ppc/pnv: Introduce support for user created PHB3 devices
[qemu.git] / hw / nvme / ctrl.c
blob462f79a1f6095296f7050770dec66e73d5476af9
1 /*
2 * QEMU NVM Express Controller
4 * Copyright (c) 2012, Intel Corporation
6 * Written by Keith Busch <keith.busch@intel.com>
8 * This code is licensed under the GNU GPL v2 or later.
9 */
11 /**
12 * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e
14 * https://nvmexpress.org/developers/nvme-specification/
17 * Notes on coding style
18 * ---------------------
19 * While QEMU coding style prefers lowercase hexadecimals in constants, the
20 * NVMe subsystem use thes format from the NVMe specifications in the comments
21 * (i.e. 'h' suffix instead of '0x' prefix).
23 * Usage
24 * -----
25 * See docs/system/nvme.rst for extensive documentation.
27 * Add options:
28 * -drive file=<file>,if=none,id=<drive_id>
29 * -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id>
30 * -device nvme,serial=<serial>,id=<bus_name>, \
31 * cmb_size_mb=<cmb_size_mb[optional]>, \
32 * [pmrdev=<mem_backend_file_id>,] \
33 * max_ioqpairs=<N[optional]>, \
34 * aerl=<N[optional]>,aer_max_queued=<N[optional]>, \
35 * mdts=<N[optional]>,vsl=<N[optional]>, \
36 * zoned.zasl=<N[optional]>, \
37 * zoned.auto_transition=<on|off[optional]>, \
38 * subsys=<subsys_id>
39 * -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\
40 * zoned=<true|false[optional]>, \
41 * subsys=<subsys_id>,detached=<true|false[optional]>
43 * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
44 * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the
45 * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to
46 * always enable the CMBLOC and CMBSZ registers (v1.3 behavior).
48 * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
49 * For example:
50 * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
51 * size=<size> .... -device nvme,...,pmrdev=<mem_id>
53 * The PMR will use BAR 4/5 exclusively.
55 * To place controller(s) and namespace(s) to a subsystem, then provide
56 * nvme-subsys device as above.
58 * nvme subsystem device parameters
59 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
60 * - `nqn`
61 * This parameter provides the `<nqn_id>` part of the string
62 * `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field
63 * of subsystem controllers. Note that `<nqn_id>` should be unique per
64 * subsystem, but this is not enforced by QEMU. If not specified, it will
65 * default to the value of the `id` parameter (`<subsys_id>`).
67 * nvme device parameters
68 * ~~~~~~~~~~~~~~~~~~~~~~
69 * - `subsys`
70 * Specifying this parameter attaches the controller to the subsystem and
71 * the SUBNQN field in the controller will report the NQN of the subsystem
72 * device. This also enables multi controller capability represented in
73 * Identify Controller data structure in CMIC (Controller Multi-path I/O and
74 * Namesapce Sharing Capabilities).
76 * - `aerl`
77 * The Asynchronous Event Request Limit (AERL). Indicates the maximum number
78 * of concurrently outstanding Asynchronous Event Request commands support
79 * by the controller. This is a 0's based value.
81 * - `aer_max_queued`
82 * This is the maximum number of events that the device will enqueue for
83 * completion when there are no outstanding AERs. When the maximum number of
84 * enqueued events are reached, subsequent events will be dropped.
86 * - `mdts`
87 * Indicates the maximum data transfer size for a command that transfers data
88 * between host-accessible memory and the controller. The value is specified
89 * as a power of two (2^n) and is in units of the minimum memory page size
90 * (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB).
92 * - `vsl`
93 * Indicates the maximum data size limit for the Verify command. Like `mdts`,
94 * this value is specified as a power of two (2^n) and is in units of the
95 * minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512
96 * KiB).
98 * - `zoned.zasl`
99 * Indicates the maximum data transfer size for the Zone Append command. Like
100 * `mdts`, the value is specified as a power of two (2^n) and is in units of
101 * the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e.
102 * defaulting to the value of `mdts`).
104 * - `zoned.auto_transition`
105 * Indicates if zones in zone state implicitly opened can be automatically
106 * transitioned to zone state closed for resource management purposes.
107 * Defaults to 'on'.
109 * nvme namespace device parameters
110 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
111 * - `shared`
112 * When the parent nvme device (as defined explicitly by the 'bus' parameter
113 * or implicitly by the most recently defined NvmeBus) is linked to an
114 * nvme-subsys device, the namespace will be attached to all controllers in
115 * the subsystem. If set to 'off' (the default), the namespace will remain a
116 * private namespace and may only be attached to a single controller at a
117 * time.
119 * - `detached`
120 * This parameter is only valid together with the `subsys` parameter. If left
121 * at the default value (`false/off`), the namespace will be attached to all
122 * controllers in the NVMe subsystem at boot-up. If set to `true/on`, the
123 * namespace will be available in the subsystem but not attached to any
124 * controllers.
126 * Setting `zoned` to true selects Zoned Command Set at the namespace.
127 * In this case, the following namespace properties are available to configure
128 * zoned operation:
129 * zoned.zone_size=<zone size in bytes, default: 128MiB>
130 * The number may be followed by K, M, G as in kilo-, mega- or giga-.
132 * zoned.zone_capacity=<zone capacity in bytes, default: zone size>
133 * The value 0 (default) forces zone capacity to be the same as zone
134 * size. The value of this property may not exceed zone size.
136 * zoned.descr_ext_size=<zone descriptor extension size, default 0>
137 * This value needs to be specified in 64B units. If it is zero,
138 * namespace(s) will not support zone descriptor extensions.
140 * zoned.max_active=<Maximum Active Resources (zones), default: 0>
141 * The default value means there is no limit to the number of
142 * concurrently active zones.
144 * zoned.max_open=<Maximum Open Resources (zones), default: 0>
145 * The default value means there is no limit to the number of
146 * concurrently open zones.
148 * zoned.cross_read=<enable RAZB, default: false>
149 * Setting this property to true enables Read Across Zone Boundaries.
152 #include "qemu/osdep.h"
153 #include "qemu/cutils.h"
154 #include "qemu/error-report.h"
155 #include "qemu/log.h"
156 #include "qemu/units.h"
157 #include "qapi/error.h"
158 #include "qapi/visitor.h"
159 #include "sysemu/sysemu.h"
160 #include "sysemu/block-backend.h"
161 #include "sysemu/hostmem.h"
162 #include "hw/pci/msix.h"
163 #include "migration/vmstate.h"
165 #include "nvme.h"
166 #include "trace.h"
168 #define NVME_MAX_IOQPAIRS 0xffff
169 #define NVME_DB_SIZE 4
170 #define NVME_SPEC_VER 0x00010400
171 #define NVME_CMB_BIR 2
172 #define NVME_PMR_BIR 4
173 #define NVME_TEMPERATURE 0x143
174 #define NVME_TEMPERATURE_WARNING 0x157
175 #define NVME_TEMPERATURE_CRITICAL 0x175
176 #define NVME_NUM_FW_SLOTS 1
177 #define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB)
179 #define NVME_GUEST_ERR(trace, fmt, ...) \
180 do { \
181 (trace_##trace)(__VA_ARGS__); \
182 qemu_log_mask(LOG_GUEST_ERROR, #trace \
183 " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
184 } while (0)
186 static const bool nvme_feature_support[NVME_FID_MAX] = {
187 [NVME_ARBITRATION] = true,
188 [NVME_POWER_MANAGEMENT] = true,
189 [NVME_TEMPERATURE_THRESHOLD] = true,
190 [NVME_ERROR_RECOVERY] = true,
191 [NVME_VOLATILE_WRITE_CACHE] = true,
192 [NVME_NUMBER_OF_QUEUES] = true,
193 [NVME_INTERRUPT_COALESCING] = true,
194 [NVME_INTERRUPT_VECTOR_CONF] = true,
195 [NVME_WRITE_ATOMICITY] = true,
196 [NVME_ASYNCHRONOUS_EVENT_CONF] = true,
197 [NVME_TIMESTAMP] = true,
198 [NVME_COMMAND_SET_PROFILE] = true,
201 static const uint32_t nvme_feature_cap[NVME_FID_MAX] = {
202 [NVME_TEMPERATURE_THRESHOLD] = NVME_FEAT_CAP_CHANGE,
203 [NVME_ERROR_RECOVERY] = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
204 [NVME_VOLATILE_WRITE_CACHE] = NVME_FEAT_CAP_CHANGE,
205 [NVME_NUMBER_OF_QUEUES] = NVME_FEAT_CAP_CHANGE,
206 [NVME_ASYNCHRONOUS_EVENT_CONF] = NVME_FEAT_CAP_CHANGE,
207 [NVME_TIMESTAMP] = NVME_FEAT_CAP_CHANGE,
208 [NVME_COMMAND_SET_PROFILE] = NVME_FEAT_CAP_CHANGE,
211 static const uint32_t nvme_cse_acs[256] = {
212 [NVME_ADM_CMD_DELETE_SQ] = NVME_CMD_EFF_CSUPP,
213 [NVME_ADM_CMD_CREATE_SQ] = NVME_CMD_EFF_CSUPP,
214 [NVME_ADM_CMD_GET_LOG_PAGE] = NVME_CMD_EFF_CSUPP,
215 [NVME_ADM_CMD_DELETE_CQ] = NVME_CMD_EFF_CSUPP,
216 [NVME_ADM_CMD_CREATE_CQ] = NVME_CMD_EFF_CSUPP,
217 [NVME_ADM_CMD_IDENTIFY] = NVME_CMD_EFF_CSUPP,
218 [NVME_ADM_CMD_ABORT] = NVME_CMD_EFF_CSUPP,
219 [NVME_ADM_CMD_SET_FEATURES] = NVME_CMD_EFF_CSUPP,
220 [NVME_ADM_CMD_GET_FEATURES] = NVME_CMD_EFF_CSUPP,
221 [NVME_ADM_CMD_ASYNC_EV_REQ] = NVME_CMD_EFF_CSUPP,
222 [NVME_ADM_CMD_NS_ATTACHMENT] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC,
223 [NVME_ADM_CMD_FORMAT_NVM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
226 static const uint32_t nvme_cse_iocs_none[256];
228 static const uint32_t nvme_cse_iocs_nvm[256] = {
229 [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
230 [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
231 [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
232 [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP,
233 [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
234 [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP,
235 [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
236 [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP,
239 static const uint32_t nvme_cse_iocs_zoned[256] = {
240 [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
241 [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
242 [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
243 [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP,
244 [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
245 [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP,
246 [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
247 [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP,
248 [NVME_CMD_ZONE_APPEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
249 [NVME_CMD_ZONE_MGMT_SEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
250 [NVME_CMD_ZONE_MGMT_RECV] = NVME_CMD_EFF_CSUPP,
253 static void nvme_process_sq(void *opaque);
255 static uint16_t nvme_sqid(NvmeRequest *req)
257 return le16_to_cpu(req->sq->sqid);
260 static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone,
261 NvmeZoneState state)
263 if (QTAILQ_IN_USE(zone, entry)) {
264 switch (nvme_get_zone_state(zone)) {
265 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
266 QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry);
267 break;
268 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
269 QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
270 break;
271 case NVME_ZONE_STATE_CLOSED:
272 QTAILQ_REMOVE(&ns->closed_zones, zone, entry);
273 break;
274 case NVME_ZONE_STATE_FULL:
275 QTAILQ_REMOVE(&ns->full_zones, zone, entry);
276 default:
281 nvme_set_zone_state(zone, state);
283 switch (state) {
284 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
285 QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry);
286 break;
287 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
288 QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry);
289 break;
290 case NVME_ZONE_STATE_CLOSED:
291 QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry);
292 break;
293 case NVME_ZONE_STATE_FULL:
294 QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry);
295 case NVME_ZONE_STATE_READ_ONLY:
296 break;
297 default:
298 zone->d.za = 0;
303 * Check if we can open a zone without exceeding open/active limits.
304 * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5).
306 static int nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn)
308 if (ns->params.max_active_zones != 0 &&
309 ns->nr_active_zones + act > ns->params.max_active_zones) {
310 trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones);
311 return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR;
313 if (ns->params.max_open_zones != 0 &&
314 ns->nr_open_zones + opn > ns->params.max_open_zones) {
315 trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones);
316 return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR;
319 return NVME_SUCCESS;
322 static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
324 hwaddr hi, lo;
326 if (!n->cmb.cmse) {
327 return false;
330 lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
331 hi = lo + int128_get64(n->cmb.mem.size);
333 return addr >= lo && addr < hi;
336 static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr)
338 hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
339 return &n->cmb.buf[addr - base];
342 static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr)
344 hwaddr hi;
346 if (!n->pmr.cmse) {
347 return false;
350 hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size);
352 return addr >= n->pmr.cba && addr < hi;
355 static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr)
357 return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba);
360 static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
362 hwaddr hi = addr + size - 1;
363 if (hi < addr) {
364 return 1;
367 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
368 memcpy(buf, nvme_addr_to_cmb(n, addr), size);
369 return 0;
372 if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
373 memcpy(buf, nvme_addr_to_pmr(n, addr), size);
374 return 0;
377 return pci_dma_read(&n->parent_obj, addr, buf, size);
380 static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, void *buf, int size)
382 hwaddr hi = addr + size - 1;
383 if (hi < addr) {
384 return 1;
387 if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
388 memcpy(nvme_addr_to_cmb(n, addr), buf, size);
389 return 0;
392 if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
393 memcpy(nvme_addr_to_pmr(n, addr), buf, size);
394 return 0;
397 return pci_dma_write(&n->parent_obj, addr, buf, size);
400 static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid)
402 return nsid &&
403 (nsid == NVME_NSID_BROADCAST || nsid <= NVME_MAX_NAMESPACES);
406 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
408 return sqid < n->params.max_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
411 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
413 return cqid < n->params.max_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
416 static void nvme_inc_cq_tail(NvmeCQueue *cq)
418 cq->tail++;
419 if (cq->tail >= cq->size) {
420 cq->tail = 0;
421 cq->phase = !cq->phase;
425 static void nvme_inc_sq_head(NvmeSQueue *sq)
427 sq->head = (sq->head + 1) % sq->size;
430 static uint8_t nvme_cq_full(NvmeCQueue *cq)
432 return (cq->tail + 1) % cq->size == cq->head;
435 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
437 return sq->head == sq->tail;
440 static void nvme_irq_check(NvmeCtrl *n)
442 uint32_t intms = ldl_le_p(&n->bar.intms);
444 if (msix_enabled(&(n->parent_obj))) {
445 return;
447 if (~intms & n->irq_status) {
448 pci_irq_assert(&n->parent_obj);
449 } else {
450 pci_irq_deassert(&n->parent_obj);
454 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
456 if (cq->irq_enabled) {
457 if (msix_enabled(&(n->parent_obj))) {
458 trace_pci_nvme_irq_msix(cq->vector);
459 msix_notify(&(n->parent_obj), cq->vector);
460 } else {
461 trace_pci_nvme_irq_pin();
462 assert(cq->vector < 32);
463 n->irq_status |= 1 << cq->vector;
464 nvme_irq_check(n);
466 } else {
467 trace_pci_nvme_irq_masked();
471 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
473 if (cq->irq_enabled) {
474 if (msix_enabled(&(n->parent_obj))) {
475 return;
476 } else {
477 assert(cq->vector < 32);
478 if (!n->cq_pending) {
479 n->irq_status &= ~(1 << cq->vector);
481 nvme_irq_check(n);
486 static void nvme_req_clear(NvmeRequest *req)
488 req->ns = NULL;
489 req->opaque = NULL;
490 req->aiocb = NULL;
491 memset(&req->cqe, 0x0, sizeof(req->cqe));
492 req->status = NVME_SUCCESS;
495 static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma)
497 if (dma) {
498 pci_dma_sglist_init(&sg->qsg, &n->parent_obj, 0);
499 sg->flags = NVME_SG_DMA;
500 } else {
501 qemu_iovec_init(&sg->iov, 0);
504 sg->flags |= NVME_SG_ALLOC;
507 static inline void nvme_sg_unmap(NvmeSg *sg)
509 if (!(sg->flags & NVME_SG_ALLOC)) {
510 return;
513 if (sg->flags & NVME_SG_DMA) {
514 qemu_sglist_destroy(&sg->qsg);
515 } else {
516 qemu_iovec_destroy(&sg->iov);
519 memset(sg, 0x0, sizeof(*sg));
523 * When metadata is transfered as extended LBAs, the DPTR mapped into `sg`
524 * holds both data and metadata. This function splits the data and metadata
525 * into two separate QSG/IOVs.
527 static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data,
528 NvmeSg *mdata)
530 NvmeSg *dst = data;
531 uint32_t trans_len, count = ns->lbasz;
532 uint64_t offset = 0;
533 bool dma = sg->flags & NVME_SG_DMA;
534 size_t sge_len;
535 size_t sg_len = dma ? sg->qsg.size : sg->iov.size;
536 int sg_idx = 0;
538 assert(sg->flags & NVME_SG_ALLOC);
540 while (sg_len) {
541 sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
543 trans_len = MIN(sg_len, count);
544 trans_len = MIN(trans_len, sge_len - offset);
546 if (dst) {
547 if (dma) {
548 qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset,
549 trans_len);
550 } else {
551 qemu_iovec_add(&dst->iov,
552 sg->iov.iov[sg_idx].iov_base + offset,
553 trans_len);
557 sg_len -= trans_len;
558 count -= trans_len;
559 offset += trans_len;
561 if (count == 0) {
562 dst = (dst == data) ? mdata : data;
563 count = (dst == data) ? ns->lbasz : ns->lbaf.ms;
566 if (sge_len == offset) {
567 offset = 0;
568 sg_idx++;
573 static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
574 size_t len)
576 if (!len) {
577 return NVME_SUCCESS;
580 trace_pci_nvme_map_addr_cmb(addr, len);
582 if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) {
583 return NVME_DATA_TRAS_ERROR;
586 qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len);
588 return NVME_SUCCESS;
591 static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
592 size_t len)
594 if (!len) {
595 return NVME_SUCCESS;
598 if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) {
599 return NVME_DATA_TRAS_ERROR;
602 qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len);
604 return NVME_SUCCESS;
607 static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len)
609 bool cmb = false, pmr = false;
611 if (!len) {
612 return NVME_SUCCESS;
615 trace_pci_nvme_map_addr(addr, len);
617 if (nvme_addr_is_cmb(n, addr)) {
618 cmb = true;
619 } else if (nvme_addr_is_pmr(n, addr)) {
620 pmr = true;
623 if (cmb || pmr) {
624 if (sg->flags & NVME_SG_DMA) {
625 return NVME_INVALID_USE_OF_CMB | NVME_DNR;
628 if (sg->iov.niov + 1 > IOV_MAX) {
629 goto max_mappings_exceeded;
632 if (cmb) {
633 return nvme_map_addr_cmb(n, &sg->iov, addr, len);
634 } else {
635 return nvme_map_addr_pmr(n, &sg->iov, addr, len);
639 if (!(sg->flags & NVME_SG_DMA)) {
640 return NVME_INVALID_USE_OF_CMB | NVME_DNR;
643 if (sg->qsg.nsg + 1 > IOV_MAX) {
644 goto max_mappings_exceeded;
647 qemu_sglist_add(&sg->qsg, addr, len);
649 return NVME_SUCCESS;
651 max_mappings_exceeded:
652 NVME_GUEST_ERR(pci_nvme_ub_too_many_mappings,
653 "number of mappings exceed 1024");
654 return NVME_INTERNAL_DEV_ERROR | NVME_DNR;
657 static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr)
659 return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr));
662 static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1,
663 uint64_t prp2, uint32_t len)
665 hwaddr trans_len = n->page_size - (prp1 % n->page_size);
666 trans_len = MIN(len, trans_len);
667 int num_prps = (len >> n->page_bits) + 1;
668 uint16_t status;
669 int ret;
671 trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps);
673 nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1));
675 status = nvme_map_addr(n, sg, prp1, trans_len);
676 if (status) {
677 goto unmap;
680 len -= trans_len;
681 if (len) {
682 if (len > n->page_size) {
683 uint64_t prp_list[n->max_prp_ents];
684 uint32_t nents, prp_trans;
685 int i = 0;
688 * The first PRP list entry, pointed to by PRP2 may contain offset.
689 * Hence, we need to calculate the number of entries in based on
690 * that offset.
692 nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3;
693 prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
694 ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
695 if (ret) {
696 trace_pci_nvme_err_addr_read(prp2);
697 status = NVME_DATA_TRAS_ERROR;
698 goto unmap;
700 while (len != 0) {
701 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
703 if (i == nents - 1 && len > n->page_size) {
704 if (unlikely(prp_ent & (n->page_size - 1))) {
705 trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
706 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
707 goto unmap;
710 i = 0;
711 nents = (len + n->page_size - 1) >> n->page_bits;
712 nents = MIN(nents, n->max_prp_ents);
713 prp_trans = nents * sizeof(uint64_t);
714 ret = nvme_addr_read(n, prp_ent, (void *)prp_list,
715 prp_trans);
716 if (ret) {
717 trace_pci_nvme_err_addr_read(prp_ent);
718 status = NVME_DATA_TRAS_ERROR;
719 goto unmap;
721 prp_ent = le64_to_cpu(prp_list[i]);
724 if (unlikely(prp_ent & (n->page_size - 1))) {
725 trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
726 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
727 goto unmap;
730 trans_len = MIN(len, n->page_size);
731 status = nvme_map_addr(n, sg, prp_ent, trans_len);
732 if (status) {
733 goto unmap;
736 len -= trans_len;
737 i++;
739 } else {
740 if (unlikely(prp2 & (n->page_size - 1))) {
741 trace_pci_nvme_err_invalid_prp2_align(prp2);
742 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
743 goto unmap;
745 status = nvme_map_addr(n, sg, prp2, len);
746 if (status) {
747 goto unmap;
752 return NVME_SUCCESS;
754 unmap:
755 nvme_sg_unmap(sg);
756 return status;
760 * Map 'nsgld' data descriptors from 'segment'. The function will subtract the
761 * number of bytes mapped in len.
763 static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg,
764 NvmeSglDescriptor *segment, uint64_t nsgld,
765 size_t *len, NvmeCmd *cmd)
767 dma_addr_t addr, trans_len;
768 uint32_t dlen;
769 uint16_t status;
771 for (int i = 0; i < nsgld; i++) {
772 uint8_t type = NVME_SGL_TYPE(segment[i].type);
774 switch (type) {
775 case NVME_SGL_DESCR_TYPE_BIT_BUCKET:
776 if (cmd->opcode == NVME_CMD_WRITE) {
777 continue;
779 case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
780 break;
781 case NVME_SGL_DESCR_TYPE_SEGMENT:
782 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
783 return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR;
784 default:
785 return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR;
788 dlen = le32_to_cpu(segment[i].len);
790 if (!dlen) {
791 continue;
794 if (*len == 0) {
796 * All data has been mapped, but the SGL contains additional
797 * segments and/or descriptors. The controller might accept
798 * ignoring the rest of the SGL.
800 uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls);
801 if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) {
802 break;
805 trace_pci_nvme_err_invalid_sgl_excess_length(dlen);
806 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
809 trans_len = MIN(*len, dlen);
811 if (type == NVME_SGL_DESCR_TYPE_BIT_BUCKET) {
812 goto next;
815 addr = le64_to_cpu(segment[i].addr);
817 if (UINT64_MAX - addr < dlen) {
818 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
821 status = nvme_map_addr(n, sg, addr, trans_len);
822 if (status) {
823 return status;
826 next:
827 *len -= trans_len;
830 return NVME_SUCCESS;
833 static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl,
834 size_t len, NvmeCmd *cmd)
837 * Read the segment in chunks of 256 descriptors (one 4k page) to avoid
838 * dynamically allocating a potentially huge SGL. The spec allows the SGL
839 * to be larger (as in number of bytes required to describe the SGL
840 * descriptors and segment chain) than the command transfer size, so it is
841 * not bounded by MDTS.
843 const int SEG_CHUNK_SIZE = 256;
845 NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld;
846 uint64_t nsgld;
847 uint32_t seg_len;
848 uint16_t status;
849 hwaddr addr;
850 int ret;
852 sgld = &sgl;
853 addr = le64_to_cpu(sgl.addr);
855 trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len);
857 nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr));
860 * If the entire transfer can be described with a single data block it can
861 * be mapped directly.
