf, BPRM_BUF_SIZE);
1581 if (retval < 0) {
1582 goto exit_perror;
1584 if (retval < BPRM_BUF_SIZE) {
1585 memset(bprm_buf + retval, 0, BPRM_BUF_SIZE - retval);
1588 load_elf_image(filename, fd, info, NULL, bprm_buf);
1589 return;
1591 exit_perror:
1592 fprintf(stderr, "%s: %s\n", filename, strerror(errno));
1593 exit(-1);
1596 static int symfind(const void *s0, const void *s1)
1598 struct elf_sym *key = (struct elf_sym *)s0;
1599 struct elf_sym *sym = (struct elf_sym *)s1;
1600 int result = 0;
1601 if (key->st_value < sym->st_value) {
1602 result = -1;
1603 } else if (key->st_value >= sym->st_value + sym->st_size) {
1604 result = 1;
1606 return result;
1609 static const char *lookup_symbolxx(struct syminfo *s, target_ulong orig_addr)
1611 #if ELF_CLASS == ELFCLASS32
1612 struct elf_sym *syms = s->disas_symtab.elf32;
1613 #else
1614 struct elf_sym *syms = s->disas_symtab.elf64;
1615 #endif
1617 // binary search
1618 struct elf_sym key;
1619 struct elf_sym *sym;
1621 key.st_value = orig_addr;
1623 sym = bsearch(&key, syms, s->disas_num_syms, sizeof(*syms), symfind);
1624 if (sym != NULL) {
1625 return s->disas_strtab + sym->st_name;
1628 return "";
1631 /* FIXME: This should use elf_ops.h */
1632 static int symcmp(const void *s0, const void *s1)
1634 struct elf_sym *sym0 = (struct elf_sym *)s0;
1635 struct elf_sym *sym1 = (struct elf_sym *)s1;
1636 return (sym0->st_value < sym1->st_value)
1637 ? -1
1638 : ((sym0->st_value > sym1->st_value) ? 1 : 0);
1641 /* Best attempt to load symbols from this ELF object. */
1642 static void load_symbols(struct elfhdr *hdr, int fd, abi_ulong load_bias)
1644 int i, shnum, nsyms, sym_idx = 0, str_idx = 0;
1645 struct elf_shdr *shdr;
1646 char *strings;
1647 struct syminfo *s;
1648 struct elf_sym *syms, *new_syms;
1650 shnum = hdr->e_shnum;
1651 i = shnum * sizeof(struct elf_shdr);
1652 shdr = (struct elf_shdr *)alloca(i);
1653 if (pread(fd, shdr, i, hdr->e_shoff) != i) {
1654 return;
1657 bswap_shdr(shdr, shnum);
1658 for (i = 0; i < shnum; ++i) {
1659 if (shdr[i].sh_type == SHT_SYMTAB) {
1660 sym_idx = i;
1661 str_idx = shdr[i].sh_link;
1662 goto found;
1666 /* There will be no symbol table if the file was stripped. */
1667 return;
1669 found:
1670 /* Now know where the strtab and symtab are. Snarf them. */
1671 s = malloc(sizeof(*s));
1672 if (!s) {
1673 return;
1676 i = shdr[str_idx].sh_size;
1677 s->disas_strtab = strings = malloc(i);
1678 if (!strings || pread(fd, strings, i, shdr[str_idx].sh_offset) != i) {
1679 free(s);
1680 free(strings);
1681 return;
1684 i = shdr[sym_idx].sh_size;
1685 syms = malloc(i);
1686 if (!syms || pread(fd, syms, i, shdr[sym_idx].sh_offset) != i) {
1687 free(s);
1688 free(strings);
1689 free(syms);
1690 return;
1693 nsyms = i / sizeof(struct elf_sym);
1694 for (i = 0; i < nsyms; ) {
1695 bswap_sym(syms + i);
1696 /* Throw away entries which we do not need. */
1697 if (syms[i].st_shndx == SHN_UNDEF
1698 || syms[i].st_shndx >= SHN_LORESERVE
1699 || ELF_ST_TYPE(syms[i].st_info) != STT_FUNC) {
1700 if (i < --nsyms) {
1701 syms[i] = syms[nsyms];
1703 } else {
1704 #if defined(TARGET_ARM) || defined (TARGET_MIPS)
1705 /* The bottom address bit marks a Thumb or MIPS16 symbol. */
1706 syms[i].st_value &= ~(target_ulong)1;
1707 #endif
1708 syms[i].st_value += load_bias;
1709 i++;
1713 /* Attempt to free the storage associated with the local symbols
1714 that we threw away. Whether or not this has any effect on the
1715 memory allocation depends on the malloc implementation and how
1716 many symbols we managed to discard. */
1717 new_syms = realloc(syms, nsyms * sizeof(*syms));
1718 if (new_syms == NULL) {
1719 free(s);
1720 free(syms);
1721 free(strings);
1722 return;
1724 syms = new_syms;
1726 qsort(syms, nsyms, sizeof(*syms), symcmp);
1728 s->disas_num_syms = nsyms;
1729 #if ELF_CLASS == ELFCLASS32
1730 s->disas_symtab.elf32 = syms;
1731 #else
1732 s->disas_symtab.elf64 = syms;
1733 #endif
1734 s->lookup_symbol = lookup_symbolxx;
1735 s->next = syminfos;
1736 syminfos = s;
1739 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
1740 struct image_info * info)
1742 struct image_info interp_info;
1743 struct elfhdr elf_ex;
1744 char *elf_interpreter = NULL;
1746 info->start_mmap = (abi_ulong)ELF_START_MMAP;
1747 info->mmap = 0;
1748 info->rss = 0;
1750 load_elf_image(bprm->filename, bprm->fd, info,
1751 &elf_interpreter, bprm->buf);
1753 /* ??? We need a copy of the elf header for passing to create_elf_tables.
