3 ** File: fmopl.c -- software implementation of FM sound generator
5 ** Copyright (C) 1999,2000 Tatsuyuki Satoh , MultiArcadeMachineEmurator development
17 /* This version of fmopl.c is a fork of the MAME one, relicensed under the LGPL.
19 * This library is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU Lesser General Public
21 * License as published by the Free Software Foundation; either
22 * version 2.1 of the License, or (at your option) any later version.
24 * This library is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
27 * Lesser General Public License for more details.
29 * You should have received a copy of the GNU Lesser General Public
30 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
33 #define INLINE static inline
41 //#include "driver.h" /* use M.A.M.E. */
45 #define PI 3.14159265358979323846
48 /* -------------------- for debug --------------------- */
49 /* #define OPL_OUTPUT_LOG */
51 static FILE *opl_dbg_fp
= NULL
;
52 static FM_OPL
*opl_dbg_opl
[16];
53 static int opl_dbg_maxchip
,opl_dbg_chip
;
56 /* -------------------- preliminary define section --------------------- */
57 /* attack/decay rate time rate */
58 #define OPL_ARRATE 141280 /* RATE 4 = 2826.24ms @ 3.6MHz */
59 #define OPL_DRRATE 1956000 /* RATE 4 = 39280.64ms @ 3.6MHz */
61 #define DELTAT_MIXING_LEVEL (1) /* DELTA-T ADPCM MIXING LEVEL */
63 #define FREQ_BITS 24 /* frequency turn */
65 /* counter bits = 20 , octerve 7 */
66 #define FREQ_RATE (1<<(FREQ_BITS-20))
67 #define TL_BITS (FREQ_BITS+2)
69 /* final output shift , limit minimum and maximum */
70 #define OPL_OUTSB (TL_BITS+3-16) /* OPL output final shift 16bit */
71 #define OPL_MAXOUT (0x7fff<<OPL_OUTSB)
72 #define OPL_MINOUT (-0x8000<<OPL_OUTSB)
74 /* -------------------- quality selection --------------------- */
77 /* used static memory = SIN_ENT * 4 (byte) */
80 /* output level entries (envelope,sinwave) */
81 /* envelope counter lower bits */
83 /* envelope output entries */
85 /* used dynamic memory = EG_ENT*4*4(byte)or EG_ENT*6*4(byte) */
86 /* used static memory = EG_ENT*4 (byte) */
88 #define EG_OFF ((2*EG_ENT)<<ENV_BITS) /* OFF */
90 #define EG_DST (EG_ENT<<ENV_BITS) /* DECAY START */
92 #define EG_AST 0 /* ATTACK START */
94 #define EG_STEP (96.0/EG_ENT) /* OPL is 0.1875 dB step */
96 /* LFO table entries */
98 #define VIB_SHIFT (32-9)
100 #define AMS_SHIFT (32-9)
104 /* -------------------- local defines , macros --------------------- */
106 /* register number to channel number , slot offset */
111 #define ENV_MOD_RR 0x00
112 #define ENV_MOD_DR 0x01
113 #define ENV_MOD_AR 0x02
115 /* -------------------- tables --------------------- */
116 static const int slot_array
[32]=
118 0, 2, 4, 1, 3, 5,-1,-1,
119 6, 8,10, 7, 9,11,-1,-1,
120 12,14,16,13,15,17,-1,-1,
121 -1,-1,-1,-1,-1,-1,-1,-1
124 /* key scale level */
125 /* table is 3dB/OCT , DV converts this in TL step at 6dB/OCT */
126 #define DV (EG_STEP/2)
127 static const UINT32 KSL_TABLE
[8*16]=
130 0.000/DV
, 0.000/DV
, 0.000/DV
, 0.000/DV
,
131 0.000/DV
, 0.000/DV
, 0.000/DV
, 0.000/DV
,
132 0.000/DV
, 0.000/DV
, 0.000/DV
, 0.000/DV
,
133 0.000/DV
, 0.000/DV
, 0.000/DV
, 0.000/DV
,
135 0.000/DV
, 0.000/DV
, 0.000/DV
, 0.000/DV
,
136 0.000/DV
, 0.000/DV
, 0.000/DV
, 0.000/DV
,
137 0.000/DV
, 0.750/DV
, 1.125/DV
, 1.500/DV
,
138 1.875/DV
, 2.250/DV
, 2.625/DV
, 3.000/DV
,
140 0.000/DV
, 0.000/DV
, 0.000/DV
, 0.000/DV
,
141 0.000/DV
, 1.125/DV
, 1.875/DV
, 2.625/DV
,
142 3.000/DV
, 3.750/DV
, 4.125/DV
, 4.500/DV
,
143 4.875/DV
, 5.250/DV
, 5.625/DV
, 6.000/DV
,
145 0.000/DV
, 0.000/DV
, 0.000/DV
, 1.875/DV
,
146 3.000/DV
, 4.125/DV
, 4.875/DV
, 5.625/DV
,
147 6.000/DV
, 6.750/DV
, 7.125/DV
, 7.500/DV
,
148 7.875/DV
, 8.250/DV
, 8.625/DV
, 9.000/DV
,
150 0.000/DV
, 0.000/DV
, 3.000/DV
, 4.875/DV
,
151 6.000/DV
, 7.125/DV
, 7.875/DV
, 8.625/DV
,
152 9.000/DV
, 9.750/DV
,10.125/DV
,10.500/DV
,
153 10.875/DV
,11.250/DV
,11.625/DV
,12.000/DV
,
155 0.000/DV
, 3.000/DV
, 6.000/DV
, 7.875/DV
,
156 9.000/DV
,10.125/DV
,10.875/DV
,11.625/DV
,
157 12.000/DV
,12.750/DV