863 if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
864 status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd);
865 if (status) {
866 goto unmap;
869 goto out;
872 for (;;) {
873 switch (NVME_SGL_TYPE(sgld->type)) {
874 case NVME_SGL_DESCR_TYPE_SEGMENT:
875 case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
876 break;
877 default:
878 return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
881 seg_len = le32_to_cpu(sgld->len);
883 /* check the length of the (Last) Segment descriptor */
884 if ((!seg_len || seg_len & 0xf) &&
885 (NVME_SGL_TYPE(sgld->type) != NVME_SGL_DESCR_TYPE_BIT_BUCKET)) {
886 return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
889 if (UINT64_MAX - addr < seg_len) {
890 return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
893 nsgld = seg_len / sizeof(NvmeSglDescriptor);
895 while (nsgld > SEG_CHUNK_SIZE) {
896 if (nvme_addr_read(n, addr, segment, sizeof(segment))) {
897 trace_pci_nvme_err_addr_read(addr);
898 status = NVME_DATA_TRAS_ERROR;
899 goto unmap;
902 status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE,
903 &len, cmd);
904 if (status) {
905 goto unmap;
908 nsgld -= SEG_CHUNK_SIZE;
909 addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor);
912 ret = nvme_addr_read(n, addr, segment, nsgld *
913 sizeof(NvmeSglDescriptor));
914 if (ret) {
915 trace_pci_nvme_err_addr_read(addr);
916 status = NVME_DATA_TRAS_ERROR;
917 goto unmap;
920 last_sgld = &segment[nsgld - 1];
923 * If the segment ends with a Data Block or Bit Bucket Descriptor Type,
924 * then we are done.
926 switch (NVME_SGL_TYPE(last_sgld->type)) {
927 case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
928 case NVME_SGL_DESCR_TYPE_BIT_BUCKET:
929 status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd);
930 if (status) {
931 goto unmap;
934 goto out;
936 default:
937 break;
941 * If the last descriptor was not a Data Block or Bit Bucket, then the
942 * current segment must not be a Last Segment.
944 if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) {
945 status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
946 goto unmap;
949 sgld = last_sgld;
950 addr = le64_to_cpu(sgld->addr);
953 * Do not map the last descriptor; it will be a Segment or Last Segment
954 * descriptor and is handled by the next iteration.
956 status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd);
957 if (status) {
958 goto unmap;
962 out:
963 /* if there is any residual left in len, the SGL was too short */
964 if (len) {
965 status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
966 goto unmap;
969 return NVME_SUCCESS;
971 unmap:
972 nvme_sg_unmap(sg);
973 return status;
976 uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
977 NvmeCmd *cmd)
979 uint64_t prp1, prp2;
981 switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) {
982 case NVME_PSDT_PRP:
983 prp1 = le64_to_cpu(cmd->dptr.prp1);
984 prp2 = le64_to_cpu(cmd->dptr.prp2);
986 return nvme_map_prp(n, sg, prp1, prp2, len);
987 case NVME_PSDT_SGL_MPTR_CONTIGUOUS:
988 case NVME_PSDT_SGL_MPTR_SGL:
989 return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd);
990 default:
991 return NVME_INVALID_FIELD;
995 static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
996 NvmeCmd *cmd)
998 int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags);
999 hwaddr mptr = le64_to_cpu(cmd->mptr);
1000 uint16_t status;
1002 if (psdt == NVME_PSDT_SGL_MPTR_SGL) {
1003 NvmeSglDescriptor sgl;
1005 if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) {
1006 return NVME_DATA_TRAS_ERROR;
1009 status = nvme_map_sgl(n, sg, sgl, len, cmd);
1010 if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) {
1011 status = NVME_MD_SGL_LEN_INVALID | NVME_DNR;
1014 return status;
1017 nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr));
1018 status = nvme_map_addr(n, sg, mptr, len);
1019 if (status) {
1020 nvme_sg_unmap(sg);
1023 return status;
1026 static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1028 NvmeNamespace *ns = req->ns;
1029 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1030 bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1031 bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1032 size_t len = nvme_l2b(ns, nlb);
1033 uint16_t status;
1035 if (nvme_ns_ext(ns) && !(pi && pract && ns->lbaf.ms == 8)) {
1036 NvmeSg sg;
1038 len += nvme_m2b(ns, nlb);
1040 status = nvme_map_dptr(n, &sg, len, &req->cmd);
1041 if (status) {
1042 return status;
1045 nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1046 nvme_sg_split(&sg, ns, &req->sg, NULL);
1047 nvme_sg_unmap(&sg);
1049 return NVME_SUCCESS;
1052 return nvme_map_dptr(n, &req->sg, len, &req->cmd);
1055 static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1057 NvmeNamespace *ns = req->ns;
1058 size_t len = nvme_m2b(ns, nlb);
1059 uint16_t status;
1061 if (nvme_ns_ext(ns)) {
1062 NvmeSg sg;
1064 len += nvme_l2b(ns, nlb);
1066 status = nvme_map_dptr(n, &sg, len, &req->cmd);
1067 if (status) {
1068 return status;
1071 nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1072 nvme_sg_split(&sg, ns, NULL, &req->sg);
1073 nvme_sg_unmap(&sg);
1075 return NVME_SUCCESS;
1078 return nvme_map_mptr(n, &req->sg, len, &req->cmd);
1081 static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr,
1082 uint32_t len, uint32_t bytes,
1083 int32_t skip_bytes, int64_t offset,
1084 NvmeTxDirection dir)
1086 hwaddr addr;
1087 uint32_t trans_len, count = bytes;
1088 bool dma = sg->flags & NVME_SG_DMA;
1089 int64_t sge_len;
1090 int sg_idx = 0;
1091 int ret;
1093 assert(sg->flags & NVME_SG_ALLOC);
1095 while (len) {
1096 sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
1098 if (sge_len - offset < 0) {
1099 offset -= sge_len;
1100 sg_idx++;
1101 continue;
1104 if (sge_len == offset) {
1105 offset = 0;
1106 sg_idx++;
1107 continue;
1110 trans_len = MIN(len, count);
1111 trans_len = MIN(trans_len, sge_len - offset);
1113 if (dma) {
1114 addr = sg->qsg.sg[sg_idx].base + offset;
1115 } else {
1116 addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset;
1119 if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1120 ret = nvme_addr_read(n, addr, ptr, trans_len);
1121 } else {
1122 ret = nvme_addr_write(n, addr, ptr, trans_len);
1125 if (ret) {
1126 return NVME_DATA_TRAS_ERROR;
1129 ptr += trans_len;
1130 len -= trans_len;
1131 count -= trans_len;
1132 offset += trans_len;
1134 if (count == 0) {
1135 count = bytes;
1136 offset += skip_bytes;
1140 return NVME_SUCCESS;
1143 static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr, uint32_t len,
1144 NvmeTxDirection dir)
1146 assert(sg->flags & NVME_SG_ALLOC);
1148 if (sg->flags & NVME_SG_DMA) {
1149 const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
1150 uint64_t residual;
1152 if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1153 residual = dma_buf_write(ptr, len, &sg->qsg, attrs);
1154 } else {
1155 residual = dma_buf_read(ptr, len, &sg->qsg, attrs);
1158 if (unlikely(residual)) {
1159 trace_pci_nvme_err_invalid_dma();
1160 return NVME_INVALID_FIELD | NVME_DNR;
1162 } else {
1163 size_t bytes;
1165 if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1166 bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len);
1167 } else {
1168 bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len);
1171 if (unlikely(bytes != len)) {
1172 trace_pci_nvme_err_invalid_dma();
1173 return NVME_INVALID_FIELD | NVME_DNR;
1177 return NVME_SUCCESS;
1180 static inline uint16_t nvme_c2h(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
1181 NvmeRequest *req)
1183 uint16_t status;
1185 status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1186 if (status) {
1187 return status;
1190 return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE);
1193 static inline uint16_t nvme_h2c(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
1194 NvmeRequest *req)
1196 uint16_t status;
1198 status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1199 if (status) {
1200 return status;
1203 return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE);
1206 uint16_t nvme_bounce_data(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
1207 NvmeTxDirection dir, NvmeRequest *req)
1209 NvmeNamespace *ns = req->ns;
1210 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1211 bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1212 bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1214 if (nvme_ns_ext(ns) && !(pi && pract && ns->lbaf.ms == 8)) {
1215 return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbasz,
1216 ns->lbaf.ms, 0, dir);
1219 return nvme_tx(n, &req->sg, ptr, len, dir);
1222 uint16_t nvme_bounce_mdata(NvmeCtrl *n, uint8_t *ptr, uint32_t len,
1223 NvmeTxDirection dir, NvmeRequest *req)
1225 NvmeNamespace *ns = req->ns;
1226 uint16_t status;
1228 if (nvme_ns_ext(ns)) {
1229 return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbaf.ms,
1230 ns->lbasz, ns->lbasz, dir);
1233 nvme_sg_unmap(&req->sg);
1235 status = nvme_map_mptr(n, &req->sg, len, &req->cmd);
1236 if (status) {
1237 return status;
1240 return nvme_tx(n, &req->sg, ptr, len, dir);
1243 static inline void nvme_blk_read(BlockBackend *blk, int64_t offset,
1244 BlockCompletionFunc *cb, NvmeRequest *req)
1246 assert(req->sg.flags & NVME_SG_ALLOC);
1248 if (req->sg.flags & NVME_SG_DMA) {
1249 req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
1250 cb, req);
1251 } else {
1252 req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req);
1256 static inline void nvme_blk_write(BlockBackend *blk, int64_t offset,
1257 BlockCompletionFunc *cb, NvmeRequest *req)
1259 assert(req->sg.flags & NVME_SG_ALLOC);
1261 if (req->sg.flags & NVME_SG_DMA) {
1262 req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
1263 cb, req);
1264 } else {
1265 req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req);
1269 static void nvme_post_cqes(void *opaque)
1271 NvmeCQueue *cq = opaque;
1272 NvmeCtrl *n = cq->ctrl;
1273 NvmeRequest *req, *next;
1274 bool pending = cq->head != cq->tail;
1275 int ret;
1277 QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
1278 NvmeSQueue *sq;
1279 hwaddr addr;
1281 if (nvme_cq_full(cq)) {
1282 break;
1285 sq = req->sq;
1286 req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
1287 req->cqe.sq_id = cpu_to_le16(sq->sqid);
1288 req->cqe.sq_head = cpu_to_le16(sq->head);
1289 addr = cq->dma_addr + cq->tail * n->cqe_size;
1290 ret = pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
1291 sizeof(req->cqe));
1292 if (ret) {
1293 trace_pci_nvme_err_addr_write(addr);
1294 trace_pci_nvme_err_cfs();
1295 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
1296 break;
1298 QTAILQ_REMOVE(&cq->req_list, req, entry);
1299 nvme_inc_cq_tail(cq);
1300 nvme_sg_unmap(&req->sg);
1301 QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
1303 if (cq->tail != cq->head) {
1304 if (cq->irq_enabled && !pending) {
1305 n->cq_pending++;
1308 nvme_irq_assert(n, cq);
1312 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
1314 assert(cq->cqid == req->sq->cqid);
1315 trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid,
1316 le32_to_cpu(req->cqe.result),
1317 le32_to_cpu(req->cqe.dw1),
1318 req->status);
1320 if (req->status) {
1321 trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns),
1322 req->status, req->cmd.opcode);
1325 QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
1326 QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
1327 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1330 static void nvme_process_aers(void *opaque)
1332 NvmeCtrl *n = opaque;
1333 NvmeAsyncEvent *event, *next;
1335 trace_pci_nvme_process_aers(n->aer_queued);
1337 QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
1338 NvmeRequest *req;
1339 NvmeAerResult *result;
1341 /* can't post cqe if there is nothing to complete */
1342 if (!n->outstanding_aers) {
1343 trace_pci_nvme_no_outstanding_aers();
1344 break;
1347 /* ignore if masked (cqe posted, but event not cleared) */
1348 if (n->aer_mask & (1 << event->result.event_type)) {
1349 trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask);
1350 continue;
1353 QTAILQ_REMOVE(&n->aer_queue, event, entry);
1354 n->aer_queued--;
1356 n->aer_mask |= 1 << event->result.event_type;
1357 n->outstanding_aers--;
1359 req = n->aer_reqs[n->outstanding_aers];
1361 result = (NvmeAerResult *) &req->cqe.result;
1362 result->event_type = event->result.event_type;
1363 result->event_info = event->result.event_info;
1364 result->log_page = event->result.log_page;
1365 g_free(event);
1367 trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info,
1368 result->log_page);
1370 nvme_enqueue_req_completion(&n->admin_cq, req);
1374 static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type,
1375 uint8_t event_info, uint8_t log_page)
1377 NvmeAsyncEvent *event;
1379 trace_pci_nvme_enqueue_event(event_type, event_info, log_page);
1381 if (n->aer_queued == n->params.aer_max_queued) {
1382 trace_pci_nvme_enqueue_event_noqueue(n->aer_queued);
1383 return;
1386 event = g_new(NvmeAsyncEvent, 1);
1387 event->result = (NvmeAerResult) {
1388 .event_type = event_type,
1389 .event_info = event_info,
1390 .log_page = log_page,
1393 QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry);
1394 n->aer_queued++;
1396 nvme_process_aers(n);
1399 static void nvme_smart_event(NvmeCtrl *n, uint8_t event)
1401 uint8_t aer_info;
1403 /* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */
1404 if (!(NVME_AEC_SMART(n->features.async_config) & event)) {
1405 return;
1408 switch (event) {
1409 case NVME_SMART_SPARE:
1410 aer_info = NVME_AER_INFO_SMART_SPARE_THRESH;
1411 break;
1412 case NVME_SMART_TEMPERATURE:
1413 aer_info = NVME_AER_INFO_SMART_TEMP_THRESH;
1414 break;
1415 case NVME_SMART_RELIABILITY:
1416 case NVME_SMART_MEDIA_READ_ONLY:
1417 case NVME_SMART_FAILED_VOLATILE_MEDIA:
1418 case NVME_SMART_PMR_UNRELIABLE:
1419 aer_info = NVME_AER_INFO_SMART_RELIABILITY;
1420 break;
1421 default:
1422 return;
1425 nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO);
1428 static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type)
1430 n->aer_mask &= ~(1 << event_type);
1431 if (!QTAILQ_EMPTY(&n->aer_queue)) {
1432 nvme_process_aers(n);
1436 static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len)
1438 uint8_t mdts = n->params.mdts;
1440 if (mdts && len > n->page_size << mdts) {
1441 trace_pci_nvme_err_mdts(len);
1442 return NVME_INVALID_FIELD | NVME_DNR;
1445 return NVME_SUCCESS;
1448 static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba,
1449 uint32_t nlb)
1451 uint64_t nsze = le64_to_cpu(ns->id_ns.nsze);
1453 if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) {
1454 trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze);
1455 return NVME_LBA_RANGE | NVME_DNR;
1458 return NVME_SUCCESS;
1461 static int nvme_block_status_all(NvmeNamespace *ns, uint64_t slba,
1462 uint32_t nlb, int flags)
1464 BlockDriverState *bs = blk_bs(ns->blkconf.blk);
1466 int64_t pnum = 0, bytes = nvme_l2b(ns, nlb);
1467 int64_t offset = nvme_l2b(ns, slba);
1468 int ret;
1471 * `pnum` holds the number of bytes after offset that shares the same
1472 * allocation status as the byte at offset. If `pnum` is different from
1473 * `bytes`, we should check the allocation status of the next range and
1474 * continue this until all bytes have been checked.
1476 do {
1477 bytes -= pnum;
1479 ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL);
1480 if (ret < 0) {
1481 return ret;
1485 trace_pci_nvme_block_status(offset, bytes, pnum, ret,
1486 !!(ret & BDRV_BLOCK_ZERO));
1488 if (!(ret & flags)) {
1489 return 1;
1492 offset += pnum;
1493 } while (pnum != bytes);
1495 return 0;
1498 static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba,
1499 uint32_t nlb)
1501 int ret;
1502 Error *err = NULL;
1504 ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_DATA);
1505 if (ret) {
1506 if (ret < 0) {
1507 error_setg_errno(&err, -ret, "unable to get block status");
1508 error_report_err(err);
1510 return NVME_INTERNAL_DEV_ERROR;
1513 return NVME_DULB;
1516 return NVME_SUCCESS;
1519 static void nvme_aio_err(NvmeRequest *req, int ret)
1521 uint16_t status = NVME_SUCCESS;
1522 Error *local_err = NULL;
1524 switch (req->cmd.opcode) {
1525 case NVME_CMD_READ:
1526 status = NVME_UNRECOVERED_READ;
1527 break;
1528 case NVME_CMD_FLUSH:
1529 case NVME_CMD_WRITE:
1530 case NVME_CMD_WRITE_ZEROES:
1531 case NVME_CMD_ZONE_APPEND:
1532 status = NVME_WRITE_FAULT;
1533 break;
1534 default:
1535 status = NVME_INTERNAL_DEV_ERROR;
1536 break;
1539 trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status);
1541 error_setg_errno(&local_err, -ret, "aio failed");
1542 error_report_err(local_err);
1545 * Set the command status code to the first encountered error but allow a
1546 * subsequent Internal Device Error to trump it.
1548 if (req->status && status != NVME_INTERNAL_DEV_ERROR) {
1549 return;
1552 req->status = status;
1555 static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba)
1557 return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 :
1558 slba / ns->zone_size;
1561 static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba)
1563 uint32_t zone_idx = nvme_zone_idx(ns, slba);
1565 if (zone_idx >= ns->num_zones) {
1566 return NULL;
1569 return &ns->zone_array[zone_idx];
1572 static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone)
1574 uint64_t zslba = zone->d.zslba;
1576 switch (nvme_get_zone_state(zone)) {
1577 case NVME_ZONE_STATE_EMPTY:
1578 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1579 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1580 case NVME_ZONE_STATE_CLOSED:
1581 return NVME_SUCCESS;
1582 case NVME_ZONE_STATE_FULL:
1583 trace_pci_nvme_err_zone_is_full(zslba);
1584 return NVME_ZONE_FULL;
1585 case NVME_ZONE_STATE_OFFLINE:
1586 trace_pci_nvme_err_zone_is_offline(zslba);
1587 return NVME_ZONE_OFFLINE;
1588 case NVME_ZONE_STATE_READ_ONLY:
1589 trace_pci_nvme_err_zone_is_read_only(zslba);
1590 return NVME_ZONE_READ_ONLY;
1591 default:
1592 assert(false);
1595 return NVME_INTERNAL_DEV_ERROR;
1598 static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone,
1599 uint64_t slba, uint32_t nlb)
1601 uint64_t zcap = nvme_zone_wr_boundary(zone);
1602 uint16_t status;
1604 status = nvme_check_zone_state_for_write(zone);
1605 if (status) {
1606 return status;
1609 if (unlikely(slba != zone->w_ptr)) {
1610 trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba, zone->w_ptr);
1611 return NVME_ZONE_INVALID_WRITE;
1614 if (unlikely((slba + nlb) > zcap)) {
1615 trace_pci_nvme_err_zone_boundary(slba, nlb, zcap);
1616 return NVME_ZONE_BOUNDARY_ERROR;
1619 return NVME_SUCCESS;
1622 static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone)
1624 switch (nvme_get_zone_state(zone)) {
1625 case NVME_ZONE_STATE_EMPTY:
1626 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1627 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1628 case NVME_ZONE_STATE_FULL:
1629 case NVME_ZONE_STATE_CLOSED:
1630 case NVME_ZONE_STATE_READ_ONLY:
1631 return NVME_SUCCESS;
1632 case NVME_ZONE_STATE_OFFLINE:
1633 trace_pci_nvme_err_zone_is_offline(zone->d.zslba);
1634 return NVME_ZONE_OFFLINE;
1635 default:
1636 assert(false);
1639 return NVME_INTERNAL_DEV_ERROR;
1642 static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba,
1643 uint32_t nlb)
1645 NvmeZone *zone;
1646 uint64_t bndry, end;
1647 uint16_t status;
1649 zone = nvme_get_zone_by_slba(ns, slba);
1650 assert(zone);
1652 bndry = nvme_zone_rd_boundary(ns, zone);
1653 end = slba + nlb;
1655 status = nvme_check_zone_state_for_read(zone);
1656 if (status) {
1658 } else if (unlikely(end > bndry)) {
1659 if (!ns->params.cross_zone_read) {
1660 status = NVME_ZONE_BOUNDARY_ERROR;
1661 } else {
1663 * Read across zone boundary - check that all subsequent
1664 * zones that are being read have an appropriate state.
1666 do {
1667 zone++;
1668 status = nvme_check_zone_state_for_read(zone);
1669 if (status) {
1670 break;
1672 } while (end > nvme_zone_rd_boundary(ns, zone));
1676 return status;
1679 static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone)
1681 switch (nvme_get_zone_state(zone)) {
1682 case NVME_ZONE_STATE_FULL:
1683 return NVME_SUCCESS;
1685 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1686 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1687 nvme_aor_dec_open(ns);
1688 /* fallthrough */
1689 case NVME_ZONE_STATE_CLOSED:
1690 nvme_aor_dec_active(ns);
1691 /* fallthrough */
1692 case NVME_ZONE_STATE_EMPTY:
1693 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL);
1694 return NVME_SUCCESS;
1696 default:
1697 return NVME_ZONE_INVAL_TRANSITION;
1701 static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone)
1703 switch (nvme_get_zone_state(zone)) {
1704 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1705 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1706 nvme_aor_dec_open(ns);
1707 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
1708 /* fall through */
1709 case NVME_ZONE_STATE_CLOSED:
1710 return NVME_SUCCESS;
1712 default:
1713 return NVME_ZONE_INVAL_TRANSITION;
1717 static uint16_t nvme_zrm_reset(NvmeNamespace *ns, NvmeZone *zone)
1719 switch (nvme_get_zone_state(zone)) {
1720 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1721 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1722 nvme_aor_dec_open(ns);
1723 /* fallthrough */
1724 case NVME_ZONE_STATE_CLOSED:
1725 nvme_aor_dec_active(ns);
1726 /* fallthrough */
1727 case NVME_ZONE_STATE_FULL:
1728 zone->w_ptr = zone->d.zslba;
1729 zone->d.wp = zone->w_ptr;
1730 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY);
1731 /* fallthrough */
1732 case NVME_ZONE_STATE_EMPTY:
1733 return NVME_SUCCESS;
1735 default:
1736 return NVME_ZONE_INVAL_TRANSITION;
1740 static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns)
1742 NvmeZone *zone;
1744 if (ns->params.max_open_zones &&
1745 ns->nr_open_zones == ns->params.max_open_zones) {
1746 zone = QTAILQ_FIRST(&ns->imp_open_zones);
1747 if (zone) {
1749 * Automatically close this implicitly open zone.
