ppc/xics: Implement H_IPOLL using an accessor
[qemu.git] / linux-user / syscall.c
blob28ee45a937aca2a84e4f28dc4df2f959b316366d
1 /*
2 * Linux syscalls
4 * Copyright (c) 2003 Fabrice Bellard
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see <http://www.gnu.org/licenses/>.
19 #define _ATFILE_SOURCE
20 #include "qemu/osdep.h"
21 #include "qemu/cutils.h"
22 #include "qemu/path.h"
23 #include <elf.h>
24 #include <endian.h>
25 #include <grp.h>
26 #include <sys/ipc.h>
27 #include <sys/msg.h>
28 #include <sys/wait.h>
29 #include <sys/mount.h>
30 #include <sys/file.h>
31 #include <sys/fsuid.h>
32 #include <sys/personality.h>
33 #include <sys/prctl.h>
34 #include <sys/resource.h>
35 #include <sys/swap.h>
36 #include <linux/capability.h>
37 #include <sched.h>
38 #ifdef __ia64__
39 int __clone2(int (*fn)(void *), void *child_stack_base,
40 size_t stack_size, int flags, void *arg, ...);
41 #endif
42 #include <sys/socket.h>
43 #include <sys/un.h>
44 #include <sys/uio.h>
45 #include <sys/poll.h>
46 #include <sys/times.h>
47 #include <sys/shm.h>
48 #include <sys/sem.h>
49 #include <sys/statfs.h>
50 #include <utime.h>
51 #include <sys/sysinfo.h>
52 #include <sys/signalfd.h>
53 //#include <sys/user.h>
54 #include <netinet/ip.h>
55 #include <netinet/tcp.h>
56 #include <linux/wireless.h>
57 #include <linux/icmp.h>
58 #include "qemu-common.h"
59 #ifdef CONFIG_TIMERFD
60 #include <sys/timerfd.h>
61 #endif
62 #ifdef TARGET_GPROF
63 #include <sys/gmon.h>
64 #endif
65 #ifdef CONFIG_EVENTFD
66 #include <sys/eventfd.h>
67 #endif
68 #ifdef CONFIG_EPOLL
69 #include <sys/epoll.h>
70 #endif
71 #ifdef CONFIG_ATTR
72 #include "qemu/xattr.h"
73 #endif
74 #ifdef CONFIG_SENDFILE
75 #include <sys/sendfile.h>
76 #endif
78 #define termios host_termios
79 #define winsize host_winsize
80 #define termio host_termio
81 #define sgttyb host_sgttyb /* same as target */
82 #define tchars host_tchars /* same as target */
83 #define ltchars host_ltchars /* same as target */
85 #include <linux/termios.h>
86 #include <linux/unistd.h>
87 #include <linux/cdrom.h>
88 #include <linux/hdreg.h>
89 #include <linux/soundcard.h>
90 #include <linux/kd.h>
91 #include <linux/mtio.h>
92 #include <linux/fs.h>
93 #if defined(CONFIG_FIEMAP)
94 #include <linux/fiemap.h>
95 #endif
96 #include <linux/fb.h>
97 #include <linux/vt.h>
98 #include <linux/dm-ioctl.h>
99 #include <linux/reboot.h>
100 #include <linux/route.h>
101 #include <linux/filter.h>
102 #include <linux/blkpg.h>
103 #include <linux/netlink.h>
104 #ifdef CONFIG_RTNETLINK
105 #include <linux/rtnetlink.h>
106 #endif
107 #include <linux/audit.h>
108 #include "linux_loop.h"
109 #include "uname.h"
111 #include "qemu.h"
113 #define CLONE_NPTL_FLAGS2 (CLONE_SETTLS | \
114 CLONE_PARENT_SETTID | CLONE_CHILD_SETTID | CLONE_CHILD_CLEARTID)
116 //#define DEBUG
117 /* Define DEBUG_ERESTARTSYS to force every syscall to be restarted
118 * once. This exercises the codepaths for restart.
120 //#define DEBUG_ERESTARTSYS
122 //#include <linux/msdos_fs.h>
123 #define VFAT_IOCTL_READDIR_BOTH _IOR('r', 1, struct linux_dirent [2])
124 #define VFAT_IOCTL_READDIR_SHORT _IOR('r', 2, struct linux_dirent [2])
126 #undef _syscall0
127 #undef _syscall1
128 #undef _syscall2
129 #undef _syscall3
130 #undef _syscall4
131 #undef _syscall5
132 #undef _syscall6
134 #define _syscall0(type,name) \
135 static type name (void) \
137 return syscall(__NR_##name); \
140 #define _syscall1(type,name,type1,arg1) \
141 static type name (type1 arg1) \
143 return syscall(__NR_##name, arg1); \
146 #define _syscall2(type,name,type1,arg1,type2,arg2) \
147 static type name (type1 arg1,type2 arg2) \
149 return syscall(__NR_##name, arg1, arg2); \
152 #define _syscall3(type,name,type1,arg1,type2,arg2,type3,arg3) \
153 static type name (type1 arg1,type2 arg2,type3 arg3) \
155 return syscall(__NR_##name, arg1, arg2, arg3); \
158 #define _syscall4(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4) \
159 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4) \
161 return syscall(__NR_##name, arg1, arg2, arg3, arg4); \
164 #define _syscall5(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
165 type5,arg5) \
166 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5) \
168 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
172 #define _syscall6(type,name,type1,arg1,type2,arg2,type3,arg3,type4,arg4, \
173 type5,arg5,type6,arg6) \
174 static type name (type1 arg1,type2 arg2,type3 arg3,type4 arg4,type5 arg5, \
175 type6 arg6) \
177 return syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
181 #define __NR_sys_uname __NR_uname
182 #define __NR_sys_getcwd1 __NR_getcwd
183 #define __NR_sys_getdents __NR_getdents
184 #define __NR_sys_getdents64 __NR_getdents64
185 #define __NR_sys_getpriority __NR_getpriority
186 #define __NR_sys_rt_sigqueueinfo __NR_rt_sigqueueinfo
187 #define __NR_sys_syslog __NR_syslog
188 #define __NR_sys_futex __NR_futex
189 #define __NR_sys_inotify_init __NR_inotify_init
190 #define __NR_sys_inotify_add_watch __NR_inotify_add_watch
191 #define __NR_sys_inotify_rm_watch __NR_inotify_rm_watch
193 #if defined(__alpha__) || defined (__ia64__) || defined(__x86_64__) || \
194 defined(__s390x__)
195 #define __NR__llseek __NR_lseek
196 #endif
198 /* Newer kernel ports have llseek() instead of _llseek() */
199 #if defined(TARGET_NR_llseek) && !defined(TARGET_NR__llseek)
200 #define TARGET_NR__llseek TARGET_NR_llseek
201 #endif
203 #ifdef __NR_gettid
204 _syscall0(int, gettid)
205 #else
206 /* This is a replacement for the host gettid() and must return a host
207 errno. */
208 static int gettid(void) {
209 return -ENOSYS;
211 #endif
212 #if defined(TARGET_NR_getdents) && defined(__NR_getdents)
213 _syscall3(int, sys_getdents, uint, fd, struct linux_dirent *, dirp, uint, count);
214 #endif
215 #if !defined(__NR_getdents) || \
216 (defined(TARGET_NR_getdents64) && defined(__NR_getdents64))
217 _syscall3(int, sys_getdents64, uint, fd, struct linux_dirent64 *, dirp, uint, count);
218 #endif
219 #if defined(TARGET_NR__llseek) && defined(__NR_llseek)
220 _syscall5(int, _llseek, uint, fd, ulong, hi, ulong, lo,
221 loff_t *, res, uint, wh);
222 #endif
223 _syscall3(int,sys_rt_sigqueueinfo,int,pid,int,sig,siginfo_t *,uinfo)
224 _syscall3(int,sys_syslog,int,type,char*,bufp,int,len)
225 #ifdef __NR_exit_group
226 _syscall1(int,exit_group,int,error_code)
227 #endif
228 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
229 _syscall1(int,set_tid_address,int *,tidptr)
230 #endif
231 #if defined(TARGET_NR_futex) && defined(__NR_futex)
232 _syscall6(int,sys_futex,int *,uaddr,int,op,int,val,
233 const struct timespec *,timeout,int *,uaddr2,int,val3)
234 #endif
235 #define __NR_sys_sched_getaffinity __NR_sched_getaffinity
236 _syscall3(int, sys_sched_getaffinity, pid_t, pid, unsigned int, len,
237 unsigned long *, user_mask_ptr);
238 #define __NR_sys_sched_setaffinity __NR_sched_setaffinity
239 _syscall3(int, sys_sched_setaffinity, pid_t, pid, unsigned int, len,
240 unsigned long *, user_mask_ptr);
241 _syscall4(int, reboot, int, magic1, int, magic2, unsigned int, cmd,
242 void *, arg);
243 _syscall2(int, capget, struct __user_cap_header_struct *, header,
244 struct __user_cap_data_struct *, data);
245 _syscall2(int, capset, struct __user_cap_header_struct *, header,
246 struct __user_cap_data_struct *, data);
247 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
248 _syscall2(int, ioprio_get, int, which, int, who)
249 #endif
250 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
251 _syscall3(int, ioprio_set, int, which, int, who, int, ioprio)
252 #endif
253 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
254 _syscall3(int, getrandom, void *, buf, size_t, buflen, unsigned int, flags)
255 #endif
257 static bitmask_transtbl fcntl_flags_tbl[] = {
258 { TARGET_O_ACCMODE, TARGET_O_WRONLY, O_ACCMODE, O_WRONLY, },
259 { TARGET_O_ACCMODE, TARGET_O_RDWR, O_ACCMODE, O_RDWR, },
260 { TARGET_O_CREAT, TARGET_O_CREAT, O_CREAT, O_CREAT, },
261 { TARGET_O_EXCL, TARGET_O_EXCL, O_EXCL, O_EXCL, },
262 { TARGET_O_NOCTTY, TARGET_O_NOCTTY, O_NOCTTY, O_NOCTTY, },
263 { TARGET_O_TRUNC, TARGET_O_TRUNC, O_TRUNC, O_TRUNC, },
264 { TARGET_O_APPEND, TARGET_O_APPEND, O_APPEND, O_APPEND, },
265 { TARGET_O_NONBLOCK, TARGET_O_NONBLOCK, O_NONBLOCK, O_NONBLOCK, },
266 { TARGET_O_SYNC, TARGET_O_DSYNC, O_SYNC, O_DSYNC, },
267 { TARGET_O_SYNC, TARGET_O_SYNC, O_SYNC, O_SYNC, },
268 { TARGET_FASYNC, TARGET_FASYNC, FASYNC, FASYNC, },
269 { TARGET_O_DIRECTORY, TARGET_O_DIRECTORY, O_DIRECTORY, O_DIRECTORY, },
270 { TARGET_O_NOFOLLOW, TARGET_O_NOFOLLOW, O_NOFOLLOW, O_NOFOLLOW, },
271 #if defined(O_DIRECT)
272 { TARGET_O_DIRECT, TARGET_O_DIRECT, O_DIRECT, O_DIRECT, },
273 #endif
274 #if defined(O_NOATIME)
275 { TARGET_O_NOATIME, TARGET_O_NOATIME, O_NOATIME, O_NOATIME },
276 #endif
277 #if defined(O_CLOEXEC)
278 { TARGET_O_CLOEXEC, TARGET_O_CLOEXEC, O_CLOEXEC, O_CLOEXEC },
279 #endif
280 #if defined(O_PATH)
281 { TARGET_O_PATH, TARGET_O_PATH, O_PATH, O_PATH },