,13.125/DV
,13.500/DV
,
158 13.875/DV
,14.250/DV
,14.625/DV
,15.000/DV
,
160 0.000/DV
, 6.000/DV
, 9.000/DV
,10.875/DV
,
161 12.000/DV
,13.125/DV
,13.875/DV
,14.625/DV
,
162 15.000/DV
,15.750/DV
,16.125/DV
,16.500/DV
,
163 16.875/DV
,17.250/DV
,17.625/DV
,18.000/DV
,
165 0.000/DV
, 9.000/DV
,12.000/DV
,13.875/DV
,
166 15.000/DV
,16.125/DV
,16.875/DV
,17.625/DV
,
167 18.000/DV
,18.750/DV
,19.125/DV
,19.500/DV
,
168 19.875/DV
,20.250/DV
,20.625/DV
,21.000/DV
172 /* sustain lebel table (3db per step) */
173 /* 0 - 15: 0, 3, 6, 9,12,15,18,21,24,27,30,33,36,39,42,93 (dB)*/
174 #define SC(db) (db*((3/EG_STEP)*(1<<ENV_BITS)))+EG_DST
175 static const INT32 SL_TABLE
[16]={
176 SC( 0),SC( 1),SC( 2),SC(3 ),SC(4 ),SC(5 ),SC(6 ),SC( 7),
177 SC( 8),SC( 9),SC(10),SC(11),SC(12),SC(13),SC(14),SC(31)
181 #define TL_MAX (EG_ENT*2) /* limit(tl + ksr + envelope) + sinwave */
182 /* TotalLevel : 48 24 12 6 3 1.5 0.75 (dB) */
183 /* TL_TABLE[ 0 to TL_MAX ] : plus section */
184 /* TL_TABLE[ TL_MAX to TL_MAX+TL_MAX-1 ] : minus section */
185 static INT32
*TL_TABLE
;
187 /* pointers to TL_TABLE with sinwave output offset */
188 static INT32
**SIN_TABLE
;
191 static INT32
*AMS_TABLE
;
192 static INT32
*VIB_TABLE
;
194 /* envelope output curve table */
195 /* attack + decay + OFF */
196 static INT32 ENV_CURVE
[2*EG_ENT
+1];
200 static const UINT32 MUL_TABLE
[16]= {
201 /* 1/2, 1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15 */
202 0.50*ML
, 1.00*ML
, 2.00*ML
, 3.00*ML
, 4.00*ML
, 5.00*ML
, 6.00*ML
, 7.00*ML
,
203 8.00*ML
, 9.00*ML
,10.00*ML
,10.00*ML
,12.00*ML
,12.00*ML
,15.00*ML
,15.00*ML
207 /* dummy attack / decay rate ( when rate == 0 ) */
208 static INT32 RATE_0
[16]=
209 {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
211 /* -------------------- static state --------------------- */
213 /* lock level of common table */
214 static int num_lock
= 0;
217 static void *cur_chip
= NULL
; /* current chip point */
218 /* currenct chip state */
219 /* static OPLSAMPLE *bufL,*bufR; */
222 OPL_SLOT
*SLOT7_1
,*SLOT7_2
,*SLOT8_1
,*SLOT8_2
;
224 static INT32 outd
[1];
229 static INT32 amsIncr
;
230 static INT32 vibIncr
;
231 static INT32 feedback2
; /* connect for SLOT 2 */
233 /* log output level */
234 #define LOG_ERR 3 /* ERROR */
235 #define LOG_WAR 2 /* WARNING */
236 #define LOG_INF 1 /* INFORMATION */
238 //#define LOG_LEVEL LOG_INF
239 #define LOG_LEVEL LOG_ERR
241 //#define LOG(n,x) if( (n)>=LOG_LEVEL ) logerror x
244 /* --------------------- subroutines --------------------- */
246 INLINE
int Limit( int val
, int max
, int min
) {
249 else if ( val
< min
)
255 /* status set and IRQ handling */
256 INLINE
void OPL_STATUS_SET(FM_OPL
*OPL
,int flag
)
258 /* set status flag */
260 if(!(OPL
->status
& 0x80))
262 if(OPL
->status
& OPL
->statusmask
)
265 /* callback user interrupt handler (IRQ is OFF to ON) */
266 if(OPL
->IRQHandler
) (OPL
->IRQHandler
)(OPL
->IRQParam
,1);
271 /* status reset and IRQ handling */
272 INLINE
void OPL_STATUS_RESET(FM_OPL
*OPL
,int flag
)
274 /* reset status flag */
276 if((OPL
->status
& 0x80))
278 if (!(OPL
->status
& OPL
->statusmask
) )
281 /* callback user interrupt handler (IRQ is ON to OFF) */
282 if(OPL
->IRQHandler
) (OPL
->IRQHandler
)(OPL
->IRQParam
,0);
288 INLINE
void OPL_STATUSMASK_SET(FM_OPL
*OPL
,int flag
)
290 OPL
->statusmask
= flag
;
291 /* IRQ handling check */
292 OPL_STATUS_SET(OPL
,0);
293 OPL_STATUS_RESET(OPL
,0);
296 /* ----- key on ----- */
297 INLINE
void OPL_KEYON(OPL_SLOT
*SLOT
)
299 /* sin wave restart */
302 SLOT
->evm
= ENV_MOD_AR
;
303 SLOT
->evs
= SLOT
->evsa
;
307 /* ----- key off ----- */
308 INLINE
void OPL_KEYOFF(OPL_SLOT
*SLOT
)
310 if( SLOT
->evm
> ENV_MOD_RR
)
312 /* set envelope counter from envleope output */
313 SLOT
->evm
= ENV_MOD_RR
;
314 if( !(SLOT
->evc
&EG_DST
) )
315 //SLOT->evc = (ENV_CURVE[SLOT->evc>>ENV_BITS]<<ENV_BITS) + EG_DST;
318 SLOT
->evs
= SLOT
->evsr
;
322 /* ---------- calcrate Envelope Generator & Phase Generator ---------- */
323 /* return : envelope output */
324 INLINE UINT32
OPL_CALC_SLOT( OPL_SLOT
*SLOT