1751 QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
1752 nvme_zrm_close(ns, zone);
1757 enum {
1758 NVME_ZRM_AUTO = 1 << 0,
1761 static uint16_t nvme_zrm_open_flags(NvmeCtrl *n, NvmeNamespace *ns,
1762 NvmeZone *zone, int flags)
1764 int act = 0;
1765 uint16_t status;
1767 switch (nvme_get_zone_state(zone)) {
1768 case NVME_ZONE_STATE_EMPTY:
1769 act = 1;
1771 /* fallthrough */
1773 case NVME_ZONE_STATE_CLOSED:
1774 if (n->params.auto_transition_zones) {
1775 nvme_zrm_auto_transition_zone(ns);
1777 status = nvme_aor_check(ns, act, 1);
1778 if (status) {
1779 return status;
1782 if (act) {
1783 nvme_aor_inc_active(ns);
1786 nvme_aor_inc_open(ns);
1788 if (flags & NVME_ZRM_AUTO) {
1789 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN);
1790 return NVME_SUCCESS;
1793 /* fallthrough */
1795 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1796 if (flags & NVME_ZRM_AUTO) {
1797 return NVME_SUCCESS;
1800 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN);
1802 /* fallthrough */
1804 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1805 return NVME_SUCCESS;
1807 default:
1808 return NVME_ZONE_INVAL_TRANSITION;
1812 static inline uint16_t nvme_zrm_auto(NvmeCtrl *n, NvmeNamespace *ns,
1813 NvmeZone *zone)
1815 return nvme_zrm_open_flags(n, ns, zone, NVME_ZRM_AUTO);
1818 static inline uint16_t nvme_zrm_open(NvmeCtrl *n, NvmeNamespace *ns,
1819 NvmeZone *zone)
1821 return nvme_zrm_open_flags(n, ns, zone, 0);
1824 static void nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone,
1825 uint32_t nlb)
1827 zone->d.wp += nlb;
1829 if (zone->d.wp == nvme_zone_wr_boundary(zone)) {
1830 nvme_zrm_finish(ns, zone);
1834 static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req)
1836 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1837 NvmeZone *zone;
1838 uint64_t slba;
1839 uint32_t nlb;
1841 slba = le64_to_cpu(rw->slba);
1842 nlb = le16_to_cpu(rw->nlb) + 1;
1843 zone = nvme_get_zone_by_slba(ns, slba);
1844 assert(zone);
1846 nvme_advance_zone_wp(ns, zone, nlb);
1849 static inline bool nvme_is_write(NvmeRequest *req)
1851 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1853 return rw->opcode == NVME_CMD_WRITE ||
1854 rw->opcode == NVME_CMD_ZONE_APPEND ||
1855 rw->opcode == NVME_CMD_WRITE_ZEROES;
1858 static AioContext *nvme_get_aio_context(BlockAIOCB *acb)
1860 return qemu_get_aio_context();
1863 static void nvme_misc_cb(void *opaque, int ret)
1865 NvmeRequest *req = opaque;
1867 trace_pci_nvme_misc_cb(nvme_cid(req));
1869 if (ret) {
1870 nvme_aio_err(req, ret);
1873 nvme_enqueue_req_completion(nvme_cq(req), req);
1876 void nvme_rw_complete_cb(void *opaque, int ret)
1878 NvmeRequest *req = opaque;
1879 NvmeNamespace *ns = req->ns;
1880 BlockBackend *blk = ns->blkconf.blk;
1881 BlockAcctCookie *acct = &req->acct;
1882 BlockAcctStats *stats = blk_get_stats(blk);
1884 trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk));
1886 if (ret) {
1887 block_acct_failed(stats, acct);
1888 nvme_aio_err(req, ret);
1889 } else {
1890 block_acct_done(stats, acct);
1893 if (ns->params.zoned && nvme_is_write(req)) {
1894 nvme_finalize_zoned_write(ns, req);
1897 nvme_enqueue_req_completion(nvme_cq(req), req);
1900 static void nvme_rw_cb(void *opaque, int ret)
1902 NvmeRequest *req = opaque;
1903 NvmeNamespace *ns = req->ns;
1905 BlockBackend *blk = ns->blkconf.blk;
1907 trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk));
1909 if (ret) {
1910 goto out;
1913 if (ns->lbaf.ms) {
1914 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1915 uint64_t slba = le64_to_cpu(rw->slba);
1916 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
1917 uint64_t offset = nvme_moff(ns, slba);
1919 if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) {
1920 size_t mlen = nvme_m2b(ns, nlb);
1922 req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen,
1923 BDRV_REQ_MAY_UNMAP,
1924 nvme_rw_complete_cb, req);
1925 return;
1928 if (nvme_ns_ext(ns) || req->cmd.mptr) {
1929 uint16_t status;
1931 nvme_sg_unmap(&req->sg);
1932 status = nvme_map_mdata(nvme_ctrl(req), nlb, req);
1933 if (status) {
1934 ret = -EFAULT;
1935 goto out;
1938 if (req->cmd.opcode == NVME_CMD_READ) {
1939 return nvme_blk_read(blk, offset, nvme_rw_complete_cb, req);
1942 return nvme_blk_write(blk, offset, nvme_rw_complete_cb, req);
1946 out:
1947 nvme_rw_complete_cb(req, ret);
1950 static void nvme_verify_cb(void *opaque, int ret)
1952 NvmeBounceContext *ctx = opaque;
1953 NvmeRequest *req = ctx->req;
1954 NvmeNamespace *ns = req->ns;
1955 BlockBackend *blk = ns->blkconf.blk;
1956 BlockAcctCookie *acct = &req->acct;
1957 BlockAcctStats *stats = blk_get_stats(blk);
1958 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1959 uint64_t slba = le64_to_cpu(rw->slba);
1960 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
1961 uint16_t apptag = le16_to_cpu(rw->apptag);
1962 uint16_t appmask = le16_to_cpu(rw->appmask);
1963 uint32_t reftag = le32_to_cpu(rw->reftag);
1964 uint16_t status;
1966 trace_pci_nvme_verify_cb(nvme_cid(req), prinfo, apptag, appmask, reftag);
1968 if (ret) {
1969 block_acct_failed(stats, acct);
1970 nvme_aio_err(req, ret);
1971 goto out;
1974 block_acct_done(stats, acct);
1976 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
1977 status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce,
1978 ctx->mdata.iov.size, slba);
1979 if (status) {
1980 req->status = status;
1981 goto out;
1984 req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
1985 ctx->mdata.bounce, ctx->mdata.iov.size,
1986 prinfo, slba, apptag, appmask, &reftag);
1989 out:
1990 qemu_iovec_destroy(&ctx->data.iov);
1991 g_free(ctx->data.bounce);
1993 qemu_iovec_destroy(&ctx->mdata.iov);
1994 g_free(ctx->mdata.bounce);
1996 g_free(ctx);
1998 nvme_enqueue_req_completion(nvme_cq(req), req);
2002 static void nvme_verify_mdata_in_cb(void *opaque, int ret)
2004 NvmeBounceContext *ctx = opaque;
2005 NvmeRequest *req = ctx->req;
2006 NvmeNamespace *ns = req->ns;
2007 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2008 uint64_t slba = le64_to_cpu(rw->slba);
2009 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2010 size_t mlen = nvme_m2b(ns, nlb);
2011 uint64_t offset = nvme_moff(ns, slba);
2012 BlockBackend *blk = ns->blkconf.blk;
2014 trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk));
2016 if (ret) {
2017 goto out;
2020 ctx->mdata.bounce = g_malloc(mlen);
2022 qemu_iovec_reset(&ctx->mdata.iov);
2023 qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2025 req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2026 nvme_verify_cb, ctx);
2027 return;
2029 out:
2030 nvme_verify_cb(ctx, ret);
2033 struct nvme_compare_ctx {
2034 struct {
2035 QEMUIOVector iov;
2036 uint8_t *bounce;
2037 } data;
2039 struct {
2040 QEMUIOVector iov;
2041 uint8_t *bounce;
2042 } mdata;
2045 static void nvme_compare_mdata_cb(void *opaque, int ret)
2047 NvmeRequest *req = opaque;
2048 NvmeNamespace *ns = req->ns;
2049 NvmeCtrl *n = nvme_ctrl(req);
2050 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2051 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2052 uint16_t apptag = le16_to_cpu(rw->apptag);
2053 uint16_t appmask = le16_to_cpu(rw->appmask);
2054 uint32_t reftag = le32_to_cpu(rw->reftag);
2055 struct nvme_compare_ctx *ctx = req->opaque;
2056 g_autofree uint8_t *buf = NULL;
2057 BlockBackend *blk = ns->blkconf.blk;
2058 BlockAcctCookie *acct = &req->acct;
2059 BlockAcctStats *stats = blk_get_stats(blk);
2060 uint16_t status = NVME_SUCCESS;
2062 trace_pci_nvme_compare_mdata_cb(nvme_cid(req));
2064 if (ret) {
2065 block_acct_failed(stats, acct);
2066 nvme_aio_err(req, ret);
2067 goto out;
2070 buf = g_malloc(ctx->mdata.iov.size);
2072 status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size,
2073 NVME_TX_DIRECTION_TO_DEVICE, req);
2074 if (status) {
2075 req->status = status;
2076 goto out;
2079 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2080 uint64_t slba = le64_to_cpu(rw->slba);
2081 uint8_t *bufp;
2082 uint8_t *mbufp = ctx->mdata.bounce;
2083 uint8_t *end = mbufp + ctx->mdata.iov.size;
2084 int16_t pil = 0;
2086 status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2087 ctx->mdata.bounce, ctx->mdata.iov.size, prinfo,
2088 slba, apptag, appmask, &reftag);
2089 if (status) {
2090 req->status = status;
2091 goto out;
2095 * When formatted with protection information, do not compare the DIF
2096 * tuple.
2098 if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) {
2099 pil = ns->lbaf.ms - sizeof(NvmeDifTuple);
2102 for (bufp = buf; mbufp < end; bufp += ns->lbaf.ms, mbufp += ns->lbaf.ms) {
2103 if (memcmp(bufp + pil, mbufp + pil, ns->lbaf.ms - pil)) {
2104 req->status = NVME_CMP_FAILURE;
2105 goto out;
2109 goto out;
2112 if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) {
2113 req->status = NVME_CMP_FAILURE;
2114 goto out;
2117 block_acct_done(stats, acct);
2119 out:
2120 qemu_iovec_destroy(&ctx->data.iov);
2121 g_free(ctx->data.bounce);
2123 qemu_iovec_destroy(&ctx->mdata.iov);
2124 g_free(ctx->mdata.bounce);
2126 g_free(ctx);
2128 nvme_enqueue_req_completion(nvme_cq(req), req);
2131 static void nvme_compare_data_cb(void *opaque, int ret)
2133 NvmeRequest *req = opaque;
2134 NvmeCtrl *n = nvme_ctrl(req);
2135 NvmeNamespace *ns = req->ns;
2136 BlockBackend *blk = ns->blkconf.blk;
2137 BlockAcctCookie *acct = &req->acct;
2138 BlockAcctStats *stats = blk_get_stats(blk);
2140 struct nvme_compare_ctx *ctx = req->opaque;
2141 g_autofree uint8_t *buf = NULL;
2142 uint16_t status;
2144 trace_pci_nvme_compare_data_cb(nvme_cid(req));
2146 if (ret) {
2147 block_acct_failed(stats, acct);
2148 nvme_aio_err(req, ret);
2149 goto out;
2152 buf = g_malloc(ctx->data.iov.size);
2154 status = nvme_bounce_data(n, buf, ctx->data.iov.size,
2155 NVME_TX_DIRECTION_TO_DEVICE, req);
2156 if (status) {
2157 req->status = status;
2158 goto out;
2161 if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) {
2162 req->status = NVME_CMP_FAILURE;
2163 goto out;
2166 if (ns->lbaf.ms) {
2167 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2168 uint64_t slba = le64_to_cpu(rw->slba);
2169 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2170 size_t mlen = nvme_m2b(ns, nlb);
2171 uint64_t offset = nvme_moff(ns, slba);
2173 ctx->mdata.bounce = g_malloc(mlen);
2175 qemu_iovec_init(&ctx->mdata.iov, 1);
2176 qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2178 req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2179 nvme_compare_mdata_cb, req);
2180 return;
2183 block_acct_done(stats, acct);
2185 out:
2186 qemu_iovec_destroy(&ctx->data.iov);
2187 g_free(ctx->data.bounce);
2188 g_free(ctx);
2190 nvme_enqueue_req_completion(nvme_cq(req), req);
2193 typedef struct NvmeDSMAIOCB {
2194 BlockAIOCB common;
2195 BlockAIOCB *aiocb;
2196 NvmeRequest *req;
2197 QEMUBH *bh;
2198 int ret;
2200 NvmeDsmRange *range;
2201 unsigned int nr;
2202 unsigned int idx;
2203 } NvmeDSMAIOCB;
2205 static void nvme_dsm_cancel(BlockAIOCB *aiocb)
2207 NvmeDSMAIOCB *iocb = container_of(aiocb, NvmeDSMAIOCB, common);
2209 /* break nvme_dsm_cb loop */
2210 iocb->idx = iocb->nr;
2211 iocb->ret = -ECANCELED;
2213 if (iocb->aiocb) {
2214 blk_aio_cancel_async(iocb->aiocb);
2215 iocb->aiocb = NULL;
2216 } else {
2218 * We only reach this if nvme_dsm_cancel() has already been called or
2219 * the command ran to completion and nvme_dsm_bh is scheduled to run.
2221 assert(iocb->idx == iocb->nr);
2225 static const AIOCBInfo nvme_dsm_aiocb_info = {
2226 .aiocb_size = sizeof(NvmeDSMAIOCB),
2227 .cancel_async = nvme_dsm_cancel,
2230 static void nvme_dsm_bh(void *opaque)
2232 NvmeDSMAIOCB *iocb = opaque;
2234 iocb->common.cb(iocb->common.opaque, iocb->ret);
2236 qemu_bh_delete(iocb->bh);
2237 iocb->bh = NULL;
2238 qemu_aio_unref(iocb);
2241 static void nvme_dsm_cb(void *opaque, int ret);
2243 static void nvme_dsm_md_cb(void *opaque, int ret)
2245 NvmeDSMAIOCB *iocb = opaque;
2246 NvmeRequest *req = iocb->req;
2247 NvmeNamespace *ns = req->ns;
2248 NvmeDsmRange *range;
2249 uint64_t slba;
2250 uint32_t nlb;
2252 if (ret < 0) {
2253 iocb->ret = ret;
2254 goto done;
2257 if (!ns->lbaf.ms) {
2258 nvme_dsm_cb(iocb, 0);
2259 return;
2262 range = &iocb->range[iocb->idx - 1];
2263 slba = le64_to_cpu(range->slba);
2264 nlb = le32_to_cpu(range->nlb);
2267 * Check that all block were discarded (zeroed); otherwise we do not zero
2268 * the metadata.
2271 ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_ZERO);
2272 if (ret) {
2273 if (ret < 0) {
2274 iocb->ret = ret;
2275 goto done;
2278 nvme_dsm_cb(iocb, 0);
2281 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_moff(ns, slba),
2282 nvme_m2b(ns, nlb), BDRV_REQ_MAY_UNMAP,
2283 nvme_dsm_cb, iocb);
2284 return;
2286 done:
2287 iocb->aiocb = NULL;
2288 qemu_bh_schedule(iocb->bh);
2291 static void nvme_dsm_cb(void *opaque, int ret)
2293 NvmeDSMAIOCB *iocb = opaque;
2294 NvmeRequest *req = iocb->req;
2295 NvmeCtrl *n = nvme_ctrl(req);
2296 NvmeNamespace *ns = req->ns;
2297 NvmeDsmRange *range;
2298 uint64_t slba;
2299 uint32_t nlb;
2301 if (ret < 0) {
2302 iocb->ret = ret;
2303 goto done;
2306 next:
2307 if (iocb->idx == iocb->nr) {
2308 goto done;
2311 range = &iocb->range[iocb->idx++];
2312 slba = le64_to_cpu(range->slba);
2313 nlb = le32_to_cpu(range->nlb);
2315 trace_pci_nvme_dsm_deallocate(slba, nlb);
2317 if (nlb > n->dmrsl) {
2318 trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl);
2319 goto next;
2322 if (nvme_check_bounds(ns, slba, nlb)) {
2323 trace_pci_nvme_err_invalid_lba_range(slba, nlb,
2324 ns->id_ns.nsze);
2325 goto next;
2328 iocb->aiocb = blk_aio_pdiscard(ns->blkconf.blk, nvme_l2b(ns, slba),
2329 nvme_l2b(ns, nlb),
2330 nvme_dsm_md_cb, iocb);
2331 return;
2333 done:
2334 iocb->aiocb = NULL;
2335 qemu_bh_schedule(iocb->bh);
2338 static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req)
2340 NvmeNamespace *ns = req->ns;
2341 NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd;
2342 uint32_t attr = le32_to_cpu(dsm->attributes);
2343 uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1;
2344 uint16_t status = NVME_SUCCESS;
2346 trace_pci_nvme_dsm(nr, attr);
2348 if (attr & NVME_DSMGMT_AD) {
2349 NvmeDSMAIOCB *iocb = blk_aio_get(&nvme_dsm_aiocb_info, ns->blkconf.blk,
2350 nvme_misc_cb, req);
2352 iocb->req = req;
2353 iocb->bh = qemu_bh_new(nvme_dsm_bh, iocb);
2354 iocb->ret = 0;
2355 iocb->range = g_new(NvmeDsmRange, nr);
2356 iocb->nr = nr;
2357 iocb->idx = 0;
2359 status = nvme_h2c(n, (uint8_t *)iocb->range, sizeof(NvmeDsmRange) * nr,
2360 req);
2361 if (status) {
2362 return status;
2365 req->aiocb = &iocb->common;
2366 nvme_dsm_cb(iocb, 0);
2368 return NVME_NO_COMPLETE;
2371 return status;
2374 static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req)
2376 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2377 NvmeNamespace *ns = req->ns;
2378 BlockBackend *blk = ns->blkconf.blk;
2379 uint64_t slba = le64_to_cpu(rw->slba);
2380 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2381 size_t len = nvme_l2b(ns, nlb);
2382 int64_t offset = nvme_l2b(ns, slba);
2383 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2384 uint32_t reftag = le32_to_cpu(rw->reftag);
2385 NvmeBounceContext *ctx = NULL;
2386 uint16_t status;
2388 trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb);
2390 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2391 status = nvme_check_prinfo(ns, prinfo, slba, reftag);
2392 if (status) {
2393 return status;
2396 if (prinfo & NVME_PRINFO_PRACT) {
2397 return NVME_INVALID_PROT_INFO | NVME_DNR;
2401 if (len > n->page_size << n->params.vsl) {
2402 return NVME_INVALID_FIELD | NVME_DNR;
2405 status = nvme_check_bounds(ns, slba, nlb);
2406 if (status) {
2407 return status;
2410 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2411 status = nvme_check_dulbe(ns, slba, nlb);
2412 if (status) {
2413 return status;
2417 ctx = g_new0(NvmeBounceContext, 1);
2418 ctx->req = req;
2420 ctx->data.bounce = g_malloc(len);
2422 qemu_iovec_init(&ctx->data.iov, 1);
2423 qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len);
2425 block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size,
2426 BLOCK_ACCT_READ);
2428 req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0,
2429 nvme_verify_mdata_in_cb, ctx);
2430 return NVME_NO_COMPLETE;
2433 typedef struct NvmeCopyAIOCB {
2434 BlockAIOCB common;
2435 BlockAIOCB *aiocb;
2436 NvmeRequest *req;
2437 QEMUBH *bh;
2438 int ret;
2440 NvmeCopySourceRange *ranges;
2441 int nr;
2442 int idx;
2444 uint8_t *bounce;
2445 QEMUIOVector iov;
2446 struct {
2447 BlockAcctCookie read;
2448 BlockAcctCookie write;
2449 } acct;
2451 uint32_t reftag;
2452 uint64_t slba;
2454 NvmeZone *zone;
2455 } NvmeCopyAIOCB;
2457 static void nvme_copy_cancel(BlockAIOCB *aiocb)
2459 NvmeCopyAIOCB *iocb = container_of(aiocb, NvmeCopyAIOCB, common);
2461 iocb->ret = -ECANCELED;
2463 if (iocb->aiocb) {
2464 blk_aio_cancel_async(iocb->aiocb);
2465 iocb->aiocb = NULL;
2469 static const AIOCBInfo nvme_copy_aiocb_info = {
2470 .aiocb_size = sizeof(NvmeCopyAIOCB),
2471 .cancel_async = nvme_copy_cancel,
2474 static void nvme_copy_bh(void *opaque)
2476 NvmeCopyAIOCB *iocb = opaque;
2477 NvmeRequest *req = iocb->req;
2478 NvmeNamespace *ns = req->ns;
2479 BlockAcctStats *stats = blk_get_stats(ns->blkconf.blk);
2481 if (iocb->idx != iocb->nr) {
2482 req->cqe.result = cpu_to_le32(iocb->idx);
2485 qemu_iovec_destroy(&iocb->iov);
2486 g_free(iocb->bounce);
2488 qemu_bh_delete(iocb->bh);
2489 iocb->bh = NULL;
2491 if (iocb->ret < 0) {
2492 block_acct_failed(stats, &iocb->acct.read);
2493 block_acct_failed(stats, &iocb->acct.write);
2494 } else {
2495 block_acct_done(stats, &iocb->acct.read);
2496 block_acct_done(stats, &iocb->acct.write);
2499 iocb->common.cb(iocb->common.opaque, iocb->ret);
2500 qemu_aio_unref(iocb);
2503 static void nvme_copy_cb(void *opaque, int ret);
2505 static void nvme_copy_out_completed_cb(void *opaque, int ret)
2507 NvmeCopyAIOCB *iocb = opaque;
2508 NvmeRequest *req = iocb->req;
2509 NvmeNamespace *ns = req->ns;
2510 NvmeCopySourceRange *range = &iocb->ranges[iocb->idx];
2511 uint32_t nlb = le32_to_cpu(range->nlb) + 1;
2513 if (ret < 0) {
2514 iocb->ret = ret;
2515 goto out;
2516 } else if (iocb->ret < 0) {
2517 goto out;
2520 if (ns->params.zoned) {
2521 nvme_advance_zone_wp(ns, iocb->zone, nlb);
2524 iocb->idx++;
2525 iocb->slba += nlb;
2526 out:
2527 nvme_copy_cb(iocb, iocb->ret);
2530 static void nvme_copy_out_cb(void *opaque, int ret)
2532 NvmeCopyAIOCB *iocb = opaque;
2533 NvmeRequest *req = iocb->req;
2534 NvmeNamespace *ns = req->ns;
2535 NvmeCopySourceRange *range;
2536 uint32_t nlb;
2537 size_t mlen;
2538 uint8_t *mbounce;
2540 if (ret < 0) {
2541 iocb->ret = ret;
2542 goto out;
2543 } else if (iocb->ret < 0) {
2544 goto out;
2547 if (!ns->lbaf.ms) {
2548 nvme_copy_out_completed_cb(iocb, 0);
2549 return;
2552 range = &iocb->ranges[iocb->idx];
2553 nlb = le32_to_cpu(range->nlb) + 1;
2555 mlen = nvme_m2b(ns, nlb);
2556 mbounce = iocb->bounce + nvme_l2b(ns, nlb);
2558 qemu_iovec_reset(&iocb->iov);
2559 qemu_iovec_add(&iocb->iov, mbounce, mlen);
2561 iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_moff(ns, iocb->slba),
2562 &iocb->iov, 0, nvme_copy_out_completed_cb,
2563 iocb);
2565 return;
2567 out:
2568 nvme_copy_cb(iocb, ret);
2571 static void nvme_copy_in_completed_cb(void *opaque, int ret)
2573 NvmeCopyAIOCB *iocb = opaque;
2574 NvmeRequest *req = iocb->req;
2575 NvmeNamespace *ns = req->ns;
2576 NvmeCopySourceRange *range;
2577 uint32_t nlb;
2578 size_t len;
2579 uint16_t status;
2581 if (ret < 0) {
2582 iocb->ret = ret;
2583 goto out;
2584 } else if (iocb->ret < 0) {
2585 goto out;
2588 range = &iocb->ranges[iocb->idx];
2589 nlb = le32_to_cpu(range->nlb) + 1;
2590 len = nvme_l2b(ns, nlb);
2592 trace_pci_nvme_copy_out(iocb->slba, nlb);
2594 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2595 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
2597 uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
2598 uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
2600 uint16_t apptag = le16_to_cpu(range->apptag);
2601 uint16_t appmask = le16_to_cpu(range->appmask);
2602 uint32_t reftag = le32_to_cpu(range->reftag);
2604 uint64_t slba = le64_to_cpu(range->slba);
2605 size_t mlen = nvme_m2b(ns, nlb);
2606 uint8_t *mbounce = iocb->bounce + nvme_l2b(ns, nlb);
2608 status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen, prinfor,
2609 slba, apptag, appmask, &reftag);
2610 if (status) {
2611 goto invalid;
2614 apptag = le16_to_cpu(copy->apptag);
2615 appmask = le16_to_cpu(copy->appmask);
2617 if (prinfow & NVME_PRINFO_PRACT) {
2618 status = nvme_check_prinfo(ns, prinfow, iocb->slba, iocb->reftag);
2619 if (status) {
2620 goto invalid;
2623 nvme_dif_pract_generate_dif(ns, iocb->bounce, len, mbounce, mlen,
2624 apptag, &iocb->reftag);
2625 } else {
2626 status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen,
2627 prinfow, iocb->slba, apptag, appmask,
2628 &iocb->reftag);
2629 if (status) {
2630 goto invalid;
2635 status = nvme_check_bounds(ns, iocb->slba, nlb);
2636 if (status) {
2637 goto invalid;
2640 if (ns->params.zoned) {
2641 status = nvme_check_zone_write(ns, iocb->zone, iocb->slba, nlb);
2642 if (status) {
2643 goto invalid;
2646 iocb->zone->w_ptr += nlb;
2649 qemu_iovec_reset(&iocb->iov);
2650 qemu_iovec_add(&iocb->iov, iocb->bounce, len);
2652 iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_l2b(ns, iocb->slba),
2653 &iocb->iov, 0, nvme_copy_out_cb, iocb);
2655 return;
2657 invalid:
2658 req->status = status;
2659 iocb->aiocb = NULL;
2660 if (iocb->bh) {
2661 qemu_bh_schedule(iocb->bh);
2664 return;
2666 out:
2667 nvme_copy_cb(iocb, ret);
2670 static void nvme_copy_in_cb(void *opaque, int ret)
2672 NvmeCopyAIOCB *iocb = opaque;
2673 NvmeRequest *req = iocb->req;
2674 NvmeNamespace *ns = req->ns;
2675 NvmeCopySourceRange *range;
2676 uint64_t slba;
2677 uint32_t nlb;
2679 if (ret < 0) {
2680 iocb->ret = ret;
2681 goto out;
2682 } else if (iocb->ret < 0) {
2683 goto out;
2686 if (!ns->lbaf.ms) {
2687 nvme_copy_in_completed_cb(iocb, 0);