1754 If we do nothing, we'll have overwritten this when we re-use bprm->buf
1755 when we load the interpreter. */
1756 elf_ex = *(struct elfhdr *)bprm->buf;
1758 bprm->p = copy_elf_strings(1, &bprm->filename, bprm->page, bprm->p);
1759 bprm->p = copy_elf_strings(bprm->envc,bprm->envp,bprm->page,bprm->p);
1760 bprm->p = copy_elf_strings(bprm->argc,bprm->argv,bprm->page,bprm->p);
1761 if (!bprm->p) {
1762 fprintf(stderr, "%s: %s\n", bprm->filename, strerror(E2BIG));
1763 exit(-1);
1766 /* Do this so that we can load the interpreter, if need be. We will
1767 change some of these later */
1768 bprm->p = setup_arg_pages(bprm->p, bprm, info);
1770 if (elf_interpreter) {
1771 load_elf_interp(elf_interpreter, &interp_info, bprm->buf);
1773 /* If the program interpreter is one of these two, then assume
1774 an iBCS2 image. Otherwise assume a native linux image. */
1776 if (strcmp(elf_interpreter, "/usr/lib/libc.so.1") == 0
1777 || strcmp(elf_interpreter, "/usr/lib/ld.so.1") == 0) {
1778 info->personality = PER_SVR4;
1780 /* Why this, you ask??? Well SVr4 maps page 0 as read-only,
1781 and some applications "depend" upon this behavior. Since
1782 we do not have the power to recompile these, we emulate
1783 the SVr4 behavior. Sigh. */
1784 target_mmap(0, qemu_host_page_size, PROT_READ | PROT_EXEC,
1785 MAP_FIXED | MAP_PRIVATE, -1, 0);
1789 bprm->p = create_elf_tables(bprm->p, bprm->argc, bprm->envc, &elf_ex,
1790 info, (elf_interpreter ? &interp_info : NULL));
1791 info->start_stack = bprm->p;
1793 /* If we have an interpreter, set that as the program's entry point.
1794 Copy the load_addr as well, to help PPC64 interpret the entry
1795 point as a function descriptor. Do this after creating elf tables
1796 so that we copy the original program entry point into the AUXV. */
1797 if (elf_interpreter) {
1798 info->load_addr = interp_info.load_addr;
1799 info->entry = interp_info.entry;
1800 free(elf_interpreter);
1803 #ifdef USE_ELF_CORE_DUMP
1804 bprm->core_dump = &elf_core_dump;
1805 #endif
1807 return 0;
1810 #ifdef USE_ELF_CORE_DUMP
1812 * Definitions to generate Intel SVR4-like core files.
1813 * These mostly have the same names as the SVR4 types with "target_elf_"
1814 * tacked on the front to prevent clashes with linux definitions,
1815 * and the typedef forms have been avoided. This is mostly like
1816 * the SVR4 structure, but more Linuxy, with things that Linux does
1817 * not support and which gdb doesn't really use excluded.
1819 * Fields we don't dump (their contents is zero) in linux-user qemu
1820 * are marked with XXX.
1822 * Core dump code is copied from linux kernel (fs/binfmt_elf.c).
1824 * Porting ELF coredump for target is (quite) simple process. First you
1825 * define USE_ELF_CORE_DUMP in target ELF code (where init_thread() for
1826 * the target resides):
1828 * #define USE_ELF_CORE_DUMP
1830 * Next you define type of register set used for dumping. ELF specification
1831 * says that it needs to be array of elf_greg_t that has size of ELF_NREG.
1833 * typedef <target_regtype> target_elf_greg_t;
1834 * #define ELF_NREG <number of registers>
1835 * typedef taret_elf_greg_t target_elf_gregset_t[ELF_NREG];
1837 * Last step is to implement target specific function that copies registers
1838 * from given cpu into just specified register set. Prototype is:
1840 * static void elf_core_copy_regs(taret_elf_gregset_t *regs,
1841 * const CPUState *env);
1843 * Parameters:
1844 * regs - copy register values into here (allocated and zeroed by caller)
1845 * env - copy registers from here
1847 * Example for ARM target is provided in this file.