)
326 /* calcrate envelope generator */
327 if( (SLOT
->evc
+=SLOT
->evs
) >= SLOT
->eve
)
330 case ENV_MOD_AR
: /* ATTACK -> DECAY1 */
332 SLOT
->evm
= ENV_MOD_DR
;
334 SLOT
->eve
= SLOT
->SL
;
335 SLOT
->evs
= SLOT
->evsd
;
337 case ENV_MOD_DR
: /* DECAY -> SL or RR */
338 SLOT
->evc
= SLOT
->SL
;
346 SLOT
->evm
= ENV_MOD_RR
;
347 SLOT
->evs
= SLOT
->evsr
;
350 case ENV_MOD_RR
: /* RR -> OFF */
352 SLOT
->eve
= EG_OFF
+1;
357 /* calcrate envelope */
358 return SLOT
->TLL
+ENV_CURVE
[SLOT
->evc
>>ENV_BITS
]+(SLOT
->ams
? ams
: 0);
361 /* set algorythm connection */
362 static void set_algorythm( OPL_CH
*CH
)
364 INT32
*carrier
= &outd
[0];
365 CH
->connect1
= CH
->CON
? carrier
: &feedback2
;
366 CH
->connect2
= carrier
;
369 /* ---------- frequency counter for operater update ---------- */
370 INLINE
void CALC_FCSLOT(OPL_CH
*CH
,OPL_SLOT
*SLOT
)
374 /* frequency step counter */
375 SLOT
->Incr
= CH
->fc
* SLOT
->mul
;
376 ksr
= CH
->kcode
>> SLOT
->KSR
;
378 if( SLOT
->ksr
!= ksr
)
381 /* attack , decay rate recalcration */
382 SLOT
->evsa
= SLOT
->AR
[ksr
];
383 SLOT
->evsd
= SLOT
->DR
[ksr
];
384 SLOT
->evsr
= SLOT
->RR
[ksr
];
386 SLOT
->TLL
= SLOT
->TL
+ (CH
->ksl_base
>>SLOT
->ksl
);
389 /* set multi,am,vib,EG-TYP,KSR,mul */
390 INLINE
void set_mul(FM_OPL
*OPL
,int slot
,int v
)
392 OPL_CH
*CH
= &OPL
->P_CH
[slot
/2];
393 OPL_SLOT
*SLOT
= &CH
->SLOT
[slot
&1];
395 SLOT
->mul
= MUL_TABLE
[v
&0x0f];
396 SLOT
->KSR
= (v
&0x10) ? 0 : 2;
397 SLOT
->eg_typ
= (v
&0x20)>>5;
398 SLOT
->vib
= (v
&0x40);
399 SLOT
->ams
= (v
&0x80);
400 CALC_FCSLOT(CH
,SLOT
);
404 INLINE
void set_ksl_tl(FM_OPL
*OPL
,int slot
,int v
)
406 OPL_CH
*CH
= &OPL
->P_CH
[slot
/2];
407 OPL_SLOT
*SLOT
= &CH
->SLOT
[slot
&1];
408 int ksl
= v
>>6; /* 0 / 1.5 / 3 / 6 db/OCT */
410 SLOT
->ksl
= ksl
? 3-ksl
: 31;
411 SLOT
->TL
= (v
&0x3f)*(0.75/EG_STEP
); /* 0.75db step */
413 if( !(OPL
->mode
&0x80) )
414 { /* not CSM latch total level */
415 SLOT
->TLL
= SLOT
->TL
+ (CH
->ksl_base
>>SLOT
->ksl
);
419 /* set attack rate & decay rate */
420 INLINE
void set_ar_dr(FM_OPL
*OPL
,int slot
,int v
)
422 OPL_CH
*CH
= &OPL
->P_CH
[slot
/2];
423 OPL_SLOT
*SLOT
= &CH
->SLOT
[slot
&1];
427 SLOT
->AR
= ar
? &OPL
->AR_TABLE
[ar
<<2] : RATE_0
;
428 SLOT
->evsa
= SLOT
->AR
[SLOT
->ksr
];
429 if( SLOT
->evm
== ENV_MOD_AR
) SLOT
->evs
= SLOT
->evsa
;
431 SLOT
->DR
= dr
? &OPL
->DR_TABLE
[dr
<<2] : RATE_0
;
432 SLOT
->evsd
= SLOT
->DR
[SLOT
->ksr
];
433 if( SLOT
->evm
== ENV_MOD_DR
) SLOT
->evs
= SLOT
->evsd
;
436 /* set sustain level & release rate */
437 INLINE
void set_sl_rr(FM_OPL
*OPL
,int slot
,int v
)
439 OPL_CH
*CH
= &OPL
->P_CH
[slot
/2];
440 OPL_SLOT
*SLOT
= &CH
->SLOT
[slot
&1];
444 SLOT
->SL
= SL_TABLE
[sl
];
445 if( SLOT
->evm
== ENV_MOD_DR
) SLOT
->eve
= SLOT
->SL
;
446 SLOT
->RR
= &OPL
->DR_TABLE
[rr
<<2];
447 SLOT
->evsr
= SLOT
->RR
[SLOT
->ksr
];
448 if( SLOT
->evm
== ENV_MOD_RR
) SLOT
->evs
= SLOT
->evsr
;
451 /* operator output calcrator */
452 #define OP_OUT(slot,env,con) slot->wavetable[((slot->Cnt+con)/(0x1000000/SIN_ENT))&(SIN_ENT-1)][env]
453 /* ---------- calcrate one of channel ---------- */
454 INLINE
void OPL_CALC_CH( OPL_CH
*CH
)
461 SLOT
= &CH
->SLOT
[SLOT1
];
462 env_out
=OPL_CALC_SLOT(SLOT
);
463 if( env_out
< EG_ENT
-1 )
466 if(SLOT
->vib
) SLOT
->Cnt
+= (SLOT
->Incr
*vib
/VIB_RATE
);
467 else SLOT
->Cnt
+= SLOT
->Incr
;
471 int feedback1
= (CH
->op1_out
[0]+CH
->op1_out
[1])>>CH
->FB
;
472 CH
->op1_out
[1] = CH
->op1_out
[0];
473 *CH
->connect1
+= CH
->op1_out
[0] = OP_OUT(SLOT
,env_out
,feedback1
);
477 *CH
->connect1
+= OP_OUT(SLOT
,env_out
,0);
481 CH
->op1_out
[1] = CH
->op1_out
[0];
485 SLOT
= &CH
->SLOT
[SLOT2
];
486 env_out
=OPL_CALC_SLOT(SLOT
);
487 if( env_out
< EG_ENT
-1 )
490 if(SLOT
->vib
) SLOT
->Cnt
+= (SLOT
->Incr
*vib
/VIB_RATE
);
491 else SLOT
->Cnt
+= SLOT
->Incr
;
493 outd
[0] += OP_OUT(SLOT
,env_out
, feedback2
);
497 /* ---------- calcrate rythm block ---------- */
498 #define WHITE_NOISE_db 6.0
499 INLINE
void OPL_CALC_RH( OPL_CH
*CH
)
501 UINT32 env_tam
,env_sd
,env_top
,env_hh