282 #endif
283 /* Don't terminate the list prematurely on 64-bit host+guest. */
284 #if TARGET_O_LARGEFILE != 0 || O_LARGEFILE != 0
285 { TARGET_O_LARGEFILE, TARGET_O_LARGEFILE, O_LARGEFILE, O_LARGEFILE, },
286 #endif
287 { 0, 0, 0, 0 }
290 typedef abi_long (*TargetFdDataFunc)(void *, size_t);
291 typedef abi_long (*TargetFdAddrFunc)(void *, abi_ulong, socklen_t);
292 typedef struct TargetFdTrans {
293 TargetFdDataFunc host_to_target_data;
294 TargetFdDataFunc target_to_host_data;
295 TargetFdAddrFunc target_to_host_addr;
296 } TargetFdTrans;
298 static TargetFdTrans **target_fd_trans;
300 static unsigned int target_fd_max;
302 static TargetFdDataFunc fd_trans_target_to_host_data(int fd)
304 if (fd >= 0 && fd < target_fd_max && target_fd_trans[fd]) {
305 return target_fd_trans[fd]->target_to_host_data;
307 return NULL;
310 static TargetFdDataFunc fd_trans_host_to_target_data(int fd)
312 if (fd >= 0 && fd < target_fd_max && target_fd_trans[fd]) {
313 return target_fd_trans[fd]->host_to_target_data;
315 return NULL;
318 static TargetFdAddrFunc fd_trans_target_to_host_addr(int fd)
320 if (fd >= 0 && fd < target_fd_max && target_fd_trans[fd]) {
321 return target_fd_trans[fd]->target_to_host_addr;
323 return NULL;
326 static void fd_trans_register(int fd, TargetFdTrans *trans)
328 unsigned int oldmax;
330 if (fd >= target_fd_max) {
331 oldmax = target_fd_max;
332 target_fd_max = ((fd >> 6) + 1) << 6; /* by slice of 64 entries */
333 target_fd_trans = g_renew(TargetFdTrans *,
334 target_fd_trans, target_fd_max);
335 memset((void *)(target_fd_trans + oldmax), 0,
336 (target_fd_max - oldmax) * sizeof(TargetFdTrans *));
338 target_fd_trans[fd] = trans;
341 static void fd_trans_unregister(int fd)
343 if (fd >= 0 && fd < target_fd_max) {
344 target_fd_trans[fd] = NULL;
348 static void fd_trans_dup(int oldfd, int newfd)
350 fd_trans_unregister(newfd);
351 if (oldfd < target_fd_max && target_fd_trans[oldfd]) {
352 fd_trans_register(newfd, target_fd_trans[oldfd]);
356 static int sys_getcwd1(char *buf, size_t size)
358 if (getcwd(buf, size) == NULL) {
359 /* getcwd() sets errno */
360 return (-1);
362 return strlen(buf)+1;
365 #ifdef TARGET_NR_utimensat
366 #ifdef CONFIG_UTIMENSAT
367 static int sys_utimensat(int dirfd, const char *pathname,
368 const struct timespec times[2], int flags)
370 if (pathname == NULL)
371 return futimens(dirfd, times);
372 else
373 return utimensat(dirfd, pathname, times, flags);
375 #elif defined(__NR_utimensat)
376 #define __NR_sys_utimensat __NR_utimensat
377 _syscall4(int,sys_utimensat,int,dirfd,const char *,pathname,
378 const struct timespec *,tsp,int,flags)
379 #else
380 static int sys_utimensat(int dirfd, const char *pathname,
381 const struct timespec times[2], int flags)
383 errno = ENOSYS;
384 return -1;
386 #endif
387 #endif /* TARGET_NR_utimensat */
389 #ifdef CONFIG_INOTIFY
390 #include <sys/inotify.h>
392 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
393 static int sys_inotify_init(void)
395 return (inotify_init());
397 #endif
398 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
399 static int sys_inotify_add_watch(int fd,const char *pathname, int32_t mask)
401 return (inotify_add_watch(fd, pathname, mask));
403 #endif
404 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
405 static int sys_inotify_rm_watch(int fd, int32_t wd)
407 return (inotify_rm_watch(fd, wd));
409 #endif
410 #ifdef CONFIG_INOTIFY1
411 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
412 static int sys_inotify_init1(int flags)
414 return (inotify_init1(flags));
416 #endif
417 #endif
418 #else
419 /* Userspace can usually survive runtime without inotify */
420 #undef TARGET_NR_inotify_init
421 #undef TARGET_NR_inotify_init1
422 #undef TARGET_NR_inotify_add_watch
423 #undef TARGET_NR_inotify_rm_watch
424 #endif /* CONFIG_INOTIFY */
426 #if defined(TARGET_NR_prlimit64)
427 #ifndef __NR_prlimit64
428 # define __NR_prlimit64 -1
429 #endif
430 #define __NR_sys_prlimit64 __NR_prlimit64
431 /* The glibc rlimit structure may not be that used by the underlying syscall */
432 struct host_rlimit64 {
433 uint64_t rlim_cur;
434 uint64_t rlim_max;
436 _syscall4(int, sys_prlimit64, pid_t, pid, int, resource,
437 const struct host_rlimit64 *, new_limit,
438 struct host_rlimit64 *, old_limit)
439 #endif
442 #if defined(TARGET_NR_timer_create)
443 /* Maxiumum of 32 active POSIX timers allowed at any one time. */
444 static timer_t g_posix_timers[32] = { 0, } ;
446 static inline int next_free_host_timer(void)
448 int k ;
449 /* FIXME: Does finding the next free slot require a lock? */
450 for (k = 0; k < ARRAY_SIZE(g_posix_timers); k++) {
451 if (g_posix_timers[k] == 0) {
452 g_posix_timers[k] = (timer_t) 1;
453 return k;
456 return -1;
458 #endif
460 /* ARM EABI and MIPS expect 64bit types aligned even on pairs or registers */
461 #ifdef TARGET_ARM
462 static inline int regpairs_aligned(void *cpu_env) {
463 return ((((CPUARMState *)cpu_env)->eabi) == 1) ;
465 #elif defined(TARGET_MIPS)
466 static inline int regpairs_aligned(void *cpu_env) { return 1; }
467 #elif defined(TARGET_PPC) && !defined(TARGET_PPC64)
468 /* SysV AVI for PPC32 expects 64bit parameters to be passed on odd/even pairs
469 * of registers which translates to the same as ARM/MIPS, because we start with
470 * r3 as arg1 */
471 static inline int regpairs_aligned(void *cpu_env) { return 1; }
472 #else
473 static inline int regpairs_aligned(void *cpu_env) { return 0; }
474 #endif
476 #define ERRNO_TABLE_SIZE 1200
478 /* target_to_host_errno_table[] is initialized from
479 * host_to_target_errno_table[] in syscall_init(). */
480 static uint16_t target_to_host_errno_table[ERRNO_TABLE_SIZE] = {
484 * This list is the union of errno values overridden in asm-<arch>/errno.h
485 * minus the errnos that are not actually generic to all archs.
487 static uint16_t host_to_target_errno_table[ERRNO_TABLE_SIZE] = {
488 [EAGAIN] = TARGET_EAGAIN,
489 [EIDRM] = TARGET_EIDRM,
490 [ECHRNG] = TARGET_ECHRNG,
491 [EL2NSYNC] = TARGET_EL2NSYNC,
492 [EL3HLT] = TARGET_EL3HLT,
493 [EL3RST] = TARGET_EL3RST,
494 [ELNRNG] = TARGET_ELNRNG,
495 [EUNATCH] = TARGET_EUNATCH,
496 [ENOCSI] = TARGET_ENOCSI,
497 [EL2HLT] = TARGET_EL2HLT,
498 [EDEADLK] = TARGET_EDEADLK,
499 [ENOLCK] = TARGET_ENOLCK,
500 [EBADE] = TARGET_EBADE,
501 [EBADR] = TARGET_EBADR,
502 [EXFULL] = TARGET_EXFULL,
503 [ENOANO] = TARGET_ENOANO,
504 [EBADRQC] = TARGET_EBADRQC,
505 [EBADSLT] = TARGET_EBADSLT,
506 [EBFONT] = TARGET_EBFONT,
507 [ENOSTR] = TARGET_ENOSTR,
508 [ENODATA] = TARGET_ENODATA,
509 [ETIME] = TARGET_ETIME,
510 [ENOSR] = TARGET_ENOSR,
511 [ENONET] = TARGET_ENONET,
512 [ENOPKG] = TARGET_ENOPKG,
513 [EREMOTE] = TARGET_EREMOTE,
514 [ENOLINK] = TARGET_ENOLINK,
515 [EADV] = TARGET_EADV,
516 [ESRMNT] = TARGET_ESRMNT,
517 [ECOMM] = TARGET_ECOMM,
518 [EPROTO] = TARGET_EPROTO,
519 [EDOTDOT] = TARGET_EDOTDOT,
520 [EMULTIHOP] = TARGET_EMULTIHOP,
521 [EBADMSG] = TARGET_EBADMSG,
522 [ENAMETOOLONG] = TARGET_ENAMETOOLONG,
523 [EOVERFLOW] = TARGET_EOVERFLOW,
524 [ENOTUNIQ] = TARGET_ENOTUNIQ,
525 [EBADFD] = TARGET_EBADFD,
526 [EREMCHG] = TARGET_EREMCHG,
527 [ELIBACC] = TARGET_ELIBACC,
528 [ELIBBAD] = TARGET_ELIBBAD,
529 [ELIBSCN] = TARGET_ELIBSCN,
530 [ELIBMAX] = TARGET_ELIBMAX,
531 [ELIBEXEC] = TARGET_ELIBEXEC,
532 [EILSEQ] = TARGET_EILSEQ,
533 [ENOSYS] = TARGET_ENOSYS,
534 [ELOOP] = TARGET_ELOOP,
535 [ERESTART] = TARGET_ERESTART,
536 [ESTRPIPE] = TARGET_ESTRPIPE,
537 [ENOTEMPTY] = TARGET_ENOTEMPTY,
538 [EUSERS] = TARGET_EUSERS,
539 [ENOTSOCK] = TARGET_ENOTSOCK,
540 [EDESTADDRREQ] = TARGET_EDESTADDRREQ,
541 [EMSGSIZE] = TARGET_EMSGSIZE,
542 [EPROTOTYPE] = TARGET_EPROTOTYPE,
543 [ENOPROTOOPT] = TARGET_ENOPROTOOPT,
544 [EPROTONOSUPPORT] = TARGET_EPROTONOSUPPORT,
545 [ESOCKTNOSUPPORT] = TARGET_ESOCKTNOSUPPORT,
546 [EOPNOTSUPP] = TARGET_EOPNOTSUPP,
547 [EPFNOSUPPORT] = TARGET_EPFNOSUPPORT,
548 [EAFNOSUPPORT] = TARGET_EAFNOSUPPORT,
549 [EADDRINUSE] = TARGET_EADDRINUSE,
550 [EADDRNOTAVAIL] = TARGET_EADDRNOTAVAIL,
551 [ENETDOWN] = TARGET_ENETDOWN,
552 [ENETUNREACH] = TARGET_ENETUNREACH,
553 [ENETRESET] = TARGET_ENETRESET,
554 [ECONNABORTED] = TARGET_ECONNABORTED,
555 [ECONNRESET] = TARGET_ECONNRESET,
556 [ENOBUFS] = TARGET_ENOBUFS,
557 [EISCONN] = TARGET_EISCONN,
558 [ENOTCONN] = TARGET_ENOTCONN,
559 [EUCLEAN] = TARGET_EUCLEAN,
560 [ENOTNAM] = TARGET_ENOTNAM,
561 [ENAVAIL] = TARGET_ENAVAIL,
562 [EISNAM] = TARGET_EISNAM,
563 [EREMOTEIO] = TARGET_EREMOTEIO,
564 [ESHUTDOWN] = TARGET_ESHUTDOWN,
565 [ETOOMANYREFS] = TARGET_ETOOMANYREFS,
566 [ETIMEDOUT] = TARGET_ETIMEDOUT,
567 [ECONNREFUSED] = TARGET_ECONNREFUSED,
568 [EHOSTDOWN] = TARGET_EHOSTDOWN,
569 [EHOSTUNREACH] = TARGET_EHOSTUNREACH,
570 [EALREADY] = TARGET_EALREADY,
571 [EINPROGRESS] = TARGET_EINPROGRESS,
572 [ESTALE] = TARGET_ESTALE,
573 [ECANCELED] = TARGET_ECANCELED,
574 [ENOMEDIUM] = TARGET_ENOMEDIUM,
575 [EMEDIUMTYPE] = TARGET_EMEDIUMTYPE,
576 #ifdef ENOKEY
577 [ENOKEY] = TARGET_ENOKEY,
578 #endif
579 #ifdef EKEYEXPIRED