1850 /* An ELF note in memory */
1851 struct memelfnote {
1852 const char *name;
1853 size_t namesz;
1854 size_t namesz_rounded;
1855 int type;
1856 size_t datasz;
1857 size_t datasz_rounded;
1858 void *data;
1859 size_t notesz;
1862 struct target_elf_siginfo {
1863 target_int si_signo; /* signal number */
1864 target_int si_code; /* extra code */
1865 target_int si_errno; /* errno */
1868 struct target_elf_prstatus {
1869 struct target_elf_siginfo pr_info; /* Info associated with signal */
1870 target_short pr_cursig; /* Current signal */
1871 target_ulong pr_sigpend; /* XXX */
1872 target_ulong pr_sighold; /* XXX */
1873 target_pid_t pr_pid;
1874 target_pid_t pr_ppid;
1875 target_pid_t pr_pgrp;
1876 target_pid_t pr_sid;
1877 struct target_timeval pr_utime; /* XXX User time */
1878 struct target_timeval pr_stime; /* XXX System time */
1879 struct target_timeval pr_cutime; /* XXX Cumulative user time */
1880 struct target_timeval pr_cstime; /* XXX Cumulative system time */
1881 target_elf_gregset_t pr_reg; /* GP registers */
1882 target_int pr_fpvalid; /* XXX */
1885 #define ELF_PRARGSZ (80) /* Number of chars for args */
1887 struct target_elf_prpsinfo {
1888 char pr_state; /* numeric process state */
1889 char pr_sname; /* char for pr_state */
1890 char pr_zomb; /* zombie */
1891 char pr_nice; /* nice val */
1892 target_ulong pr_flag; /* flags */
1893 target_uid_t pr_uid;
1894 target_gid_t pr_gid;
1895 target_pid_t pr_pid, pr_ppid, pr_pgrp, pr_sid;
1896 /* Lots missing */
1897 char pr_fname[16]; /* filename of executable */
1898 char pr_psargs[ELF_PRARGSZ]; /* initial part of arg list */
1901 /* Here is the structure in which status of each thread is captured. */
1902 struct elf_thread_status {
1903 QTAILQ_ENTRY(elf_thread_status) ets_link;
1904 struct target_elf_prstatus prstatus; /* NT_PRSTATUS */
1905 #if 0
1906 elf_fpregset_t fpu; /* NT_PRFPREG */
1907 struct task_struct *thread;
1908 elf_fpxregset_t xfpu; /* ELF_CORE_XFPREG_TYPE */
1909 #endif
1910 struct memelfnote notes[1];
1911 int num_notes;
1914 struct elf_note_info {
1915 struct memelfnote *notes;
1916 struct target_elf_prstatus *prstatus; /* NT_PRSTATUS */
1917 struct target_elf_prpsinfo *psinfo; /* NT_PRPSINFO */
1919 QTAILQ_HEAD(thread_list_head, elf_thread_status) thread_list;
1920 #if 0
1922 * Current version of ELF coredump doesn't support
1923 * dumping fp regs etc.
1925 elf_fpregset_t *fpu;
1926 elf_fpxregset_t *xfpu;
1927 int thread_status_size;
1928 #endif
1929 int notes_size;
1930 int numnote;
1933 struct vm_area_struct {
1934 abi_ulong vma_start; /* start vaddr of memory region */
1935 abi_ulong vma_end; /* end vaddr of memory region */
1936 abi_ulong vma_flags; /* protection etc. flags for the region */
1937 QTAILQ_ENTRY(vm_area_struct) vma_link;
1940 struct mm_struct {
1941 QTAILQ_HEAD(, vm_area_struct) mm_mmap;
1942 int mm_count; /* number of mappings */
1945 static struct mm_struct *vma_init(void);
1946 static void vma_delete(struct mm_struct *);
1947 static int vma_add_mapping(struct mm_struct *, abi_ulong,
1948 abi_ulong, abi_ulong);
1949 static int vma_get_mapping_count(const struct mm_struct *);
1950 static struct vm_area_struct *vma_first(const struct mm_struct *);
1951 static struct vm_area_struct *vma_next(struct vm_area_struct *);
1952 static abi_ulong vma_dump_size(const struct vm_area_struct *);
1953 static int vma_walker(void *priv, abi_ulong start, abi_ulong end,
1954 unsigned long flags);
1956 static void fill_elf_header(struct elfhdr *, int, uint16_t, uint32_t);
1957 static void fill_note(struct memelfnote *, const char *, int,
1958 unsigned int, void *);
1959 static void fill_prstatus(struct target_elf_prstatus *, const TaskState *, int);
1960 static int fill_psinfo(struct target_elf_prpsinfo *, const TaskState *);