;
502 int whitenoise
= (rand()&1)*(WHITE_NOISE_db
/EG_STEP
);
508 /* BD : same as FM serial mode and output level is large */
511 SLOT
= &CH
[6].SLOT
[SLOT1
];
512 env_out
=OPL_CALC_SLOT(SLOT
);
513 if( env_out
< EG_ENT
-1 )
516 if(SLOT
->vib
) SLOT
->Cnt
+= (SLOT
->Incr
*vib
/VIB_RATE
);
517 else SLOT
->Cnt
+= SLOT
->Incr
;
521 int feedback1
= (CH
[6].op1_out
[0]+CH
[6].op1_out
[1])>>CH
[6].FB
;
522 CH
[6].op1_out
[1] = CH
[6].op1_out
[0];
523 feedback2
= CH
[6].op1_out
[0] = OP_OUT(SLOT
,env_out
,feedback1
);
527 feedback2
= OP_OUT(SLOT
,env_out
,0);
532 CH
[6].op1_out
[1] = CH
[6].op1_out
[0];
533 CH
[6].op1_out
[0] = 0;
536 SLOT
= &CH
[6].SLOT
[SLOT2
];
537 env_out
=OPL_CALC_SLOT(SLOT
);
538 if( env_out
< EG_ENT
-1 )
541 if(SLOT
->vib
) SLOT
->Cnt
+= (SLOT
->Incr
*vib
/VIB_RATE
);
542 else SLOT
->Cnt
+= SLOT
->Incr
;
544 outd
[0] += OP_OUT(SLOT
,env_out
, feedback2
)*2;
547 // SD (17) = mul14[fnum7] + white noise
548 // TAM (15) = mul15[fnum8]
549 // TOP (18) = fnum6(mul18[fnum8]+whitenoise)
550 // HH (14) = fnum7(mul18[fnum8]+whitenoise) + white noise
551 env_sd
=OPL_CALC_SLOT(SLOT7_2
) + whitenoise
;
552 env_tam
=OPL_CALC_SLOT(SLOT8_1
);
553 env_top
=OPL_CALC_SLOT(SLOT8_2
);
554 env_hh
=OPL_CALC_SLOT(SLOT7_1
) + whitenoise
;
557 if(SLOT7_1
->vib
) SLOT7_1
->Cnt
+= (2*SLOT7_1
->Incr
*vib
/VIB_RATE
);
558 else SLOT7_1
->Cnt
+= 2*SLOT7_1
->Incr
;
559 if(SLOT7_2
->vib
) SLOT7_2
->Cnt
+= ((CH
[7].fc
*8)*vib
/VIB_RATE
);
560 else SLOT7_2
->Cnt
+= (CH
[7].fc
*8);
561 if(SLOT8_1
->vib
) SLOT8_1
->Cnt
+= (SLOT8_1
->Incr
*vib
/VIB_RATE
);
562 else SLOT8_1
->Cnt
+= SLOT8_1
->Incr
;
563 if(SLOT8_2
->vib
) SLOT8_2
->Cnt
+= ((CH
[8].fc
*48)*vib
/VIB_RATE
);
564 else SLOT8_2
->Cnt
+= (CH
[8].fc
*48);
566 tone8
= OP_OUT(SLOT8_2
,whitenoise
,0 );
569 if( env_sd
< EG_ENT
-1 )
570 outd
[0] += OP_OUT(SLOT7_1
,env_sd
, 0)*8;
572 if( env_tam
< EG_ENT
-1 )
573 outd
[0] += OP_OUT(SLOT8_1
,env_tam
, 0)*2;
575 if( env_top
< EG_ENT
-1 )
576 outd
[0] += OP_OUT(SLOT7_2
,env_top
,tone8
)*2;
578 if( env_hh
< EG_ENT
-1 )
579 outd
[0] += OP_OUT(SLOT7_2
,env_hh
,tone8
)*2;
582 /* ----------- initialize time tabls ----------- */
583 static void init_timetables( FM_OPL
*OPL
, int ARRATE
, int DRRATE
)
588 /* make attack rate & decay rate tables */
589 for (i
= 0;i
< 4;i
++) OPL
->AR_TABLE
[i
] = OPL
->DR_TABLE
[i
] = 0;
590 for (i
= 4;i
<= 60;i
++){
591 rate
= OPL
->freqbase
; /* frequency rate */
592 if( i
< 60 ) rate
*= 1.0+(i
&3)*0.25; /* b0-1 : x1 , x1.25 , x1.5 , x1.75 */
593 rate
*= 1<<((i
>>2)-1); /* b2-5 : shift bit */
594 rate
*= (double)(EG_ENT
<<ENV_BITS
);
595 OPL
->AR_TABLE
[i
] = rate
/ ARRATE
;
596 OPL
->DR_TABLE
[i
] = rate
/ DRRATE
;
598 for (i
= 60;i
< 76;i
++)
600 OPL
->AR_TABLE
[i
] = EG_AED
-1;
601 OPL
->DR_TABLE
[i
] = OPL
->DR_TABLE
[60];
604 for (i
= 0;i
< 64 ;i
++){ /* make for overflow area */
605 LOG(LOG_WAR
,("rate %2d , ar %f ms , dr %f ms \n",i
,
606 ((double)(EG_ENT
<<ENV_BITS
) / OPL
->AR_TABLE
[i
]) * (1000.0 / OPL
->rate
),
607 ((double)(EG_ENT
<<ENV_BITS
) / OPL
->DR_TABLE
[i
]) * (1000.0 / OPL
->rate
) ));
612 /* ---------- generic table initialize ---------- */
613 static int OPLOpenTable( void )
620 /* allocate dynamic tables */
621 if( (TL_TABLE
= malloc(TL_MAX
*2*sizeof(INT32
))) == NULL
)
623 if( (SIN_TABLE
= malloc(SIN_ENT
*4 *sizeof(INT32
*))) == NULL
)
628 if( (AMS_TABLE
= malloc(AMS_ENT
*2 *sizeof(INT32
))) == NULL
)
634 if( (VIB_TABLE
= malloc(VIB_ENT
*2 *sizeof(INT32
))) == NULL
)
641 /* make total level table */
642 for (t
= 0;t
< EG_ENT
-1 ;t
++){
643 rate
= ((1<<TL_BITS
)-1)/pow(10,EG_STEP
*t
/20); /* dB -> voltage */
644 TL_TABLE
[ t
] = (int)rate
;
645 TL_TABLE
[TL_MAX
+t
] = -TL_TABLE
[t
];
646 /* LOG(LOG_INF,("TotalLevel(%3d) = %x\n",t,TL_TABLE[t]));*/
648 /* fill volume off area */
649 for ( t
= EG_ENT
-1; t
< TL_MAX
;t
++){
650 TL_TABLE
[t
] = TL_TABLE
[TL_MAX
+t
] = 0;
653 /* make sinwave table (total level offet) */
654 /* degree 0 = degree 180 = off */
655 SIN_TABLE
[0] = SIN_TABLE
[SIN_ENT
/2] = &TL_TABLE
[EG_ENT
-1];
656 for (s
= 1;s
<= SIN_ENT