580 [EKEYEXPIRED] = TARGET_EKEYEXPIRED,
581 #endif
582 #ifdef EKEYREVOKED
583 [EKEYREVOKED] = TARGET_EKEYREVOKED,
584 #endif
585 #ifdef EKEYREJECTED
586 [EKEYREJECTED] = TARGET_EKEYREJECTED,
587 #endif
588 #ifdef EOWNERDEAD
589 [EOWNERDEAD] = TARGET_EOWNERDEAD,
590 #endif
591 #ifdef ENOTRECOVERABLE
592 [ENOTRECOVERABLE] = TARGET_ENOTRECOVERABLE,
593 #endif
596 static inline int host_to_target_errno(int err)
598 if (err >= 0 && err < ERRNO_TABLE_SIZE &&
599 host_to_target_errno_table[err]) {
600 return host_to_target_errno_table[err];
602 return err;
605 static inline int target_to_host_errno(int err)
607 if (err >= 0 && err < ERRNO_TABLE_SIZE &&
608 target_to_host_errno_table[err]) {
609 return target_to_host_errno_table[err];
611 return err;
614 static inline abi_long get_errno(abi_long ret)
616 if (ret == -1)
617 return -host_to_target_errno(errno);
618 else
619 return ret;
622 static inline int is_error(abi_long ret)
624 return (abi_ulong)ret >= (abi_ulong)(-4096);
627 const char *target_strerror(int err)
629 if (err == TARGET_ERESTARTSYS) {
630 return "To be restarted";
632 if (err == TARGET_QEMU_ESIGRETURN) {
633 return "Successful exit from sigreturn";
636 if ((err >= ERRNO_TABLE_SIZE) || (err < 0)) {
637 return NULL;
639 return strerror(target_to_host_errno(err));
642 #define safe_syscall0(type, name) \
643 static type safe_##name(void) \
645 return safe_syscall(__NR_##name); \
648 #define safe_syscall1(type, name, type1, arg1) \
649 static type safe_##name(type1 arg1) \
651 return safe_syscall(__NR_##name, arg1); \
654 #define safe_syscall2(type, name, type1, arg1, type2, arg2) \
655 static type safe_##name(type1 arg1, type2 arg2) \
657 return safe_syscall(__NR_##name, arg1, arg2); \
660 #define safe_syscall3(type, name, type1, arg1, type2, arg2, type3, arg3) \
661 static type safe_##name(type1 arg1, type2 arg2, type3 arg3) \
663 return safe_syscall(__NR_##name, arg1, arg2, arg3); \
666 #define safe_syscall4(type, name, type1, arg1, type2, arg2, type3, arg3, \
667 type4, arg4) \
668 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4) \
670 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4); \
673 #define safe_syscall5(type, name, type1, arg1, type2, arg2, type3, arg3, \
674 type4, arg4, type5, arg5) \
675 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
676 type5 arg5) \
678 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5); \
681 #define safe_syscall6(type, name, type1, arg1, type2, arg2, type3, arg3, \
682 type4, arg4, type5, arg5, type6, arg6) \
683 static type safe_##name(type1 arg1, type2 arg2, type3 arg3, type4 arg4, \
684 type5 arg5, type6 arg6) \
686 return safe_syscall(__NR_##name, arg1, arg2, arg3, arg4, arg5, arg6); \
689 safe_syscall3(ssize_t, read, int, fd, void *, buff, size_t, count)
690 safe_syscall3(ssize_t, write, int, fd, const void *, buff, size_t, count)
691 safe_syscall4(int, openat, int, dirfd, const char *, pathname, \
692 int, flags, mode_t, mode)
693 safe_syscall4(pid_t, wait4, pid_t, pid, int *, status, int, options, \
694 struct rusage *, rusage)
695 safe_syscall5(int, waitid, idtype_t, idtype, id_t, id, siginfo_t *, infop, \
696 int, options, struct rusage *, rusage)
697 safe_syscall3(int, execve, const char *, filename, char **, argv, char **, envp)
698 safe_syscall6(int, pselect6, int, nfds, fd_set *, readfds, fd_set *, writefds, \
699 fd_set *, exceptfds, struct timespec *, timeout, void *, sig)
700 safe_syscall5(int, ppoll, struct pollfd *, ufds, unsigned int, nfds,
701 struct timespec *, tsp, const sigset_t *, sigmask,
702 size_t, sigsetsize)
703 safe_syscall6(int, epoll_pwait, int, epfd, struct epoll_event *, events,
704 int, maxevents, int, timeout, const sigset_t *, sigmask,
705 size_t, sigsetsize)
706 safe_syscall6(int,futex,int *,uaddr,int,op,int,val, \
707 const struct timespec *,timeout,int *,uaddr2,int,val3)
708 safe_syscall2(int, rt_sigsuspend, sigset_t *, newset, size_t, sigsetsize)
709 safe_syscall2(int, kill, pid_t, pid, int, sig)
710 safe_syscall2(int, tkill, int, tid, int, sig)
711 safe_syscall3(int, tgkill, int, tgid, int, pid, int, sig)
712 safe_syscall3(ssize_t, readv, int, fd, const struct iovec *, iov, int, iovcnt)
713 safe_syscall3(ssize_t, writev, int, fd, const struct iovec *, iov, int, iovcnt)
714 safe_syscall3(int, connect, int, fd, const struct sockaddr *, addr,
715 socklen_t, addrlen)
716 safe_syscall6(ssize_t, sendto, int, fd, const void *, buf, size_t, len,
717 int, flags, const struct sockaddr *, addr, socklen_t, addrlen)
718 safe_syscall6(ssize_t, recvfrom, int, fd, void *, buf, size_t, len,
719 int, flags, struct sockaddr *, addr, socklen_t *, addrlen)
720 safe_syscall3(ssize_t, sendmsg, int, fd, const struct msghdr *, msg, int, flags)
721 safe_syscall3(ssize_t, recvmsg, int, fd, struct msghdr *, msg, int, flags)
722 safe_syscall2(int, flock, int, fd, int, operation)
723 safe_syscall4(int, rt_sigtimedwait, const sigset_t *, these, siginfo_t *, uinfo,
724 const struct timespec *, uts, size_t, sigsetsize)
725 safe_syscall4(int, accept4, int, fd, struct sockaddr *, addr, socklen_t *, len,
726 int, flags)
727 safe_syscall2(int, nanosleep, const struct timespec *, req,
728 struct timespec *, rem)
729 #ifdef TARGET_NR_clock_nanosleep
730 safe_syscall4(int, clock_nanosleep, const clockid_t, clock, int, flags,
731 const struct timespec *, req, struct timespec *, rem)
732 #endif
733 #ifdef __NR_msgsnd
734 safe_syscall4(int, msgsnd, int, msgid, const void *, msgp, size_t, sz,
735 int, flags)
736 safe_syscall5(int, msgrcv, int, msgid, void *, msgp, size_t, sz,
737 long, msgtype, int, flags)
738 safe_syscall4(int, semtimedop, int, semid, struct sembuf *, tsops,
739 unsigned, nsops, const struct timespec *, timeout)
740 #else
741 /* This host kernel architecture uses a single ipc syscall; fake up
742 * wrappers for the sub-operations to hide this implementation detail.
743 * Annoyingly we can't include linux/ipc.h to get the constant definitions
744 * for the call parameter because some structs in there conflict with the
745 * sys/ipc.h ones. So we just define them here, and rely on them being
746 * the same for all host architectures.
748 #define Q_SEMTIMEDOP 4
749 #define Q_MSGSND 11
750 #define Q_MSGRCV 12
751 #define Q_IPCCALL(VERSION, OP) ((VERSION) << 16 | (OP))
753 safe_syscall6(int, ipc, int, call, long, first, long, second, long, third,
754 void *, ptr, long, fifth)
755 static int safe_msgsnd(int msgid, const void *msgp, size_t sz, int flags)
757 return safe_ipc(Q_IPCCALL(0, Q_MSGSND), msgid, sz, flags, (void *)msgp, 0);
759 static int safe_msgrcv(int msgid, void *msgp, size_t sz, long type, int flags)
761 return safe_ipc(Q_IPCCALL(1, Q_MSGRCV), msgid, sz, flags, msgp, type);
763 static int safe_semtimedop(int semid, struct sembuf *tsops, unsigned nsops,
764 const struct timespec *timeout)
766 return safe_ipc(Q_IPCCALL(0, Q_SEMTIMEDOP), semid, nsops, 0, tsops,
767 (long)timeout);
769 #endif
770 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
771 safe_syscall5(int, mq_timedsend, int, mqdes, const char *, msg_ptr,
772 size_t, len, unsigned, prio, const struct timespec *, timeout)
773 safe_syscall5(int, mq_timedreceive, int, mqdes, char *, msg_ptr,
774 size_t, len, unsigned *, prio, const struct timespec *, timeout)
775 #endif
776 /* We do ioctl like this rather than via safe_syscall3 to preserve the
777 * "third argument might be integer or pointer or not present" behaviour of
778 * the libc function.
780 #define safe_ioctl(...) safe_syscall(__NR_ioctl, __VA_ARGS__)
781 /* Similarly for fcntl. Note that callers must always:
782 * pass the F_GETLK64 etc constants rather than the unsuffixed F_GETLK
783 * use the flock64 struct rather than unsuffixed flock
784 * This will then work and use a 64-bit offset for both 32-bit and 64-bit hosts.
786 #ifdef __NR_fcntl64
787 #define safe_fcntl(...) safe_syscall(__NR_fcntl64, __VA_ARGS__)
788 #else
789 #define safe_fcntl(...) safe_syscall(__NR_fcntl, __VA_ARGS__)
790 #endif
792 static inline int host_to_target_sock_type(int host_type)
794 int target_type;
796 switch (host_type & 0xf /* SOCK_TYPE_MASK */) {
797 case SOCK_DGRAM:
798 target_type = TARGET_SOCK_DGRAM;
799 break;
800 case SOCK_STREAM:
801 target_type = TARGET_SOCK_STREAM;
802 break;
803 default:
804 target_type = host_type & 0xf /* SOCK_TYPE_MASK */;
805 break;
808 #if defined(SOCK_CLOEXEC)
809 if (host_type & SOCK_CLOEXEC) {
810 target_type |= TARGET_SOCK_CLOEXEC;
812 #endif
814 #if defined(SOCK_NONBLOCK)
815 if (host_type & SOCK_NONBLOCK) {
816 target_type |= TARGET_SOCK_NONBLOCK;
818 #endif
820 return target_type;
823 static abi_ulong target_brk;
824 static abi_ulong target_original_brk;
825 static abi_ulong brk_page;
827 void target_set_brk(abi_ulong new_brk)
829 target_original_brk = target_brk = HOST_PAGE_ALIGN(new_brk);
830 brk_page = HOST_PAGE_ALIGN(target_brk);
833 //#define DEBUGF_BRK(message, args...) do { fprintf(stderr, (message), ## args); } while (0)
834 #define DEBUGF_BRK(message, args...)
