target/i386: move scalar 0F 38 and 0F 3A instruction to new decoder
[qemu.git] / hw / arm / armv7m.c
blob50a9507c0bde5438a129f5afc2e0554288ac1274
1 /*
2 * ARMV7M System emulation.
4 * Copyright (c) 2006-2007 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licensed under the GPL.
8 */
10 #include "qemu/osdep.h"
11 #include "hw/arm/armv7m.h"
12 #include "qapi/error.h"
13 #include "hw/sysbus.h"
14 #include "hw/arm/boot.h"
15 #include "hw/loader.h"
16 #include "hw/qdev-properties.h"
17 #include "hw/qdev-clock.h"
18 #include "elf.h"
19 #include "sysemu/reset.h"
20 #include "qemu/error-report.h"
21 #include "qemu/module.h"
22 #include "qemu/log.h"
23 #include "target/arm/idau.h"
24 #include "migration/vmstate.h"
26 /* Bitbanded IO. Each word corresponds to a single bit. */
28 /* Get the byte address of the real memory for a bitband access. */
29 static inline hwaddr bitband_addr(BitBandState *s, hwaddr offset)
31 return s->base | (offset & 0x1ffffff) >> 5;
34 static MemTxResult bitband_read(void *opaque, hwaddr offset,
35 uint64_t *data, unsigned size, MemTxAttrs attrs)
37 BitBandState *s = opaque;
38 uint8_t buf[4];
39 MemTxResult res;
40 int bitpos, bit;
41 hwaddr addr;
43 assert(size <= 4);
45 /* Find address in underlying memory and round down to multiple of size */
46 addr = bitband_addr(s, offset) & (-size);
47 res = address_space_read(&s->source_as, addr, attrs, buf, size);
48 if (res) {
49 return res;
51 /* Bit position in the N bytes read... */
52 bitpos = (offset >> 2) & ((size * 8) - 1);
53 /* ...converted to byte in buffer and bit in byte */
54 bit = (buf[bitpos >> 3] >> (bitpos & 7)) & 1;
55 *data = bit;
56 return MEMTX_OK;
59 static MemTxResult bitband_write(void *opaque, hwaddr offset, uint64_t value,
60 unsigned size, MemTxAttrs attrs)
62 BitBandState *s = opaque;
63 uint8_t buf[4];
64 MemTxResult res;
65 int bitpos, bit;
66 hwaddr addr;
68 assert(size <= 4);
70 /* Find address in underlying memory and round down to multiple of size */
71 addr = bitband_addr(s, offset) & (-size);
72 res = address_space_read(&s->source_as, addr, attrs, buf, size);
73 if (res) {
74 return res;
76 /* Bit position in the N bytes read... */
77 bitpos = (offset >> 2) & ((size * 8) - 1);
78 /* ...converted to byte in buffer and bit in byte */
79 bit = 1 << (bitpos & 7);
80 if (value & 1) {
81 buf[bitpos >> 3] |= bit;
82 } else {
83 buf[bitpos >> 3] &= ~bit;
85 return address_space_write(&s->source_as, addr, attrs, buf, size);
88 static const MemoryRegionOps bitband_ops = {
89 .read_with_attrs = bitband_read,
90 .write_with_attrs = bitband_write,
91 .endianness = DEVICE_NATIVE_ENDIAN,
92 .impl.min_access_size = 1,
93 .impl.max_access_size = 4,
94 .valid.min_access_size = 1,
95 .valid.max_access_size = 4,
98 static void bitband_init(Object *obj)
100 BitBandState *s = BITBAND(obj);
101 SysBusDevice *dev = SYS_BUS_DEVICE(obj);