1961 static void fill_auxv_note(struct memelfnote *, const TaskState *);
1962 static void fill_elf_note_phdr(struct elf_phdr *, int, off_t);
1963 static size_t note_size(const struct memelfnote *);
1964 static void free_note_info(struct elf_note_info *);
1965 static int fill_note_info(struct elf_note_info *, long, const CPUState *);
1966 static void fill_thread_info(struct elf_note_info *, const CPUState *);
1967 static int core_dump_filename(const TaskState *, char *, size_t);
1969 static int dump_write(int, const void *, size_t);
1970 static int write_note(struct memelfnote *, int);
1971 static int write_note_info(struct elf_note_info *, int);
1973 #ifdef BSWAP_NEEDED
1974 static void bswap_prstatus(struct target_elf_prstatus *prstatus)
1976 prstatus->pr_info.si_signo = tswapl(prstatus->pr_info.si_signo);
1977 prstatus->pr_info.si_code = tswapl(prstatus->pr_info.si_code);
1978 prstatus->pr_info.si_errno = tswapl(prstatus->pr_info.si_errno);
1979 prstatus->pr_cursig = tswap16(prstatus->pr_cursig);
1980 prstatus->pr_sigpend = tswapl(prstatus->pr_sigpend);
1981 prstatus->pr_sighold = tswapl(prstatus->pr_sighold);
1982 prstatus->pr_pid = tswap32(prstatus->pr_pid);
1983 prstatus->pr_ppid = tswap32(prstatus->pr_ppid);
1984 prstatus->pr_pgrp = tswap32(prstatus->pr_pgrp);
1985 prstatus->pr_sid = tswap32(prstatus->pr_sid);
1986 /* cpu times are not filled, so we skip them */
1987 /* regs should be in correct format already */
1988 prstatus->pr_fpvalid = tswap32(prstatus->pr_fpvalid);
1991 static void bswap_psinfo(struct target_elf_prpsinfo *psinfo)
1993 psinfo->pr_flag = tswapl(psinfo->pr_flag);
1994 psinfo->pr_uid = tswap16(psinfo->pr_uid);
1995 psinfo->pr_gid = tswap16(psinfo->pr_gid);
1996 psinfo->pr_pid = tswap32(psinfo->pr_pid);
1997 psinfo->pr_ppid = tswap32(psinfo->pr_ppid);
1998 psinfo->pr_pgrp = tswap32(psinfo->pr_pgrp);
1999 psinfo->pr_sid = tswap32(psinfo->pr_sid);
2002 static void bswap_note(struct elf_note *en)
2004 bswap32s(&en->n_namesz);
2005 bswap32s(&en->n_descsz);
2006 bswap32s(&en->n_type);
2008 #else
2009 static inline void bswap_prstatus(struct target_elf_prstatus *p) { }
2010 static inline void bswap_psinfo(struct target_elf_prpsinfo *p) {}
2011 static inline void bswap_note(struct elf_note *en) { }
2012 #endif /* BSWAP_NEEDED */
2015 * Minimal support for linux memory regions. These are needed
2016 * when we are finding out what memory exactly belongs to
2017 * emulated process. No locks needed here, as long as
2018 * thread that received the signal is stopped.
2021 static struct mm_struct *vma_init(void)
2023 struct mm_struct *mm;
2025 if ((mm = qemu_malloc(sizeof (*mm))) == NULL)
2026 return (NULL);
2028 mm->mm_count = 0;
2029 QTAILQ_INIT(&mm->mm_mmap);
2031 return (mm);
2034 static void vma_delete(struct mm_struct *mm)
2036 struct vm_area_struct *vma;
2038 while ((vma = vma_first(mm)) != NULL) {
2039 QTAILQ_REMOVE(&mm->mm_mmap, vma, vma_link);
2040 qemu_free(vma);
2042 qemu_free(mm);
2045 static int vma_add_mapping(struct mm_struct *mm, abi_ulong start,
2046 abi_ulong end, abi_ulong flags)
2048 struct vm_area_struct *vma;
2050 if ((vma = qemu_mallocz(sizeof (*vma))) == NULL)
2051 return (-1);
2053 vma->vma_start = start;
2054 vma->vma_end = end;
2055 vma->vma_flags = flags;
2057 QTAILQ_INSERT_TAIL(&mm->mm_mmap, vma, vma_link);
2058 mm->mm_count++;
2060 return (0);
2063 static struct vm_area_struct *vma_first(const struct mm_struct *mm)
2065 return (QTAILQ_FIRST(&mm->mm_mmap));
2068 static struct vm_area_struct *vma_next(struct vm_area_struct *vma)
2070 return (QTAILQ_NEXT(vma, vma_link));
2073 static int vma_get_mapping_count(const struct mm_struct *mm)
2075 return (mm->mm_count);
2079 * Calculate file (dump) size of given memory region.