836 /* do_brk() must return target values and target errnos. */
837 abi_long do_brk(abi_ulong new_brk)
839 abi_long mapped_addr;
840 int new_alloc_size;
842 DEBUGF_BRK("do_brk(" TARGET_ABI_FMT_lx ") -> ", new_brk);
844 if (!new_brk) {
845 DEBUGF_BRK(TARGET_ABI_FMT_lx " (!new_brk)\n", target_brk);
846 return target_brk;
848 if (new_brk < target_original_brk) {
849 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk < target_original_brk)\n",
850 target_brk);
851 return target_brk;
854 /* If the new brk is less than the highest page reserved to the
855 * target heap allocation, set it and we're almost done... */
856 if (new_brk <= brk_page) {
857 /* Heap contents are initialized to zero, as for anonymous
858 * mapped pages. */
859 if (new_brk > target_brk) {
860 memset(g2h(target_brk), 0, new_brk - target_brk);
862 target_brk = new_brk;
863 DEBUGF_BRK(TARGET_ABI_FMT_lx " (new_brk <= brk_page)\n", target_brk);
864 return target_brk;
867 /* We need to allocate more memory after the brk... Note that
868 * we don't use MAP_FIXED because that will map over the top of
869 * any existing mapping (like the one with the host libc or qemu
870 * itself); instead we treat "mapped but at wrong address" as
871 * a failure and unmap again.
873 new_alloc_size = HOST_PAGE_ALIGN(new_brk - brk_page);
874 mapped_addr = get_errno(target_mmap(brk_page, new_alloc_size,
875 PROT_READ|PROT_WRITE,
876 MAP_ANON|MAP_PRIVATE, 0, 0));
878 if (mapped_addr == brk_page) {
879 /* Heap contents are initialized to zero, as for anonymous
880 * mapped pages. Technically the new pages are already
881 * initialized to zero since they *are* anonymous mapped
882 * pages, however we have to take care with the contents that
883 * come from the remaining part of the previous page: it may
884 * contains garbage data due to a previous heap usage (grown
885 * then shrunken). */
886 memset(g2h(target_brk), 0, brk_page - target_brk);
888 target_brk = new_brk;
889 brk_page = HOST_PAGE_ALIGN(target_brk);
890 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr == brk_page)\n",
891 target_brk);
892 return target_brk;
893 } else if (mapped_addr != -1) {
894 /* Mapped but at wrong address, meaning there wasn't actually
895 * enough space for this brk.
897 target_munmap(mapped_addr, new_alloc_size);
898 mapped_addr = -1;
899 DEBUGF_BRK(TARGET_ABI_FMT_lx " (mapped_addr != -1)\n", target_brk);
901 else {
902 DEBUGF_BRK(TARGET_ABI_FMT_lx " (otherwise)\n", target_brk);
905 #if defined(TARGET_ALPHA)
906 /* We (partially) emulate OSF/1 on Alpha, which requires we
907 return a proper errno, not an unchanged brk value. */
908 return -TARGET_ENOMEM;
909 #endif
910 /* For everything else, return the previous break. */
911 return target_brk;
914 static inline abi_long copy_from_user_fdset(fd_set *fds,
915 abi_ulong target_fds_addr,
916 int n)
918 int i, nw, j, k;
919 abi_ulong b, *target_fds;
921 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
922 if (!(target_fds = lock_user(VERIFY_READ,
923 target_fds_addr,
924 sizeof(abi_ulong) * nw,
925 1)))
926 return -TARGET_EFAULT;
928 FD_ZERO(fds);
929 k = 0;
930 for (i = 0; i < nw; i++) {
931 /* grab the abi_ulong */
932 __get_user(b, &target_fds[i]);
933 for (j = 0; j < TARGET_ABI_BITS; j++) {
934 /* check the bit inside the abi_ulong */
935 if ((b >> j) & 1)
936 FD_SET(k, fds);
937 k++;
941 unlock_user(target_fds, target_fds_addr, 0);
943 return 0;
946 static inline abi_ulong copy_from_user_fdset_ptr(fd_set *fds, fd_set **fds_ptr,
947 abi_ulong target_fds_addr,
948 int n)
950 if (target_fds_addr) {
951 if (copy_from_user_fdset(fds, target_fds_addr, n))
952 return -TARGET_EFAULT;
953 *fds_ptr = fds;
954 } else {
955 *fds_ptr = NULL;
957 return 0;
960 static inline abi_long copy_to_user_fdset(abi_ulong target_fds_addr,
961 const fd_set *fds,
962 int n)
964 int i, nw, j, k;
965 abi_long v;
966 abi_ulong *target_fds;
968 nw = DIV_ROUND_UP(n, TARGET_ABI_BITS);
969 if (!(target_fds = lock_user(VERIFY_WRITE,
970 target_fds_addr,
971 sizeof(abi_ulong) * nw,
972 0)))
973 return -TARGET_EFAULT;
975 k = 0;
976 for (i = 0; i < nw; i++) {
977 v = 0;
978 for (j = 0; j < TARGET_ABI_BITS; j++) {
979 v |= ((abi_ulong)(FD_ISSET(k, fds) != 0) << j);
980 k++;
982 __put_user(v, &target_fds[i]);
985 unlock_user(target_fds, target_fds_addr, sizeof(abi_ulong) * nw);
987 return 0;
990 #if defined(__alpha__)
991 #define HOST_HZ 1024
992 #else
993 #define HOST_HZ 100
994 #endif
996 static inline abi_long host_to_target_clock_t(long ticks)
998 #if HOST_HZ == TARGET_HZ
999 return ticks;
1000 #else
1001 return ((int64_t)ticks * TARGET_HZ) / HOST_HZ;
1002 #endif
1005 static inline abi_long host_to_target_rusage(abi_ulong target_addr,
1006 const struct rusage *rusage)
1008 struct target_rusage *target_rusage;
1010 if (!lock_user_struct(VERIFY_WRITE, target_rusage, target_addr, 0))
1011 return -TARGET_EFAULT;
1012 target_rusage->ru_utime.tv_sec = tswapal(rusage->ru_utime.tv_sec);
1013 target_rusage->ru_utime.tv_usec = tswapal(rusage->ru_utime.tv_usec);
1014 target_rusage->ru_stime.tv_sec = tswapal(rusage->ru_stime.tv_sec);
1015 target_rusage->ru_stime.tv_usec = tswapal(rusage->ru_stime.tv_usec);
1016 target_rusage->ru_maxrss = tswapal(rusage->ru_maxrss);
1017 target_rusage->ru_ixrss = tswapal(rusage->ru_ixrss);
1018 target_rusage->ru_idrss = tswapal(rusage->ru_idrss);
1019 target_rusage->ru_isrss = tswapal(rusage->ru_isrss);
1020 target_rusage->ru_minflt = tswapal(rusage->ru_minflt);
1021 target_rusage->ru_majflt = tswapal(rusage->ru_majflt);
1022 target_rusage->ru_nswap = tswapal(rusage->ru_nswap);
1023 target_rusage->ru_inblock = tswapal(rusage->ru_inblock);
1024 target_rusage->ru_oublock = tswapal(rusage->ru_oublock);
1025 target_rusage->ru_msgsnd = tswapal(rusage->ru_msgsnd);
1026 target_rusage->ru_msgrcv = tswapal(rusage->ru_msgrcv);
1027 target_rusage->ru_nsignals = tswapal(rusage->ru_nsignals);
1028 target_rusage->ru_nvcsw = tswapal(rusage->ru_nvcsw);
1029 target_rusage->ru_nivcsw = tswapal(rusage->ru_nivcsw);
1030 unlock_user_struct(target_rusage, target_addr, 1);
1032 return 0;
1035 static inline rlim_t target_to_host_rlim(abi_ulong target_rlim)
1037 abi_ulong target_rlim_swap;
1038 rlim_t result;
1040 target_rlim_swap = tswapal(target_rlim);
1041 if (target_rlim_swap == TARGET_RLIM_INFINITY)
1042 return RLIM_INFINITY;
1044 result = target_rlim_swap;
1045 if (target_rlim_swap != (rlim_t)result)
1046 return RLIM_INFINITY;
1048 return result;
1051 static inline abi_ulong host_to_target_rlim(rlim_t rlim)
1053 abi_ulong target_rlim_swap;
1054 abi_ulong result;
1056 if (rlim == RLIM_INFINITY || rlim != (abi_long)rlim)
1057 target_rlim_swap = TARGET_RLIM_INFINITY;
1058 else
1059 target_rlim_swap = rlim;
1060 result = tswapal(target_rlim_swap);
1062 return result;
1065 static inline int target_to_host_resource(int code)
1067 switch (code) {
1068 case TARGET_RLIMIT_AS:
1069 return RLIMIT_AS;
1070 case TARGET_RLIMIT_CORE:
1071 return RLIMIT_CORE;
1072 case TARGET_RLIMIT_CPU:
1073 return RLIMIT_CPU;
1074 case TARGET_RLIMIT_DATA:
1075 return RLIMIT_DATA;
1076 case TARGET_RLIMIT_FSIZE:
1077 return RLIMIT_FSIZE;
1078 case TARGET_RLIMIT_LOCKS:
1079 return RLIMIT_LOCKS;
1080 case TARGET_RLIMIT_MEMLOCK:
1081 return RLIMIT_MEMLOCK;
1082 case TARGET_RLIMIT_MSGQUEUE:
1083 return RLIMIT_MSGQUEUE;
1084 case TARGET_RLIMIT_NICE:
1085 return RLIMIT_NICE;
1086 case TARGET_RLIMIT_NOFILE:
1087 return RLIMIT_NOFILE;
1088 case TARGET_RLIMIT_NPROC:
1089 return RLIMIT_NPROC;
1090 case TARGET_RLIMIT_RSS:
1091 return RLIMIT_RSS;
1092 case TARGET_RLIMIT_RTPRIO:
1093 return RLIMIT_RTPRIO;
1094 case TARGET_RLIMIT_SIGPENDING:
1095 return RLIMIT_SIGPENDING;
1096 case TARGET_RLIMIT_STACK:
1097 return RLIMIT_STACK;
1098 default:
1099 return code;
1103 static inline abi_long copy_from_user_timeval(struct timeval *tv,
1104 abi_ulong target_tv_addr)
1106 struct target_timeval *target_tv;
1108 if (!lock_user_struct(VERIFY_READ, target_tv, target_tv_addr, 1))
1109 return -TARGET_EFAULT;
1111 __get_user(tv->tv_sec, &target_tv->tv_sec);
1112 __get_user(tv->tv_usec, &target_tv->tv_usec);
1114 unlock_user_struct(target_tv, target_tv_addr, 0);
1116 return 0;
1119 static inline abi_long copy_to_user_timeval(abi_ulong target_tv_addr,
1120 const struct timeval *tv)
1122 struct target_timeval *target_tv;
1124 if (!lock_user_struct(VERIFY_WRITE, target_tv, target_tv_addr, 0))
1125 return -TARGET_EFAULT;
1127 __put_user(tv->tv_sec, &target_tv->tv_sec);
1128 __put_user(tv->tv_usec, &target_tv->tv_usec);
1130 unlock_user_struct(target_tv, target_tv_addr, 1);
1132 return 0;
1135 static inline abi_long copy_from_user_timezone(struct timezone *tz,
1136 abi_ulong target_tz_addr)
1138 struct target_timezone *target_tz;
1140 if (!lock_user_struct(VERIFY_READ, target_tz, target_tz_addr, 1)) {
1141 return -TARGET_EFAULT;
1144 __get_user(tz->tz_minuteswest, &target_tz->tz_minuteswest);
1145 __get_user(tz->tz_dsttime, &target_tz->tz_dsttime);
1147 unlock_user_struct(target_tz, target_tz_addr, 0);
1149 return 0;
1152 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
1153 #include <mqueue.h>
1155 static inline abi_long copy_from_user_mq_attr(struct mq_attr *attr,
1156 abi_ulong target_mq_attr_addr)
1158 struct target_mq_attr *target_mq_attr;
1160 if (!lock_user_struct(VERIFY_READ, target_mq_attr,
1161 target_mq_attr_addr, 1))
1162 return -TARGET_EFAULT;
1164 __get_user(attr->mq_flags, &target_mq_attr->mq_flags);
1165 __get_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1166 __get_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1167 __get_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1169 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 0);
1171 return 0;
1174 static inline abi_long copy_to_user_mq_attr(abi_ulong target_mq_attr_addr,
1175 const struct mq_attr *attr)
1177 struct target_mq_attr *target_mq_attr;
1179 if (!lock_user_struct(VERIFY_WRITE, target_mq_attr,
1180 target_mq_attr_addr, 0))
1181 return -TARGET_EFAULT;
1183 __put_user(attr->mq_flags, &target_mq_attr->mq_flags);