2688 return;
2691 range = &iocb->ranges[iocb->idx];
2692 slba = le64_to_cpu(range->slba);
2693 nlb = le32_to_cpu(range->nlb) + 1;
2695 qemu_iovec_reset(&iocb->iov);
2696 qemu_iovec_add(&iocb->iov, iocb->bounce + nvme_l2b(ns, nlb),
2697 nvme_m2b(ns, nlb));
2699 iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_moff(ns, slba),
2700 &iocb->iov, 0, nvme_copy_in_completed_cb,
2701 iocb);
2702 return;
2704 out:
2705 nvme_copy_cb(iocb, iocb->ret);
2708 static void nvme_copy_cb(void *opaque, int ret)
2710 NvmeCopyAIOCB *iocb = opaque;
2711 NvmeRequest *req = iocb->req;
2712 NvmeNamespace *ns = req->ns;
2713 NvmeCopySourceRange *range;
2714 uint64_t slba;
2715 uint32_t nlb;
2716 size_t len;
2717 uint16_t status;
2719 if (ret < 0) {
2720 iocb->ret = ret;
2721 goto done;
2722 } else if (iocb->ret < 0) {
2723 goto done;
2726 if (iocb->idx == iocb->nr) {
2727 goto done;
2730 range = &iocb->ranges[iocb->idx];
2731 slba = le64_to_cpu(range->slba);
2732 nlb = le32_to_cpu(range->nlb) + 1;
2733 len = nvme_l2b(ns, nlb);
2735 trace_pci_nvme_copy_source_range(slba, nlb);
2737 if (nlb > le16_to_cpu(ns->id_ns.mssrl)) {
2738 status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
2739 goto invalid;
2742 status = nvme_check_bounds(ns, slba, nlb);
2743 if (status) {
2744 goto invalid;
2747 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2748 status = nvme_check_dulbe(ns, slba, nlb);
2749 if (status) {
2750 goto invalid;
2754 if (ns->params.zoned) {
2755 status = nvme_check_zone_read(ns, slba, nlb);
2756 if (status) {
2757 goto invalid;
2761 qemu_iovec_reset(&iocb->iov);
2762 qemu_iovec_add(&iocb->iov, iocb->bounce, len);
2764 iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_l2b(ns, slba),
2765 &iocb->iov, 0, nvme_copy_in_cb, iocb);
2766 return;
2768 invalid:
2769 req->status = status;
2770 done:
2771 iocb->aiocb = NULL;
2772 if (iocb->bh) {
2773 qemu_bh_schedule(iocb->bh);
2778 static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req)
2780 NvmeNamespace *ns = req->ns;
2781 NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
2782 NvmeCopyAIOCB *iocb = blk_aio_get(&nvme_copy_aiocb_info, ns->blkconf.blk,
2783 nvme_misc_cb, req);
2784 uint16_t nr = copy->nr + 1;
2785 uint8_t format = copy->control[0] & 0xf;
2786 uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
2787 uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
2789 uint16_t status;
2791 trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format);
2793 iocb->ranges = NULL;
2794 iocb->zone = NULL;
2796 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) &&
2797 ((prinfor & NVME_PRINFO_PRACT) != (prinfow & NVME_PRINFO_PRACT))) {
2798 status = NVME_INVALID_FIELD | NVME_DNR;
2799 goto invalid;
2802 if (!(n->id_ctrl.ocfs & (1 << format))) {
2803 trace_pci_nvme_err_copy_invalid_format(format);
2804 status = NVME_INVALID_FIELD | NVME_DNR;
2805 goto invalid;
2808 if (nr > ns->id_ns.msrc + 1) {
2809 status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
2810 goto invalid;
2813 iocb->ranges = g_new(NvmeCopySourceRange, nr);
2815 status = nvme_h2c(n, (uint8_t *)iocb->ranges,
2816 sizeof(NvmeCopySourceRange) * nr, req);
2817 if (status) {
2818 goto invalid;
2821 iocb->slba = le64_to_cpu(copy->sdlba);
2823 if (ns->params.zoned) {
2824 iocb->zone = nvme_get_zone_by_slba(ns, iocb->slba);
2825 if (!iocb->zone) {
2826 status = NVME_LBA_RANGE | NVME_DNR;
2827 goto invalid;
2830 status = nvme_zrm_auto(n, ns, iocb->zone);
2831 if (status) {
2832 goto invalid;
2836 iocb->req = req;
2837 iocb->bh = qemu_bh_new(nvme_copy_bh, iocb);
2838 iocb->ret = 0;
2839 iocb->nr = nr;
2840 iocb->idx = 0;
2841 iocb->reftag = le32_to_cpu(copy->reftag);
2842 iocb->bounce = g_malloc_n(le16_to_cpu(ns->id_ns.mssrl),
2843 ns->lbasz + ns->lbaf.ms);
2845 qemu_iovec_init(&iocb->iov, 1);
2847 block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.read, 0,
2848 BLOCK_ACCT_READ);
2849 block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.write, 0,
2850 BLOCK_ACCT_WRITE);
2852 req->aiocb = &iocb->common;
2853 nvme_copy_cb(iocb, 0);
2855 return NVME_NO_COMPLETE;
2857 invalid:
2858 g_free(iocb->ranges);
2859 qemu_aio_unref(iocb);
2860 return status;
2863 static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req)
2865 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2866 NvmeNamespace *ns = req->ns;
2867 BlockBackend *blk = ns->blkconf.blk;
2868 uint64_t slba = le64_to_cpu(rw->slba);
2869 uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2870 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2871 size_t data_len = nvme_l2b(ns, nlb);
2872 size_t len = data_len;
2873 int64_t offset = nvme_l2b(ns, slba);
2874 struct nvme_compare_ctx *ctx = NULL;
2875 uint16_t status;
2877 trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb);
2879 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (prinfo & NVME_PRINFO_PRACT)) {
2880 return NVME_INVALID_PROT_INFO | NVME_DNR;
2883 if (nvme_ns_ext(ns)) {
2884 len += nvme_m2b(ns, nlb);
2887 status = nvme_check_mdts(n, len);
2888 if (status) {
2889 return status;
2892 status = nvme_check_bounds(ns, slba, nlb);
2893 if (status) {
2894 return status;
2897 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2898 status = nvme_check_dulbe(ns, slba, nlb);
2899 if (status) {
2900 return status;
2904 status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
2905 if (status) {
2906 return status;
2909 ctx = g_new(struct nvme_compare_ctx, 1);
2910 ctx->data.bounce = g_malloc(data_len);
2912 req->opaque = ctx;
2914 qemu_iovec_init(&ctx->data.iov, 1);
2915 qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len);
2917 block_acct_start(blk_get_stats(blk), &req->acct, data_len,
2918 BLOCK_ACCT_READ);
2919 req->aiocb = blk_aio_preadv(blk, offset, &ctx->data.iov, 0,
2920 nvme_compare_data_cb, req);
2922 return NVME_NO_COMPLETE;
2925 typedef struct NvmeFlushAIOCB {
2926 BlockAIOCB common;
2927 BlockAIOCB *aiocb;
2928 NvmeRequest *req;
2929 QEMUBH *bh;
2930 int ret;
2932 NvmeNamespace *ns;
2933 uint32_t nsid;
2934 bool broadcast;
2935 } NvmeFlushAIOCB;
2937 static void nvme_flush_cancel(BlockAIOCB *acb)
2939 NvmeFlushAIOCB *iocb = container_of(acb, NvmeFlushAIOCB, common);
2941 iocb->ret = -ECANCELED;
2943 if (iocb->aiocb) {
2944 blk_aio_cancel_async(iocb->aiocb);
2948 static const AIOCBInfo nvme_flush_aiocb_info = {
2949 .aiocb_size = sizeof(NvmeFlushAIOCB),
2950 .cancel_async = nvme_flush_cancel,
2951 .get_aio_context = nvme_get_aio_context,
2954 static void nvme_flush_ns_cb(void *opaque, int ret)
2956 NvmeFlushAIOCB *iocb = opaque;
2957 NvmeNamespace *ns = iocb->ns;
2959 if (ret < 0) {
2960 iocb->ret = ret;
2961 goto out;
2962 } else if (iocb->ret < 0) {
2963 goto out;
2966 if (ns) {
2967 trace_pci_nvme_flush_ns(iocb->nsid);
2969 iocb->ns = NULL;
2970 iocb->aiocb = blk_aio_flush(ns->blkconf.blk, nvme_flush_ns_cb, iocb);
2971 return;
2974 out:
2975 iocb->aiocb = NULL;
2976 qemu_bh_schedule(iocb->bh);
2979 static void nvme_flush_bh(void *opaque)
2981 NvmeFlushAIOCB *iocb = opaque;
2982 NvmeRequest *req = iocb->req;
2983 NvmeCtrl *n = nvme_ctrl(req);
2984 int i;
2986 if (iocb->ret < 0) {
2987 goto done;
2990 if (iocb->broadcast) {
2991 for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
2992 iocb->ns = nvme_ns(n, i);
2993 if (iocb->ns) {
2994 iocb->nsid = i;
2995 break;
3000 if (!iocb->ns) {
3001 goto done;
3004 nvme_flush_ns_cb(iocb, 0);
3005 return;
3007 done:
3008 qemu_bh_delete(iocb->bh);
3009 iocb->bh = NULL;
3011 iocb->common.cb(iocb->common.opaque, iocb->ret);
3013 qemu_aio_unref(iocb);
3015 return;
3018 static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req)
3020 NvmeFlushAIOCB *iocb;
3021 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
3022 uint16_t status;
3024 iocb = qemu_aio_get(&nvme_flush_aiocb_info, NULL, nvme_misc_cb, req);
3026 iocb->req = req;
3027 iocb->bh = qemu_bh_new(nvme_flush_bh, iocb);
3028 iocb->ret = 0;
3029 iocb->ns = NULL;
3030 iocb->nsid = 0;
3031 iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
3033 if (!iocb->broadcast) {
3034 if (!nvme_nsid_valid(n, nsid)) {
3035 status = NVME_INVALID_NSID | NVME_DNR;
3036 goto out;
3039 iocb->ns = nvme_ns(n, nsid);
3040 if (!iocb->ns) {
3041 status = NVME_INVALID_FIELD | NVME_DNR;
3042 goto out;
3045 iocb->nsid = nsid;
3048 req->aiocb = &iocb->common;
3049 qemu_bh_schedule(iocb->bh);
3051 return NVME_NO_COMPLETE;
3053 out:
3054 qemu_bh_delete(iocb->bh);
3055 iocb->bh = NULL;
3056 qemu_aio_unref(iocb);
3058 return status;
3061 static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req)
3063 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3064 NvmeNamespace *ns = req->ns;
3065 uint64_t slba = le64_to_cpu(rw->slba);
3066 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3067 uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
3068 uint64_t data_size = nvme_l2b(ns, nlb);
3069 uint64_t mapped_size = data_size;
3070 uint64_t data_offset;
3071 BlockBackend *blk = ns->blkconf.blk;
3072 uint16_t status;
3074 if (nvme_ns_ext(ns)) {
3075 mapped_size += nvme_m2b(ns, nlb);
3077 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3078 bool pract = prinfo & NVME_PRINFO_PRACT;
3080 if (pract && ns->lbaf.ms == 8) {
3081 mapped_size = data_size;
3086 trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba);
3088 status = nvme_check_mdts(n, mapped_size);
3089 if (status) {
3090 goto invalid;
3093 status = nvme_check_bounds(ns, slba, nlb);
3094 if (status) {
3095 goto invalid;
3098 if (ns->params.zoned) {
3099 status = nvme_check_zone_read(ns, slba, nlb);
3100 if (status) {
3101 trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status);
3102 goto invalid;
3106 if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3107 status = nvme_check_dulbe(ns, slba, nlb);
3108 if (status) {
3109 goto invalid;
3113 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3114 return nvme_dif_rw(n, req);
3117 status = nvme_map_data(n, nlb, req);
3118 if (status) {
3119 goto invalid;
3122 data_offset = nvme_l2b(ns, slba);
3124 block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3125 BLOCK_ACCT_READ);
3126 nvme_blk_read(blk, data_offset, nvme_rw_cb, req);
3127 return NVME_NO_COMPLETE;
3129 invalid:
3130 block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ);
3131 return status | NVME_DNR;
3134 static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append,
3135 bool wrz)
3137 NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3138 NvmeNamespace *ns = req->ns;
3139 uint64_t slba = le64_to_cpu(rw->slba);
3140 uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3141 uint16_t ctrl = le16_to_cpu(rw->control);
3142 uint8_t prinfo = NVME_RW_PRINFO(ctrl);
3143 uint64_t data_size = nvme_l2b(ns, nlb);
3144 uint64_t mapped_size = data_size;
3145 uint64_t data_offset;
3146 NvmeZone *zone;
3147 NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe;
3148 BlockBackend *blk = ns->blkconf.blk;
3149 uint16_t status;
3151 if (nvme_ns_ext(ns)) {
3152 mapped_size += nvme_m2b(ns, nlb);
3154 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3155 bool pract = prinfo & NVME_PRINFO_PRACT;
3157 if (pract && ns->lbaf.ms == 8) {
3158 mapped_size -= nvme_m2b(ns, nlb);
3163 trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode),
3164 nvme_nsid(ns), nlb, mapped_size, slba);
3166 if (!wrz) {
3167 status = nvme_check_mdts(n, mapped_size);
3168 if (status) {
3169 goto invalid;
3173 status = nvme_check_bounds(ns, slba, nlb);
3174 if (status) {
3175 goto invalid;
3178 if (ns->params.zoned) {
3179 zone = nvme_get_zone_by_slba(ns, slba);
3180 assert(zone);
3182 if (append) {
3183 bool piremap = !!(ctrl & NVME_RW_PIREMAP);
3185 if (unlikely(slba != zone->d.zslba)) {
3186 trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba);
3187 status = NVME_INVALID_FIELD;
3188 goto invalid;
3191 if (n->params.zasl &&
3192 data_size > (uint64_t)n->page_size << n->params.zasl) {
3193 trace_pci_nvme_err_zasl(data_size);
3194 return NVME_INVALID_FIELD | NVME_DNR;
3197 slba = zone->w_ptr;
3198 rw->slba = cpu_to_le64(slba);
3199 res->slba = cpu_to_le64(slba);
3201 switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3202 case NVME_ID_NS_DPS_TYPE_1:
3203 if (!piremap) {
3204 return NVME_INVALID_PROT_INFO | NVME_DNR;
3207 /* fallthrough */
3209 case NVME_ID_NS_DPS_TYPE_2:
3210 if (piremap) {
3211 uint32_t reftag = le32_to_cpu(rw->reftag);
3212 rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba));
3215 break;
3217 case NVME_ID_NS_DPS_TYPE_3:
3218 if (piremap) {
3219 return NVME_INVALID_PROT_INFO | NVME_DNR;
3222 break;
3226 status = nvme_check_zone_write(ns, zone, slba, nlb);
3227 if (status) {
3228 goto invalid;
3231 status = nvme_zrm_auto(n, ns, zone);
3232 if (status) {
3233 goto invalid;
3236 zone->w_ptr += nlb;
3239 data_offset = nvme_l2b(ns, slba);
3241 if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3242 return nvme_dif_rw(n, req);
3245 if (!wrz) {
3246 status = nvme_map_data(n, nlb, req);
3247 if (status) {
3248 goto invalid;
3251 block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3252 BLOCK_ACCT_WRITE);
3253 nvme_blk_write(blk, data_offset, nvme_rw_cb, req);
3254 } else {
3255 req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size,
3256 BDRV_REQ_MAY_UNMAP, nvme_rw_cb,
3257 req);
3260 return NVME_NO_COMPLETE;
3262 invalid:
3263 block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE);
3264 return status | NVME_DNR;
3267 static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req)
3269 return nvme_do_write(n, req, false, false);
3272 static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req)
3274 return nvme_do_write(n, req, false, true);
3277 static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req)
3279 return nvme_do_write(n, req, true, false);
3282 static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c,
3283 uint64_t *slba, uint32_t *zone_idx)
3285 uint32_t dw10 = le32_to_cpu(c->cdw10);
3286 uint32_t dw11 = le32_to_cpu(c->cdw11);
3288 if (!ns->params.zoned) {
3289 trace_pci_nvme_err_invalid_opc(c->opcode);
3290 return NVME_INVALID_OPCODE | NVME_DNR;
3293 *slba = ((uint64_t)dw11) << 32 | dw10;
3294 if (unlikely(*slba >= ns->id_ns.nsze)) {
3295 trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze);
3296 *slba = 0;
3297 return NVME_LBA_RANGE | NVME_DNR;
3300 *zone_idx = nvme_zone_idx(ns, *slba);
3301 assert(*zone_idx < ns->num_zones);
3303 return NVME_SUCCESS;
3306 typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState,
3307 NvmeRequest *);
3309 enum NvmeZoneProcessingMask {
3310 NVME_PROC_CURRENT_ZONE = 0,
3311 NVME_PROC_OPENED_ZONES = 1 << 0,
3312 NVME_PROC_CLOSED_ZONES = 1 << 1,
3313 NVME_PROC_READ_ONLY_ZONES = 1 << 2,
3314 NVME_PROC_FULL_ZONES = 1 << 3,
3317 static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone,
3318 NvmeZoneState state, NvmeRequest *req)
3320 return nvme_zrm_open(nvme_ctrl(req), ns, zone);
3323 static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone,
3324 NvmeZoneState state, NvmeRequest *req)
3326 return nvme_zrm_close(ns, zone);
3329 static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone,
3330 NvmeZoneState state, NvmeRequest *req)
3332 return nvme_zrm_finish(ns, zone);
3335 static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone,
3336 NvmeZoneState state, NvmeRequest *req)
3338 switch (state) {
3339 case NVME_ZONE_STATE_READ_ONLY:
3340 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE);
3341 /* fall through */
3342 case NVME_ZONE_STATE_OFFLINE:
3343 return NVME_SUCCESS;
3344 default:
3345 return NVME_ZONE_INVAL_TRANSITION;
3349 static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone)
3351 uint16_t status;
3352 uint8_t state = nvme_get_zone_state(zone);
3354 if (state == NVME_ZONE_STATE_EMPTY) {
3355 status = nvme_aor_check(ns, 1, 0);
3356 if (status) {
3357 return status;
3359 nvme_aor_inc_active(ns);
3360 zone->d.za |= NVME_ZA_ZD_EXT_VALID;
3361 nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
3362 return NVME_SUCCESS;
3365 return NVME_ZONE_INVAL_TRANSITION;
3368 static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone,
3369 enum NvmeZoneProcessingMask proc_mask,
3370 op_handler_t op_hndlr, NvmeRequest *req)
3372 uint16_t status = NVME_SUCCESS;
3373 NvmeZoneState zs = nvme_get_zone_state(zone);
3374 bool proc_zone;
3376 switch (zs) {
3377 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3378 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3379 proc_zone = proc_mask & NVME_PROC_OPENED_ZONES;
3380 break;
3381 case NVME_ZONE_STATE_CLOSED:
3382 proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES;
3383 break;
3384 case NVME_ZONE_STATE_READ_ONLY:
3385 proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES;
3386 break;
3387 case NVME_ZONE_STATE_FULL:
3388 proc_zone = proc_mask & NVME_PROC_FULL_ZONES;
3389 break;
3390 default:
3391 proc_zone = false;
3394 if (proc_zone) {
3395 status = op_hndlr(ns, zone, zs, req);
3398 return status;
3401 static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone,
3402 enum NvmeZoneProcessingMask proc_mask,
3403 op_handler_t op_hndlr, NvmeRequest *req)
3405 NvmeZone *next;
3406 uint16_t status = NVME_SUCCESS;
3407 int i;
3409 if (!proc_mask) {
3410 status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req);
3411 } else {
3412 if (proc_mask & NVME_PROC_CLOSED_ZONES) {
3413 QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) {
3414 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3415 req);
3416 if (status && status != NVME_NO_COMPLETE) {
3417 goto out;
3421 if (proc_mask & NVME_PROC_OPENED_ZONES) {
3422 QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) {
3423 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3424 req);
3425 if (status && status != NVME_NO_COMPLETE) {
3426 goto out;
3430 QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) {
3431 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3432 req);
3433 if (status && status != NVME_NO_COMPLETE) {
3434 goto out;
3438 if (proc_mask & NVME_PROC_FULL_ZONES) {
3439 QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) {
3440 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3441 req);
3442 if (status && status != NVME_NO_COMPLETE) {
3443 goto out;
3448 if (proc_mask & NVME_PROC_READ_ONLY_ZONES) {
3449 for (i = 0; i < ns->num_zones; i++, zone++) {
3450 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3451 req);
3452 if (status && status != NVME_NO_COMPLETE) {
3453 goto out;
3459 out:
3460 return status;
3463 typedef struct NvmeZoneResetAIOCB {
3464 BlockAIOCB common;
3465 BlockAIOCB *aiocb;
3466 NvmeRequest *req;
3467 QEMUBH *bh;
3468 int ret;
3470 bool all;
3471 int idx;
3472 NvmeZone *zone;
3473 } NvmeZoneResetAIOCB;
3475 static void nvme_zone_reset_cancel(BlockAIOCB *aiocb)
3477 NvmeZoneResetAIOCB *iocb = container_of(aiocb, NvmeZoneResetAIOCB, common);
3478 NvmeRequest *req = iocb->req;
3479 NvmeNamespace *ns = req->ns;
3481 iocb->idx = ns->num_zones;
3483 iocb->ret = -ECANCELED;
3485 if (iocb->aiocb) {
3486 blk_aio_cancel_async(iocb->aiocb);
3487 iocb->aiocb = NULL;
3491 static const AIOCBInfo nvme_zone_reset_aiocb_info = {
3492 .aiocb_size = sizeof(NvmeZoneResetAIOCB),
3493 .cancel_async = nvme_zone_reset_cancel,
3496 static void nvme_zone_reset_bh(void *opaque)
3498 NvmeZoneResetAIOCB *iocb = opaque;
3500 iocb->common.cb(iocb->common.opaque, iocb->ret);
3502 qemu_bh_delete(iocb->bh);
3503 iocb->bh = NULL;
3504 qemu_aio_unref(iocb);
3507 static void nvme_zone_reset_cb(void *opaque, int ret);
3509 static void nvme_zone_reset_epilogue_cb(void *opaque, int ret)
3511 NvmeZoneResetAIOCB *iocb = opaque;
3512 NvmeRequest *req = iocb->req;
3513 NvmeNamespace *ns = req->ns;
3514 int64_t moff;
3515 int count;
3517 if (ret < 0) {
3518 nvme_zone_reset_cb(iocb, ret);
3519 return;
3522 if (!ns->lbaf.ms) {
3523 nvme_zone_reset_cb(iocb, 0);
3524 return;
3527 moff = nvme_moff(ns, iocb->zone->d.zslba);
3528 count = nvme_m2b(ns, ns->zone_size);
3530 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, moff, count,
3531 BDRV_REQ_MAY_UNMAP,
3532 nvme_zone_reset_cb, iocb);
3533 return;
3536 static void nvme_zone_reset_cb(void *opaque, int ret)
3538 NvmeZoneResetAIOCB *iocb = opaque;
3539 NvmeRequest *req = iocb->req;
3540 NvmeNamespace *ns = req->ns;
3542 if (ret < 0) {
3543 iocb->ret = ret;
3544 goto done;
3547 if (iocb->zone) {
3548 nvme_zrm_reset(ns, iocb->zone);
3550 if (!iocb->all) {
3551 goto done;
3555 while (iocb->idx < ns->num_zones) {
3556 NvmeZone *zone = &ns->zone_array[iocb->idx++];
3558 switch (nvme_get_zone_state(zone)) {
3559 case NVME_ZONE_STATE_EMPTY:
3560 if (!iocb->all) {
3561 goto done;
3564 continue;
3566 case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3567 case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3568 case NVME_ZONE_STATE_CLOSED:
3569 case NVME_ZONE_STATE_FULL:
3570 iocb->zone = zone;
3571 break;
3573 default:
3574 continue;
3577 trace_pci_nvme_zns_zone_reset(zone->d.zslba);
3579 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk,
3580 nvme_l2b(ns, zone->d.zslba),
3581 nvme_l2b(ns, ns->zone_size),
3582 BDRV_REQ_MAY_UNMAP,
3583 nvme_zone_reset_epilogue_cb,
3584 iocb);
3585 return;
3588 done:
3589 iocb->aiocb = NULL;
3590 if (iocb->bh) {
3591 qemu_bh_schedule(iocb->bh);
3595 static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req)
3597 NvmeCmd *cmd = (NvmeCmd *)&req->cmd;
3598 NvmeNamespace *ns = req->ns;
3599 NvmeZone *zone;
3600 NvmeZoneResetAIOCB *iocb;
3601 uint8_t *zd_ext;
3602 uint32_t dw13 = le32_to_cpu(cmd->cdw13);
3603 uint64_t slba = 0;
3604 uint32_t zone_idx = 0;
3605 uint16_t status;
3606 uint8_t action;
3607 bool all;
3608 enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE;
3610 action = dw13 & 0xff;
3611 all = !!(dw13 & 0x100);
3613 req->status = NVME_SUCCESS;
3615 if (!all) {
3616 status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx);
3617 if (status) {
3618 return status;
3622 zone = &ns->zone_array[zone_idx];
3623 if (slba != zone->d.zslba) {
3624 trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba);
3625 return NVME_INVALID_FIELD | NVME_DNR;
3628 switch (action) {