103 memory_region_init_io(&s->iomem, obj, &bitband_ops, s,
104 "bitband", 0x02000000);
105 sysbus_init_mmio(dev, &s->iomem);
108 static void bitband_realize(DeviceState *dev, Error **errp)
110 BitBandState *s = BITBAND(dev);
112 if (!s->source_memory) {
113 error_setg(errp, "source-memory property not set");
114 return;
117 address_space_init(&s->source_as, s->source_memory, "bitband-source");
120 /* Board init. */
122 static const hwaddr bitband_input_addr[ARMV7M_NUM_BITBANDS] = {
123 0x20000000, 0x40000000
126 static const hwaddr bitband_output_addr[ARMV7M_NUM_BITBANDS] = {
127 0x22000000, 0x42000000
130 static MemTxResult v7m_sysreg_ns_write(void *opaque, hwaddr addr,
131 uint64_t value, unsigned size,
132 MemTxAttrs attrs)
134 MemoryRegion *mr = opaque;
136 if (attrs.secure) {
137 /* S accesses to the alias act like NS accesses to the real region */
138 attrs.secure = 0;
139 return memory_region_dispatch_write(mr, addr, value,
140 size_memop(size) | MO_TE, attrs);
141 } else {
142 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
143 if (attrs.user) {
144 return MEMTX_ERROR;
146 return MEMTX_OK;
150 static MemTxResult v7m_sysreg_ns_read(void *opaque, hwaddr addr,
151 uint64_t *data, unsigned size,
152 MemTxAttrs attrs)
154 MemoryRegion *mr = opaque;
156 if (attrs.secure) {
157 /* S accesses to the alias act like NS accesses to the real region */
158 attrs.secure = 0;
159 return memory_region_dispatch_read(mr, addr, data,
160 size_memop(size) | MO_TE, attrs);
161 } else {
162 /* NS attrs are RAZ/WI for privileged, and BusFault for user */
163 if (attrs.user) {
164 return MEMTX_ERROR;
166 *data = 0;
167 return MEMTX_OK;
171 static const MemoryRegionOps v7m_sysreg_ns_ops = {
172 .read_with_attrs = v7m_sysreg_ns_read,
173 .write_with_attrs = v7m_sysreg_ns_write,
174 .endianness = DEVICE_NATIVE_ENDIAN,
177 static MemTxResult v7m_systick_write(void *opaque, hwaddr addr,
178 uint64_t value, unsigned size,
179 MemTxAttrs attrs)
181 ARMv7MState *s = opaque;
182 MemoryRegion *mr;
184 /* Direct the access to the correct systick */
185 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
186 return memory_region_dispatch_write(mr, addr, value,
187 size_memop(size) | MO_TE, attrs);
190 static MemTxResult v7m_systick_read(void *opaque, hwaddr addr,
191 uint64_t *data, unsigned size,
192 MemTxAttrs attrs)
194 ARMv7MState *s = opaque;
195 MemoryRegion *mr;
197 /* Direct the access to the correct systick */
198 mr = sysbus_mmio_get_region(SYS_BUS_DEVICE(&s->systick[attrs.secure]), 0);
199 return memory_region_dispatch_read(mr, addr, data, size_memop(size) | MO_TE,
200 attrs);
203 static const MemoryRegionOps v7m_systick_ops = {
204 .read_with_attrs = v7m_systick_read,
205 .write_with_attrs = v7m_systick_write,
206 .endianness = DEVICE_NATIVE_ENDIAN,
210 * Unassigned portions of the PPB space are RAZ/WI for privileged
211 * accesses, and fault for non-privileged accesses.