2081 static abi_ulong vma_dump_size(const struct vm_area_struct *vma)
2083 /* if we cannot even read the first page, skip it */
2084 if (!access_ok(VERIFY_READ, vma->vma_start, TARGET_PAGE_SIZE))
2085 return (0);
2088 * Usually we don't dump executable pages as they contain
2089 * non-writable code that debugger can read directly from
2090 * target library etc. However, thread stacks are marked
2091 * also executable so we read in first page of given region
2092 * and check whether it contains elf header. If there is
2093 * no elf header, we dump it.
2095 if (vma->vma_flags & PROT_EXEC) {
2096 char page[TARGET_PAGE_SIZE];
2098 copy_from_user(page, vma->vma_start, sizeof (page));
2099 if ((page[EI_MAG0] == ELFMAG0) &&
2100 (page[EI_MAG1] == ELFMAG1) &&
2101 (page[EI_MAG2] == ELFMAG2) &&
2102 (page[EI_MAG3] == ELFMAG3)) {
2104 * Mappings are possibly from ELF binary. Don't dump
2105 * them.
2107 return (0);
2111 return (vma->vma_end - vma->vma_start);
2114 static int vma_walker(void *priv, abi_ulong start, abi_ulong end,
2115 unsigned long flags)
2117 struct mm_struct *mm = (struct mm_struct *)priv;
2119 vma_add_mapping(mm, start, end, flags);
2120 return (0);
2123 static void fill_note(struct memelfnote *note, const char *name, int type,
2124 unsigned int sz, void *data)
2126 unsigned int namesz;
2128 namesz = strlen(name) + 1;
2129 note->name = name;
2130 note->namesz = namesz;
2131 note->namesz_rounded = roundup(namesz, sizeof (int32_t));
2132 note->type = type;
2133 note->datasz = sz;
2134 note->datasz_rounded = roundup(sz, sizeof (int32_t));
2136 note->data = data;
2139 * We calculate rounded up note size here as specified by
2140 * ELF document.
2142 note->notesz = sizeof (struct elf_note) +
2143 note->namesz_rounded + note->datasz_rounded;
2146 static void fill_elf_header(struct elfhdr *elf, int segs, uint16_t machine,
2147 uint32_t flags)
2149 (void) memset(elf, 0, sizeof(*elf));
2151 (void) memcpy(elf->e_ident, ELFMAG, SELFMAG);
2152 elf->e_ident[EI_CLASS] = ELF_CLASS;
2153 elf->e_ident[EI_DATA] = ELF_DATA;
2154 elf->e_ident[EI_VERSION] = EV_CURRENT;
2155 elf->e_ident[EI_OSABI] = ELF_OSABI;
2157 elf->e_type = ET_CORE;
2158 elf->e_machine = machine;
2159 elf->e_version = EV_CURRENT;
2160 elf->e_phoff = sizeof(struct elfhdr);
2161 elf->e_flags = flags;
2162 elf->e_ehsize = sizeof(struct elfhdr);
2163 elf->e_phentsize = sizeof(struct elf_phdr);
2164 elf->e_phnum = segs;
2166 bswap_ehdr(elf);
2169 static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, off_t offset)
2171 phdr->p_type = PT_NOTE;
2172 phdr->p_offset = offset;
2173 phdr->p_vaddr = 0;
2174 phdr->p_paddr = 0;
2175 phdr->p_filesz = sz;
2176 phdr->p_memsz = 0;
2177 phdr->p_flags = 0;
2178 phdr->p_align = 0;
2180 bswap_phdr(phdr, 1);
2183 static size_t note_size(const struct memelfnote *note)
2185 return (note->notesz);
2188 static void fill_prstatus(struct target_elf_prstatus *prstatus,
2189 const TaskState *ts, int signr)
2191 (void) memset(prstatus, 0, sizeof (*prstatus));
2192 prstatus->pr_info.si_signo = prstatus->pr_cursig = signr;
2193 prstatus->pr_pid = ts->ts_tid;
2194 prstatus->pr_ppid = getppid();
2195 prstatus->pr_pgrp = getpgrp();
2196 prstatus->pr_sid = getsid(0);
2198 bswap_prstatus(prstatus);
2201 static int fill_psinfo(struct target_elf_prpsinfo *psinfo, const TaskState *ts)
2203 char *filename, *base_filename;
2204 unsigned int i, len;
2206 (void) memset(psinfo, 0, sizeof (*psinfo));
2208 len = ts->info->arg_end - ts->info->arg_start;
2209 if (len >= ELF_PRARGSZ)
2210 len = ELF_PRARGSZ - 1;
2211 if (copy_from_user(&psinfo->pr_psargs, ts->info->arg_start, len))
2212 return -EFAULT;
2213 for (i = 0; i < len; i++)
2214 if (psinfo->pr_psargs[i] == 0)
2215 psinfo->pr_psargs[i] = ' ';
2216 psinfo->pr_psargs[len] = 0;
2218 psinfo->pr_pid = getpid();
2219 psinfo->pr_ppid = getppid();
2220 psinfo->pr_pgrp = getpgrp();
2221 psinfo->pr_sid = getsid(0);
2222 psinfo->pr_uid = getuid();
2223 psinfo->pr_gid = getgid();
2225 filename = strdup(ts->bprm->filename);
2226 base_filename = strdup(basename(filename));
2227 (void) strncpy(psinfo->pr_fname, base_filename,
2228 sizeof(psinfo->pr_fname));
2229 free(base_filename);
2230 free(filename);
2232 bswap_psinfo(psinfo);
2233 return (0);
2236 static void fill_auxv_note(struct memelfnote *note, const TaskState *ts)
2238 elf_addr_t auxv = (elf_addr_t)ts->info->saved_auxv;
2239 elf_addr_t orig_auxv = auxv;
2240 abi_ulong val;
2241 void *ptr;
2242 int i, len;
2245 * Auxiliary vector is stored in target process stack. It contains
2246 * {type, value} pairs that we need to dump into note. This is not
2247 * strictly necessary but we do it here for sake of completeness.
