ppc/pnv: Introduce support for user created PHB3 devices
[qemu.git] / hw / riscv / boot.c
blobf67264374ec75d7c0f3120039925e1e8ec46d9f6
1 /*
2 * QEMU RISC-V Boot Helper
4 * Copyright (c) 2017 SiFive, Inc.
5 * Copyright (c) 2019 Alistair Francis <alistair.francis@wdc.com>
7 * This program is free software; you can redistribute it and/or modify it
8 * under the terms and conditions of the GNU General Public License,
9 * version 2 or later, as published by the Free Software Foundation.
11 * This program is distributed in the hope it will be useful, but WITHOUT
12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 * more details.
16 * You should have received a copy of the GNU General Public License along with
17 * this program. If not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/datadir.h"
23 #include "qemu/units.h"
24 #include "qemu/error-report.h"
25 #include "exec/cpu-defs.h"
26 #include "hw/boards.h"
27 #include "hw/loader.h"
28 #include "hw/riscv/boot.h"
29 #include "hw/riscv/boot_opensbi.h"
30 #include "elf.h"
31 #include "sysemu/device_tree.h"
32 #include "sysemu/qtest.h"
34 #include <libfdt.h>
36 bool riscv_is_32bit(RISCVHartArrayState *harts)
38 return harts->harts[0].env.misa_mxl_max == MXL_RV32;
42 * Return the per-socket PLIC hart topology configuration string
43 * (caller must free with g_free())
45 char *riscv_plic_hart_config_string(int hart_count)
47 g_autofree const char **vals = g_new(const char *, hart_count + 1);
48 int i;
50 for (i = 0; i < hart_count; i++) {
51 CPUState *cs = qemu_get_cpu(i);
52 CPURISCVState *env = &RISCV_CPU(cs)->env;
54 if (riscv_has_ext(env, RVS)) {
55 vals[i] = "MS";
56 } else {
57 vals[i] = "M";
60 vals[i] = NULL;
62 /* g_strjoinv() obliges us to cast away const here */
63 return g_strjoinv(",", (char **)vals);
66 target_ulong riscv_calc_kernel_start_addr(RISCVHartArrayState *harts,
67 target_ulong firmware_end_addr) {
68 if (riscv_is_32bit(harts)) {
69 return QEMU_ALIGN_UP(firmware_end_addr, 4 * MiB);
70 } else {
71 return QEMU_ALIGN_UP(firmware_end_addr, 2 * MiB);
75 target_ulong riscv_find_and_load_firmware(MachineState *machine,
76 const char *default_machine_firmware,
77 hwaddr firmware_load_addr,
78 symbol_fn_t sym_cb)
80 char *firmware_filename = NULL;
81 target_ulong firmware_end_addr = firmware_load_addr;
83 if ((!machine->firmware) || (!strcmp(machine->firmware, "default"))) {
85 * The user didn't specify -bios, or has specified "-bios default".
86 * That means we are going to load the OpenSBI binary included in
87 * the QEMU source.
89 firmware_filename = riscv_find_firmware(default_machine_firmware);
90 } else if (strcmp(machine->firmware, "none")) {
91 firmware_filename = riscv_find_firmware(machine->firmware);
94 if (firmware_filename) {
95 /* If not "none" load the firmware */
96 firmware_end_addr = riscv_load_firmware(firmware_filename,
97 firmware_load_addr, sym_cb);
98 g_free(firmware_filename);
101 return firmware_end_addr;
104 char *riscv_find_firmware(const char *firmware_filename)
106 char *filename;
108 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, firmware_filename);
109 if (filename == NULL) {
110 if (!qtest_enabled()) {
112 * We only ship plain binary bios images in the QEMU source.
113 * With Spike machine that uses ELF images as the default bios,
114 * running QEMU test will complain hence let's suppress the error
115 * report for QEMU testing.