213 static MemTxResult ppb_default_read(void *opaque, hwaddr addr,
214 uint64_t *data, unsigned size,
215 MemTxAttrs attrs)
217 qemu_log_mask(LOG_UNIMP, "Read of unassigned area of PPB: offset 0x%x\n",
218 (uint32_t)addr);
219 if (attrs.user) {
220 return MEMTX_ERROR;
222 *data = 0;
223 return MEMTX_OK;
226 static MemTxResult ppb_default_write(void *opaque, hwaddr addr,
227 uint64_t value, unsigned size,
228 MemTxAttrs attrs)
230 qemu_log_mask(LOG_UNIMP, "Write of unassigned area of PPB: offset 0x%x\n",
231 (uint32_t)addr);
232 if (attrs.user) {
233 return MEMTX_ERROR;
235 return MEMTX_OK;
238 static const MemoryRegionOps ppb_default_ops = {
239 .read_with_attrs = ppb_default_read,
240 .write_with_attrs = ppb_default_write,
241 .endianness = DEVICE_NATIVE_ENDIAN,
242 .valid.min_access_size = 1,
243 .valid.max_access_size = 8,
246 static void armv7m_instance_init(Object *obj)
248 ARMv7MState *s = ARMV7M(obj);
249 int i;
251 /* Can't init the cpu here, we don't yet know which model to use */
253 memory_region_init(&s->container, obj, "armv7m-container", UINT64_MAX);
255 object_initialize_child(obj, "nvic", &s->nvic, TYPE_NVIC);
256 object_property_add_alias(obj, "num-irq",
257 OBJECT(&s->nvic), "num-irq");
259 object_initialize_child(obj, "systick-reg-ns", &s->systick[M_REG_NS],
260 TYPE_SYSTICK);
262 * We can't initialize the secure systick here, as we don't know
263 * yet if we need it.
266 for (i = 0; i < ARRAY_SIZE(s->bitband); i++) {
267 object_initialize_child(obj, "bitband[*]", &s->bitband[i],
268 TYPE_BITBAND);
271 s->refclk = qdev_init_clock_in(DEVICE(obj), "refclk", NULL, NULL, 0);
272 s->cpuclk = qdev_init_clock_in(DEVICE(obj), "cpuclk", NULL, NULL, 0);
275 static void armv7m_realize(DeviceState *dev, Error **errp)
277 ARMv7MState *s = ARMV7M(dev);
278 SysBusDevice *sbd;
279 Error *err = NULL;
280 int i;
282 if (!s->board_memory) {
283 error_setg(errp, "memory property was not set");
284 return;
287 /* cpuclk must be connected; refclk is optional */
288 if (!clock_has_source(s->cpuclk)) {
289 error_setg(errp, "armv7m: cpuclk must be connected");
290 return;
293 memory_region_add_subregion_overlap(&s->container, 0, s->board_memory, -1);
295 s->cpu = ARM_CPU(object_new_with_props(s->cpu_type, OBJECT(s), "cpu",
296 &err, NULL));
297 if (err != NULL) {
298 error_propagate(errp, err);
299 return;
302 object_property_set_link(OBJECT(s->cpu), "memory", OBJECT(&s->container),
303 &error_abort);
304 if (object_property_find(OBJECT(s->cpu), "idau")) {
305 object_property_set_link(OBJECT(s->cpu), "idau", s->idau,
306 &error_abort);
308 if (object_property_find(OBJECT(s->cpu), "init-svtor")) {
309 if (!object_property_set_uint(OBJECT(s->cpu), "init-svtor",
310 s->init_svtor, errp)) {
311 return;
314 if (object_property_find(OBJECT(s->cpu), "init-nsvtor")) {
315 if (!object_property_set_uint(OBJECT(s->cpu), "init-nsvtor",
316 s->init_nsvtor, errp)) {
317 return;
320 if (object_property_find(OBJECT(s->cpu), "start-powered-off")) {
321 if (!object_property_set_bool(OBJECT(s->cpu), "start-powered-off",
322 s->start_powered_off, errp)) {
323 return;
326 if (object_property_find(OBJECT(s->cpu), "vfp")) {
327 if (!object_property_set_bool(OBJECT(s->cpu), "vfp", s->vfp, errp)) {
328 return;
331 if (object_property_find(OBJECT(s->cpu), "dsp")) {
332 if (!object_property_set_bool(OBJECT(s->cpu), "dsp", s->dsp, errp)) {
333 return;
338 * Tell the CPU where the NVIC is; it will fail realize if it doesn't
339 * have one. Similarly, tell the NVIC where its CPU is.
341 s->cpu->env.nvic = &s->nvic;
342 s->nvic.cpu = s->cpu;
344 if (!qdev_realize(DEVICE(s->cpu), NULL, errp)) {
345 return;
348 /* Note that we must realize the NVIC after the CPU */
349 if (!sysbus_realize(SYS_BUS_DEVICE(&s->nvic), errp)) {
350 return;
353 /* Alias the NVIC's input and output GPIOs as our own so the board
354 * code can wire them up. (We do this in realize because the
355 * NVIC doesn't create the input GPIO array until realize.)