2250 /* find out lenght of the vector, AT_NULL is terminator */
2251 i = len = 0;
2252 do {
2253 get_user_ual(val, auxv);
2254 i += 2;
2255 auxv += 2 * sizeof (elf_addr_t);
2256 } while (val != AT_NULL);
2257 len = i * sizeof (elf_addr_t);
2259 /* read in whole auxv vector and copy it to memelfnote */
2260 ptr = lock_user(VERIFY_READ, orig_auxv, len, 0);
2261 if (ptr != NULL) {
2262 fill_note(note, "CORE", NT_AUXV, len, ptr);
2263 unlock_user(ptr, auxv, len);
2268 * Constructs name of coredump file. We have following convention
2269 * for the name:
2270 * qemu_<basename-of-target-binary>_<date>-<time>_<pid>.core
2272 * Returns 0 in case of success, -1 otherwise (errno is set).
2274 static int core_dump_filename(const TaskState *ts, char *buf,
2275 size_t bufsize)
2277 char timestamp[64];
2278 char *filename = NULL;
2279 char *base_filename = NULL;
2280 struct timeval tv;
2281 struct tm tm;
2283 assert(bufsize >= PATH_MAX);
2285 if (gettimeofday(&tv, NULL) < 0) {
2286 (void) fprintf(stderr, "unable to get current timestamp: %s",
2287 strerror(errno));
2288 return (-1);
2291 filename = strdup(ts->bprm->filename);
2292 base_filename = strdup(basename(filename));
2293 (void) strftime(timestamp, sizeof (timestamp), "%Y%m%d-%H%M%S",
2294 localtime_r(&tv.tv_sec, &tm));
2295 (void) snprintf(buf, bufsize, "qemu_%s_%s_%d.core",
2296 base_filename, timestamp, (int)getpid());
2297 free(base_filename);
2298 free(filename);
2300 return (0);
2303 static int dump_write(int fd, const void *ptr, size_t size)
2305 const char *bufp = (const char *)ptr;
2306 ssize_t bytes_written, bytes_left;
2307 struct rlimit dumpsize;
2308 off_t pos;
2310 bytes_written = 0;
2311 getrlimit(RLIMIT_CORE, &dumpsize);
2312 if ((pos = lseek(fd, 0, SEEK_CUR))==-1) {
2313 if (errno == ESPIPE) { /* not a seekable stream */
2314 bytes_left = size;
2315 } else {
2316 return pos;
2318 } else {
2319 if (dumpsize.rlim_cur <= pos) {
2320 return -1;
2321 } else if (dumpsize.rlim_cur == RLIM_INFINITY) {
2322 bytes_left = size;
2323 } else {
2324 size_t limit_left=dumpsize.rlim_cur - pos;
2325 bytes_left = limit_left >= size ? size : limit_left ;
2330 * In normal conditions, single write(2) should do but
2331 * in case of socket etc. this mechanism is more portable.