117 error_report("Unable to load the RISC-V firmware \"%s\"",
118 firmware_filename);
119 exit(1);
123 return filename;
126 target_ulong riscv_load_firmware(const char *firmware_filename,
127 hwaddr firmware_load_addr,
128 symbol_fn_t sym_cb)
130 uint64_t firmware_entry, firmware_size, firmware_end;
132 if (load_elf_ram_sym(firmware_filename, NULL, NULL, NULL,
133 &firmware_entry, NULL, &firmware_end, NULL,
134 0, EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
135 return firmware_end;
138 firmware_size = load_image_targphys_as(firmware_filename,
139 firmware_load_addr,
140 current_machine->ram_size, NULL);
142 if (firmware_size > 0) {
143 return firmware_load_addr + firmware_size;
146 error_report("could not load firmware '%s'", firmware_filename);
147 exit(1);
150 target_ulong riscv_load_kernel(const char *kernel_filename,
151 target_ulong kernel_start_addr,
152 symbol_fn_t sym_cb)
154 uint64_t kernel_load_base, kernel_entry;
157 * NB: Use low address not ELF entry point to ensure that the fw_dynamic
158 * behaviour when loading an ELF matches the fw_payload, fw_jump and BBL
159 * behaviour, as well as fw_dynamic with a raw binary, all of which jump to
160 * the (expected) load address load address. This allows kernels to have
161 * separate SBI and ELF entry points (used by FreeBSD, for example).
163 if (load_elf_ram_sym(kernel_filename, NULL, NULL, NULL,
164 NULL, &kernel_load_base, NULL, NULL, 0,
165 EM_RISCV, 1, 0, NULL, true, sym_cb) > 0) {
166 return kernel_load_base;
169 if (load_uimage_as(kernel_filename, &kernel_entry, NULL, NULL,
170 NULL, NULL, NULL) > 0) {
171 return kernel_entry;
174 if (load_image_targphys_as(kernel_filename, kernel_start_addr,
175 current_machine->ram_size, NULL) > 0) {
176 return kernel_start_addr;
179 error_report("could not load kernel '%s'", kernel_filename);
180 exit(1);
183 hwaddr riscv_load_initrd(const char *filename, uint64_t mem_size,
184 uint64_t kernel_entry, hwaddr *start)
186 int size;
189 * We want to put the initrd far enough into RAM that when the
190 * kernel is uncompressed it will not clobber the initrd. However
191 * on boards without much RAM we must ensure that we still leave
192 * enough room for a decent sized initrd, and on boards with large
193 * amounts of RAM we must avoid the initrd being so far up in RAM
194 * that it is outside lowmem and inaccessible to the kernel.
195 * So for boards with less than 256MB of RAM we put the initrd
196 * halfway into RAM, and for boards with 256MB of RAM or more we put
197 * the initrd at 128MB.
199 *start = kernel_entry + MIN(mem_size / 2, 128 * MiB);
201 size = load_ramdisk(filename, *start, mem_size - *start);
202 if (size == -1) {
203 size = load_image_targphys(filename, *start, mem_size - *start);
204 if (size == -1) {
205 error_report("could not load ramdisk '%s'", filename);
206 exit(1);
210 return *start + size;
213 uint32_t riscv_load_fdt(hwaddr dram_base, uint64_t mem_size, void *fdt)
215 uint32_t temp, fdt_addr;
216 hwaddr dram_end = dram_base + mem_size;
217 int ret, fdtsize = fdt_totalsize(fdt);
219 if (fdtsize <= 0) {
220 error_report("invalid device-tree");
221 exit(1);
225 * We should put fdt as far as possible to avoid kernel/initrd overwriting
226 * its content. But it should be addressable by 32 bit system as well.
227 * Thus, put it at an 16MB aligned address that less than fdt size from the
228 * end of dram or 3GB whichever is lesser.