1184 __put_user(attr->mq_maxmsg, &target_mq_attr->mq_maxmsg);
1185 __put_user(attr->mq_msgsize, &target_mq_attr->mq_msgsize);
1186 __put_user(attr->mq_curmsgs, &target_mq_attr->mq_curmsgs);
1188 unlock_user_struct(target_mq_attr, target_mq_attr_addr, 1);
1190 return 0;
1192 #endif
1194 #if defined(TARGET_NR_select) || defined(TARGET_NR__newselect)
1195 /* do_select() must return target values and target errnos. */
1196 static abi_long do_select(int n,
1197 abi_ulong rfd_addr, abi_ulong wfd_addr,
1198 abi_ulong efd_addr, abi_ulong target_tv_addr)
1200 fd_set rfds, wfds, efds;
1201 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
1202 struct timeval tv;
1203 struct timespec ts, *ts_ptr;
1204 abi_long ret;
1206 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
1207 if (ret) {
1208 return ret;
1210 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
1211 if (ret) {
1212 return ret;
1214 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
1215 if (ret) {
1216 return ret;
1219 if (target_tv_addr) {
1220 if (copy_from_user_timeval(&tv, target_tv_addr))
1221 return -TARGET_EFAULT;
1222 ts.tv_sec = tv.tv_sec;
1223 ts.tv_nsec = tv.tv_usec * 1000;
1224 ts_ptr = &ts;
1225 } else {
1226 ts_ptr = NULL;
1229 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
1230 ts_ptr, NULL));
1232 if (!is_error(ret)) {
1233 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
1234 return -TARGET_EFAULT;
1235 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
1236 return -TARGET_EFAULT;
1237 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
1238 return -TARGET_EFAULT;
1240 if (target_tv_addr) {
1241 tv.tv_sec = ts.tv_sec;
1242 tv.tv_usec = ts.tv_nsec / 1000;
1243 if (copy_to_user_timeval(target_tv_addr, &tv)) {
1244 return -TARGET_EFAULT;
1249 return ret;
1251 #endif
1253 static abi_long do_pipe2(int host_pipe[], int flags)
1255 #ifdef CONFIG_PIPE2
1256 return pipe2(host_pipe, flags);
1257 #else
1258 return -ENOSYS;
1259 #endif
1262 static abi_long do_pipe(void *cpu_env, abi_ulong pipedes,
1263 int flags, int is_pipe2)
1265 int host_pipe[2];
1266 abi_long ret;
1267 ret = flags ? do_pipe2(host_pipe, flags) : pipe(host_pipe);
1269 if (is_error(ret))
1270 return get_errno(ret);
1272 /* Several targets have special calling conventions for the original
1273 pipe syscall, but didn't replicate this into the pipe2 syscall. */
1274 if (!is_pipe2) {
1275 #if defined(TARGET_ALPHA)
1276 ((CPUAlphaState *)cpu_env)->ir[IR_A4] = host_pipe[1];
1277 return host_pipe[0];
1278 #elif defined(TARGET_MIPS)
1279 ((CPUMIPSState*)cpu_env)->active_tc.gpr[3] = host_pipe[1];
1280 return host_pipe[0];
1281 #elif defined(TARGET_SH4)
1282 ((CPUSH4State*)cpu_env)->gregs[1] = host_pipe[1];
1283 return host_pipe[0];
1284 #elif defined(TARGET_SPARC)
1285 ((CPUSPARCState*)cpu_env)->regwptr[1] = host_pipe[1];
1286 return host_pipe[0];
1287 #endif
1290 if (put_user_s32(host_pipe[0], pipedes)
1291 || put_user_s32(host_pipe[1], pipedes + sizeof(host_pipe[0])))
1292 return -TARGET_EFAULT;
1293 return get_errno(ret);
1296 static inline abi_long target_to_host_ip_mreq(struct ip_mreqn *mreqn,
1297 abi_ulong target_addr,
1298 socklen_t len)
1300 struct target_ip_mreqn *target_smreqn;
1302 target_smreqn = lock_user(VERIFY_READ, target_addr, len, 1);
1303 if (!target_smreqn)
1304 return -TARGET_EFAULT;
1305 mreqn->imr_multiaddr.s_addr = target_smreqn->imr_multiaddr.s_addr;
1306 mreqn->imr_address.s_addr = target_smreqn->imr_address.s_addr;
1307 if (len == sizeof(struct target_ip_mreqn))
1308 mreqn->imr_ifindex = tswapal(target_smreqn->imr_ifindex);
1309 unlock_user(target_smreqn, target_addr, 0);
1311 return 0;
1314 static inline abi_long target_to_host_sockaddr(int fd, struct sockaddr *addr,
1315 abi_ulong target_addr,
1316 socklen_t len)
1318 const socklen_t unix_maxlen = sizeof (struct sockaddr_un);
1319 sa_family_t sa_family;
1320 struct target_sockaddr *target_saddr;
1322 if (fd_trans_target_to_host_addr(fd)) {
1323 return fd_trans_target_to_host_addr(fd)(addr, target_addr, len);
1326 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
1327 if (!target_saddr)
1328 return -TARGET_EFAULT;
1330 sa_family = tswap16(target_saddr->sa_family);
1332 /* Oops. The caller might send a incomplete sun_path; sun_path
1333 * must be terminated by \0 (see the manual page), but
1334 * unfortunately it is quite common to specify sockaddr_un
1335 * length as "strlen(x->sun_path)" while it should be
1336 * "strlen(...) + 1". We'll fix that here if needed.
1337 * Linux kernel has a similar feature.
1340 if (sa_family == AF_UNIX) {
1341 if (len < unix_maxlen && len > 0) {
1342 char *cp = (char*)target_saddr;
1344 if ( cp[len-1] && !cp[len] )
1345 len++;
1347 if (len > unix_maxlen)
1348 len = unix_maxlen;
1351 memcpy(addr, target_saddr, len);
1352 addr->sa_family = sa_family;
1353 if (sa_family == AF_NETLINK) {
1354 struct sockaddr_nl *nladdr;
1356 nladdr = (struct sockaddr_nl *)addr;
1357 nladdr->nl_pid = tswap32(nladdr->nl_pid);
1358 nladdr->nl_groups = tswap32(nladdr->nl_groups);
1359 } else if (sa_family == AF_PACKET) {
1360 struct target_sockaddr_ll *lladdr;
1362 lladdr = (struct target_sockaddr_ll *)addr;
1363 lladdr->sll_ifindex = tswap32(lladdr->sll_ifindex);
1364 lladdr->sll_hatype = tswap16(lladdr->sll_hatype);
1366 unlock_user(target_saddr, target_addr, 0);
1368 return 0;
1371 static inline abi_long host_to_target_sockaddr(abi_ulong target_addr,
1372 struct sockaddr *addr,
1373 socklen_t len)
1375 struct target_sockaddr *target_saddr;
1377 target_saddr = lock_user(VERIFY_WRITE, target_addr, len, 0);
1378 if (!target_saddr)
1379 return -TARGET_EFAULT;
1380 memcpy(target_saddr, addr, len);
1381 target_saddr->sa_family = tswap16(addr->sa_family);
1382 if (addr->sa_family == AF_NETLINK) {
1383 struct sockaddr_nl *target_nl = (struct sockaddr_nl *)target_saddr;
1384 target_nl->nl_pid = tswap32(target_nl->nl_pid);
1385 target_nl->nl_groups = tswap32(target_nl->nl_groups);
1387 unlock_user(target_saddr, target_addr, len);
1389 return 0;
1392 static inline abi_long target_to_host_cmsg(struct msghdr *msgh,
1393 struct target_msghdr *target_msgh)
1395 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1396 abi_long msg_controllen;
1397 abi_ulong target_cmsg_addr;
1398 struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1399 socklen_t space = 0;
1401 msg_controllen = tswapal(target_msgh->msg_controllen);
1402 if (msg_controllen < sizeof (struct target_cmsghdr))
1403 goto the_end;
1404 target_cmsg_addr = tswapal(target_msgh->msg_control);
1405 target_cmsg = lock_user(VERIFY_READ, target_cmsg_addr, msg_controllen, 1);
1406 target_cmsg_start = target_cmsg;
1407 if (!target_cmsg)
1408 return -TARGET_EFAULT;
1410 while (cmsg && target_cmsg) {
1411 void *data = CMSG_DATA(cmsg);
1412 void *target_data = TARGET_CMSG_DATA(target_cmsg);
1414 int len = tswapal(target_cmsg->cmsg_len)
1415 - TARGET_CMSG_ALIGN(sizeof (struct target_cmsghdr));
1417 space += CMSG_SPACE(len);
1418 if (space > msgh->msg_controllen) {
1419 space -= CMSG_SPACE(len);
1420 /* This is a QEMU bug, since we allocated the payload
1421 * area ourselves (unlike overflow in host-to-target
1422 * conversion, which is just the guest giving us a buffer
1423 * that's too small). It can't happen for the payload types
1424 * we currently support; if it becomes an issue in future
1425 * we would need to improve our allocation strategy to
1426 * something more intelligent than "twice the size of the
1427 * target buffer we're reading from".
1429 gemu_log("Host cmsg overflow\n");
1430 break;
1433 if (tswap32(target_cmsg->cmsg_level) == TARGET_SOL_SOCKET) {
1434 cmsg->cmsg_level = SOL_SOCKET;
1435 } else {
1436 cmsg->cmsg_level = tswap32(target_cmsg->cmsg_level);
1438 cmsg->cmsg_type = tswap32(target_cmsg->cmsg_type);
1439 cmsg->cmsg_len = CMSG_LEN(len);
1441 if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
1442 int *fd = (int *)data;
1443 int *target_fd = (int *)target_data;
1444 int i, numfds = len / sizeof(int);
1446 for (i = 0; i < numfds; i++) {
1447 __get_user(fd[i], target_fd + i);
1449 } else if (cmsg->cmsg_level == SOL_SOCKET
1450 && cmsg->cmsg_type == SCM_CREDENTIALS) {
1451 struct ucred *cred = (struct ucred *)data;
1452 struct target_ucred *target_cred =
1453 (struct target_ucred *)target_data;
1455 __get_user(cred->pid, &target_cred->pid);
1456 __get_user(cred->uid, &target_cred->uid);
1457 __get_user(cred->gid, &target_cred->gid);
1458 } else {
1459 gemu_log("Unsupported ancillary data: %d/%d\n",
1460 cmsg->cmsg_level, cmsg->cmsg_type);
1461 memcpy(data, target_data, len);
1464 cmsg = CMSG_NXTHDR(msgh, cmsg);
1465 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1466 target_cmsg_start);
1468 unlock_user(target_cmsg, target_cmsg_addr, 0);
1469 the_end:
1470 msgh->msg_controllen = space;
1471 return 0;
1474 static inline abi_long host_to_target_cmsg(struct target_msghdr *target_msgh,
1475 struct msghdr *msgh)
1477 struct cmsghdr *cmsg = CMSG_FIRSTHDR(msgh);
1478 abi_long msg_controllen;
1479 abi_ulong target_cmsg_addr;
1480 struct target_cmsghdr *target_cmsg, *target_cmsg_start;
1481 socklen_t space = 0;
1483 msg_controllen = tswapal(target_msgh->msg_controllen);
1484 if (msg_controllen < sizeof (struct target_cmsghdr))
1485 goto the_end;
1486 target_cmsg_addr = tswapal(target_msgh->msg_control);
1487 target_cmsg = lock_user(VERIFY_WRITE, target_cmsg_addr, msg_controllen, 0);
1488 target_cmsg_start = target_cmsg;
1489 if (!target_cmsg)
1490 return -TARGET_EFAULT;
1492 while (cmsg && target_cmsg) {
1493 void *data = CMSG_DATA(cmsg);
1494 void *target_data = TARGET_CMSG_DATA(target_cmsg);
1496 int len = cmsg->cmsg_len - CMSG_ALIGN(sizeof (struct cmsghdr));
1497 int tgt_len, tgt_space;
1499 /* We never copy a half-header but may copy half-data;
1500 * this is Linux's behaviour in put_cmsg(). Note that
1501 * truncation here is a guest problem (which we report
1502 * to the guest via the CTRUNC bit), unlike truncation
1503 * in target_to_host_cmsg, which is a QEMU bug.