2333 do {
2334 bytes_written = write(fd, bufp, bytes_left);
2335 if (bytes_written < 0) {
2336 if (errno == EINTR)
2337 continue;
2338 return (-1);
2339 } else if (bytes_written == 0) { /* eof */
2340 return (-1);
2342 bufp += bytes_written;
2343 bytes_left -= bytes_written;
2344 } while (bytes_left > 0);
2346 return (0);
2349 static int write_note(struct memelfnote *men, int fd)
2351 struct elf_note en;
2353 en.n_namesz = men->namesz;
2354 en.n_type = men->type;
2355 en.n_descsz = men->datasz;
2357 bswap_note(&en);
2359 if (dump_write(fd, &en, sizeof(en)) != 0)
2360 return (-1);
2361 if (dump_write(fd, men->name, men->namesz_rounded) != 0)
2362 return (-1);
2363 if (dump_write(fd, men->data, men->datasz_rounded) != 0)
2364 return (-1);
2366 return (0);
2369 static void fill_thread_info(struct elf_note_info *info, const CPUState *env)
2371 TaskState *ts = (TaskState *)env->opaque;
2372 struct elf_thread_status *ets;
2374 ets = qemu_mallocz(sizeof (*ets));
2375 ets->num_notes = 1; /* only prstatus is dumped */
2376 fill_prstatus(&ets->prstatus, ts, 0);
2377 elf_core_copy_regs(&ets->prstatus.pr_reg, env);
2378 fill_note(&ets->notes[0], "CORE", NT_PRSTATUS, sizeof (ets->prstatus),
2379 &ets->prstatus);
2381 QTAILQ_INSERT_TAIL(&info->thread_list, ets, ets_link);
2383 info->notes_size += note_size(&ets->notes[0]);
2386 static int fill_note_info(struct elf_note_info *info,
2387 long signr, const CPUState *env)
2389 #define NUMNOTES 3
2390 CPUState *cpu = NULL;
2391 TaskState *ts = (TaskState *)env->opaque;
2392 int i;
2394 (void) memset(info, 0, sizeof (*info));
2396 QTAILQ_INIT(&info->thread_list);
2398 info->notes = qemu_mallocz(NUMNOTES * sizeof (struct memelfnote));
2399 if (info->notes == NULL)
2400 return (-ENOMEM);
2401 info->prstatus = qemu_mallocz(sizeof (*info->prstatus));
2402 if (info->prstatus == NULL)
2403 return (-ENOMEM);
2404 info->psinfo = qemu_mallocz(sizeof (*info->psinfo));
2405 if (info->prstatus == NULL)
2406 return (-ENOMEM);
2409 * First fill in status (and registers) of current thread
2410 * including process info & aux vector.
2412 fill_prstatus(info->prstatus, ts, signr);
2413 elf_core_copy_regs(&info->prstatus->pr_reg, env);
2414 fill_note(&info->notes[0], "CORE", NT_PRSTATUS,
2415 sizeof (*info->prstatus), info->prstatus);
2416 fill_psinfo(info->psinfo, ts);
2417 fill_note(&info->notes[1], "CORE", NT_PRPSINFO,
2418 sizeof (*info->psinfo), info->psinfo);
2419 fill_auxv_note(&info->notes[2], ts);
2420 info->numnote = 3;
2422 info->notes_size = 0;
2423 for (i = 0; i < info->numnote; i++)
2424 info->notes_size += note_size(&info->notes[i]);
2426 /* read and fill status of all threads */
2427 cpu_list_lock();
2428 for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
2429 if (cpu == thread_env)
2430 continue;
2431 fill_thread_info(info, cpu);
2433 cpu_list_unlock();
2435 return (0);
2438 static void free_note_info(struct elf_note_info *info)
2440 struct elf_thread_status *ets;
2442 while (!QTAILQ_EMPTY(&info->thread_list)) {
2443 ets = QTAILQ_FIRST(&info->thread_list);
2444 QTAILQ_REMOVE(&info->thread_list, ets, ets_link);
2445 qemu_free(ets);
2448 qemu_free(info->prstatus);
2449 qemu_free(info->psinfo);
2450 qemu_free(info->notes);
2453 static int write_note_info(struct elf_note_info *info, int fd)
2455 struct elf_thread_status *ets;
2456 int i, error = 0;
2458 /* write prstatus, psinfo and auxv for current thread */
2459 for (i = 0; i < info->numnote; i++)
2460 if ((error = write_note(&info->notes[i], fd)) != 0)
2461 return (error);
2463 /* write prstatus for each thread */
2464 for (ets = info->thread_list.tqh_first; ets != NULL;
2465 ets = ets->ets_link.tqe_next) {
2466 if ((error = write_note(&ets->notes[0], fd)) != 0)
2467 return (error);
2470 return (0);
2474 * Write out ELF coredump.
2476 * See documentation of ELF object file format in:
2477 * http://www.caldera.com/developers/devspecs/gabi41.pdf
2479 * Coredump format in linux is following:
2481 * 0 +----------------------+ \
2482 * | ELF header | ET_CORE |
2483 * +----------------------+ |
2484 * | ELF program headers | |--- headers
2485 * | - NOTE section | |
2486 * | - PT_LOAD sections | |
2487 * +----------------------+ /
2488 * | NOTEs: |
2489 * | - NT_PRSTATUS |
2490 * | - NT_PRSINFO |
2491 * | - NT_AUXV |
2492 * +----------------------+ <-- aligned to target page
2493 * | Process memory dump |
2494 * : :
2495 * . .
2496 * : :
2497 * | |
2498 * +----------------------+
2500 * NT_PRSTATUS -> struct elf_prstatus (per thread)
2501 * NT_PRSINFO -> struct elf_prpsinfo
2502 * NT_AUXV is array of { type, value } pairs (see fill_auxv_note()).
2504 * Format follows System V format as close as possible. Current
2505 * version limitations are as follows:
2506 * - no floating point registers are dumped
2508 * Function returns 0 in case of success, negative errno otherwise.