/4;s
++){
657 pom
= sin(2*PI
*s
/SIN_ENT
); /* sin */
658 pom
= 20*log10(1/pom
); /* decibel */
659 j
= pom
/ EG_STEP
; /* TL_TABLE steps */
661 /* degree 0 - 90 , degree 180 - 90 : plus section */
662 SIN_TABLE
[ s
] = SIN_TABLE
[SIN_ENT
/2-s
] = &TL_TABLE
[j
];
663 /* degree 180 - 270 , degree 360 - 270 : minus section */
664 SIN_TABLE
[SIN_ENT
/2+s
] = SIN_TABLE
[SIN_ENT
-s
] = &TL_TABLE
[TL_MAX
+j
];
665 /* LOG(LOG_INF,("sin(%3d) = %f:%f db\n",s,pom,(double)j * EG_STEP));*/
667 for (s
= 0;s
< SIN_ENT
;s
++)
669 SIN_TABLE
[SIN_ENT
*1+s
] = s
<(SIN_ENT
/2) ? SIN_TABLE
[s
] : &TL_TABLE
[EG_ENT
];
670 SIN_TABLE
[SIN_ENT
*2+s
] = SIN_TABLE
[s
% (SIN_ENT
/2)];
671 SIN_TABLE
[SIN_ENT
*3+s
] = (s
/(SIN_ENT
/4))&1 ? &TL_TABLE
[EG_ENT
] : SIN_TABLE
[SIN_ENT
*2+s
];
674 /* envelope counter -> envelope output table */
675 for (i
=0; i
<EG_ENT
; i
++)
678 pom
= pow( ((double)(EG_ENT
-1-i
)/EG_ENT
) , 8 ) * EG_ENT
;
679 /* if( pom >= EG_ENT ) pom = EG_ENT-1; */
680 ENV_CURVE
[i
] = (int)pom
;
681 /* DECAY ,RELEASE curve */
682 ENV_CURVE
[(EG_DST
>>ENV_BITS
)+i
]= i
;
685 ENV_CURVE
[EG_OFF
>>ENV_BITS
]= EG_ENT
-1;
686 /* make LFO ams table */
687 for (i
=0; i
<AMS_ENT
; i
++)
689 pom
= (1.0+sin(2*PI
*i
/AMS_ENT
))/2; /* sin */
690 AMS_TABLE
[i
] = (1.0/EG_STEP
)*pom
; /* 1dB */
691 AMS_TABLE
[AMS_ENT
+i
] = (4.8/EG_STEP
)*pom
; /* 4.8dB */
693 /* make LFO vibrate table */
694 for (i
=0; i
<VIB_ENT
; i
++)
696 /* 100cent = 1seminote = 6% ?? */
697 pom
= (double)VIB_RATE
*0.06*sin(2*PI
*i
/VIB_ENT
); /* +-100sect step */
698 VIB_TABLE
[i
] = VIB_RATE
+ (pom
*0.07); /* +- 7cent */
699 VIB_TABLE
[VIB_ENT
+i
] = VIB_RATE
+ (pom
*0.14); /* +-14cent */
700 /* LOG(LOG_INF,("vib %d=%d\n",i,VIB_TABLE[VIB_ENT+i])); */
706 static void OPLCloseTable( void )
714 /* CSM Key Controll */
715 INLINE
void CSMKeyControll(OPL_CH
*CH
)
717 OPL_SLOT
*slot1
= &CH
->SLOT
[SLOT1
];
718 OPL_SLOT
*slot2
= &CH
->SLOT
[SLOT2
];
722 /* total level latch */
723 slot1
->TLL
= slot1
->TL
+ (CH
->ksl_base
>>slot1
->ksl
);
724 slot1
->TLL
= slot1
->TL
+ (CH
->ksl_base
>>slot1
->ksl
);
726 CH
->op1_out
[0] = CH
->op1_out
[1] = 0;
731 /* ---------- opl initialize ---------- */
732 static void OPL_initalize(FM_OPL
*OPL
)
737 OPL
->freqbase
= (OPL
->rate
) ? ((double)OPL
->clock
/ OPL
->rate
) / 72 : 0;
738 /* Timer base time */
739 OPL
->TimerBase
= 1.0/((double)OPL
->clock
/ 72.0 );
740 /* make time tables */
741 init_timetables( OPL
, OPL_ARRATE
, OPL_DRRATE
);
742 /* make fnumber -> increment counter table */
743 for( fn
=0 ; fn
< 1024 ; fn
++ )
745 OPL
->FN_TABLE
[fn
] = OPL
->freqbase
* fn
* FREQ_RATE
* (1<<7) / 2;
748 OPL
->amsIncr
= OPL
->rate
? (double)AMS_ENT
*(1<<AMS_SHIFT
) / OPL
->rate
* 3.7 * ((double)OPL
->clock
/3600000) : 0;
749 OPL
->vibIncr
= OPL
->rate
? (double)VIB_ENT
*(1<<VIB_SHIFT
) / OPL
->rate
* 6.4 * ((double)OPL
->clock
/3600000) : 0;
752 /* ---------- write a OPL registers ---------- */
753 static void OPLWriteReg(FM_OPL
*OPL
, int r
, int v
)
761 case 0x00: /* 00-1f:controll */
765 /* wave selector enable */
766 if(OPL
->type
&OPL_TYPE_WAVESEL
)
768 OPL
->wavesel
= v
&0x20;
771 /* preset compatible mode */
773 for(c
=0;c
<OPL
->max_ch
;c
++)
775 OPL
->P_CH
[c
].SLOT
[SLOT1
].wavetable
= &SIN_TABLE
[0];
776 OPL
->P_CH
[c
].SLOT
[SLOT2
].wavetable
= &SIN_TABLE
[0];
781 case 0x02: /* Timer 1 */
782 OPL
->T
[0] = (256-v
)*4;
784 case 0x03: /* Timer 2 */
785 OPL
->T
[1] = (256-v
)*16;
787 case 0x04: /* IRQ clear / mask and Timer enable */
789 { /* IRQ flag clear */
790 OPL_STATUS_RESET(OPL
,0x7f);
793 { /* set IRQ mask ,timer enable*/
795 UINT8 st2
= (v
>>1)&1;
796 /* IRQRST,T1MSK,t2MSK,EOSMSK,BRMSK,x,ST2,ST1 */
797 OPL_STATUS_RESET(OPL
,v
&0x78);
798 OPL_STATUSMASK_SET(OPL
,((~v
)&0x78)|0x01);
800 if(OPL
->st
[1] != st2
)
802 double interval
= st2
? (double)OPL
->T
[1]*OPL
->TimerBase
: 0.0;
804 if (OPL
->TimerHandler
) (OPL
->TimerHandler
)(OPL
->TimerParam
+1,interval
);
807 if(OPL
->st
[0] != st1
)
809 double interval
= st1
? (double)OPL
->T
[0]*OPL
->TimerBase
: 0.0;
811 if (OPL
->TimerHandler
) (OPL