3630 case NVME_ZONE_ACTION_OPEN:
3631 if (all) {
3632 proc_mask = NVME_PROC_CLOSED_ZONES;
3634 trace_pci_nvme_open_zone(slba, zone_idx, all);
3635 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req);
3636 break;
3638 case NVME_ZONE_ACTION_CLOSE:
3639 if (all) {
3640 proc_mask = NVME_PROC_OPENED_ZONES;
3642 trace_pci_nvme_close_zone(slba, zone_idx, all);
3643 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req);
3644 break;
3646 case NVME_ZONE_ACTION_FINISH:
3647 if (all) {
3648 proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES;
3650 trace_pci_nvme_finish_zone(slba, zone_idx, all);
3651 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req);
3652 break;
3654 case NVME_ZONE_ACTION_RESET:
3655 trace_pci_nvme_reset_zone(slba, zone_idx, all);
3657 iocb = blk_aio_get(&nvme_zone_reset_aiocb_info, ns->blkconf.blk,
3658 nvme_misc_cb, req);
3660 iocb->req = req;
3661 iocb->bh = qemu_bh_new(nvme_zone_reset_bh, iocb);
3662 iocb->ret = 0;
3663 iocb->all = all;
3664 iocb->idx = zone_idx;
3665 iocb->zone = NULL;
3667 req->aiocb = &iocb->common;
3668 nvme_zone_reset_cb(iocb, 0);
3670 return NVME_NO_COMPLETE;
3672 case NVME_ZONE_ACTION_OFFLINE:
3673 if (all) {
3674 proc_mask = NVME_PROC_READ_ONLY_ZONES;
3676 trace_pci_nvme_offline_zone(slba, zone_idx, all);
3677 status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req);
3678 break;
3680 case NVME_ZONE_ACTION_SET_ZD_EXT:
3681 trace_pci_nvme_set_descriptor_extension(slba, zone_idx);
3682 if (all || !ns->params.zd_extension_size) {
3683 return NVME_INVALID_FIELD | NVME_DNR;
3685 zd_ext = nvme_get_zd_extension(ns, zone_idx);
3686 status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req);
3687 if (status) {
3688 trace_pci_nvme_err_zd_extension_map_error(zone_idx);
3689 return status;
3692 status = nvme_set_zd_ext(ns, zone);
3693 if (status == NVME_SUCCESS) {
3694 trace_pci_nvme_zd_extension_set(zone_idx);
3695 return status;
3697 break;
3699 default:
3700 trace_pci_nvme_err_invalid_mgmt_action(action);
3701 status = NVME_INVALID_FIELD;
3704 if (status == NVME_ZONE_INVAL_TRANSITION) {
3705 trace_pci_nvme_err_invalid_zone_state_transition(action, slba,
3706 zone->d.za);
3708 if (status) {
3709 status |= NVME_DNR;
3712 return status;
3715 static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl)
3717 NvmeZoneState zs = nvme_get_zone_state(zl);
3719 switch (zafs) {
3720 case NVME_ZONE_REPORT_ALL:
3721 return true;
3722 case NVME_ZONE_REPORT_EMPTY:
3723 return zs == NVME_ZONE_STATE_EMPTY;
3724 case NVME_ZONE_REPORT_IMPLICITLY_OPEN:
3725 return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN;
3726 case NVME_ZONE_REPORT_EXPLICITLY_OPEN:
3727 return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN;
3728 case NVME_ZONE_REPORT_CLOSED:
3729 return zs == NVME_ZONE_STATE_CLOSED;
3730 case NVME_ZONE_REPORT_FULL:
3731 return zs == NVME_ZONE_STATE_FULL;
3732 case NVME_ZONE_REPORT_READ_ONLY:
3733 return zs == NVME_ZONE_STATE_READ_ONLY;
3734 case NVME_ZONE_REPORT_OFFLINE:
3735 return zs == NVME_ZONE_STATE_OFFLINE;
3736 default:
3737 return false;
3741 static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req)
3743 NvmeCmd *cmd = (NvmeCmd *)&req->cmd;
3744 NvmeNamespace *ns = req->ns;
3745 /* cdw12 is zero-based number of dwords to return. Convert to bytes */
3746 uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2;
3747 uint32_t dw13 = le32_to_cpu(cmd->cdw13);
3748 uint32_t zone_idx, zra, zrasf, partial;
3749 uint64_t max_zones, nr_zones = 0;
3750 uint16_t status;
3751 uint64_t slba;
3752 NvmeZoneDescr *z;
3753 NvmeZone *zone;
3754 NvmeZoneReportHeader *header;
3755 void *buf, *buf_p;
3756 size_t zone_entry_sz;
3757 int i;
3759 req->status = NVME_SUCCESS;
3761 status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx);
3762 if (status) {
3763 return status;
3766 zra = dw13 & 0xff;
3767 if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) {
3768 return NVME_INVALID_FIELD | NVME_DNR;
3770 if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) {
3771 return NVME_INVALID_FIELD | NVME_DNR;
3774 zrasf = (dw13 >> 8) & 0xff;
3775 if (zrasf > NVME_ZONE_REPORT_OFFLINE) {
3776 return NVME_INVALID_FIELD | NVME_DNR;
3779 if (data_size < sizeof(NvmeZoneReportHeader)) {
3780 return NVME_INVALID_FIELD | NVME_DNR;
3783 status = nvme_check_mdts(n, data_size);
3784 if (status) {
3785 return status;
3788 partial = (dw13 >> 16) & 0x01;
3790 zone_entry_sz = sizeof(NvmeZoneDescr);
3791 if (zra == NVME_ZONE_REPORT_EXTENDED) {
3792 zone_entry_sz += ns->params.zd_extension_size;
3795 max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz;
3796 buf = g_malloc0(data_size);
3798 zone = &ns->zone_array[zone_idx];
3799 for (i = zone_idx; i < ns->num_zones; i++) {
3800 if (partial && nr_zones >= max_zones) {
3801 break;
3803 if (nvme_zone_matches_filter(zrasf, zone++)) {
3804 nr_zones++;
3807 header = (NvmeZoneReportHeader *)buf;
3808 header->nr_zones = cpu_to_le64(nr_zones);
3810 buf_p = buf + sizeof(NvmeZoneReportHeader);
3811 for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) {
3812 zone = &ns->zone_array[zone_idx];
3813 if (nvme_zone_matches_filter(zrasf, zone)) {
3814 z = (NvmeZoneDescr *)buf_p;
3815 buf_p += sizeof(NvmeZoneDescr);
3817 z->zt = zone->d.zt;
3818 z->zs = zone->d.zs;
3819 z->zcap = cpu_to_le64(zone->d.zcap);
3820 z->zslba = cpu_to_le64(zone->d.zslba);
3821 z->za = zone->d.za;
3823 if (nvme_wp_is_valid(zone)) {
3824 z->wp = cpu_to_le64(zone->d.wp);
3825 } else {
3826 z->wp = cpu_to_le64(~0ULL);
3829 if (zra == NVME_ZONE_REPORT_EXTENDED) {
3830 if (zone->d.za & NVME_ZA_ZD_EXT_VALID) {
3831 memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx),
3832 ns->params.zd_extension_size);
3834 buf_p += ns->params.zd_extension_size;
3837 max_zones--;
3841 status = nvme_c2h(n, (uint8_t *)buf, data_size, req);
3843 g_free(buf);
3845 return status;
3848 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req)
3850 NvmeNamespace *ns;
3851 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
3853 trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req),
3854 req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode));
3856 if (!nvme_nsid_valid(n, nsid)) {
3857 return NVME_INVALID_NSID | NVME_DNR;
3861 * In the base NVM command set, Flush may apply to all namespaces
3862 * (indicated by NSID being set to FFFFFFFFh). But if that feature is used
3863 * along with TP 4056 (Namespace Types), it may be pretty screwed up.
3865 * If NSID is indeed set to FFFFFFFFh, we simply cannot associate the
3866 * opcode with a specific command since we cannot determine a unique I/O
3867 * command set. Opcode 0h could have any other meaning than something
3868 * equivalent to flushing and say it DOES have completely different
3869 * semantics in some other command set - does an NSID of FFFFFFFFh then
3870 * mean "for all namespaces, apply whatever command set specific command
3871 * that uses the 0h opcode?" Or does it mean "for all namespaces, apply
3872 * whatever command that uses the 0h opcode if, and only if, it allows NSID
3873 * to be FFFFFFFFh"?
3875 * Anyway (and luckily), for now, we do not care about this since the
3876 * device only supports namespace types that includes the NVM Flush command
3877 * (NVM and Zoned), so always do an NVM Flush.
3879 if (req->cmd.opcode == NVME_CMD_FLUSH) {
3880 return nvme_flush(n, req);
3883 ns = nvme_ns(n, nsid);
3884 if (unlikely(!ns)) {
3885 return NVME_INVALID_FIELD | NVME_DNR;
3888 if (!(ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
3889 trace_pci_nvme_err_invalid_opc(req->cmd.opcode);
3890 return NVME_INVALID_OPCODE | NVME_DNR;
3893 if (ns->status) {
3894 return ns->status;
3897 if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
3898 return NVME_INVALID_FIELD;
3901 req->ns = ns;
3903 switch (req->cmd.opcode) {
3904 case NVME_CMD_WRITE_ZEROES:
3905 return nvme_write_zeroes(n, req);
3906 case NVME_CMD_ZONE_APPEND:
3907 return nvme_zone_append(n, req);
3908 case NVME_CMD_WRITE:
3909 return nvme_write(n, req);
3910 case NVME_CMD_READ:
3911 return nvme_read(n, req);
3912 case NVME_CMD_COMPARE:
3913 return nvme_compare(n, req);
3914 case NVME_CMD_DSM:
3915 return nvme_dsm(n, req);
3916 case NVME_CMD_VERIFY:
3917 return nvme_verify(n, req);
3918 case NVME_CMD_COPY:
3919 return nvme_copy(n, req);
3920 case NVME_CMD_ZONE_MGMT_SEND:
3921 return nvme_zone_mgmt_send(n, req);
3922 case NVME_CMD_ZONE_MGMT_RECV:
3923 return nvme_zone_mgmt_recv(n, req);
3924 default:
3925 assert(false);
3928 return NVME_INVALID_OPCODE | NVME_DNR;
3931 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
3933 n->sq[sq->sqid] = NULL;
3934 timer_free(sq->timer);
3935 g_free(sq->io_req);
3936 if (sq->sqid) {
3937 g_free(sq);
3941 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req)
3943 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
3944 NvmeRequest *r, *next;
3945 NvmeSQueue *sq;
3946 NvmeCQueue *cq;
3947 uint16_t qid = le16_to_cpu(c->qid);
3949 if (unlikely(!qid || nvme_check_sqid(n, qid))) {
3950 trace_pci_nvme_err_invalid_del_sq(qid);
3951 return NVME_INVALID_QID | NVME_DNR;
3954 trace_pci_nvme_del_sq(qid);
3956 sq = n->sq[qid];
3957 while (!QTAILQ_EMPTY(&sq->out_req_list)) {
3958 r = QTAILQ_FIRST(&sq->out_req_list);
3959 assert(r->aiocb);
3960 blk_aio_cancel(r->aiocb);
3963 assert(QTAILQ_EMPTY(&sq->out_req_list));
3965 if (!nvme_check_cqid(n, sq->cqid)) {
3966 cq = n->cq[sq->cqid];
3967 QTAILQ_REMOVE(&cq->sq_list, sq, entry);
3969 nvme_post_cqes(cq);
3970 QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) {
3971 if (r->sq == sq) {
3972 QTAILQ_REMOVE(&cq->req_list, r, entry);
3973 QTAILQ_INSERT_TAIL(&sq->req_list, r, entry);
3978 nvme_free_sq(sq, n);
3979 return NVME_SUCCESS;
3982 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
3983 uint16_t sqid, uint16_t cqid, uint16_t size)
3985 int i;
3986 NvmeCQueue *cq;
3988 sq->ctrl = n;
3989 sq->dma_addr = dma_addr;
3990 sq->sqid = sqid;
3991 sq->size = size;
3992 sq->cqid = cqid;
3993 sq->head = sq->tail = 0;
3994 sq->io_req = g_new0(NvmeRequest, sq->size);
3996 QTAILQ_INIT(&sq->req_list);
3997 QTAILQ_INIT(&sq->out_req_list);
3998 for (i = 0; i < sq->size; i++) {
3999 sq->io_req[i].sq = sq;
4000 QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
4002 sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
4004 assert(n->cq[cqid]);
4005 cq = n->cq[cqid];
4006 QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
4007 n->sq[sqid] = sq;
4010 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req)
4012 NvmeSQueue *sq;
4013 NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd;
4015 uint16_t cqid = le16_to_cpu(c->cqid);
4016 uint16_t sqid = le16_to_cpu(c->sqid);
4017 uint16_t qsize = le16_to_cpu(c->qsize);
4018 uint16_t qflags = le16_to_cpu(c->sq_flags);
4019 uint64_t prp1 = le64_to_cpu(c->prp1);
4021 trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
4023 if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
4024 trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
4025 return NVME_INVALID_CQID | NVME_DNR;
4027 if (unlikely(!sqid || sqid > n->params.max_ioqpairs ||
4028 n->sq[sqid] != NULL)) {
4029 trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
4030 return NVME_INVALID_QID | NVME_DNR;
4032 if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
4033 trace_pci_nvme_err_invalid_create_sq_size(qsize);
4034 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
4036 if (unlikely(prp1 & (n->page_size - 1))) {
4037 trace_pci_nvme_err_invalid_create_sq_addr(prp1);
4038 return NVME_INVALID_PRP_OFFSET | NVME_DNR;
4040 if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
4041 trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
4042 return NVME_INVALID_FIELD | NVME_DNR;
4044 sq = g_malloc0(sizeof(*sq));
4045 nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
4046 return NVME_SUCCESS;
4049 struct nvme_stats {
4050 uint64_t units_read;
4051 uint64_t units_written;
4052 uint64_t read_commands;
4053 uint64_t write_commands;
4056 static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats)
4058 BlockAcctStats *s = blk_get_stats(ns->blkconf.blk);
4060 stats->units_read += s->nr_bytes[BLOCK_ACCT_READ] >> BDRV_SECTOR_BITS;
4061 stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE] >> BDRV_SECTOR_BITS;
4062 stats->read_commands += s->nr_ops[BLOCK_ACCT_READ];
4063 stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE];
4066 static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4067 uint64_t off, NvmeRequest *req)
4069 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4070 struct nvme_stats stats = { 0 };
4071 NvmeSmartLog smart = { 0 };
4072 uint32_t trans_len;
4073 NvmeNamespace *ns;
4074 time_t current_ms;
4076 if (off >= sizeof(smart)) {
4077 return NVME_INVALID_FIELD | NVME_DNR;
4080 if (nsid != 0xffffffff) {
4081 ns = nvme_ns(n, nsid);
4082 if (!ns) {
4083 return NVME_INVALID_NSID | NVME_DNR;
4085 nvme_set_blk_stats(ns, &stats);
4086 } else {
4087 int i;
4089 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4090 ns = nvme_ns(n, i);
4091 if (!ns) {
4092 continue;
4094 nvme_set_blk_stats(ns, &stats);
4098 trans_len = MIN(sizeof(smart) - off, buf_len);
4099 smart.critical_warning = n->smart_critical_warning;
4101 smart.data_units_read[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_read,
4102 1000));
4103 smart.data_units_written[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_written,
4104 1000));
4105 smart.host_read_commands[0] = cpu_to_le64(stats.read_commands);
4106 smart.host_write_commands[0] = cpu_to_le64(stats.write_commands);
4108 smart.temperature = cpu_to_le16(n->temperature);
4110 if ((n->temperature >= n->features.temp_thresh_hi) ||
4111 (n->temperature <= n->features.temp_thresh_low)) {
4112 smart.critical_warning |= NVME_SMART_TEMPERATURE;
4115 current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
4116 smart.power_on_hours[0] =
4117 cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60);
4119 if (!rae) {
4120 nvme_clear_events(n, NVME_AER_TYPE_SMART);
4123 return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req);
4126 static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off,
4127 NvmeRequest *req)
4129 uint32_t trans_len;
4130 NvmeFwSlotInfoLog fw_log = {
4131 .afi = 0x1,
4134 if (off >= sizeof(fw_log)) {
4135 return NVME_INVALID_FIELD | NVME_DNR;
4138 strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' ');
4139 trans_len = MIN(sizeof(fw_log) - off, buf_len);
4141 return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req);
4144 static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4145 uint64_t off, NvmeRequest *req)
4147 uint32_t trans_len;
4148 NvmeErrorLog errlog;
4150 if (off >= sizeof(errlog)) {
4151 return NVME_INVALID_FIELD | NVME_DNR;
4154 if (!rae) {
4155 nvme_clear_events(n, NVME_AER_TYPE_ERROR);
4158 memset(&errlog, 0x0, sizeof(errlog));
4159 trans_len = MIN(sizeof(errlog) - off, buf_len);
4161 return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req);
4164 static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4165 uint64_t off, NvmeRequest *req)
4167 uint32_t nslist[1024];
4168 uint32_t trans_len;
4169 int i = 0;
4170 uint32_t nsid;
4172 if (off >= sizeof(nslist)) {
4173 trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(nslist));
4174 return NVME_INVALID_FIELD | NVME_DNR;
4177 memset(nslist, 0x0, sizeof(nslist));
4178 trans_len = MIN(sizeof(nslist) - off, buf_len);
4180 while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) !=
4181 NVME_CHANGED_NSID_SIZE) {
4183 * If more than 1024 namespaces, the first entry in the log page should
4184 * be set to FFFFFFFFh and the others to 0 as spec.
4186 if (i == ARRAY_SIZE(nslist)) {
4187 memset(nslist, 0x0, sizeof(nslist));
4188 nslist[0] = 0xffffffff;
4189 break;
4192 nslist[i++] = nsid;
4193 clear_bit(nsid, n->changed_nsids);
4197 * Remove all the remaining list entries in case returns directly due to
4198 * more than 1024 namespaces.
4200 if (nslist[0] == 0xffffffff) {
4201 bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE);
4204 if (!rae) {
4205 nvme_clear_events(n, NVME_AER_TYPE_NOTICE);
4208 return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req);
4211 static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len,
4212 uint64_t off, NvmeRequest *req)
4214 NvmeEffectsLog log = {};
4215 const uint32_t *src_iocs = NULL;
4216 uint32_t trans_len;
4218 if (off >= sizeof(log)) {
4219 trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log));
4220 return NVME_INVALID_FIELD | NVME_DNR;
4223 switch (NVME_CC_CSS(ldl_le_p(&n->bar.cc))) {
4224 case NVME_CC_CSS_NVM:
4225 src_iocs = nvme_cse_iocs_nvm;
4226 /* fall through */
4227 case NVME_CC_CSS_ADMIN_ONLY:
4228 break;
4229 case NVME_CC_CSS_CSI:
4230 switch (csi) {
4231 case NVME_CSI_NVM:
4232 src_iocs = nvme_cse_iocs_nvm;
4233 break;
4234 case NVME_CSI_ZONED:
4235 src_iocs = nvme_cse_iocs_zoned;
4236 break;
4240 memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs));
4242 if (src_iocs) {
4243 memcpy(log.iocs, src_iocs, sizeof(log.iocs));
4246 trans_len = MIN(sizeof(log) - off, buf_len);
4248 return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req);
4251 static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req)
4253 NvmeCmd *cmd = &req->cmd;
4255 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
4256 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
4257 uint32_t dw12 = le32_to_cpu(cmd->cdw12);
4258 uint32_t dw13 = le32_to_cpu(cmd->cdw13);
4259 uint8_t lid = dw10 & 0xff;
4260 uint8_t lsp = (dw10 >> 8) & 0xf;
4261 uint8_t rae = (dw10 >> 15) & 0x1;
4262 uint8_t csi = le32_to_cpu(cmd->cdw14) >> 24;
4263 uint32_t numdl, numdu;
4264 uint64_t off, lpol, lpou;
4265 size_t len;
4266 uint16_t status;
4268 numdl = (dw10 >> 16);
4269 numdu = (dw11 & 0xffff);
4270 lpol = dw12;
4271 lpou = dw13;
4273 len = (((numdu << 16) | numdl) + 1) << 2;
4274 off = (lpou << 32ULL) | lpol;
4276 if (off & 0x3) {
4277 return NVME_INVALID_FIELD | NVME_DNR;
4280 trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off);
4282 status = nvme_check_mdts(n, len);
4283 if (status) {
4284 return status;
4287 switch (lid) {
4288 case NVME_LOG_ERROR_INFO:
4289 return nvme_error_info(n, rae, len, off, req);
4290 case NVME_LOG_SMART_INFO:
4291 return nvme_smart_info(n, rae, len, off, req);
4292 case NVME_LOG_FW_SLOT_INFO:
4293 return nvme_fw_log_info(n, len, off, req);
4294 case NVME_LOG_CHANGED_NSLIST:
4295 return nvme_changed_nslist(n, rae, len, off, req);
4296 case NVME_LOG_CMD_EFFECTS:
4297 return nvme_cmd_effects(n, csi, len, off, req);
4298 default:
4299 trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid);
4300 return NVME_INVALID_FIELD | NVME_DNR;
4304 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
4306 n->cq[cq->cqid] = NULL;
4307 timer_free(cq->timer);
4308 if (msix_enabled(&n->parent_obj)) {
4309 msix_vector_unuse(&n->parent_obj, cq->vector);
4311 if (cq->cqid) {
4312 g_free(cq);
4316 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req)
4318 NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
4319 NvmeCQueue *cq;
4320 uint16_t qid = le16_to_cpu(c->qid);
4322 if (unlikely(!qid || nvme_check_cqid(n, qid))) {
4323 trace_pci_nvme_err_invalid_del_cq_cqid(qid);
4324 return NVME_INVALID_CQID | NVME_DNR;
4327 cq = n->cq[qid];
4328 if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
4329 trace_pci_nvme_err_invalid_del_cq_notempty(qid);
4330 return NVME_INVALID_QUEUE_DEL;
4333 if (cq->irq_enabled && cq->tail != cq->head) {
4334 n->cq_pending--;
4337 nvme_irq_deassert(n, cq);
4338 trace_pci_nvme_del_cq(qid);
4339 nvme_free_cq(cq, n);
4340 return NVME_SUCCESS;
4343 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
4344 uint16_t cqid, uint16_t vector, uint16_t size,
4345 uint16_t irq_enabled)
4347 int ret;
4349 if (msix_enabled(&n->parent_obj)) {
4350 ret = msix_vector_use(&n->parent_obj, vector);
4351 assert(ret == 0);
4353 cq->ctrl = n;
4354 cq->cqid = cqid;
4355 cq->size = size;
4356 cq->dma_addr = dma_addr;
4357 cq->phase = 1;
4358 cq->irq_enabled = irq_enabled;
4359 cq->vector = vector;
4360 cq->head = cq->tail = 0;
4361 QTAILQ_INIT(&cq->req_list);
4362 QTAILQ_INIT(&cq->sq_list);
4363 n->cq[cqid] = cq;
4364 cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
4367 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req)
4369 NvmeCQueue *cq;
4370 NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd;
4371 uint16_t cqid = le16_to_cpu(c->cqid);
4372 uint16_t vector = le16_to_cpu(c->irq_vector);
4373 uint16_t qsize = le16_to_cpu(c->qsize);
4374 uint16_t qflags = le16_to_cpu(c->cq_flags);
4375 uint64_t prp1 = le64_to_cpu(c->prp1);
4377 trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
4378 NVME_CQ_FLAGS_IEN(qflags) != 0);
4380 if (unlikely(!cqid || cqid > n->params.max_ioqpairs ||
4381 n->cq[cqid] != NULL)) {
4382 trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
4383 return NVME_INVALID_QID | NVME_DNR;
4385 if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
4386 trace_pci_nvme_err_invalid_create_cq_size(qsize);
4387 return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
4389 if (unlikely(prp1 & (n->page_size - 1))) {
4390 trace_pci_nvme_err_invalid_create_cq_addr(prp1);
4391 return NVME_INVALID_PRP_OFFSET | NVME_DNR;
4393 if (unlikely(!msix_enabled(&n->parent_obj) && vector)) {
4394 trace_pci_nvme_err_invalid_create_cq_vector(vector);
4395 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
4397 if (unlikely(vector >= n->params.msix_qsize)) {
4398 trace_pci_nvme_err_invalid_create_cq_vector(vector);
4399 return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
4401 if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
4402 trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
4403 return NVME_INVALID_FIELD | NVME_DNR;
4406 cq = g_malloc0(sizeof(*cq));
4407 nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
4408 NVME_CQ_FLAGS_IEN(qflags));
4411 * It is only required to set qs_created when creating a completion queue;
4412 * creating a submission queue without a matching completion queue will
4413 * fail.