1505 if (msg_controllen < sizeof(struct cmsghdr)) {
1506 target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1507 break;
1510 if (cmsg->cmsg_level == SOL_SOCKET) {
1511 target_cmsg->cmsg_level = tswap32(TARGET_SOL_SOCKET);
1512 } else {
1513 target_cmsg->cmsg_level = tswap32(cmsg->cmsg_level);
1515 target_cmsg->cmsg_type = tswap32(cmsg->cmsg_type);
1517 tgt_len = TARGET_CMSG_LEN(len);
1519 /* Payload types which need a different size of payload on
1520 * the target must adjust tgt_len here.
1522 switch (cmsg->cmsg_level) {
1523 case SOL_SOCKET:
1524 switch (cmsg->cmsg_type) {
1525 case SO_TIMESTAMP:
1526 tgt_len = sizeof(struct target_timeval);
1527 break;
1528 default:
1529 break;
1531 default:
1532 break;
1535 if (msg_controllen < tgt_len) {
1536 target_msgh->msg_flags |= tswap32(MSG_CTRUNC);
1537 tgt_len = msg_controllen;
1540 /* We must now copy-and-convert len bytes of payload
1541 * into tgt_len bytes of destination space. Bear in mind
1542 * that in both source and destination we may be dealing
1543 * with a truncated value!
1545 switch (cmsg->cmsg_level) {
1546 case SOL_SOCKET:
1547 switch (cmsg->cmsg_type) {
1548 case SCM_RIGHTS:
1550 int *fd = (int *)data;
1551 int *target_fd = (int *)target_data;
1552 int i, numfds = tgt_len / sizeof(int);
1554 for (i = 0; i < numfds; i++) {
1555 __put_user(fd[i], target_fd + i);
1557 break;
1559 case SO_TIMESTAMP:
1561 struct timeval *tv = (struct timeval *)data;
1562 struct target_timeval *target_tv =
1563 (struct target_timeval *)target_data;
1565 if (len != sizeof(struct timeval) ||
1566 tgt_len != sizeof(struct target_timeval)) {
1567 goto unimplemented;
1570 /* copy struct timeval to target */
1571 __put_user(tv->tv_sec, &target_tv->tv_sec);
1572 __put_user(tv->tv_usec, &target_tv->tv_usec);
1573 break;
1575 case SCM_CREDENTIALS:
1577 struct ucred *cred = (struct ucred *)data;
1578 struct target_ucred *target_cred =
1579 (struct target_ucred *)target_data;
1581 __put_user(cred->pid, &target_cred->pid);
1582 __put_user(cred->uid, &target_cred->uid);
1583 __put_user(cred->gid, &target_cred->gid);
1584 break;
1586 default:
1587 goto unimplemented;
1589 break;
1591 default:
1592 unimplemented:
1593 gemu_log("Unsupported ancillary data: %d/%d\n",
1594 cmsg->cmsg_level, cmsg->cmsg_type);
1595 memcpy(target_data, data, MIN(len, tgt_len));
1596 if (tgt_len > len) {
1597 memset(target_data + len, 0, tgt_len - len);
1601 target_cmsg->cmsg_len = tswapal(tgt_len);
1602 tgt_space = TARGET_CMSG_SPACE(len);
1603 if (msg_controllen < tgt_space) {
1604 tgt_space = msg_controllen;
1606 msg_controllen -= tgt_space;
1607 space += tgt_space;
1608 cmsg = CMSG_NXTHDR(msgh, cmsg);
1609 target_cmsg = TARGET_CMSG_NXTHDR(target_msgh, target_cmsg,
1610 target_cmsg_start);
1612 unlock_user(target_cmsg, target_cmsg_addr, space);
1613 the_end:
1614 target_msgh->msg_controllen = tswapal(space);
1615 return 0;
1618 static void tswap_nlmsghdr(struct nlmsghdr *nlh)
1620 nlh->nlmsg_len = tswap32(nlh->nlmsg_len);
1621 nlh->nlmsg_type = tswap16(nlh->nlmsg_type);
1622 nlh->nlmsg_flags = tswap16(nlh->nlmsg_flags);
1623 nlh->nlmsg_seq = tswap32(nlh->nlmsg_seq);
1624 nlh->nlmsg_pid = tswap32(nlh->nlmsg_pid);
1627 static abi_long host_to_target_for_each_nlmsg(struct nlmsghdr *nlh,
1628 size_t len,
1629 abi_long (*host_to_target_nlmsg)
1630 (struct nlmsghdr *))
1632 uint32_t nlmsg_len;
1633 abi_long ret;
1635 while (len > sizeof(struct nlmsghdr)) {
1637 nlmsg_len = nlh->nlmsg_len;
1638 if (nlmsg_len < sizeof(struct nlmsghdr) ||
1639 nlmsg_len > len) {
1640 break;
1643 switch (nlh->nlmsg_type) {
1644 case NLMSG_DONE:
1645 tswap_nlmsghdr(nlh);
1646 return 0;
1647 case NLMSG_NOOP:
1648 break;
1649 case NLMSG_ERROR:
1651 struct nlmsgerr *e = NLMSG_DATA(nlh);
1652 e->error = tswap32(e->error);
1653 tswap_nlmsghdr(&e->msg);
1654 tswap_nlmsghdr(nlh);
1655 return 0;
1657 default:
1658 ret = host_to_target_nlmsg(nlh);
1659 if (ret < 0) {
1660 tswap_nlmsghdr(nlh);
1661 return ret;
1663 break;
1665 tswap_nlmsghdr(nlh);
1666 len -= NLMSG_ALIGN(nlmsg_len);
1667 nlh = (struct nlmsghdr *)(((char*)nlh) + NLMSG_ALIGN(nlmsg_len));
1669 return 0;
1672 static abi_long target_to_host_for_each_nlmsg(struct nlmsghdr *nlh,
1673 size_t len,
1674 abi_long (*target_to_host_nlmsg)
1675 (struct nlmsghdr *))
1677 int ret;
1679 while (len > sizeof(struct nlmsghdr)) {
1680 if (tswap32(nlh->nlmsg_len) < sizeof(struct nlmsghdr) ||
1681 tswap32(nlh->nlmsg_len) > len) {
1682 break;
1684 tswap_nlmsghdr(nlh);
1685 switch (nlh->nlmsg_type) {
1686 case NLMSG_DONE:
1687 return 0;
1688 case NLMSG_NOOP:
1689 break;
1690 case NLMSG_ERROR:
1692 struct nlmsgerr *e = NLMSG_DATA(nlh);
1693 e->error = tswap32(e->error);
1694 tswap_nlmsghdr(&e->msg);
1695 return 0;
1697 default:
1698 ret = target_to_host_nlmsg(nlh);
1699 if (ret < 0) {
1700 return ret;
1703 len -= NLMSG_ALIGN(nlh->nlmsg_len);
1704 nlh = (struct nlmsghdr *)(((char *)nlh) + NLMSG_ALIGN(nlh->nlmsg_len));
1706 return 0;
1709 #ifdef CONFIG_RTNETLINK
1710 static abi_long host_to_target_for_each_rtattr(struct rtattr *rtattr,
1711 size_t len,
1712 abi_long (*host_to_target_rtattr)
1713 (struct rtattr *))
1715 unsigned short rta_len;
1716 abi_long ret;
1718 while (len > sizeof(struct rtattr)) {
1719 rta_len = rtattr->rta_len;
1720 if (rta_len < sizeof(struct rtattr) ||
1721 rta_len > len) {
1722 break;
1724 ret = host_to_target_rtattr(rtattr);
1725 rtattr->rta_len = tswap16(rtattr->rta_len);
1726 rtattr->rta_type = tswap16(rtattr->rta_type);
1727 if (ret < 0) {
1728 return ret;
1730 len -= RTA_ALIGN(rta_len);
1731 rtattr = (struct rtattr *)(((char *)rtattr) + RTA_ALIGN(rta_len));
1733 return 0;
1736 static abi_long host_to_target_data_link_rtattr(struct rtattr *rtattr)
1738 uint32_t *u32;
1739 struct rtnl_link_stats *st;
1740 struct rtnl_link_stats64 *st64;
1741 struct rtnl_link_ifmap *map;
1743 switch (rtattr->rta_type) {
1744 /* binary stream */
1745 case IFLA_ADDRESS:
1746 case IFLA_BROADCAST:
1747 /* string */
1748 case IFLA_IFNAME:
1749 case IFLA_QDISC:
1750 break;
1751 /* uin8_t */
1752 case IFLA_OPERSTATE:
1753 case IFLA_LINKMODE:
1754 case IFLA_CARRIER:
1755 case IFLA_PROTO_DOWN:
1756 break;
1757 /* uint32_t */
1758 case IFLA_MTU:
1759 case IFLA_LINK:
1760 case IFLA_WEIGHT:
1761 case IFLA_TXQLEN:
1762 case IFLA_CARRIER_CHANGES:
1763 case IFLA_NUM_RX_QUEUES:
1764 case IFLA_NUM_TX_QUEUES:
1765 case IFLA_PROMISCUITY:
1766 case IFLA_EXT_MASK:
1767 case IFLA_LINK_NETNSID:
1768 case IFLA_GROUP:
1769 case IFLA_MASTER:
1770 case IFLA_NUM_VF:
1771 u32 = RTA_DATA(rtattr);
1772 *u32 = tswap32(*u32);
1773 break;
1774 /* struct rtnl_link_stats */
1775 case IFLA_STATS:
1776 st = RTA_DATA(rtattr);
1777 st->rx_packets = tswap32(st->rx_packets);
1778 st->tx_packets = tswap32(st->tx_packets);
1779 st->rx_bytes = tswap32(st->rx_bytes);
1780 st->tx_bytes = tswap32(st->tx_bytes);
1781 st->rx_errors = tswap32(st->rx_errors);
1782 st->tx_errors = tswap32(st->tx_errors);
1783 st->rx_dropped = tswap32(st->rx_dropped);
1784 st->tx_dropped = tswap32(st->tx_dropped);
1785 st->multicast = tswap32(st->multicast);
1786 st->collisions = tswap32(st->collisions);
1788 /* detailed rx_errors: */
1789 st->rx_length_errors = tswap32(st->rx_length_errors);
1790 st->rx_over_errors = tswap32(st->rx_over_errors);
1791 st->rx_crc_errors = tswap32(st->rx_crc_errors);
1792 st->rx_frame_errors = tswap32(st->rx_frame_errors);
1793 st->rx_fifo_errors = tswap32(st->rx_fifo_errors);
1794 st->rx_missed_errors = tswap32(st->rx_missed_errors);
1796 /* detailed tx_errors */
1797 st->tx_aborted_errors = tswap32(st->tx_aborted_errors);
1798 st->tx_carrier_errors = tswap32(st->tx_carrier_errors);
1799 st->tx_fifo_errors = tswap32(st->tx_fifo_errors);
1800 st->tx_heartbeat_errors = tswap32(st->tx_heartbeat_errors);
1801 st->tx_window_errors = tswap32(st->tx_window_errors);
1803 /* for cslip etc */
1804 st->rx_compressed = tswap32(st->rx_compressed);
1805 st->tx_compressed = tswap32(st->tx_compressed);
1806 break;
1807 /* struct rtnl_link_stats64 */
1808 case IFLA_STATS64:
1809 st64 = RTA_DATA(rtattr);
1810 st64->rx_packets = tswap64(st64->rx_packets);
1811 st64->tx_packets = tswap64(st64->tx_packets);
1812 st64->rx_bytes = tswap64(st64->rx_bytes);
1813 st64->tx_bytes = tswap64(st64->tx_bytes);
1814 st64->rx_errors = tswap64(st64->rx_errors);