->TimerHandler
)(OPL
->TimerParam
+0,interval
);
816 case 0x06: /* Key Board OUT */
817 if(OPL
->type
&OPL_TYPE_KEYBOARD
)
819 if(OPL
->keyboardhandler_w
)
820 OPL
->keyboardhandler_w(OPL
->keyboard_param
,v
);
822 LOG(LOG_WAR
,("OPL:write unmapped KEYBOARD port\n"));
825 case 0x07: /* DELTA-T controll : START,REC,MEMDATA,REPT,SPOFF,x,x,RST */
826 if(OPL
->type
&OPL_TYPE_ADPCM
)
827 YM_DELTAT_ADPCM_Write(OPL
->deltat
,r
-0x07,v
);
829 case 0x08: /* MODE,DELTA-T : CSM,NOTESEL,x,x,smpl,da/ad,64k,rom */
831 v
&=0x1f; /* for DELTA-T unit */
832 case 0x09: /* START ADD */
834 case 0x0b: /* STOP ADD */
836 case 0x0d: /* PRESCALE */
838 case 0x0f: /* ADPCM data */
839 case 0x10: /* DELTA-N */
840 case 0x11: /* DELTA-N */
841 case 0x12: /* EG-CTRL */
842 if(OPL
->type
&OPL_TYPE_ADPCM
)
843 YM_DELTAT_ADPCM_Write(OPL
->deltat
,r
-0x07,v
);
846 case 0x15: /* DAC data */
848 case 0x17: /* SHIFT */
850 case 0x18: /* I/O CTRL (Direction) */
851 if(OPL
->type
&OPL_TYPE_IO
)
852 OPL
->portDirection
= v
&0x0f;
854 case 0x19: /* I/O DATA */
855 if(OPL
->type
&OPL_TYPE_IO
)
858 if(OPL
->porthandler_w
)
859 OPL
->porthandler_w(OPL
->port_param
,v
&OPL
->portDirection
);
862 case 0x1a: /* PCM data */
868 case 0x20: /* am,vib,ksr,eg type,mul */
869 slot
= slot_array
[r
&0x1f];
870 if(slot
== -1) return;
874 slot
= slot_array
[r
&0x1f];
875 if(slot
== -1) return;
876 set_ksl_tl(OPL
,slot
,v
);
879 slot
= slot_array
[r
&0x1f];
880 if(slot
== -1) return;
881 set_ar_dr(OPL
,slot
,v
);
884 slot
= slot_array
[r
&0x1f];
885 if(slot
== -1) return;
886 set_sl_rr(OPL
,slot
,v
);
892 /* amsep,vibdep,r,bd,sd,tom,tc,hh */
894 UINT8 rkey
= OPL
->rythm
^v
;
895 OPL
->ams_table
= &AMS_TABLE
[v
&0x80 ? AMS_ENT
: 0];
896 OPL
->vib_table
= &VIB_TABLE
[v
&0x40 ? VIB_ENT
: 0];
901 usrintf_showmessage("OPL Rythm mode select");
908 OPL
->P_CH
[6].op1_out
[0] = OPL
->P_CH
[6].op1_out
[1] = 0;
909 OPL_KEYON(&OPL
->P_CH
[6].SLOT
[SLOT1
]);
910 OPL_KEYON(&OPL
->P_CH
[6].SLOT
[SLOT2
]);
914 OPL_KEYOFF(&OPL
->P_CH
[6].SLOT
[SLOT1
]);
915 OPL_KEYOFF(&OPL
->P_CH
[6].SLOT
[SLOT2
]);
921 if(v
&0x08) OPL_KEYON(&OPL
->P_CH
[7].SLOT
[SLOT2
]);
922 else OPL_KEYOFF(&OPL
->P_CH
[7].SLOT
[SLOT2
]);
923 }/* TAM key on/off */
926 if(v
&0x04) OPL_KEYON(&OPL
->P_CH
[8].SLOT
[SLOT1
]);
927 else OPL_KEYOFF(&OPL
->P_CH
[8].SLOT
[SLOT1
]);
929 /* TOP-CY key on/off */
932 if(v
&0x02) OPL_KEYON(&OPL
->P_CH
[8].SLOT
[SLOT2
]);
933 else OPL_KEYOFF(&OPL
->P_CH
[8].SLOT
[SLOT2
]);
938 if(v
&0x01) OPL_KEYON(&OPL
->P_CH
[7].SLOT
[SLOT1
]);
939 else OPL_KEYOFF(&OPL
->P_CH
[7].SLOT
[SLOT1
]);
945 /* keyon,block,fnum */
946 if( (r
&0x0f) > 8) return;
947 CH
= &OPL
->P_CH
[r
&0x0f];
950 block_fnum
= (CH
->block_fnum
&0x1f00) | v
;
954 int keyon
= (v
>>5)&1;
955 block_fnum
= ((v
&0x1f)<<8) | (CH
->block_fnum
&0xff);
956 if(CH
->keyon
!= keyon
)
958 if( (CH
->keyon
=keyon
) )
960 CH
->op1_out
[0] = CH
->op1_out
[1] = 0;
961 OPL_KEYON(&CH
->SLOT
[SLOT1
]);
962 OPL_KEYON(&CH
->SLOT
[SLOT2
]);
966 OPL_KEYOFF(&CH
->SLOT
[SLOT1
]);
967 OPL_KEYOFF(&CH
->SLOT
[SLOT2
]);
972 if(CH
->block_fnum
!= block_fnum
)
974 int blockRv
= 7-(block_fnum
>>10);
975 int fnum
= block_fnum
&0x3ff;
976 CH
->block_fnum
= block_fnum
;
978 CH
->ksl_base
= KSL_TABLE
[block_fnum
>>6];
979 CH
->fc
= OPL
->FN_TABLE
[fnum
]>>blockRv
;
980 CH
->kcode
= CH
->block_fnum
>>9;
981 if( (OPL
->mode
&0x40) && CH
->block_fnum
&0x100) CH
->kcode
|=1;
982 CALC_FCSLOT(CH
,&CH
->SLOT
[SLOT1
]);
983 CALC_FCSLOT(CH
,&CH
->SLOT
[SLOT2
]);
988 if( (r
&0x0f) > 8) return;
989 CH
= &OPL
->P_CH
[r
&0x0f];
991 int feedback
= (v
>>1)&7;
992 CH
->FB
= feedback
? (8+1) - feedback
: 0;
997 case 0xe0: /* wave type */
998 slot
= slot_array
[r
&0x1f];
999 if(slot
== -1) return;
1000 CH
= &OPL
->P_CH
[slot
/2];
1003 /* LOG(LOG_INF,("OPL SLOT %d wave select %d\n",slot,v&3)); */
1004 CH
->SLOT
[slot
&1].wavetable
= &SIN_TABLE
[(v
&0x03)*SIN_ENT
];
1010 /* lock/unlock for common table */
1011 static int OPL_LockTable(void)
1014 if(num_lock
>1) return 0;
1017 /* allocate total level table (128kb space) */
1018 if( !OPLOpenTable() )