4415 n->qs_created = true;
4416 return NVME_SUCCESS;
4419 static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req)
4421 uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
4423 return nvme_c2h(n, id, sizeof(id), req);
4426 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req)
4428 trace_pci_nvme_identify_ctrl();
4430 return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req);
4433 static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req)
4435 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4436 uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
4437 NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id;
4439 trace_pci_nvme_identify_ctrl_csi(c->csi);
4441 switch (c->csi) {
4442 case NVME_CSI_NVM:
4443 id_nvm->vsl = n->params.vsl;
4444 id_nvm->dmrsl = cpu_to_le32(n->dmrsl);
4445 break;
4447 case NVME_CSI_ZONED:
4448 ((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl;
4449 break;
4451 default:
4452 return NVME_INVALID_FIELD | NVME_DNR;
4455 return nvme_c2h(n, id, sizeof(id), req);
4458 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active)
4460 NvmeNamespace *ns;
4461 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4462 uint32_t nsid = le32_to_cpu(c->nsid);
4464 trace_pci_nvme_identify_ns(nsid);
4466 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4467 return NVME_INVALID_NSID | NVME_DNR;
4470 ns = nvme_ns(n, nsid);
4471 if (unlikely(!ns)) {
4472 if (!active) {
4473 ns = nvme_subsys_ns(n->subsys, nsid);
4474 if (!ns) {
4475 return nvme_rpt_empty_id_struct(n, req);
4477 } else {
4478 return nvme_rpt_empty_id_struct(n, req);
4482 if (active || ns->csi == NVME_CSI_NVM) {
4483 return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req);
4486 return NVME_INVALID_CMD_SET | NVME_DNR;
4489 static uint16_t nvme_identify_ctrl_list(NvmeCtrl *n, NvmeRequest *req,
4490 bool attached)
4492 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4493 uint32_t nsid = le32_to_cpu(c->nsid);
4494 uint16_t min_id = le16_to_cpu(c->ctrlid);
4495 uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
4496 uint16_t *ids = &list[1];
4497 NvmeNamespace *ns;
4498 NvmeCtrl *ctrl;
4499 int cntlid, nr_ids = 0;
4501 trace_pci_nvme_identify_ctrl_list(c->cns, min_id);
4503 if (!n->subsys) {
4504 return NVME_INVALID_FIELD | NVME_DNR;
4507 if (attached) {
4508 if (nsid == NVME_NSID_BROADCAST) {
4509 return NVME_INVALID_FIELD | NVME_DNR;
4512 ns = nvme_subsys_ns(n->subsys, nsid);
4513 if (!ns) {
4514 return NVME_INVALID_FIELD | NVME_DNR;
4518 for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) {
4519 ctrl = nvme_subsys_ctrl(n->subsys, cntlid);
4520 if (!ctrl) {
4521 continue;
4524 if (attached && !nvme_ns(ctrl, nsid)) {
4525 continue;
4528 ids[nr_ids++] = cntlid;
4531 list[0] = nr_ids;
4533 return nvme_c2h(n, (uint8_t *)list, sizeof(list), req);
4536 static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req,
4537 bool active)
4539 NvmeNamespace *ns;
4540 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4541 uint32_t nsid = le32_to_cpu(c->nsid);
4543 trace_pci_nvme_identify_ns_csi(nsid, c->csi);
4545 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4546 return NVME_INVALID_NSID | NVME_DNR;
4549 ns = nvme_ns(n, nsid);
4550 if (unlikely(!ns)) {
4551 if (!active) {
4552 ns = nvme_subsys_ns(n->subsys, nsid);
4553 if (!ns) {
4554 return nvme_rpt_empty_id_struct(n, req);
4556 } else {
4557 return nvme_rpt_empty_id_struct(n, req);
4561 if (c->csi == NVME_CSI_NVM) {
4562 return nvme_rpt_empty_id_struct(n, req);
4563 } else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) {
4564 return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned),
4565 req);
4568 return NVME_INVALID_FIELD | NVME_DNR;
4571 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req,
4572 bool active)
4574 NvmeNamespace *ns;
4575 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4576 uint32_t min_nsid = le32_to_cpu(c->nsid);
4577 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
4578 static const int data_len = sizeof(list);
4579 uint32_t *list_ptr = (uint32_t *)list;
4580 int i, j = 0;
4582 trace_pci_nvme_identify_nslist(min_nsid);
4585 * Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values
4586 * since the Active Namespace ID List should return namespaces with ids
4587 * *higher* than the NSID specified in the command. This is also specified
4588 * in the spec (NVM Express v1.3d, Section 5.15.4).
4590 if (min_nsid >= NVME_NSID_BROADCAST - 1) {
4591 return NVME_INVALID_NSID | NVME_DNR;
4594 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4595 ns = nvme_ns(n, i);
4596 if (!ns) {
4597 if (!active) {
4598 ns = nvme_subsys_ns(n->subsys, i);
4599 if (!ns) {
4600 continue;
4602 } else {
4603 continue;
4606 if (ns->params.nsid <= min_nsid) {
4607 continue;
4609 list_ptr[j++] = cpu_to_le32(ns->params.nsid);
4610 if (j == data_len / sizeof(uint32_t)) {
4611 break;
4615 return nvme_c2h(n, list, data_len, req);
4618 static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req,
4619 bool active)
4621 NvmeNamespace *ns;
4622 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4623 uint32_t min_nsid = le32_to_cpu(c->nsid);
4624 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
4625 static const int data_len = sizeof(list);
4626 uint32_t *list_ptr = (uint32_t *)list;
4627 int i, j = 0;
4629 trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi);
4632 * Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid.
4634 if (min_nsid >= NVME_NSID_BROADCAST - 1) {
4635 return NVME_INVALID_NSID | NVME_DNR;
4638 if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) {
4639 return NVME_INVALID_FIELD | NVME_DNR;
4642 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4643 ns = nvme_ns(n, i);
4644 if (!ns) {
4645 if (!active) {
4646 ns = nvme_subsys_ns(n->subsys, i);
4647 if (!ns) {
4648 continue;
4650 } else {
4651 continue;
4654 if (ns->params.nsid <= min_nsid || c->csi != ns->csi) {
4655 continue;
4657 list_ptr[j++] = cpu_to_le32(ns->params.nsid);
4658 if (j == data_len / sizeof(uint32_t)) {
4659 break;
4663 return nvme_c2h(n, list, data_len, req);
4666 static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req)
4668 NvmeNamespace *ns;
4669 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4670 uint32_t nsid = le32_to_cpu(c->nsid);
4671 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
4672 uint8_t *pos = list;
4673 struct {
4674 NvmeIdNsDescr hdr;
4675 uint8_t v[NVME_NIDL_UUID];
4676 } QEMU_PACKED uuid = {};
4677 struct {
4678 NvmeIdNsDescr hdr;
4679 uint64_t v;
4680 } QEMU_PACKED eui64 = {};
4681 struct {
4682 NvmeIdNsDescr hdr;
4683 uint8_t v;
4684 } QEMU_PACKED csi = {};
4686 trace_pci_nvme_identify_ns_descr_list(nsid);
4688 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4689 return NVME_INVALID_NSID | NVME_DNR;
4692 ns = nvme_ns(n, nsid);
4693 if (unlikely(!ns)) {
4694 return NVME_INVALID_FIELD | NVME_DNR;
4698 * If the EUI-64 field is 0 and the NGUID field is 0, the namespace must
4699 * provide a valid Namespace UUID in the Namespace Identification Descriptor
4700 * data structure. QEMU does not yet support setting NGUID.
4702 uuid.hdr.nidt = NVME_NIDT_UUID;
4703 uuid.hdr.nidl = NVME_NIDL_UUID;
4704 memcpy(uuid.v, ns->params.uuid.data, NVME_NIDL_UUID);
4705 memcpy(pos, &uuid, sizeof(uuid));
4706 pos += sizeof(uuid);
4708 if (ns->params.eui64) {
4709 eui64.hdr.nidt = NVME_NIDT_EUI64;
4710 eui64.hdr.nidl = NVME_NIDL_EUI64;
4711 eui64.v = cpu_to_be64(ns->params.eui64);
4712 memcpy(pos, &eui64, sizeof(eui64));
4713 pos += sizeof(eui64);
4716 csi.hdr.nidt = NVME_NIDT_CSI;
4717 csi.hdr.nidl = NVME_NIDL_CSI;
4718 csi.v = ns->csi;
4719 memcpy(pos, &csi, sizeof(csi));
4720 pos += sizeof(csi);
4722 return nvme_c2h(n, list, sizeof(list), req);
4725 static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req)
4727 uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
4728 static const int data_len = sizeof(list);
4730 trace_pci_nvme_identify_cmd_set();
4732 NVME_SET_CSI(*list, NVME_CSI_NVM);
4733 NVME_SET_CSI(*list, NVME_CSI_ZONED);
4735 return nvme_c2h(n, list, data_len, req);
4738 static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req)
4740 NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4742 trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid),
4743 c->csi);
4745 switch (c->cns) {
4746 case NVME_ID_CNS_NS:
4747 return nvme_identify_ns(n, req, true);
4748 case NVME_ID_CNS_NS_PRESENT:
4749 return nvme_identify_ns(n, req, false);
4750 case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST:
4751 return nvme_identify_ctrl_list(n, req, true);
4752 case NVME_ID_CNS_CTRL_LIST:
4753 return nvme_identify_ctrl_list(n, req, false);
4754 case NVME_ID_CNS_CS_NS:
4755 return nvme_identify_ns_csi(n, req, true);
4756 case NVME_ID_CNS_CS_NS_PRESENT:
4757 return nvme_identify_ns_csi(n, req, false);
4758 case NVME_ID_CNS_CTRL:
4759 return nvme_identify_ctrl(n, req);
4760 case NVME_ID_CNS_CS_CTRL:
4761 return nvme_identify_ctrl_csi(n, req);
4762 case NVME_ID_CNS_NS_ACTIVE_LIST:
4763 return nvme_identify_nslist(n, req, true);
4764 case NVME_ID_CNS_NS_PRESENT_LIST:
4765 return nvme_identify_nslist(n, req, false);
4766 case NVME_ID_CNS_CS_NS_ACTIVE_LIST:
4767 return nvme_identify_nslist_csi(n, req, true);
4768 case NVME_ID_CNS_CS_NS_PRESENT_LIST:
4769 return nvme_identify_nslist_csi(n, req, false);
4770 case NVME_ID_CNS_NS_DESCR_LIST:
4771 return nvme_identify_ns_descr_list(n, req);
4772 case NVME_ID_CNS_IO_COMMAND_SET:
4773 return nvme_identify_cmd_set(n, req);
4774 default:
4775 trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
4776 return NVME_INVALID_FIELD | NVME_DNR;
4780 static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req)
4782 uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff;
4784 req->cqe.result = 1;
4785 if (nvme_check_sqid(n, sqid)) {
4786 return NVME_INVALID_FIELD | NVME_DNR;
4789 return NVME_SUCCESS;
4792 static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
4794 trace_pci_nvme_setfeat_timestamp(ts);
4796 n->host_timestamp = le64_to_cpu(ts);
4797 n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
4800 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
4802 uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
4803 uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
4805 union nvme_timestamp {
4806 struct {
4807 uint64_t timestamp:48;
4808 uint64_t sync:1;
4809 uint64_t origin:3;
4810 uint64_t rsvd1:12;
4812 uint64_t all;
4815 union nvme_timestamp ts;
4816 ts.all = 0;
4817 ts.timestamp = n->host_timestamp + elapsed_time;
4819 /* If the host timestamp is non-zero, set the timestamp origin */
4820 ts.origin = n->host_timestamp ? 0x01 : 0x00;
4822 trace_pci_nvme_getfeat_timestamp(ts.all);
4824 return cpu_to_le64(ts.all);
4827 static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
4829 uint64_t timestamp = nvme_get_timestamp(n);
4831 return nvme_c2h(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
4834 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req)
4836 NvmeCmd *cmd = &req->cmd;
4837 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
4838 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
4839 uint32_t nsid = le32_to_cpu(cmd->nsid);
4840 uint32_t result;
4841 uint8_t fid = NVME_GETSETFEAT_FID(dw10);
4842 NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10);
4843 uint16_t iv;
4844 NvmeNamespace *ns;
4845 int i;
4847 static const uint32_t nvme_feature_default[NVME_FID_MAX] = {
4848 [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT,
4851 trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11);
4853 if (!nvme_feature_support[fid]) {
4854 return NVME_INVALID_FIELD | NVME_DNR;
4857 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
4858 if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4860 * The Reservation Notification Mask and Reservation Persistence
4861 * features require a status code of Invalid Field in Command when
4862 * NSID is FFFFFFFFh. Since the device does not support those
4863 * features we can always return Invalid Namespace or Format as we
4864 * should do for all other features.
4866 return NVME_INVALID_NSID | NVME_DNR;
4869 if (!nvme_ns(n, nsid)) {
4870 return NVME_INVALID_FIELD | NVME_DNR;
4874 switch (sel) {
4875 case NVME_GETFEAT_SELECT_CURRENT:
4876 break;
4877 case NVME_GETFEAT_SELECT_SAVED:
4878 /* no features are saveable by the controller; fallthrough */
4879 case NVME_GETFEAT_SELECT_DEFAULT:
4880 goto defaults;
4881 case NVME_GETFEAT_SELECT_CAP:
4882 result = nvme_feature_cap[fid];
4883 goto out;
4886 switch (fid) {
4887 case NVME_TEMPERATURE_THRESHOLD:
4888 result = 0;
4891 * The controller only implements the Composite Temperature sensor, so
4892 * return 0 for all other sensors.
4894 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
4895 goto out;
4898 switch (NVME_TEMP_THSEL(dw11)) {
4899 case NVME_TEMP_THSEL_OVER:
4900 result = n->features.temp_thresh_hi;
4901 goto out;
4902 case NVME_TEMP_THSEL_UNDER:
4903 result = n->features.temp_thresh_low;
4904 goto out;
4907 return NVME_INVALID_FIELD | NVME_DNR;
4908 case NVME_ERROR_RECOVERY:
4909 if (!nvme_nsid_valid(n, nsid)) {
4910 return NVME_INVALID_NSID | NVME_DNR;
4913 ns = nvme_ns(n, nsid);
4914 if (unlikely(!ns)) {
4915 return NVME_INVALID_FIELD | NVME_DNR;
4918 result = ns->features.err_rec;
4919 goto out;
4920 case NVME_VOLATILE_WRITE_CACHE:
4921 result = 0;
4922 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4923 ns = nvme_ns(n, i);
4924 if (!ns) {
4925 continue;
4928 result = blk_enable_write_cache(ns->blkconf.blk);
4929 if (result) {
4930 break;
4933 trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
4934 goto out;
4935 case NVME_ASYNCHRONOUS_EVENT_CONF:
4936 result = n->features.async_config;
4937 goto out;
4938 case NVME_TIMESTAMP:
4939 return nvme_get_feature_timestamp(n, req);
4940 default:
4941 break;
4944 defaults:
4945 switch (fid) {
4946 case NVME_TEMPERATURE_THRESHOLD:
4947 result = 0;
4949 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
4950 break;
4953 if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) {
4954 result = NVME_TEMPERATURE_WARNING;
4957 break;
4958 case NVME_NUMBER_OF_QUEUES:
4959 result = (n->params.max_ioqpairs - 1) |
4960 ((n->params.max_ioqpairs - 1) << 16);
4961 trace_pci_nvme_getfeat_numq(result);
4962 break;
4963 case NVME_INTERRUPT_VECTOR_CONF:
4964 iv = dw11 & 0xffff;
4965 if (iv >= n->params.max_ioqpairs + 1) {
4966 return NVME_INVALID_FIELD | NVME_DNR;
4969 result = iv;
4970 if (iv == n->admin_cq.vector) {
4971 result |= NVME_INTVC_NOCOALESCING;
4973 break;
4974 default:
4975 result = nvme_feature_default[fid];
4976 break;
4979 out:
4980 req->cqe.result = cpu_to_le32(result);
4981 return NVME_SUCCESS;
4984 static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
4986 uint16_t ret;
4987 uint64_t timestamp;
4989 ret = nvme_h2c(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
4990 if (ret) {
4991 return ret;
4994 nvme_set_timestamp(n, timestamp);
4996 return NVME_SUCCESS;
4999 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req)
5001 NvmeNamespace *ns = NULL;
5003 NvmeCmd *cmd = &req->cmd;
5004 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
5005 uint32_t dw11 = le32_to_cpu(cmd->cdw11);
5006 uint32_t nsid = le32_to_cpu(cmd->nsid);
5007 uint8_t fid = NVME_GETSETFEAT_FID(dw10);
5008 uint8_t save = NVME_SETFEAT_SAVE(dw10);
5009 int i;
5011 trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11);
5013 if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) {
5014 return NVME_FID_NOT_SAVEABLE | NVME_DNR;
5017 if (!nvme_feature_support[fid]) {
5018 return NVME_INVALID_FIELD | NVME_DNR;
5021 if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
5022 if (nsid != NVME_NSID_BROADCAST) {
5023 if (!nvme_nsid_valid(n, nsid)) {
5024 return NVME_INVALID_NSID | NVME_DNR;
5027 ns = nvme_ns(n, nsid);
5028 if (unlikely(!ns)) {
5029 return NVME_INVALID_FIELD | NVME_DNR;
5032 } else if (nsid && nsid != NVME_NSID_BROADCAST) {
5033 if (!nvme_nsid_valid(n, nsid)) {
5034 return NVME_INVALID_NSID | NVME_DNR;
5037 return NVME_FEAT_NOT_NS_SPEC | NVME_DNR;
5040 if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) {
5041 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
5044 switch (fid) {
5045 case NVME_TEMPERATURE_THRESHOLD:
5046 if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5047 break;
5050 switch (NVME_TEMP_THSEL(dw11)) {
5051 case NVME_TEMP_THSEL_OVER:
5052 n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11);
5053 break;
5054 case NVME_TEMP_THSEL_UNDER:
5055 n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11);
5056 break;
5057 default:
5058 return NVME_INVALID_FIELD | NVME_DNR;
5061 if ((n->temperature >= n->features.temp_thresh_hi) ||
5062 (n->temperature <= n->features.temp_thresh_low)) {
5063 nvme_smart_event(n, NVME_AER_INFO_SMART_TEMP_THRESH);
5066 break;
5067 case NVME_ERROR_RECOVERY:
5068 if (nsid == NVME_NSID_BROADCAST) {
5069 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5070 ns = nvme_ns(n, i);
5072 if (!ns) {
5073 continue;
5076 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
5077 ns->features.err_rec = dw11;
5081 break;
5084 assert(ns);
5085 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
5086 ns->features.err_rec = dw11;
5088 break;
5089 case NVME_VOLATILE_WRITE_CACHE:
5090 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5091 ns = nvme_ns(n, i);
5092 if (!ns) {
5093 continue;
5096 if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) {
5097 blk_flush(ns->blkconf.blk);
5100 blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1);
5103 break;
5105 case NVME_NUMBER_OF_QUEUES:
5106 if (n->qs_created) {
5107 return NVME_CMD_SEQ_ERROR | NVME_DNR;
5111 * NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR
5112 * and NSQR.
5114 if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) {
5115 return NVME_INVALID_FIELD | NVME_DNR;
5118 trace_pci_nvme_setfeat_numq((dw11 & 0xffff) + 1,
5119 ((dw11 >> 16) & 0xffff) + 1,
5120 n->params.max_ioqpairs,
5121 n->params.max_ioqpairs);
5122 req->cqe.result = cpu_to_le32((n->params.max_ioqpairs - 1) |
5123 ((n->params.max_ioqpairs - 1) << 16));
5124 break;
5125 case NVME_ASYNCHRONOUS_EVENT_CONF:
5126 n->features.async_config = dw11;
5127 break;
5128 case NVME_TIMESTAMP:
5129 return nvme_set_feature_timestamp(n, req);
5130 case NVME_COMMAND_SET_PROFILE:
5131 if (dw11 & 0x1ff) {
5132 trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff);
5133 return NVME_CMD_SET_CMB_REJECTED | NVME_DNR;
5135 break;
5136 default:
5137 return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
5139 return NVME_SUCCESS;
5142 static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req)
5144 trace_pci_nvme_aer(nvme_cid(req));
5146 if (n->outstanding_aers > n->params.aerl) {
5147 trace_pci_nvme_aer_aerl_exceeded();
5148 return NVME_AER_LIMIT_EXCEEDED;
5151 n->aer_reqs[n->outstanding_aers] = req;
5152 n->outstanding_aers++;
5154 if (!QTAILQ_EMPTY(&n->aer_queue)) {
5155 nvme_process_aers(n);
5158 return NVME_NO_COMPLETE;
5161 static void nvme_update_dmrsl(NvmeCtrl *n)
5163 int nsid;
5165 for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) {
5166 NvmeNamespace *ns = nvme_ns(n, nsid);
5167 if (!ns) {
5168 continue;
5171 n->dmrsl = MIN_NON_ZERO(n->dmrsl,
5172 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
5176 static void nvme_select_iocs_ns(NvmeCtrl *n, NvmeNamespace *ns)
5178 uint32_t cc = ldl_le_p(&n->bar.cc);
5180 ns->iocs = nvme_cse_iocs_none;
5181 switch (ns->csi) {
5182 case NVME_CSI_NVM:
5183 if (NVME_CC_CSS(cc) != NVME_CC_CSS_ADMIN_ONLY) {
5184 ns->iocs = nvme_cse_iocs_nvm;
5186 break;
5187 case NVME_CSI_ZONED:
5188 if (NVME_CC_CSS(cc) == NVME_CC_CSS_CSI) {
5189 ns->iocs = nvme_cse_iocs_zoned;
5190 } else if (NVME_CC_CSS(cc) == NVME_CC_CSS_NVM) {
5191 ns->iocs = nvme_cse_iocs_nvm;
5193 break;
5197 static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req)
5199 NvmeNamespace *ns;
5200 NvmeCtrl *ctrl;
5201 uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
5202 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
5203 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5204 uint8_t sel = dw10 & 0xf;
5205 uint16_t *nr_ids = &list[0];
5206 uint16_t *ids = &list[1];
5207 uint16_t ret;
5208 int i;
5210 trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf);
5212 if (!nvme_nsid_valid(n, nsid)) {
5213 return NVME_INVALID_NSID | NVME_DNR;
5216 ns = nvme_subsys_ns(n->subsys, nsid);
5217 if (!ns) {
5218 return NVME_INVALID_FIELD | NVME_DNR;
5221 ret = nvme_h2c(n, (uint8_t *)list, 4096, req);
5222 if (ret) {
5223 return ret;
5226 if (!*nr_ids) {
5227 return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
5230 *nr_ids = MIN(*nr_ids, NVME_CONTROLLER_LIST_SIZE - 1);
5231 for (i = 0; i < *nr_ids; i++) {
5232 ctrl = nvme_subsys_ctrl(n->subsys, ids[i]);
5233 if (!ctrl) {
5234 return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
5237 switch (sel) {
5238 case NVME_NS_ATTACHMENT_ATTACH:
5239 if (nvme_ns(ctrl, nsid)) {
5240 return NVME_NS_ALREADY_ATTACHED | NVME_DNR;
5243 if (ns->attached && !ns->params.shared) {
5244 return NVME_NS_PRIVATE | NVME_DNR;
5247 nvme_attach_ns(ctrl, ns);
5248 nvme_select_iocs_ns(ctrl, ns);
5250 break;
5252 case NVME_NS_ATTACHMENT_DETACH:
5253 if (!nvme_ns(ctrl, nsid)) {
5254 return NVME_NS_NOT_ATTACHED | NVME_DNR;
5257 ctrl->namespaces[nsid] = NULL;
5258 ns->attached--;
5260 nvme_update_dmrsl(ctrl);
5262 break;
5264 default:
5265 return NVME_INVALID_FIELD | NVME_DNR;
5269 * Add namespace id to the changed namespace id list for event clearing
5270 * via Get Log Page command.