2510 * TODO: make this work also during runtime: it should be
2511 * possible to force coredump from running process and then
2512 * continue processing. For example qemu could set up SIGUSR2
2513 * handler (provided that target process haven't registered
2514 * handler for that) that does the dump when signal is received.
2516 static int elf_core_dump(int signr, const CPUState *env)
2518 const TaskState *ts = (const TaskState *)env->opaque;
2519 struct vm_area_struct *vma = NULL;
2520 char corefile[PATH_MAX];
2521 struct elf_note_info info;
2522 struct elfhdr elf;
2523 struct elf_phdr phdr;
2524 struct rlimit dumpsize;
2525 struct mm_struct *mm = NULL;
2526 off_t offset = 0, data_offset = 0;
2527 int segs = 0;
2528 int fd = -1;
2530 errno = 0;
2531 getrlimit(RLIMIT_CORE, &dumpsize);
2532 if (dumpsize.rlim_cur == 0)
2533 return 0;
2535 if (core_dump_filename(ts, corefile, sizeof (corefile)) < 0)
2536 return (-errno);
2538 if ((fd = open(corefile, O_WRONLY | O_CREAT,
2539 S_IRUSR|S_IWUSR|S_IRGRP|S_IROTH)) < 0)
2540 return (-errno);
2543 * Walk through target process memory mappings and
2544 * set up structure containing this information. After
2545 * this point vma_xxx functions can be used.
2547 if ((mm = vma_init()) == NULL)
2548 goto out;
2550 walk_memory_regions(mm, vma_walker);
2551 segs = vma_get_mapping_count(mm);
2554 * Construct valid coredump ELF header. We also
2555 * add one more segment for notes.
2557 fill_elf_header(&elf, segs + 1, ELF_MACHINE, 0);
2558 if (dump_write(fd, &elf, sizeof (elf)) != 0)
2559 goto out;
2561 /* fill in in-memory version of notes */
2562 if (fill_note_info(&info, signr, env) < 0)
2563 goto out;
2565 offset += sizeof (elf); /* elf header */
2566 offset += (segs + 1) * sizeof (struct elf_phdr); /* program headers */
2568 /* write out notes program header */
2569 fill_elf_note_phdr(&phdr, info.notes_size, offset);
2571 offset += info.notes_size;
2572 if (dump_write(fd, &phdr, sizeof (phdr)) != 0)
2573 goto out;
2576 * ELF specification wants data to start at page boundary so
2577 * we align it here.
2579 data_offset = offset = roundup(offset, ELF_EXEC_PAGESIZE);
2582 * Write program headers for memory regions mapped in
2583 * the target process.
2585 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2586 (void) memset(&phdr, 0, sizeof (phdr));
2588 phdr.p_type = PT_LOAD;
2589 phdr.p_offset = offset;
2590 phdr.p_vaddr = vma->vma_start;
2591 phdr.p_paddr = 0;
2592 phdr.p_filesz = vma_dump_size(vma);
2593 offset += phdr.p_filesz;
2594 phdr.p_memsz = vma->vma_end - vma->vma_start;
2595 phdr.p_flags = vma->vma_flags & PROT_READ ? PF_R : 0;
2596 if (vma->vma_flags & PROT_WRITE)
2597 phdr.p_flags |= PF_W;
2598 if (vma->vma_flags & PROT_EXEC)
2599 phdr.p_flags |= PF_X;
2600 phdr.p_align = ELF_EXEC_PAGESIZE;
2602 bswap_phdr(&phdr, 1);
2603 dump_write(fd, &phdr, sizeof (phdr));
2607 * Next we write notes just after program headers. No
2608 * alignment needed here.
2610 if (write_note_info(&info, fd) < 0)
2611 goto out;
2613 /* align data to page boundary */
2614 if (lseek(fd, data_offset, SEEK_SET) != data_offset)
2615 goto out;
2618 * Finally we can dump process memory into corefile as well.
2620 for (vma = vma_first(mm); vma != NULL; vma = vma_next(vma)) {
2621 abi_ulong addr;
2622 abi_ulong end;
2624 end = vma->vma_start + vma_dump_size(vma);
2626 for (addr = vma->vma_start; addr < end;
2627 addr += TARGET_PAGE_SIZE) {
2628 char page[TARGET_PAGE_SIZE];
2629 int error;
2632 * Read in page from target process memory and
2633 * write it to coredump file.
2635 error = copy_from_user(page, addr, sizeof (page));
2636 if (error != 0) {
2637 (void) fprintf(stderr, "unable to dump " TARGET_ABI_FMT_lx "\n",
2638 addr);
2639 errno = -error;
2640 goto out;
2642 if (dump_write(fd, page, TARGET_PAGE_SIZE) < 0)
2643 goto out;
2647 out:
2648 free_note_info(&info);
2649 if (mm != NULL)
2650 vma_delete(mm);
2651 (void) close(fd);
2653 if (errno != 0)
2654 return (-errno);
2655 return (0);
2657 #endif /* USE_ELF_CORE_DUMP */
2659 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop)
2661 init_thread(regs, infop);