1026 static void OPL_UnLockTable(void)
1028 if(num_lock
) num_lock
--;
1029 if(num_lock
) return;
1035 #if (BUILD_YM3812 || BUILD_YM3526)
1036 /*******************************************************************************/
1037 /* YM3812 local section */
1038 /*******************************************************************************/
1040 /* ---------- update one of chip ----------- */
1041 void YM3812UpdateOne(FM_OPL
*OPL
, INT16
*buffer
, int length
)
1045 OPLSAMPLE
*buf
= buffer
;
1046 UINT32 amsCnt
= OPL
->amsCnt
;
1047 UINT32 vibCnt
= OPL
->vibCnt
;
1048 UINT8 rythm
= OPL
->rythm
&0x20;
1051 if( (void *)OPL
!= cur_chip
){
1052 cur_chip
= (void *)OPL
;
1053 /* channel pointers */
1057 SLOT7_1
= &S_CH
[7].SLOT
[SLOT1
];
1058 SLOT7_2
= &S_CH
[7].SLOT
[SLOT2
];
1059 SLOT8_1
= &S_CH
[8].SLOT
[SLOT1
];
1060 SLOT8_2
= &S_CH
[8].SLOT
[SLOT2
];
1062 amsIncr
= OPL
->amsIncr
;
1063 vibIncr
= OPL
->vibIncr
;
1064 ams_table
= OPL
->ams_table
;
1065 vib_table
= OPL
->vib_table
;
1067 R_CH
= rythm
? &S_CH
[6] : E_CH
;
1068 for( i
=0; i
< length
; i
++ )
1070 /* channel A channel B channel C */
1072 ams
= ams_table
[(amsCnt
+=amsIncr
)>>AMS_SHIFT
];
1073 vib
= vib_table
[(vibCnt
+=vibIncr
)>>VIB_SHIFT
];
1076 for(CH
=S_CH
; CH
< R_CH
; CH
++)
1082 data
= Limit( outd
[0] , OPL_MAXOUT
, OPL_MINOUT
);
1083 /* store to sound buffer */
1084 buf
[i
] = data
>> OPL_OUTSB
;
1087 OPL
->amsCnt
= amsCnt
;
1088 OPL
->vibCnt
= vibCnt
;
1089 #ifdef OPL_OUTPUT_LOG
1092 for(opl_dbg_chip
=0;opl_dbg_chip
<opl_dbg_maxchip
;opl_dbg_chip
++)
1093 if( opl_dbg_opl
[opl_dbg_chip
] == OPL
) break;
1094 fprintf(opl_dbg_fp
,"%c%c%c",0x20+opl_dbg_chip
,length
&0xff,length
/256);
1098 #endif /* (BUILD_YM3812 || BUILD_YM3526) */
1102 void Y8950UpdateOne(FM_OPL
*OPL
, INT16
*buffer
, int length
)
1106 OPLSAMPLE
*buf
= buffer
;
1107 UINT32 amsCnt
= OPL
->amsCnt
;
1108 UINT32 vibCnt
= OPL
->vibCnt
;
1109 UINT8 rythm
= OPL
->rythm
&0x20;
1111 YM_DELTAT
*DELTAT
= OPL
->deltat
;
1113 /* setup DELTA-T unit */
1114 YM_DELTAT_DECODE_PRESET(DELTAT
);
1116 if( (void *)OPL
!= cur_chip
){
1117 cur_chip
= (void *)OPL
;
1118 /* channel pointers */
1122 SLOT7_1
= &S_CH
[7].SLOT
[SLOT1
];
1123 SLOT7_2
= &S_CH
[7].SLOT
[SLOT2
];
1124 SLOT8_1
= &S_CH
[8].SLOT
[SLOT1
];
1125 SLOT8_2
= &S_CH
[8].SLOT
[SLOT2
];
1127 amsIncr
= OPL
->amsIncr
;
1128 vibIncr
= OPL
->vibIncr
;
1129 ams_table
= OPL
->ams_table
;
1130 vib_table
= OPL
->vib_table
;
1132 R_CH
= rythm
? &S_CH
[6] : E_CH
;
1133 for( i
=0; i
< length
; i
++ )
1135 /* channel A channel B channel C */
1137 ams
= ams_table
[(amsCnt
+=amsIncr
)>>AMS_SHIFT
];
1138 vib
= vib_table
[(vibCnt
+=vibIncr
)>>VIB_SHIFT
];
1141 if( DELTAT
->portstate
)
1142 YM_DELTAT_ADPCM_CALC(DELTAT
);
1144 for(CH
=S_CH
; CH
< R_CH
; CH
++)
1150 data
= Limit( outd
[0] , OPL_MAXOUT
, OPL_MINOUT
);
1151 /* store to sound buffer */
1152 buf
[i
] = data
>> OPL_OUTSB
;
1154 OPL
->amsCnt
= amsCnt
;
1155 OPL
->vibCnt
= vibCnt
;
1156 /* deltaT START flag */
1157 if( !DELTAT
->portstate
)
1158 OPL
->status
&= 0xfe;
1162 /* ---------- reset one of chip ---------- */
1163 void OPLResetChip(FM_OPL
*OPL
)
1169 OPL
->mode
= 0; /* normal mode */
1170 OPL_STATUS_RESET(OPL
,0x7f);
1171 /* reset with register write */
1172 OPLWriteReg(OPL
,0x01,0); /* wabesel disable */
1173 OPLWriteReg(OPL
,0x02,0); /* Timer1 */
1174 OPLWriteReg(OPL
,0x03,0); /* Timer2 */
1175 OPLWriteReg(OPL
,0x04,0); /* IRQ mask clear */
1176 for(i
= 0xff ; i
>= 0x20 ; i
-- ) OPLWriteReg(OPL
,i
,0);
1177 /* reset OPerator paramater */
1178 for( c
= 0 ; c
< OPL
->max_ch
; c
++ )
1180 OPL_CH
*CH
= &OPL
->P_CH
[c
];
1181 /* OPL->P_CH[c].PAN = OPN_CENTER; */
1182 for(s
= 0 ; s
< 2 ; s
++ )
1185 CH
->SLOT
[s
].wavetable
= &SIN_TABLE
[0];
1186 /* CH->SLOT[s].evm = ENV_MOD_RR; */
1187 CH
->SLOT
[s
].evc
= EG_OFF
;
1188 CH
->SLOT
[s
].eve
= EG_OFF
+1;
1189 CH
->SLOT
[s
].evs
= 0;
1193 if(OPL
->type
&OPL_TYPE_ADPCM
)
1195 YM_DELTAT
*DELTAT
= OPL
->deltat
;
1197 DELTAT
->freqbase
= OPL
->freqbase
;
1198 DELTAT
->output_pointer
= outd
;
1199 DELTAT
->portshift