1815 st64->tx_errors = tswap64(st64->tx_errors);
1816 st64->rx_dropped = tswap64(st64->rx_dropped);
1817 st64->tx_dropped = tswap64(st64->tx_dropped);
1818 st64->multicast = tswap64(st64->multicast);
1819 st64->collisions = tswap64(st64->collisions);
1821 /* detailed rx_errors: */
1822 st64->rx_length_errors = tswap64(st64->rx_length_errors);
1823 st64->rx_over_errors = tswap64(st64->rx_over_errors);
1824 st64->rx_crc_errors = tswap64(st64->rx_crc_errors);
1825 st64->rx_frame_errors = tswap64(st64->rx_frame_errors);
1826 st64->rx_fifo_errors = tswap64(st64->rx_fifo_errors);
1827 st64->rx_missed_errors = tswap64(st64->rx_missed_errors);
1829 /* detailed tx_errors */
1830 st64->tx_aborted_errors = tswap64(st64->tx_aborted_errors);
1831 st64->tx_carrier_errors = tswap64(st64->tx_carrier_errors);
1832 st64->tx_fifo_errors = tswap64(st64->tx_fifo_errors);
1833 st64->tx_heartbeat_errors = tswap64(st64->tx_heartbeat_errors);
1834 st64->tx_window_errors = tswap64(st64->tx_window_errors);
1836 /* for cslip etc */
1837 st64->rx_compressed = tswap64(st64->rx_compressed);
1838 st64->tx_compressed = tswap64(st64->tx_compressed);
1839 break;
1840 /* struct rtnl_link_ifmap */
1841 case IFLA_MAP:
1842 map = RTA_DATA(rtattr);
1843 map->mem_start = tswap64(map->mem_start);
1844 map->mem_end = tswap64(map->mem_end);
1845 map->base_addr = tswap64(map->base_addr);
1846 map->irq = tswap16(map->irq);
1847 break;
1848 /* nested */
1849 case IFLA_AF_SPEC:
1850 case IFLA_LINKINFO:
1851 /* FIXME: implement nested type */
1852 gemu_log("Unimplemented nested type %d\n", rtattr->rta_type);
1853 break;
1854 default:
1855 gemu_log("Unknown host IFLA type: %d\n", rtattr->rta_type);
1856 break;
1858 return 0;
1861 static abi_long host_to_target_data_addr_rtattr(struct rtattr *rtattr)
1863 uint32_t *u32;
1864 struct ifa_cacheinfo *ci;
1866 switch (rtattr->rta_type) {
1867 /* binary: depends on family type */
1868 case IFA_ADDRESS:
1869 case IFA_LOCAL:
1870 break;
1871 /* string */
1872 case IFA_LABEL:
1873 break;
1874 /* u32 */
1875 case IFA_FLAGS:
1876 case IFA_BROADCAST:
1877 u32 = RTA_DATA(rtattr);
1878 *u32 = tswap32(*u32);
1879 break;
1880 /* struct ifa_cacheinfo */
1881 case IFA_CACHEINFO:
1882 ci = RTA_DATA(rtattr);
1883 ci->ifa_prefered = tswap32(ci->ifa_prefered);
1884 ci->ifa_valid = tswap32(ci->ifa_valid);
1885 ci->cstamp = tswap32(ci->cstamp);
1886 ci->tstamp = tswap32(ci->tstamp);
1887 break;
1888 default:
1889 gemu_log("Unknown host IFA type: %d\n", rtattr->rta_type);
1890 break;
1892 return 0;
1895 static abi_long host_to_target_data_route_rtattr(struct rtattr *rtattr)
1897 uint32_t *u32;
1898 switch (rtattr->rta_type) {
1899 /* binary: depends on family type */
1900 case RTA_GATEWAY:
1901 case RTA_DST:
1902 case RTA_PREFSRC:
1903 break;
1904 /* u32 */
1905 case RTA_PRIORITY:
1906 case RTA_TABLE:
1907 case RTA_OIF:
1908 u32 = RTA_DATA(rtattr);
1909 *u32 = tswap32(*u32);
1910 break;
1911 default:
1912 gemu_log("Unknown host RTA type: %d\n", rtattr->rta_type);
1913 break;
1915 return 0;
1918 static abi_long host_to_target_link_rtattr(struct rtattr *rtattr,
1919 uint32_t rtattr_len)
1921 return host_to_target_for_each_rtattr(rtattr, rtattr_len,
1922 host_to_target_data_link_rtattr);
1925 static abi_long host_to_target_addr_rtattr(struct rtattr *rtattr,
1926 uint32_t rtattr_len)
1928 return host_to_target_for_each_rtattr(rtattr, rtattr_len,
1929 host_to_target_data_addr_rtattr);
1932 static abi_long host_to_target_route_rtattr(struct rtattr *rtattr,
1933 uint32_t rtattr_len)
1935 return host_to_target_for_each_rtattr(rtattr, rtattr_len,
1936 host_to_target_data_route_rtattr);
1939 static abi_long host_to_target_data_route(struct nlmsghdr *nlh)
1941 uint32_t nlmsg_len;
1942 struct ifinfomsg *ifi;
1943 struct ifaddrmsg *ifa;
1944 struct rtmsg *rtm;
1946 nlmsg_len = nlh->nlmsg_len;
1947 switch (nlh->nlmsg_type) {
1948 case RTM_NEWLINK:
1949 case RTM_DELLINK:
1950 case RTM_GETLINK:
1951 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifi))) {
1952 ifi = NLMSG_DATA(nlh);
1953 ifi->ifi_type = tswap16(ifi->ifi_type);
1954 ifi->ifi_index = tswap32(ifi->ifi_index);
1955 ifi->ifi_flags = tswap32(ifi->ifi_flags);
1956 ifi->ifi_change = tswap32(ifi->ifi_change);
1957 host_to_target_link_rtattr(IFLA_RTA(ifi),
1958 nlmsg_len - NLMSG_LENGTH(sizeof(*ifi)));
1960 break;
1961 case RTM_NEWADDR:
1962 case RTM_DELADDR:
1963 case RTM_GETADDR:
1964 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifa))) {
1965 ifa = NLMSG_DATA(nlh);
1966 ifa->ifa_index = tswap32(ifa->ifa_index);
1967 host_to_target_addr_rtattr(IFA_RTA(ifa),
1968 nlmsg_len - NLMSG_LENGTH(sizeof(*ifa)));
1970 break;
1971 case RTM_NEWROUTE:
1972 case RTM_DELROUTE:
1973 case RTM_GETROUTE:
1974 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*rtm))) {
1975 rtm = NLMSG_DATA(nlh);
1976 rtm->rtm_flags = tswap32(rtm->rtm_flags);
1977 host_to_target_route_rtattr(RTM_RTA(rtm),
1978 nlmsg_len - NLMSG_LENGTH(sizeof(*rtm)));
1980 break;
1981 default:
1982 return -TARGET_EINVAL;
1984 return 0;
1987 static inline abi_long host_to_target_nlmsg_route(struct nlmsghdr *nlh,
1988 size_t len)
1990 return host_to_target_for_each_nlmsg(nlh, len, host_to_target_data_route);
1993 static abi_long target_to_host_for_each_rtattr(struct rtattr *rtattr,
1994 size_t len,
1995 abi_long (*target_to_host_rtattr)
1996 (struct rtattr *))
1998 abi_long ret;
2000 while (len >= sizeof(struct rtattr)) {
2001 if (tswap16(rtattr->rta_len) < sizeof(struct rtattr) ||
2002 tswap16(rtattr->rta_len) > len) {
2003 break;
2005 rtattr->rta_len = tswap16(rtattr->rta_len);
2006 rtattr->rta_type = tswap16(rtattr->rta_type);
2007 ret = target_to_host_rtattr(rtattr);
2008 if (ret < 0) {
2009 return ret;
2011 len -= RTA_ALIGN(rtattr->rta_len);
2012 rtattr = (struct rtattr *)(((char *)rtattr) +
2013 RTA_ALIGN(rtattr->rta_len));
2015 return 0;
2018 static abi_long target_to_host_data_link_rtattr(struct rtattr *rtattr)
2020 switch (rtattr->rta_type) {
2021 default:
2022 gemu_log("Unknown target IFLA type: %d\n", rtattr->rta_type);
2023 break;
2025 return 0;
2028 static abi_long target_to_host_data_addr_rtattr(struct rtattr *rtattr)
2030 switch (rtattr->rta_type) {
2031 /* binary: depends on family type */
2032 case IFA_LOCAL:
2033 case IFA_ADDRESS:
2034 break;
2035 default:
2036 gemu_log("Unknown target IFA type: %d\n", rtattr->rta_type);
2037 break;
2039 return 0;
2042 static abi_long target_to_host_data_route_rtattr(struct rtattr *rtattr)
2044 uint32_t *u32;
2045 switch (rtattr->rta_type) {
2046 /* binary: depends on family type */
2047 case RTA_DST:
2048 case RTA_SRC:
2049 case RTA_GATEWAY:
2050 break;
2051 /* u32 */
2052 case RTA_OIF:
2053 u32 = RTA_DATA(rtattr);
2054 *u32 = tswap32(*u32);
2055 break;
2056 default:
2057 gemu_log("Unknown target RTA type: %d\n", rtattr->rta_type);
2058 break;
2060 return 0;
2063 static void target_to_host_link_rtattr(struct rtattr *rtattr,
2064 uint32_t rtattr_len)
2066 target_to_host_for_each_rtattr(rtattr, rtattr_len,
2067 target_to_host_data_link_rtattr);
2070 static void target_to_host_addr_rtattr(struct rtattr *rtattr,
2071 uint32_t rtattr_len)
2073 target_to_host_for_each_rtattr(rtattr, rtattr_len,
2074 target_to_host_data_addr_rtattr);
2077 static void target_to_host_route_rtattr(struct rtattr *rtattr,
2078 uint32_t rtattr_len)
2080 target_to_host_for_each_rtattr(rtattr, rtattr_len,
2081 target_to_host_data_route_rtattr);
2084 static abi_long target_to_host_data_route(struct nlmsghdr *nlh)
2086 struct ifinfomsg *ifi;
2087 struct ifaddrmsg *ifa;
2088 struct rtmsg *rtm;
2090 switch (nlh->nlmsg_type) {
2091 case RTM_GETLINK:
2092 break;
2093 case RTM_NEWLINK:
2094 case RTM_DELLINK:
2095 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifi))) {
2096 ifi = NLMSG_DATA(nlh);
2097 ifi->ifi_type = tswap16(ifi->ifi_type);
2098 ifi->ifi_index = tswap32(ifi->ifi_index);
2099 ifi->ifi_flags = tswap32(ifi->ifi_flags);
2100 ifi->ifi_change = tswap32(ifi->ifi_change);
2101 target_to_host_link_rtattr(IFLA_RTA(ifi), nlh->nlmsg_len -
2102 NLMSG_LENGTH(sizeof(*ifi)));
2104 break;
2105 case RTM_GETADDR:
2106 case RTM_NEWADDR:
2107 case RTM_DELADDR:
2108 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*ifa))) {
2109 ifa = NLMSG_DATA(nlh);
2110 ifa->ifa_index = tswap32(ifa->ifa_index);
2111 target_to_host_addr_rtattr(IFA_RTA(ifa), nlh->nlmsg_len -