5272 if (!test_and_set_bit(nsid, ctrl->changed_nsids)) {
5273 nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE,
5274 NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED,
5275 NVME_LOG_CHANGED_NSLIST);
5279 return NVME_SUCCESS;
5282 typedef struct NvmeFormatAIOCB {
5283 BlockAIOCB common;
5284 BlockAIOCB *aiocb;
5285 QEMUBH *bh;
5286 NvmeRequest *req;
5287 int ret;
5289 NvmeNamespace *ns;
5290 uint32_t nsid;
5291 bool broadcast;
5292 int64_t offset;
5293 } NvmeFormatAIOCB;
5295 static void nvme_format_bh(void *opaque);
5297 static void nvme_format_cancel(BlockAIOCB *aiocb)
5299 NvmeFormatAIOCB *iocb = container_of(aiocb, NvmeFormatAIOCB, common);
5301 if (iocb->aiocb) {
5302 blk_aio_cancel_async(iocb->aiocb);
5306 static const AIOCBInfo nvme_format_aiocb_info = {
5307 .aiocb_size = sizeof(NvmeFormatAIOCB),
5308 .cancel_async = nvme_format_cancel,
5309 .get_aio_context = nvme_get_aio_context,
5312 static void nvme_format_set(NvmeNamespace *ns, NvmeCmd *cmd)
5314 uint32_t dw10 = le32_to_cpu(cmd->cdw10);
5315 uint8_t lbaf = dw10 & 0xf;
5316 uint8_t pi = (dw10 >> 5) & 0x7;
5317 uint8_t mset = (dw10 >> 4) & 0x1;
5318 uint8_t pil = (dw10 >> 8) & 0x1;
5320 trace_pci_nvme_format_set(ns->params.nsid, lbaf, mset, pi, pil);
5322 ns->id_ns.dps = (pil << 3) | pi;
5323 ns->id_ns.flbas = lbaf | (mset << 4);
5325 nvme_ns_init_format(ns);
5328 static void nvme_format_ns_cb(void *opaque, int ret)
5330 NvmeFormatAIOCB *iocb = opaque;
5331 NvmeRequest *req = iocb->req;
5332 NvmeNamespace *ns = iocb->ns;
5333 int bytes;
5335 if (ret < 0) {
5336 iocb->ret = ret;
5337 goto done;
5340 assert(ns);
5342 if (iocb->offset < ns->size) {
5343 bytes = MIN(BDRV_REQUEST_MAX_BYTES, ns->size - iocb->offset);
5345 iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, iocb->offset,
5346 bytes, BDRV_REQ_MAY_UNMAP,
5347 nvme_format_ns_cb, iocb);
5349 iocb->offset += bytes;
5350 return;
5353 nvme_format_set(ns, &req->cmd);
5354 ns->status = 0x0;
5355 iocb->ns = NULL;
5356 iocb->offset = 0;
5358 done:
5359 iocb->aiocb = NULL;
5360 qemu_bh_schedule(iocb->bh);
5363 static uint16_t nvme_format_check(NvmeNamespace *ns, uint8_t lbaf, uint8_t pi)
5365 if (ns->params.zoned) {
5366 return NVME_INVALID_FORMAT | NVME_DNR;
5369 if (lbaf > ns->id_ns.nlbaf) {
5370 return NVME_INVALID_FORMAT | NVME_DNR;
5373 if (pi && (ns->id_ns.lbaf[lbaf].ms < sizeof(NvmeDifTuple))) {
5374 return NVME_INVALID_FORMAT | NVME_DNR;
5377 if (pi && pi > NVME_ID_NS_DPS_TYPE_3) {
5378 return NVME_INVALID_FIELD | NVME_DNR;
5381 return NVME_SUCCESS;
5384 static void nvme_format_bh(void *opaque)
5386 NvmeFormatAIOCB *iocb = opaque;
5387 NvmeRequest *req = iocb->req;
5388 NvmeCtrl *n = nvme_ctrl(req);
5389 uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5390 uint8_t lbaf = dw10 & 0xf;
5391 uint8_t pi = (dw10 >> 5) & 0x7;
5392 uint16_t status;
5393 int i;
5395 if (iocb->ret < 0) {
5396 goto done;
5399 if (iocb->broadcast) {
5400 for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
5401 iocb->ns = nvme_ns(n, i);
5402 if (iocb->ns) {
5403 iocb->nsid = i;
5404 break;
5409 if (!iocb->ns) {
5410 goto done;
5413 status = nvme_format_check(iocb->ns, lbaf, pi);
5414 if (status) {
5415 req->status = status;
5416 goto done;
5419 iocb->ns->status = NVME_FORMAT_IN_PROGRESS;
5420 nvme_format_ns_cb(iocb, 0);
5421 return;
5423 done:
5424 qemu_bh_delete(iocb->bh);
5425 iocb->bh = NULL;
5427 iocb->common.cb(iocb->common.opaque, iocb->ret);
5429 qemu_aio_unref(iocb);
5432 static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req)
5434 NvmeFormatAIOCB *iocb;
5435 uint32_t nsid = le32_to_cpu(req->cmd.nsid);
5436 uint16_t status;
5438 iocb = qemu_aio_get(&nvme_format_aiocb_info, NULL, nvme_misc_cb, req);
5440 iocb->req = req;
5441 iocb->bh = qemu_bh_new(nvme_format_bh, iocb);
5442 iocb->ret = 0;
5443 iocb->ns = NULL;
5444 iocb->nsid = 0;
5445 iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
5446 iocb->offset = 0;
5448 if (!iocb->broadcast) {
5449 if (!nvme_nsid_valid(n, nsid)) {
5450 status = NVME_INVALID_NSID | NVME_DNR;
5451 goto out;
5454 iocb->ns = nvme_ns(n, nsid);
5455 if (!iocb->ns) {
5456 status = NVME_INVALID_FIELD | NVME_DNR;
5457 goto out;
5461 req->aiocb = &iocb->common;
5462 qemu_bh_schedule(iocb->bh);
5464 return NVME_NO_COMPLETE;
5466 out:
5467 qemu_bh_delete(iocb->bh);
5468 iocb->bh = NULL;
5469 qemu_aio_unref(iocb);
5470 return status;
5473 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req)
5475 trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode,
5476 nvme_adm_opc_str(req->cmd.opcode));
5478 if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
5479 trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode);
5480 return NVME_INVALID_OPCODE | NVME_DNR;
5483 /* SGLs shall not be used for Admin commands in NVMe over PCIe */
5484 if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) {
5485 return NVME_INVALID_FIELD | NVME_DNR;
5488 if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
5489 return NVME_INVALID_FIELD;
5492 switch (req->cmd.opcode) {
5493 case NVME_ADM_CMD_DELETE_SQ:
5494 return nvme_del_sq(n, req);
5495 case NVME_ADM_CMD_CREATE_SQ:
5496 return nvme_create_sq(n, req);
5497 case NVME_ADM_CMD_GET_LOG_PAGE:
5498 return nvme_get_log(n, req);
5499 case NVME_ADM_CMD_DELETE_CQ:
5500 return nvme_del_cq(n, req);
5501 case NVME_ADM_CMD_CREATE_CQ:
5502 return nvme_create_cq(n, req);
5503 case NVME_ADM_CMD_IDENTIFY:
5504 return nvme_identify(n, req);
5505 case NVME_ADM_CMD_ABORT:
5506 return nvme_abort(n, req);
5507 case NVME_ADM_CMD_SET_FEATURES:
5508 return nvme_set_feature(n, req);
5509 case NVME_ADM_CMD_GET_FEATURES:
5510 return nvme_get_feature(n, req);
5511 case NVME_ADM_CMD_ASYNC_EV_REQ:
5512 return nvme_aer(n, req);
5513 case NVME_ADM_CMD_NS_ATTACHMENT:
5514 return nvme_ns_attachment(n, req);
5515 case NVME_ADM_CMD_FORMAT_NVM:
5516 return nvme_format(n, req);
5517 default:
5518 assert(false);
5521 return NVME_INVALID_OPCODE | NVME_DNR;
5524 static void nvme_process_sq(void *opaque)
5526 NvmeSQueue *sq = opaque;
5527 NvmeCtrl *n = sq->ctrl;
5528 NvmeCQueue *cq = n->cq[sq->cqid];
5530 uint16_t status;
5531 hwaddr addr;
5532 NvmeCmd cmd;
5533 NvmeRequest *req;
5535 while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
5536 addr = sq->dma_addr + sq->head * n->sqe_size;
5537 if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) {
5538 trace_pci_nvme_err_addr_read(addr);
5539 trace_pci_nvme_err_cfs();
5540 stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
5541 break;
5543 nvme_inc_sq_head(sq);
5545 req = QTAILQ_FIRST(&sq->req_list);
5546 QTAILQ_REMOVE(&sq->req_list, req, entry);
5547 QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
5548 nvme_req_clear(req);
5549 req->cqe.cid = cmd.cid;
5550 memcpy(&req->cmd, &cmd, sizeof(NvmeCmd));
5552 status = sq->sqid ? nvme_io_cmd(n, req) :
5553 nvme_admin_cmd(n, req);
5554 if (status != NVME_NO_COMPLETE) {
5555 req->status = status;
5556 nvme_enqueue_req_completion(cq, req);
5561 static void nvme_ctrl_reset(NvmeCtrl *n)
5563 NvmeNamespace *ns;
5564 int i;
5566 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5567 ns = nvme_ns(n, i);
5568 if (!ns) {
5569 continue;
5572 nvme_ns_drain(ns);
5575 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
5576 if (n->sq[i] != NULL) {
5577 nvme_free_sq(n->sq[i], n);
5580 for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
5581 if (n->cq[i] != NULL) {
5582 nvme_free_cq(n->cq[i], n);
5586 while (!QTAILQ_EMPTY(&n->aer_queue)) {
5587 NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue);
5588 QTAILQ_REMOVE(&n->aer_queue, event, entry);
5589 g_free(event);
5592 n->aer_queued = 0;
5593 n->outstanding_aers = 0;
5594 n->qs_created = false;
5597 static void nvme_ctrl_shutdown(NvmeCtrl *n)
5599 NvmeNamespace *ns;
5600 int i;
5602 if (n->pmr.dev) {
5603 memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
5606 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5607 ns = nvme_ns(n, i);
5608 if (!ns) {
5609 continue;
5612 nvme_ns_shutdown(ns);
5616 static void nvme_select_iocs(NvmeCtrl *n)
5618 NvmeNamespace *ns;
5619 int i;
5621 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5622 ns = nvme_ns(n, i);
5623 if (!ns) {
5624 continue;
5627 nvme_select_iocs_ns(n, ns);
5631 static int nvme_start_ctrl(NvmeCtrl *n)
5633 uint64_t cap = ldq_le_p(&n->bar.cap);
5634 uint32_t cc = ldl_le_p(&n->bar.cc);
5635 uint32_t aqa = ldl_le_p(&n->bar.aqa);
5636 uint64_t asq = ldq_le_p(&n->bar.asq);
5637 uint64_t acq = ldq_le_p(&n->bar.acq);
5638 uint32_t page_bits = NVME_CC_MPS(cc) + 12;
5639 uint32_t page_size = 1 << page_bits;
5641 if (unlikely(n->cq[0])) {
5642 trace_pci_nvme_err_startfail_cq();
5643 return -1;
5645 if (unlikely(n->sq[0])) {
5646 trace_pci_nvme_err_startfail_sq();
5647 return -1;
5649 if (unlikely(asq & (page_size - 1))) {
5650 trace_pci_nvme_err_startfail_asq_misaligned(asq);
5651 return -1;
5653 if (unlikely(acq & (page_size - 1))) {
5654 trace_pci_nvme_err_startfail_acq_misaligned(acq);
5655 return -1;
5657 if (unlikely(!(NVME_CAP_CSS(cap) & (1 << NVME_CC_CSS(cc))))) {
5658 trace_pci_nvme_err_startfail_css(NVME_CC_CSS(cc));
5659 return -1;
5661 if (unlikely(NVME_CC_MPS(cc) < NVME_CAP_MPSMIN(cap))) {
5662 trace_pci_nvme_err_startfail_page_too_small(
5663 NVME_CC_MPS(cc),
5664 NVME_CAP_MPSMIN(cap));
5665 return -1;
5667 if (unlikely(NVME_CC_MPS(cc) >
5668 NVME_CAP_MPSMAX(cap))) {
5669 trace_pci_nvme_err_startfail_page_too_large(
5670 NVME_CC_MPS(cc),
5671 NVME_CAP_MPSMAX(cap));
5672 return -1;
5674 if (unlikely(NVME_CC_IOCQES(cc) <
5675 NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
5676 trace_pci_nvme_err_startfail_cqent_too_small(
5677 NVME_CC_IOCQES(cc),
5678 NVME_CTRL_CQES_MIN(cap));
5679 return -1;
5681 if (unlikely(NVME_CC_IOCQES(cc) >
5682 NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
5683 trace_pci_nvme_err_startfail_cqent_too_large(
5684 NVME_CC_IOCQES(cc),
5685 NVME_CTRL_CQES_MAX(cap));
5686 return -1;
5688 if (unlikely(NVME_CC_IOSQES(cc) <
5689 NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
5690 trace_pci_nvme_err_startfail_sqent_too_small(
5691 NVME_CC_IOSQES(cc),
5692 NVME_CTRL_SQES_MIN(cap));
5693 return -1;
5695 if (unlikely(NVME_CC_IOSQES(cc) >
5696 NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
5697 trace_pci_nvme_err_startfail_sqent_too_large(
5698 NVME_CC_IOSQES(cc),
5699 NVME_CTRL_SQES_MAX(cap));
5700 return -1;
5702 if (unlikely(!NVME_AQA_ASQS(aqa))) {
5703 trace_pci_nvme_err_startfail_asqent_sz_zero();
5704 return -1;
5706 if (unlikely(!NVME_AQA_ACQS(aqa))) {
5707 trace_pci_nvme_err_startfail_acqent_sz_zero();
5708 return -1;
5711 n->page_bits = page_bits;
5712 n->page_size = page_size;
5713 n->max_prp_ents = n->page_size / sizeof(uint64_t);
5714 n->cqe_size = 1 << NVME_CC_IOCQES(cc);
5715 n->sqe_size = 1 << NVME_CC_IOSQES(cc);
5716 nvme_init_cq(&n->admin_cq, n, acq, 0, 0, NVME_AQA_ACQS(aqa) + 1, 1);
5717 nvme_init_sq(&n->admin_sq, n, asq, 0, 0, NVME_AQA_ASQS(aqa) + 1);
5719 nvme_set_timestamp(n, 0ULL);
5721 QTAILQ_INIT(&n->aer_queue);
5723 nvme_select_iocs(n);
5725 return 0;
5728 static void nvme_cmb_enable_regs(NvmeCtrl *n)
5730 uint32_t cmbloc = ldl_le_p(&n->bar.cmbloc);
5731 uint32_t cmbsz = ldl_le_p(&n->bar.cmbsz);
5733 NVME_CMBLOC_SET_CDPCILS(cmbloc, 1);
5734 NVME_CMBLOC_SET_CDPMLS(cmbloc, 1);
5735 NVME_CMBLOC_SET_BIR(cmbloc, NVME_CMB_BIR);
5736 stl_le_p(&n->bar.cmbloc, cmbloc);
5738 NVME_CMBSZ_SET_SQS(cmbsz, 1);
5739 NVME_CMBSZ_SET_CQS(cmbsz, 0);
5740 NVME_CMBSZ_SET_LISTS(cmbsz, 1);
5741 NVME_CMBSZ_SET_RDS(cmbsz, 1);
5742 NVME_CMBSZ_SET_WDS(cmbsz, 1);
5743 NVME_CMBSZ_SET_SZU(cmbsz, 2); /* MBs */
5744 NVME_CMBSZ_SET_SZ(cmbsz, n->params.cmb_size_mb);
5745 stl_le_p(&n->bar.cmbsz, cmbsz);
5748 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
5749 unsigned size)
5751 uint64_t cap = ldq_le_p(&n->bar.cap);
5752 uint32_t cc = ldl_le_p(&n->bar.cc);
5753 uint32_t intms = ldl_le_p(&n->bar.intms);
5754 uint32_t csts = ldl_le_p(&n->bar.csts);
5755 uint32_t pmrsts = ldl_le_p(&n->bar.pmrsts);
5757 if (unlikely(offset & (sizeof(uint32_t) - 1))) {
5758 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
5759 "MMIO write not 32-bit aligned,"
5760 " offset=0x%"PRIx64"", offset);
5761 /* should be ignored, fall through for now */
5764 if (unlikely(size < sizeof(uint32_t))) {
5765 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
5766 "MMIO write smaller than 32-bits,"
5767 " offset=0x%"PRIx64", size=%u",
5768 offset, size);
5769 /* should be ignored, fall through for now */
5772 switch (offset) {
5773 case NVME_REG_INTMS:
5774 if (unlikely(msix_enabled(&(n->parent_obj)))) {
5775 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
5776 "undefined access to interrupt mask set"
5777 " when MSI-X is enabled");
5778 /* should be ignored, fall through for now */
5780 intms |= data;
5781 stl_le_p(&n->bar.intms, intms);
5782 n->bar.intmc = n->bar.intms;
5783 trace_pci_nvme_mmio_intm_set(data & 0xffffffff, intms);
5784 nvme_irq_check(n);
5785 break;
5786 case NVME_REG_INTMC:
5787 if (unlikely(msix_enabled(&(n->parent_obj)))) {
5788 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
5789 "undefined access to interrupt mask clr"
5790 " when MSI-X is enabled");
5791 /* should be ignored, fall through for now */
5793 intms &= ~data;
5794 stl_le_p(&n->bar.intms, intms);
5795 n->bar.intmc = n->bar.intms;
5796 trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, intms);
5797 nvme_irq_check(n);
5798 break;
5799 case NVME_REG_CC:
5800 trace_pci_nvme_mmio_cfg(data & 0xffffffff);
5802 /* Windows first sends data, then sends enable bit */
5803 if (!NVME_CC_EN(data) && !NVME_CC_EN(cc) &&
5804 !NVME_CC_SHN(data) && !NVME_CC_SHN(cc))
5806 cc = data;
5809 if (NVME_CC_EN(data) && !NVME_CC_EN(cc)) {
5810 cc = data;
5812 /* flush CC since nvme_start_ctrl() needs the value */
5813 stl_le_p(&n->bar.cc, cc);
5814 if (unlikely(nvme_start_ctrl(n))) {
5815 trace_pci_nvme_err_startfail();
5816 csts = NVME_CSTS_FAILED;
5817 } else {
5818 trace_pci_nvme_mmio_start_success();
5819 csts = NVME_CSTS_READY;
5821 } else if (!NVME_CC_EN(data) && NVME_CC_EN(cc)) {
5822 trace_pci_nvme_mmio_stopped();
5823 nvme_ctrl_reset(n);
5824 cc = 0;
5825 csts &= ~NVME_CSTS_READY;
5828 if (NVME_CC_SHN(data) && !(NVME_CC_SHN(cc))) {
5829 trace_pci_nvme_mmio_shutdown_set();
5830 nvme_ctrl_shutdown(n);
5831 cc = data;
5832 csts |= NVME_CSTS_SHST_COMPLETE;
5833 } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(cc)) {
5834 trace_pci_nvme_mmio_shutdown_cleared();
5835 csts &= ~NVME_CSTS_SHST_COMPLETE;
5836 cc = data;
5839 stl_le_p(&n->bar.cc, cc);
5840 stl_le_p(&n->bar.csts, csts);
5842 break;
5843 case NVME_REG_CSTS:
5844 if (data & (1 << 4)) {
5845 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
5846 "attempted to W1C CSTS.NSSRO"
5847 " but CAP.NSSRS is zero (not supported)");
5848 } else if (data != 0) {
5849 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
5850 "attempted to set a read only bit"
5851 " of controller status");
5853 break;
5854 case NVME_REG_NSSR:
5855 if (data == 0x4e564d65) {
5856 trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
5857 } else {
5858 /* The spec says that writes of other values have no effect */
5859 return;
5861 break;
5862 case NVME_REG_AQA:
5863 stl_le_p(&n->bar.aqa, data);
5864 trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
5865 break;
5866 case NVME_REG_ASQ:
5867 stn_le_p(&n->bar.asq, size, data);
5868 trace_pci_nvme_mmio_asqaddr(data);
5869 break;
5870 case NVME_REG_ASQ + 4:
5871 stl_le_p((uint8_t *)&n->bar.asq + 4, data);
5872 trace_pci_nvme_mmio_asqaddr_hi(data, ldq_le_p(&n->bar.asq));
5873 break;
5874 case NVME_REG_ACQ:
5875 trace_pci_nvme_mmio_acqaddr(data);
5876 stn_le_p(&n->bar.acq, size, data);
5877 break;
5878 case NVME_REG_ACQ + 4:
5879 stl_le_p((uint8_t *)&n->bar.acq + 4, data);
5880 trace_pci_nvme_mmio_acqaddr_hi(data, ldq_le_p(&n->bar.acq));
5881 break;
5882 case NVME_REG_CMBLOC:
5883 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
5884 "invalid write to reserved CMBLOC"
5885 " when CMBSZ is zero, ignored");
5886 return;
5887 case NVME_REG_CMBSZ:
5888 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
5889 "invalid write to read only CMBSZ, ignored");
5890 return;
5891 case NVME_REG_CMBMSC:
5892 if (!NVME_CAP_CMBS(cap)) {
5893 return;
5896 stn_le_p(&n->bar.cmbmsc, size, data);
5897 n->cmb.cmse = false;
5899 if (NVME_CMBMSC_CRE(data)) {
5900 nvme_cmb_enable_regs(n);
5902 if (NVME_CMBMSC_CMSE(data)) {
5903 uint64_t cmbmsc = ldq_le_p(&n->bar.cmbmsc);
5904 hwaddr cba = NVME_CMBMSC_CBA(cmbmsc) << CMBMSC_CBA_SHIFT;
5905 if (cba + int128_get64(n->cmb.mem.size) < cba) {
5906 uint32_t cmbsts = ldl_le_p(&n->bar.cmbsts);
5907 NVME_CMBSTS_SET_CBAI(cmbsts, 1);
5908 stl_le_p(&n->bar.cmbsts, cmbsts);
5909 return;
5912 n->cmb.cba = cba;
5913 n->cmb.cmse = true;
5915 } else {
5916 n->bar.cmbsz = 0;
5917 n->bar.cmbloc = 0;
5920 return;
5921 case NVME_REG_CMBMSC + 4:
5922 stl_le_p((uint8_t *)&n->bar.cmbmsc + 4, data);
5923 return;
5925 case NVME_REG_PMRCAP:
5926 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
5927 "invalid write to PMRCAP register, ignored");
5928 return;
5929 case NVME_REG_PMRCTL:
5930 if (!NVME_CAP_PMRS(cap)) {
5931 return;
5934 stl_le_p(&n->bar.pmrctl, data);
5935 if (NVME_PMRCTL_EN(data)) {
5936 memory_region_set_enabled(&n->pmr.dev->mr, true);
5937 pmrsts = 0;
5938 } else {
5939 memory_region_set_enabled(&n->pmr.dev->mr, false);
5940 NVME_PMRSTS_SET_NRDY(pmrsts, 1);
5941 n->pmr.cmse = false;
5943 stl_le_p(&n->bar.pmrsts, pmrsts);
5944 return;
5945 case NVME_REG_PMRSTS:
5946 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
5947 "invalid write to PMRSTS register, ignored");
5948 return;
5949 case NVME_REG_PMREBS:
5950 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
5951 "invalid write to PMREBS register, ignored");
5952 return;
5953 case NVME_REG_PMRSWTP:
5954 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
5955 "invalid write to PMRSWTP register, ignored");
5956 return;
5957 case NVME_REG_PMRMSCL:
5958 if (!NVME_CAP_PMRS(cap)) {
5959 return;
5962 stl_le_p(&n->bar.pmrmscl, data);
5963 n->pmr.cmse = false;
5965 if (NVME_PMRMSCL_CMSE(data)) {
5966 uint64_t pmrmscu = ldl_le_p(&n->bar.pmrmscu);
5967 hwaddr cba = pmrmscu << 32 |
5968 (NVME_PMRMSCL_CBA(data) << PMRMSCL_CBA_SHIFT);
5969 if (cba + int128_get64(n->pmr.dev->mr.size) < cba) {
5970 NVME_PMRSTS_SET_CBAI(pmrsts, 1);
5971 stl_le_p(&n->bar.pmrsts, pmrsts);
5972 return;
5975 n->pmr.cmse = true;
5976 n->pmr.cba = cba;
5979 return;
5980 case NVME_REG_PMRMSCU:
5981 if (!NVME_CAP_PMRS(cap)) {
5982 return;
5985 stl_le_p(&n->bar.pmrmscu, data);
5986 return;
5987 default:
5988 NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
5989 "invalid MMIO write,"
5990 " offset=0x%"PRIx64", data=%"PRIx64"",
5991 offset, data);
5992 break;
5996 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
5998 NvmeCtrl *n = (NvmeCtrl *)opaque;
5999 uint8_t *ptr = (uint8_t *)&n->bar;
6001 trace_pci_nvme_mmio_read(addr, size);
6003 if (unlikely(addr & (sizeof(uint32_t) - 1))) {
6004 NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
6005 "MMIO read not 32-bit aligned,"
6006 " offset=0x%"PRIx64"", addr);
6007 /* should RAZ, fall through for now */
6008 } else if (unlikely(size < sizeof(uint32_t))) {
6009 NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
6010 "MMIO read smaller than 32-bits,"
6011 " offset=0x%"PRIx64"", addr);
6012 /* should RAZ, fall through for now */
6015 if (addr > sizeof(n->bar) - size) {
6016 NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
6017 "MMIO read beyond last register,"
6018 " offset=0x%"PRIx64", returning 0", addr);
6020 return 0;
6024 * When PMRWBM bit 1 is set then read from
6025 * from PMRSTS should ensure prior writes
6026 * made it to persistent media
6028 if (addr == NVME_REG_PMRSTS &&
6029 (NVME_PMRCAP_PMRWBM(ldl_le_p(&n->bar.pmrcap)) & 0x02)) {
6030 memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
6033 return ldn_le_p(ptr + addr, size);
6036 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
6038 uint32_t qid;
6040 if (unlikely(addr & ((1 << 2) - 1))) {
6041 NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
6042 "doorbell write not 32-bit aligned,"
6043 " offset=0x%"PRIx64", ignoring", addr);
6044 return;
6047 if (((addr - 0x1000) >> 2) & 1) {
6048 /* Completion queue doorbell write */
6050 uint16_t new_head = val & 0xffff;
6051 int start_sqs;
6052 NvmeCQueue *cq;
6054 qid = (addr - (0x1000 + (1 << 2))) >> 3;
6055 if (unlikely(nvme_check_cqid(n, qid))) {
6056 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
6057 "completion queue doorbell write"
6058 " for nonexistent queue,"
6059 " sqid=%"PRIu32", ignoring", qid);
6062 * NVM Express v1.3d, Section 4.1 state: "If host software writes
6063 * an invalid value to the Submission Queue Tail Doorbell or
6064 * Completion Queue Head Doorbell regiter and an Asynchronous Event
6065 * Request command is outstanding, then an asynchronous event is
6066 * posted to the Admin Completion Queue with a status code of
6067 * Invalid Doorbell Write Value."