230 temp = MIN(dram_end, 3072 * MiB);
231 fdt_addr = QEMU_ALIGN_DOWN(temp - fdtsize, 16 * MiB);
233 ret = fdt_pack(fdt);
234 /* Should only fail if we've built a corrupted tree */
235 g_assert(ret == 0);
236 /* copy in the device tree */
237 qemu_fdt_dumpdtb(fdt, fdtsize);
239 rom_add_blob_fixed_as("fdt", fdt, fdtsize, fdt_addr,
240 &address_space_memory);
242 return fdt_addr;
245 void riscv_rom_copy_firmware_info(MachineState *machine, hwaddr rom_base,
246 hwaddr rom_size, uint32_t reset_vec_size,
247 uint64_t kernel_entry)
249 struct fw_dynamic_info dinfo;
250 size_t dinfo_len;
252 if (sizeof(dinfo.magic) == 4) {
253 dinfo.magic = cpu_to_le32(FW_DYNAMIC_INFO_MAGIC_VALUE);
254 dinfo.version = cpu_to_le32(FW_DYNAMIC_INFO_VERSION);
255 dinfo.next_mode = cpu_to_le32(FW_DYNAMIC_INFO_NEXT_MODE_S);
256 dinfo.next_addr = cpu_to_le32(kernel_entry);
257 } else {
258 dinfo.magic = cpu_to_le64(FW_DYNAMIC_INFO_MAGIC_VALUE);
259 dinfo.version = cpu_to_le64(FW_DYNAMIC_INFO_VERSION);
260 dinfo.next_mode = cpu_to_le64(FW_DYNAMIC_INFO_NEXT_MODE_S);
261 dinfo.next_addr = cpu_to_le64(kernel_entry);
263 dinfo.options = 0;
264 dinfo.boot_hart = 0;
265 dinfo_len = sizeof(dinfo);
268 * copy the dynamic firmware info. This information is specific to
269 * OpenSBI but doesn't break any other firmware as long as they don't
270 * expect any certain value in "a2" register.
272 if (dinfo_len > (rom_size - reset_vec_size)) {
273 error_report("not enough space to store dynamic firmware info");
274 exit(1);
277 rom_add_blob_fixed_as("mrom.finfo", &dinfo, dinfo_len,
278 rom_base + reset_vec_size,
279 &address_space_memory);
282 void riscv_setup_rom_reset_vec(MachineState *machine, RISCVHartArrayState *harts,
283 hwaddr start_addr,
284 hwaddr rom_base, hwaddr rom_size,
285 uint64_t kernel_entry,
286 uint32_t fdt_load_addr, void *fdt)
288 int i;
289 uint32_t start_addr_hi32 = 0x00000000;
291 if (!riscv_is_32bit(harts)) {
292 start_addr_hi32 = start_addr >> 32;
294 /* reset vector */
295 uint32_t reset_vec[10] = {
296 0x00000297, /* 1: auipc t0, %pcrel_hi(fw_dyn) */
297 0x02828613, /* addi a2, t0, %pcrel_lo(1b) */
298 0xf1402573, /* csrr a0, mhartid */
301 0x00028067, /* jr t0 */
302 start_addr, /* start: .dword */
303 start_addr_hi32,
304 fdt_load_addr, /* fdt_laddr: .dword */
305 0x00000000,
306 /* fw_dyn: */
308 if (riscv_is_32bit(harts)) {
309 reset_vec[3] = 0x0202a583; /* lw a1, 32(t0) */
310 reset_vec[4] = 0x0182a283; /* lw t0, 24(t0) */
311 } else {
312 reset_vec[3] = 0x0202b583; /* ld a1, 32(t0) */
313 reset_vec[4] = 0x0182b283; /* ld t0, 24(t0) */
316 /* copy in the reset vector in little_endian byte order */
317 for (i = 0; i < ARRAY_SIZE(reset_vec); i++) {
318 reset_vec[i] = cpu_to_le32(reset_vec[i]);
320 rom_add_blob_fixed_as("mrom.reset", reset_vec, sizeof(reset_vec),
321 rom_base, &address_space_memory);
322 riscv_rom_copy_firmware_info(machine, rom_base, rom_size, sizeof(reset_vec),
323 kernel_entry);
325 return;