357 qdev_pass_gpios(DEVICE(&s->nvic), dev, NULL);
358 qdev_pass_gpios(DEVICE(&s->nvic), dev, "SYSRESETREQ");
359 qdev_pass_gpios(DEVICE(&s->nvic), dev, "NMI");
362 * We map various devices into the container MR at their architected
363 * addresses. In particular, we map everything corresponding to the
364 * "System PPB" space. This is the range from 0xe0000000 to 0xe00fffff
365 * and includes the NVIC, the System Control Space (system registers),
366 * the systick timer, and for CPUs with the Security extension an NS
367 * banked version of all of these.
369 * The default behaviour for unimplemented registers/ranges
370 * (for instance the Data Watchpoint and Trace unit at 0xe0001000)
371 * is to RAZ/WI for privileged access and BusFault for non-privileged
372 * access.
374 * The NVIC and System Control Space (SCS) starts at 0xe000e000
375 * and looks like this:
376 * 0x004 - ICTR
377 * 0x010 - 0xff - systick
378 * 0x100..0x7ec - NVIC
379 * 0x7f0..0xcff - Reserved
380 * 0xd00..0xd3c - SCS registers
381 * 0xd40..0xeff - Reserved or Not implemented
382 * 0xf00 - STIR
384 * Some registers within this space are banked between security states.
385 * In v8M there is a second range 0xe002e000..0xe002efff which is the
386 * NonSecure alias SCS; secure accesses to this behave like NS accesses
387 * to the main SCS range, and non-secure accesses (including when
388 * the security extension is not implemented) are RAZ/WI.
389 * Note that both the main SCS range and the alias range are defined
390 * to be exempt from memory attribution (R_BLJT) and so the memory
391 * transaction attribute always matches the current CPU security
392 * state (attrs.secure == env->v7m.secure). In the v7m_sysreg_ns_ops
393 * wrappers we change attrs.secure to indicate the NS access; so
394 * generally code determining which banked register to use should
395 * use attrs.secure; code determining actual behaviour of the system
396 * should use env->v7m.secure.
398 * Within the PPB space, some MRs overlap, and the priority
399 * of overlapping regions is:
400 * - default region (for RAZ/WI and BusFault) : -1
401 * - system register regions (provided by the NVIC) : 0
402 * - systick : 1
403 * This is because the systick device is a small block of registers
404 * in the middle of the other system control registers.
407 memory_region_init_io(&s->defaultmem, OBJECT(s), &ppb_default_ops, s,
408 "nvic-default", 0x100000);
409 memory_region_add_subregion_overlap(&s->container, 0xe0000000,
410 &s->defaultmem, -1);
412 /* Wire the NVIC up to the CPU */
413 sbd = SYS_BUS_DEVICE(&s->nvic);
414 sysbus_connect_irq(sbd, 0,
415 qdev_get_gpio_in(DEVICE(s->cpu), ARM_CPU_IRQ));
417 memory_region_add_subregion(&s->container, 0xe000e000,
418 sysbus_mmio_get_region(sbd, 0));
419 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
420 /* Create the NS alias region for the NVIC sysregs */
421 memory_region_init_io(&s->sysreg_ns_mem, OBJECT(s),
422 &v7m_sysreg_ns_ops,
423 sysbus_mmio_get_region(sbd, 0),
424 "nvic_sysregs_ns", 0x1000);
425 memory_region_add_subregion(&s->container, 0xe002e000,
426 &s->sysreg_ns_mem);
430 * Create and map the systick devices. Note that we only connect
431 * refclk if it has been connected to us; otherwise the systick
432 * device gets the wrong answer for clock_has_source(refclk), because
433 * it has an immediate source (the ARMv7M's clock object) but not
434 * an ultimate source, and then it won't correctly auto-select the
435 * CPU clock as its only possible clock source.