6069 * Also note that the spec includes the "Invalid Doorbell Register"
6070 * status code, but nowhere does it specify when to use it.
6071 * However, it seems reasonable to use it here in a similar
6072 * fashion.
6074 if (n->outstanding_aers) {
6075 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6076 NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
6077 NVME_LOG_ERROR_INFO);
6080 return;
6083 cq = n->cq[qid];
6084 if (unlikely(new_head >= cq->size)) {
6085 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
6086 "completion queue doorbell write value"
6087 " beyond queue size, sqid=%"PRIu32","
6088 " new_head=%"PRIu16", ignoring",
6089 qid, new_head);
6091 if (n->outstanding_aers) {
6092 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6093 NVME_AER_INFO_ERR_INVALID_DB_VALUE,
6094 NVME_LOG_ERROR_INFO);
6097 return;
6100 trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head);
6102 start_sqs = nvme_cq_full(cq) ? 1 : 0;
6103 cq->head = new_head;
6104 if (start_sqs) {
6105 NvmeSQueue *sq;
6106 QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
6107 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
6109 timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
6112 if (cq->tail == cq->head) {
6113 if (cq->irq_enabled) {
6114 n->cq_pending--;
6117 nvme_irq_deassert(n, cq);
6119 } else {
6120 /* Submission queue doorbell write */
6122 uint16_t new_tail = val & 0xffff;
6123 NvmeSQueue *sq;
6125 qid = (addr - 0x1000) >> 3;
6126 if (unlikely(nvme_check_sqid(n, qid))) {
6127 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
6128 "submission queue doorbell write"
6129 " for nonexistent queue,"
6130 " sqid=%"PRIu32", ignoring", qid);
6132 if (n->outstanding_aers) {
6133 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6134 NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
6135 NVME_LOG_ERROR_INFO);
6138 return;
6141 sq = n->sq[qid];
6142 if (unlikely(new_tail >= sq->size)) {
6143 NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
6144 "submission queue doorbell write value"
6145 " beyond queue size, sqid=%"PRIu32","
6146 " new_tail=%"PRIu16", ignoring",
6147 qid, new_tail);
6149 if (n->outstanding_aers) {
6150 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6151 NVME_AER_INFO_ERR_INVALID_DB_VALUE,
6152 NVME_LOG_ERROR_INFO);
6155 return;
6158 trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail);
6160 sq->tail = new_tail;
6161 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
6165 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
6166 unsigned size)
6168 NvmeCtrl *n = (NvmeCtrl *)opaque;
6170 trace_pci_nvme_mmio_write(addr, data, size);
6172 if (addr < sizeof(n->bar)) {
6173 nvme_write_bar(n, addr, data, size);
6174 } else {
6175 nvme_process_db(n, addr, data);
6179 static const MemoryRegionOps nvme_mmio_ops = {
6180 .read = nvme_mmio_read,
6181 .write = nvme_mmio_write,
6182 .endianness = DEVICE_LITTLE_ENDIAN,
6183 .impl = {
6184 .min_access_size = 2,
6185 .max_access_size = 8,
6189 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
6190 unsigned size)
6192 NvmeCtrl *n = (NvmeCtrl *)opaque;
6193 stn_le_p(&n->cmb.buf[addr], size, data);
6196 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
6198 NvmeCtrl *n = (NvmeCtrl *)opaque;
6199 return ldn_le_p(&n->cmb.buf[addr], size);
6202 static const MemoryRegionOps nvme_cmb_ops = {
6203 .read = nvme_cmb_read,
6204 .write = nvme_cmb_write,
6205 .endianness = DEVICE_LITTLE_ENDIAN,
6206 .impl = {
6207 .min_access_size = 1,
6208 .max_access_size = 8,
6212 static void nvme_check_constraints(NvmeCtrl *n, Error **errp)
6214 NvmeParams *params = &n->params;
6216 if (params->num_queues) {
6217 warn_report("num_queues is deprecated; please use max_ioqpairs "
6218 "instead");
6220 params->max_ioqpairs = params->num_queues - 1;
6223 if (n->namespace.blkconf.blk && n->subsys) {
6224 error_setg(errp, "subsystem support is unavailable with legacy "
6225 "namespace ('drive' property)");
6226 return;
6229 if (params->max_ioqpairs < 1 ||
6230 params->max_ioqpairs > NVME_MAX_IOQPAIRS) {
6231 error_setg(errp, "max_ioqpairs must be between 1 and %d",
6232 NVME_MAX_IOQPAIRS);
6233 return;
6236 if (params->msix_qsize < 1 ||
6237 params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) {
6238 error_setg(errp, "msix_qsize must be between 1 and %d",
6239 PCI_MSIX_FLAGS_QSIZE + 1);
6240 return;
6243 if (!params->serial) {
6244 error_setg(errp, "serial property not set");
6245 return;
6248 if (n->pmr.dev) {
6249 if (host_memory_backend_is_mapped(n->pmr.dev)) {
6250 error_setg(errp, "can't use already busy memdev: %s",
6251 object_get_canonical_path_component(OBJECT(n->pmr.dev)));
6252 return;
6255 if (!is_power_of_2(n->pmr.dev->size)) {
6256 error_setg(errp, "pmr backend size needs to be power of 2 in size");
6257 return;
6260 host_memory_backend_set_mapped(n->pmr.dev, true);
6263 if (n->params.zasl > n->params.mdts) {
6264 error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less "
6265 "than or equal to mdts (Maximum Data Transfer Size)");
6266 return;
6269 if (!n->params.vsl) {
6270 error_setg(errp, "vsl must be non-zero");
6271 return;
6275 static void nvme_init_state(NvmeCtrl *n)
6277 /* add one to max_ioqpairs to account for the admin queue pair */
6278 n->reg_size = pow2ceil(sizeof(NvmeBar) +
6279 2 * (n->params.max_ioqpairs + 1) * NVME_DB_SIZE);
6280 n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1);
6281 n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1);
6282 n->temperature = NVME_TEMPERATURE;
6283 n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING;
6284 n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
6285 n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1);
6288 static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev)
6290 uint64_t cmb_size = n->params.cmb_size_mb * MiB;
6291 uint64_t cap = ldq_le_p(&n->bar.cap);
6293 n->cmb.buf = g_malloc0(cmb_size);
6294 memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n,
6295 "nvme-cmb", cmb_size);
6296 pci_register_bar(pci_dev, NVME_CMB_BIR,
6297 PCI_BASE_ADDRESS_SPACE_MEMORY |
6298 PCI_BASE_ADDRESS_MEM_TYPE_64 |
6299 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem);
6301 NVME_CAP_SET_CMBS(cap, 1);
6302 stq_le_p(&n->bar.cap, cap);
6304 if (n->params.legacy_cmb) {
6305 nvme_cmb_enable_regs(n);
6306 n->cmb.cmse = true;
6310 static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev)
6312 uint32_t pmrcap = ldl_le_p(&n->bar.pmrcap);
6314 NVME_PMRCAP_SET_RDS(pmrcap, 1);
6315 NVME_PMRCAP_SET_WDS(pmrcap, 1);
6316 NVME_PMRCAP_SET_BIR(pmrcap, NVME_PMR_BIR);
6317 /* Turn on bit 1 support */
6318 NVME_PMRCAP_SET_PMRWBM(pmrcap, 0x02);
6319 NVME_PMRCAP_SET_CMSS(pmrcap, 1);
6320 stl_le_p(&n->bar.pmrcap, pmrcap);
6322 pci_register_bar(pci_dev, NVME_PMR_BIR,
6323 PCI_BASE_ADDRESS_SPACE_MEMORY |
6324 PCI_BASE_ADDRESS_MEM_TYPE_64 |
6325 PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr);
6327 memory_region_set_enabled(&n->pmr.dev->mr, false);
6330 static int nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp)
6332 uint8_t *pci_conf = pci_dev->config;
6333 uint64_t bar_size, msix_table_size, msix_pba_size;
6334 unsigned msix_table_offset, msix_pba_offset;
6335 int ret;
6337 Error *err = NULL;
6339 pci_conf[PCI_INTERRUPT_PIN] = 1;
6340 pci_config_set_prog_interface(pci_conf, 0x2);
6342 if (n->params.use_intel_id) {
6343 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
6344 pci_config_set_device_id(pci_conf, 0x5845);
6345 } else {
6346 pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT);
6347 pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME);
6350 pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS);
6351 pcie_endpoint_cap_init(pci_dev, 0x80);
6353 bar_size = QEMU_ALIGN_UP(n->reg_size, 4 * KiB);
6354 msix_table_offset = bar_size;
6355 msix_table_size = PCI_MSIX_ENTRY_SIZE * n->params.msix_qsize;
6357 bar_size += msix_table_size;
6358 bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
6359 msix_pba_offset = bar_size;
6360 msix_pba_size = QEMU_ALIGN_UP(n->params.msix_qsize, 64) / 8;
6362 bar_size += msix_pba_size;
6363 bar_size = pow2ceil(bar_size);
6365 memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size);
6366 memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
6367 n->reg_size);
6368 memory_region_add_subregion(&n->bar0, 0, &n->iomem);
6370 pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
6371 PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0);
6372 ret = msix_init(pci_dev, n->params.msix_qsize,
6373 &n->bar0, 0, msix_table_offset,
6374 &n->bar0, 0, msix_pba_offset, 0, &err);
6375 if (ret < 0) {
6376 if (ret == -ENOTSUP) {
6377 warn_report_err(err);
6378 } else {
6379 error_propagate(errp, err);
6380 return ret;
6384 if (n->params.cmb_size_mb) {
6385 nvme_init_cmb(n, pci_dev);
6388 if (n->pmr.dev) {
6389 nvme_init_pmr(n, pci_dev);
6392 return 0;
6395 static void nvme_init_subnqn(NvmeCtrl *n)
6397 NvmeSubsystem *subsys = n->subsys;
6398 NvmeIdCtrl *id = &n->id_ctrl;
6400 if (!subsys) {
6401 snprintf((char *)id->subnqn, sizeof(id->subnqn),
6402 "nqn.2019-08.org.qemu:%s", n->params.serial);
6403 } else {
6404 pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn);
6408 static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev)
6410 NvmeIdCtrl *id = &n->id_ctrl;
6411 uint8_t *pci_conf = pci_dev->config;
6412 uint64_t cap = ldq_le_p(&n->bar.cap);
6414 id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
6415 id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
6416 strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
6417 strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' ');
6418 strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
6420 id->cntlid = cpu_to_le16(n->cntlid);
6422 id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR);
6424 id->rab = 6;
6426 if (n->params.use_intel_id) {
6427 id->ieee[0] = 0xb3;
6428 id->ieee[1] = 0x02;
6429 id->ieee[2] = 0x00;
6430 } else {
6431 id->ieee[0] = 0x00;
6432 id->ieee[1] = 0x54;
6433 id->ieee[2] = 0x52;
6436 id->mdts = n->params.mdts;
6437 id->ver = cpu_to_le32(NVME_SPEC_VER);
6438 id->oacs = cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT);
6439 id->cntrltype = 0x1;
6442 * Because the controller always completes the Abort command immediately,
6443 * there can never be more than one concurrently executing Abort command,
6444 * so this value is never used for anything. Note that there can easily be
6445 * many Abort commands in the queues, but they are not considered
6446 * "executing" until processed by nvme_abort.
6448 * The specification recommends a value of 3 for Abort Command Limit (four
6449 * concurrently outstanding Abort commands), so lets use that though it is
6450 * inconsequential.
6452 id->acl = 3;
6453 id->aerl = n->params.aerl;
6454 id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO;
6455 id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED;
6457 /* recommended default value (~70 C) */
6458 id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING);
6459 id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL);
6461 id->sqes = (0x6 << 4) | 0x6;
6462 id->cqes = (0x4 << 4) | 0x4;
6463 id->nn = cpu_to_le32(NVME_MAX_NAMESPACES);
6464 id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP |
6465 NVME_ONCS_FEATURES | NVME_ONCS_DSM |
6466 NVME_ONCS_COMPARE | NVME_ONCS_COPY);
6469 * NOTE: If this device ever supports a command set that does NOT use 0x0
6470 * as a Flush-equivalent operation, support for the broadcast NSID in Flush
6471 * should probably be removed.
6473 * See comment in nvme_io_cmd.
6475 id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT;
6477 id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0);
6478 id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN |
6479 NVME_CTRL_SGLS_BITBUCKET);
6481 nvme_init_subnqn(n);
6483 id->psd[0].mp = cpu_to_le16(0x9c4);
6484 id->psd[0].enlat = cpu_to_le32(0x10);
6485 id->psd[0].exlat = cpu_to_le32(0x4);
6487 if (n->subsys) {
6488 id->cmic |= NVME_CMIC_MULTI_CTRL;
6491 NVME_CAP_SET_MQES(cap, 0x7ff);
6492 NVME_CAP_SET_CQR(cap, 1);
6493 NVME_CAP_SET_TO(cap, 0xf);
6494 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_NVM);
6495 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_CSI_SUPP);
6496 NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_ADMIN_ONLY);
6497 NVME_CAP_SET_MPSMAX(cap, 4);
6498 NVME_CAP_SET_CMBS(cap, n->params.cmb_size_mb ? 1 : 0);
6499 NVME_CAP_SET_PMRS(cap, n->pmr.dev ? 1 : 0);
6500 stq_le_p(&n->bar.cap, cap);
6502 stl_le_p(&n->bar.vs, NVME_SPEC_VER);
6503 n->bar.intmc = n->bar.intms = 0;
6506 static int nvme_init_subsys(NvmeCtrl *n, Error **errp)
6508 int cntlid;
6510 if (!n->subsys) {
6511 return 0;
6514 cntlid = nvme_subsys_register_ctrl(n, errp);
6515 if (cntlid < 0) {
6516 return -1;
6519 n->cntlid = cntlid;
6521 return 0;
6524 void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns)
6526 uint32_t nsid = ns->params.nsid;
6527 assert(nsid && nsid <= NVME_MAX_NAMESPACES);
6529 n->namespaces[nsid] = ns;
6530 ns->attached++;
6532 n->dmrsl = MIN_NON_ZERO(n->dmrsl,
6533 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
6536 static void nvme_realize(PCIDevice *pci_dev, Error **errp)
6538 NvmeCtrl *n = NVME(pci_dev);
6539 NvmeNamespace *ns;
6540 Error *local_err = NULL;
6542 nvme_check_constraints(n, &local_err);
6543 if (local_err) {
6544 error_propagate(errp, local_err);
6545 return;
6548 qbus_init(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS,
6549 &pci_dev->qdev, n->parent_obj.qdev.id);
6551 nvme_init_state(n);
6552 if (nvme_init_pci(n, pci_dev, errp)) {
6553 return;
6556 if (nvme_init_subsys(n, errp)) {
6557 error_propagate(errp, local_err);
6558 return;
6560 nvme_init_ctrl(n, pci_dev);
6562 /* setup a namespace if the controller drive property was given */
6563 if (n->namespace.blkconf.blk) {
6564 ns = &n->namespace;
6565 ns->params.nsid = 1;
6567 if (nvme_ns_setup(ns, errp)) {
6568 return;
6571 nvme_attach_ns(n, ns);
6575 static void nvme_exit(PCIDevice *pci_dev)
6577 NvmeCtrl *n = NVME(pci_dev);
6578 NvmeNamespace *ns;
6579 int i;
6581 nvme_ctrl_reset(n);
6583 if (n->subsys) {
6584 for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6585 ns = nvme_ns(n, i);
6586 if (ns) {
6587 ns->attached--;
6591 nvme_subsys_unregister_ctrl(n->subsys, n);
6594 g_free(n->cq);
6595 g_free(n->sq);
6596 g_free(n->aer_reqs);
6598 if (n->params.cmb_size_mb) {
6599 g_free(n->cmb.buf);
6602 if (n->pmr.dev) {
6603 host_memory_backend_set_mapped(n->pmr.dev, false);
6605 msix_uninit(pci_dev, &n->bar0, &n->bar0);
6606 memory_region_del_subregion(&n->bar0, &n->iomem);
6609 static Property nvme_props[] = {
6610 DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf),
6611 DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND,
6612 HostMemoryBackend *),
6613 DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS,
6614 NvmeSubsystem *),
6615 DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
6616 DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
6617 DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0),
6618 DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64),
6619 DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65),
6620 DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3),
6621 DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64),
6622 DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7),
6623 DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7),
6624 DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false),
6625 DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false),
6626 DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0),
6627 DEFINE_PROP_BOOL("zoned.auto_transition", NvmeCtrl,
6628 params.auto_transition_zones, true),
6629 DEFINE_PROP_END_OF_LIST(),
6632 static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name,
6633 void *opaque, Error **errp)
6635 NvmeCtrl *n = NVME(obj);
6636 uint8_t value = n->smart_critical_warning;
6638 visit_type_uint8(v, name, &value, errp);
6641 static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name,
6642 void *opaque, Error **errp)
6644 NvmeCtrl *n = NVME(obj);
6645 uint8_t value, old_value, cap = 0, index, event;
6647 if (!visit_type_uint8(v, name, &value, errp)) {
6648 return;
6651 cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY
6652 | NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA;
6653 if (NVME_CAP_PMRS(ldq_le_p(&n->bar.cap))) {
6654 cap |= NVME_SMART_PMR_UNRELIABLE;
6657 if ((value & cap) != value) {
6658 error_setg(errp, "unsupported smart critical warning bits: 0x%x",
6659 value & ~cap);
6660 return;
6663 old_value = n->smart_critical_warning;
6664 n->smart_critical_warning = value;
6666 /* only inject new bits of smart critical warning */
6667 for (index = 0; index < NVME_SMART_WARN_MAX; index++) {
6668 event = 1 << index;
6669 if (value & ~old_value & event)
6670 nvme_smart_event(n, event);
6674 static const VMStateDescription nvme_vmstate = {
6675 .name = "nvme",
6676 .unmigratable = 1,
6679 static void nvme_class_init(ObjectClass *oc, void *data)
6681 DeviceClass *dc = DEVICE_CLASS(oc);
6682 PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
6684 pc->realize = nvme_realize;
6685 pc->exit = nvme_exit;
6686 pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
6687 pc->revision = 2;
6689 set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
6690 dc->desc = "Non-Volatile Memory Express";
6691 device_class_set_props(dc, nvme_props);
6692 dc->vmsd = &nvme_vmstate;
6695 static void nvme_instance_init(Object *obj)
6697 NvmeCtrl *n = NVME(obj);
6699 device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex,
6700 "bootindex", "/namespace@1,0",
6701 DEVICE(obj));
6703 object_property_add(obj, "smart_critical_warning", "uint8",
6704 nvme_get_smart_warning,
6705 nvme_set_smart_warning, NULL, NULL);
6708 static const TypeInfo nvme_info = {
6709 .name = TYPE_NVME,
6710 .parent = TYPE_PCI_DEVICE,
6711 .instance_size = sizeof(NvmeCtrl),
6712 .instance_init = nvme_instance_init,
6713 .class_init = nvme_class_init,
6714 .interfaces = (InterfaceInfo[]) {
6715 { INTERFACE_PCIE_DEVICE },
6720 static const TypeInfo nvme_bus_info = {
6721 .name = TYPE_NVME_BUS,
6722 .parent = TYPE_BUS,
6723 .instance_size = sizeof(NvmeBus),
6726 static void nvme_register_types(void)
6728 type_register_static(&nvme_info);
6729 type_register_static(&nvme_bus_info);
6732 type_init(nvme_register_types)