= 5;
1200 DELTAT
->output_range
= DELTAT_MIXING_LEVEL
<<TL_BITS
;
1201 YM_DELTAT_ADPCM_Reset(DELTAT
,0);
1206 /* ---------- Create one of vietual YM3812 ---------- */
1207 /* 'rate' is sampling rate and 'bufsiz' is the size of the */
1208 FM_OPL
*OPLCreate(int type
, int clock
, int rate
)
1213 int max_ch
= 9; /* normaly 9 channels */
1215 if( OPL_LockTable() ==-1) return NULL
;
1216 /* allocate OPL state space */
1217 state_size
= sizeof(FM_OPL
);
1218 state_size
+= sizeof(OPL_CH
)*max_ch
;
1220 if(type
&OPL_TYPE_ADPCM
) state_size
+= sizeof(YM_DELTAT
);
1222 /* allocate memory block */
1223 ptr
= malloc(state_size
);
1224 if(ptr
==NULL
) return NULL
;
1226 memset(ptr
,0,state_size
);
1227 OPL
= (FM_OPL
*)ptr
; ptr
+=sizeof(FM_OPL
);
1228 OPL
->P_CH
= (OPL_CH
*)ptr
; ptr
+=sizeof(OPL_CH
)*max_ch
;
1230 if(type
&OPL_TYPE_ADPCM
) OPL
->deltat
= (YM_DELTAT
*)ptr
; ptr
+=sizeof(YM_DELTAT
);
1232 /* set channel state pointer */
1236 OPL
->max_ch
= max_ch
;
1237 /* init grobal tables */
1241 #ifdef OPL_OUTPUT_LOG
1244 opl_dbg_fp
= fopen("opllog.opl","wb");
1245 opl_dbg_maxchip
= 0;
1249 opl_dbg_opl
[opl_dbg_maxchip
] = OPL
;
1250 fprintf(opl_dbg_fp
,"%c%c%c%c%c%c",0x00+opl_dbg_maxchip
,
1254 (clock
/0x10000)&0xff,
1255 (clock
/0x1000000)&0xff);
1262 /* ---------- Destroy one of vietual YM3812 ---------- */
1263 void OPLDestroy(FM_OPL
*OPL
)
1265 #ifdef OPL_OUTPUT_LOG
1276 /* ---------- Option handlers ---------- */
1278 void OPLSetTimerHandler(FM_OPL
*OPL
,OPL_TIMERHANDLER TimerHandler
,int channelOffset
)
1280 OPL
->TimerHandler
= TimerHandler
;
1281 OPL
->TimerParam
= channelOffset
;
1283 void OPLSetIRQHandler(FM_OPL
*OPL
,OPL_IRQHANDLER IRQHandler
,int param
)
1285 OPL
->IRQHandler
= IRQHandler
;
1286 OPL
->IRQParam
= param
;
1288 void OPLSetUpdateHandler(FM_OPL
*OPL
,OPL_UPDATEHANDLER UpdateHandler
,int param
)
1290 OPL
->UpdateHandler
= UpdateHandler
;
1291 OPL
->UpdateParam
= param
;
1294 void OPLSetPortHandler(FM_OPL
*OPL
,OPL_PORTHANDLER_W PortHandler_w
,OPL_PORTHANDLER_R PortHandler_r
,int param
)
1296 OPL
->porthandler_w
= PortHandler_w
;
1297 OPL
->porthandler_r
= PortHandler_r
;
1298 OPL
->port_param
= param
;
1301 void OPLSetKeyboardHandler(FM_OPL
*OPL
,OPL_PORTHANDLER_W KeyboardHandler_w
,OPL_PORTHANDLER_R KeyboardHandler_r
,int param
)
1303 OPL
->keyboardhandler_w
= KeyboardHandler_w
;
1304 OPL
->keyboardhandler_r
= KeyboardHandler_r
;
1305 OPL
->keyboard_param
= param
;
1308 /* ---------- YM3812 I/O interface ---------- */
1309 int OPLWrite(FM_OPL
*OPL
,int a
,int v
)
1312 { /* address port */
1313 OPL
->address
= v
& 0xff;
1317 if(OPL
->UpdateHandler
) OPL
->UpdateHandler(OPL
->UpdateParam
,0);
1318 #ifdef OPL_OUTPUT_LOG
1321 for(opl_dbg_chip
=0;opl_dbg_chip
<opl_dbg_maxchip
;opl_dbg_chip
++)
1322 if( opl_dbg_opl
[opl_dbg_chip
] == OPL
) break;
1323 fprintf(opl_dbg_fp
,"%c%c%c",0x10+opl_dbg_chip
,OPL
->address
,v
);
1326 OPLWriteReg(OPL
,OPL
->address
,v
);
1328 return OPL
->status
>>7;
1331 unsigned char OPLRead(FM_OPL
*OPL
,int a
)
1335 return OPL
->status
& (OPL
->statusmask
|0x80);
1338 switch(OPL
->address
)
1340 case 0x05: /* KeyBoard IN */
1341 if(OPL
->type
&OPL_TYPE_KEYBOARD
)
1343 if(OPL
->keyboardhandler_r
)
1344 return OPL
->keyboardhandler_r(OPL
->keyboard_param
);
1346 LOG(LOG_WAR
,("OPL:read unmapped KEYBOARD port\n"));
1350 case 0x0f: /* ADPCM-DATA */
1353 case 0x19: /* I/O DATA */
1354 if(OPL
->type
&OPL_TYPE_IO
)
1356 if(OPL
->porthandler_r
)
1357 return OPL
->porthandler_r(OPL
->port_param
);
1359 LOG(LOG_WAR
,("OPL:read unmapped I/O port\n"));
1362 case 0x1a: /* PCM-DATA */
1368 int OPLTimerOver(FM_OPL
*OPL
,int c
)
1372 OPL_STATUS_SET(OPL
,0x20);
1376 OPL_STATUS_SET(OPL
,0x40);
1377 /* CSM mode key,TL controll */
1378 if( OPL
->mode
& 0x80 )
1379 { /* CSM mode total level latch and auto key on */
1381 if(OPL
->UpdateHandler
) OPL
->UpdateHandler(OPL
->UpdateParam
,0);
1383 CSMKeyControll( &OPL
->P_CH
[ch
] );
1387 if (OPL
->TimerHandler
) (OPL
->TimerHandler
)(OPL
->TimerParam
+c
,(double)OPL
->T
[c
]*OPL
->TimerBase
);
1388 return OPL
->status
>>7;