437 if (clock_has_source(s->refclk)) {
438 qdev_connect_clock_in(DEVICE(&s->systick[M_REG_NS]), "refclk",
439 s->refclk);
441 qdev_connect_clock_in(DEVICE(&s->systick[M_REG_NS]), "cpuclk", s->cpuclk);
442 if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), errp)) {
443 return;
445 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_NS]), 0,
446 qdev_get_gpio_in_named(DEVICE(&s->nvic),
447 "systick-trigger", M_REG_NS));
449 if (arm_feature(&s->cpu->env, ARM_FEATURE_M_SECURITY)) {
451 * We couldn't init the secure systick device in instance_init
452 * as we didn't know then if the CPU had the security extensions;
453 * so we have to do it here.
455 object_initialize_child(OBJECT(dev), "systick-reg-s",
456 &s->systick[M_REG_S], TYPE_SYSTICK);
457 if (clock_has_source(s->refclk)) {
458 qdev_connect_clock_in(DEVICE(&s->systick[M_REG_S]), "refclk",
459 s->refclk);
461 qdev_connect_clock_in(DEVICE(&s->systick[M_REG_S]), "cpuclk",
462 s->cpuclk);
464 if (!sysbus_realize(SYS_BUS_DEVICE(&s->systick[M_REG_S]), errp)) {
465 return;
467 sysbus_connect_irq(SYS_BUS_DEVICE(&s->systick[M_REG_S]), 0,
468 qdev_get_gpio_in_named(DEVICE(&s->nvic),
469 "systick-trigger", M_REG_S));
472 memory_region_init_io(&s->systickmem, OBJECT(s),
473 &v7m_systick_ops, s,
474 "v7m_systick", 0xe0);
476 memory_region_add_subregion_overlap(&s->container, 0xe000e010,
477 &s->systickmem, 1);
478 if (arm_feature(&s->cpu->env, ARM_FEATURE_V8)) {
479 memory_region_init_io(&s->systick_ns_mem, OBJECT(s),
480 &v7m_sysreg_ns_ops, &s->systickmem,
481 "v7m_systick_ns", 0xe0);
482 memory_region_add_subregion_overlap(&s->container, 0xe002e010,
483 &s->systick_ns_mem, 1);
486 /* If the CPU has RAS support, create the RAS register block */
487 if (cpu_isar_feature(aa32_ras, s->cpu)) {
488 object_initialize_child(OBJECT(dev), "armv7m-ras",
489 &s->ras, TYPE_ARMV7M_RAS);
490 sbd = SYS_BUS_DEVICE(&s->ras);
491 if (!sysbus_realize(sbd, errp)) {
492 return;
494 memory_region_add_subregion_overlap(&s->container, 0xe0005000,
495 sysbus_mmio_get_region(sbd, 0), 1);
498 for (i = 0; i < ARRAY_SIZE(s->bitband); i++) {
499 if (s->enable_bitband) {
500 Object *obj = OBJECT(&s->bitband[i]);
501 SysBusDevice *sbd = SYS_BUS_DEVICE(&s->bitband[i]);
503 if (!object_property_set_int(obj, "base",
504 bitband_input_addr[i], errp)) {
505 return;
507 object_property_set_link(obj, "source-memory",
508 OBJECT(s->board_memory), &error_abort);
509 if (!sysbus_realize(SYS_BUS_DEVICE(obj), errp)) {
510 return;
513 memory_region_add_subregion(&s->container, bitband_output_addr[i],
514 sysbus_mmio_get_region(sbd, 0));
515 } else {
516 object_unparent(OBJECT(&s->bitband[i]));
521 static Property armv7m_properties[] = {
522 DEFINE_PROP_STRING("cpu-type", ARMv7MState, cpu_type),
523 DEFINE_PROP_LINK("memory", ARMv7MState, board_memory, TYPE_MEMORY_REGION,
524 MemoryRegion *),
525 DEFINE_PROP_LINK("idau", ARMv7MState, idau, TYPE_IDAU_INTERFACE, Object *),
526 DEFINE_PROP_UINT32("init-svtor", ARMv7MState, init_svtor, 0),
527 DEFINE_PROP_UINT32("init-nsvtor", ARMv7MState, init_nsvtor, 0),
528 DEFINE_PROP_BOOL("enable-bitband", ARMv7MState, enable_bitband, false),
529 DEFINE_PROP_BOOL("start-powered-off", ARMv7MState, start_powered_off,
530 false),
531 DEFINE_PROP_BOOL("vfp", ARMv7MState, vfp, true),
532 DEFINE_PROP_BOOL("dsp", ARMv7MState, dsp, true),
533 DEFINE_PROP_END_OF_LIST(),
536 static const VMStateDescription vmstate_armv7m = {
537 .name = "armv7m",
538 .version_id = 1,
539 .minimum_version_id = 1,
540 .fields = (VMStateField[]) {
541 VMSTATE_CLOCK(refclk, ARMv7MState),
542 VMSTATE_CLOCK(cpuclk, ARMv7MState),
543 VMSTATE_END_OF_LIST()
547 static void armv7m_class_init(ObjectClass *klass, void *data)
549 DeviceClass *dc = DEVICE_CLASS(klass);
551 dc->realize = armv7m_realize;
552 dc->vmsd = &vmstate_armv7m;
553 device_class_set_props(dc, armv7m_properties);
556 static const TypeInfo armv7m_info = {
557 .name = TYPE_ARMV7M,
558 .parent = TYPE_SYS_BUS_DEVICE,
559 .instance_size = sizeof(ARMv7MState),
560 .instance_init = armv7m_instance_init,
561 .class_init = armv7m_class_init,
564 static void armv7m_reset(void *opaque)
566 ARMCPU *cpu = opaque;
568 cpu_reset(CPU(cpu));
571 void armv7m_load_kernel(ARMCPU *cpu, const char *kernel_filename,
572 hwaddr mem_base, int mem_size)
574 ssize_t image_size;
575 uint64_t entry;
576 AddressSpace *as;
577 int asidx;
578 CPUState *cs = CPU(cpu);
580 if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
581 asidx = ARMASIdx_S;
582 } else {
583 asidx = ARMASIdx_NS;
585 as = cpu_get_address_space(cs, asidx);
587 if (kernel_filename) {
588 image_size = load_elf_as(kernel_filename, NULL, NULL, NULL,
589 &entry, NULL, NULL,
590 NULL, 0, EM_ARM, 1, 0, as);
591 if (image_size < 0) {
592 image_size = load_image_targphys_as(kernel_filename, mem_base,
593 mem_size, as);
595 if (image_size < 0) {
596 error_report("Could not load kernel '%s'", kernel_filename);
597 exit(1);
601 /* CPU objects (unlike devices) are not automatically reset on system
602 * reset, so we must always register a handler to do so. Unlike
603 * A-profile CPUs, we don't need to do anything special in the
604 * handler to arrange that it starts correctly.
605 * This is arguably the wrong place to do this, but it matches the
606 * way A-profile does it. Note that this means that every M profile
607 * board must call this function!
609 qemu_register_reset(armv7m_reset, cpu);
612 static Property bitband_properties[] = {
613 DEFINE_PROP_UINT32("base", BitBandState, base, 0),
614 DEFINE_PROP_LINK("source-memory", BitBandState, source_memory,
615 TYPE_MEMORY_REGION, MemoryRegion *),
616 DEFINE_PROP_END_OF_LIST(),
619 static void bitband_class_init(ObjectClass *klass, void *data)
621 DeviceClass *dc = DEVICE_CLASS(klass);
623 dc->realize = bitband_realize;
624 device_class_set_props(dc, bitband_properties);
627 static const TypeInfo bitband_info = {
628 .name = TYPE_BITBAND,
629 .parent = TYPE_SYS_BUS_DEVICE,
630 .instance_size = sizeof(BitBandState),
631 .instance_init = bitband_init,
632 .class_init = bitband_class_init,
635 static void armv7m_register_types(void)
637 type_register_static(&bitband_info);
638 type_register_static(&armv7m_info);
641 type_init(armv7m_register_types)