2112 NLMSG_LENGTH(sizeof(*ifa)));
2114 break;
2115 case RTM_GETROUTE:
2116 break;
2117 case RTM_NEWROUTE:
2118 case RTM_DELROUTE:
2119 if (nlh->nlmsg_len >= NLMSG_LENGTH(sizeof(*rtm))) {
2120 rtm = NLMSG_DATA(nlh);
2121 rtm->rtm_flags = tswap32(rtm->rtm_flags);
2122 target_to_host_route_rtattr(RTM_RTA(rtm), nlh->nlmsg_len -
2123 NLMSG_LENGTH(sizeof(*rtm)));
2125 break;
2126 default:
2127 return -TARGET_EOPNOTSUPP;
2129 return 0;
2132 static abi_long target_to_host_nlmsg_route(struct nlmsghdr *nlh, size_t len)
2134 return target_to_host_for_each_nlmsg(nlh, len, target_to_host_data_route);
2136 #endif /* CONFIG_RTNETLINK */
2138 static abi_long host_to_target_data_audit(struct nlmsghdr *nlh)
2140 switch (nlh->nlmsg_type) {
2141 default:
2142 gemu_log("Unknown host audit message type %d\n",
2143 nlh->nlmsg_type);
2144 return -TARGET_EINVAL;
2146 return 0;
2149 static inline abi_long host_to_target_nlmsg_audit(struct nlmsghdr *nlh,
2150 size_t len)
2152 return host_to_target_for_each_nlmsg(nlh, len, host_to_target_data_audit);
2155 static abi_long target_to_host_data_audit(struct nlmsghdr *nlh)
2157 switch (nlh->nlmsg_type) {
2158 case AUDIT_USER:
2159 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
2160 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
2161 break;
2162 default:
2163 gemu_log("Unknown target audit message type %d\n",
2164 nlh->nlmsg_type);
2165 return -TARGET_EINVAL;
2168 return 0;
2171 static abi_long target_to_host_nlmsg_audit(struct nlmsghdr *nlh, size_t len)
2173 return target_to_host_for_each_nlmsg(nlh, len, target_to_host_data_audit);
2176 /* do_setsockopt() Must return target values and target errnos. */
2177 static abi_long do_setsockopt(int sockfd, int level, int optname,
2178 abi_ulong optval_addr, socklen_t optlen)
2180 abi_long ret;
2181 int val;
2182 struct ip_mreqn *ip_mreq;
2183 struct ip_mreq_source *ip_mreq_source;
2185 switch(level) {
2186 case SOL_TCP:
2187 /* TCP options all take an 'int' value. */
2188 if (optlen < sizeof(uint32_t))
2189 return -TARGET_EINVAL;
2191 if (get_user_u32(val, optval_addr))
2192 return -TARGET_EFAULT;
2193 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2194 break;
2195 case SOL_IP:
2196 switch(optname) {
2197 case IP_TOS:
2198 case IP_TTL:
2199 case IP_HDRINCL:
2200 case IP_ROUTER_ALERT:
2201 case IP_RECVOPTS:
2202 case IP_RETOPTS:
2203 case IP_PKTINFO:
2204 case IP_MTU_DISCOVER:
2205 case IP_RECVERR:
2206 case IP_RECVTOS:
2207 #ifdef IP_FREEBIND
2208 case IP_FREEBIND:
2209 #endif
2210 case IP_MULTICAST_TTL:
2211 case IP_MULTICAST_LOOP:
2212 val = 0;
2213 if (optlen >= sizeof(uint32_t)) {
2214 if (get_user_u32(val, optval_addr))
2215 return -TARGET_EFAULT;
2216 } else if (optlen >= 1) {
2217 if (get_user_u8(val, optval_addr))
2218 return -TARGET_EFAULT;
2220 ret = get_errno(setsockopt(sockfd, level, optname, &val, sizeof(val)));
2221 break;
2222 case IP_ADD_MEMBERSHIP:
2223 case IP_DROP_MEMBERSHIP:
2224 if (optlen < sizeof (struct target_ip_mreq) ||
2225 optlen > sizeof (struct target_ip_mreqn))
2226 return -TARGET_EINVAL;
2228 ip_mreq = (struct ip_mreqn *) alloca(optlen);
2229 target_to_host_ip_mreq(ip_mreq, optval_addr, optlen);
2230 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq, optlen));
2231 break;
2233 case IP_BLOCK_SOURCE:
2234 case IP_UNBLOCK_SOURCE:
2235 case IP_ADD_SOURCE_MEMBERSHIP:
2236 case IP_DROP_SOURCE_MEMBERSHIP:
2237 if (optlen != sizeof (struct target_ip_mreq_source))
2238 return -TARGET_EINVAL;
2240 ip_mreq_source = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2241 ret = get_errno(setsockopt(sockfd, level, optname, ip_mreq_source, optlen));
2242 unlock_user (ip_mreq_source, optval_addr, 0);
2243 break;
2245 default:
2246 goto unimplemented;
2248 break;
2249 case SOL_IPV6:
2250 switch (optname) {
2251 case IPV6_MTU_DISCOVER:
2252 case IPV6_MTU:
2253 case IPV6_V6ONLY:
2254 case IPV6_RECVPKTINFO:
2255 val = 0;
2256 if (optlen < sizeof(uint32_t)) {
2257 return -TARGET_EINVAL;
2259 if (get_user_u32(val, optval_addr)) {
2260 return -TARGET_EFAULT;
2262 ret = get_errno(setsockopt(sockfd, level, optname,
2263 &val, sizeof(val)));
2264 break;
2265 default:
2266 goto unimplemented;
2268 break;
2269 case SOL_RAW:
2270 switch (optname) {
2271 case ICMP_FILTER:
2272 /* struct icmp_filter takes an u32 value */
2273 if (optlen < sizeof(uint32_t)) {
2274 return -TARGET_EINVAL;
2277 if (get_user_u32(val, optval_addr)) {
2278 return -TARGET_EFAULT;
2280 ret = get_errno(setsockopt(sockfd, level, optname,
2281 &val, sizeof(val)));
2282 break;
2284 default:
2285 goto unimplemented;
2287 break;
2288 case TARGET_SOL_SOCKET:
2289 switch (optname) {
2290 case TARGET_SO_RCVTIMEO:
2292 struct timeval tv;
2294 optname = SO_RCVTIMEO;
2296 set_timeout:
2297 if (optlen != sizeof(struct target_timeval)) {
2298 return -TARGET_EINVAL;
2301 if (copy_from_user_timeval(&tv, optval_addr)) {
2302 return -TARGET_EFAULT;
2305 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2306 &tv, sizeof(tv)));
2307 return ret;
2309 case TARGET_SO_SNDTIMEO:
2310 optname = SO_SNDTIMEO;
2311 goto set_timeout;
2312 case TARGET_SO_ATTACH_FILTER:
2314 struct target_sock_fprog *tfprog;
2315 struct target_sock_filter *tfilter;
2316 struct sock_fprog fprog;
2317 struct sock_filter *filter;
2318 int i;
2320 if (optlen != sizeof(*tfprog)) {
2321 return -TARGET_EINVAL;
2323 if (!lock_user_struct(VERIFY_READ, tfprog, optval_addr, 0)) {
2324 return -TARGET_EFAULT;
2326 if (!lock_user_struct(VERIFY_READ, tfilter,
2327 tswapal(tfprog->filter), 0)) {
2328 unlock_user_struct(tfprog, optval_addr, 1);
2329 return -TARGET_EFAULT;
2332 fprog.len = tswap16(tfprog->len);
2333 filter = g_try_new(struct sock_filter, fprog.len);
2334 if (filter == NULL) {
2335 unlock_user_struct(tfilter, tfprog->filter, 1);
2336 unlock_user_struct(tfprog, optval_addr, 1);
2337 return -TARGET_ENOMEM;
2339 for (i = 0; i < fprog.len; i++) {
2340 filter[i].code = tswap16(tfilter[i].code);
2341 filter[i].jt = tfilter[i].jt;
2342 filter[i].jf = tfilter[i].jf;
2343 filter[i].k = tswap32(tfilter[i].k);
2345 fprog.filter = filter;
2347 ret = get_errno(setsockopt(sockfd, SOL_SOCKET,
2348 SO_ATTACH_FILTER, &fprog, sizeof(fprog)));
2349 g_free(filter);
2351 unlock_user_struct(tfilter, tfprog->filter, 1);
2352 unlock_user_struct(tfprog, optval_addr, 1);
2353 return ret;
2355 case TARGET_SO_BINDTODEVICE:
2357 char *dev_ifname, *addr_ifname;
2359 if (optlen > IFNAMSIZ - 1) {
2360 optlen = IFNAMSIZ - 1;
2362 dev_ifname = lock_user(VERIFY_READ, optval_addr, optlen, 1);
2363 if (!dev_ifname) {
2364 return -TARGET_EFAULT;
2366 optname = SO_BINDTODEVICE;
2367 addr_ifname = alloca(IFNAMSIZ);
2368 memcpy(addr_ifname, dev_ifname, optlen);
2369 addr_ifname[optlen] = 0;
2370 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname,
2371 addr_ifname, optlen));
2372 unlock_user (dev_ifname, optval_addr, 0);
2373 return ret;
2375 /* Options with 'int' argument. */
2376 case TARGET_SO_DEBUG:
2377 optname = SO_DEBUG;
2378 break;
2379 case TARGET_SO_REUSEADDR:
2380 optname = SO_REUSEADDR;
2381 break;
2382 case TARGET_SO_TYPE:
2383 optname = SO_TYPE;
2384 break;
2385 case TARGET_SO_ERROR:
2386 optname = SO_ERROR;
2387 break;
2388 case TARGET_SO_DONTROUTE:
2389 optname = SO_DONTROUTE;
2390 break;
2391 case TARGET_SO_BROADCAST:
2392 optname = SO_BROADCAST;
2393 break;
2394 case TARGET_SO_SNDBUF:
2395 optname = SO_SNDBUF;
2396 break;
2397 case TARGET_SO_SNDBUFFORCE:
2398 optname = SO_SNDBUFFORCE;
2399 break;
2400 case TARGET_SO_RCVBUF:
2401 optname = SO_RCVBUF;
2402 break;
2403 case TARGET_SO_RCVBUFFORCE:
2404 optname = SO_RCVBUFFORCE;
2405 break;
2406 case TARGET_SO_KEEPALIVE:
2407 optname = SO_KEEPALIVE;
2408 break;
2409 case TARGET_SO_OOBINLINE:
2410 optname = SO_OOBINLINE;
2411 break;
2412 case TARGET_SO_NO_CHECK:
2413 optname = SO_NO_CHECK;
2414 break;
2415 case TARGET_SO_PRIORITY:
2416 optname = SO_PRIORITY;
2417 break;
2418 #ifdef SO_BSDCOMPAT
2419 case TARGET_SO_BSDCOMPAT:
2420 optname = SO_BSDCOMPAT;
2421 break;
2422 #endif
2423 case TARGET_SO_PASSCRED:
2424 optname = SO_PASSCRED;
2425 break;
2426 case TARGET_SO_PASSSEC:
2427 optname = SO_PASSSEC;
2428 break;
2429 case TARGET_SO_TIMESTAMP:
2430 optname = SO_TIMESTAMP;
2431 break;
2432 case TARGET_SO_RCVLOWAT:
2433 optname = SO_RCVLOWAT;
2434 break;
2435 break;
2436 default:
2437 goto unimplemented;
2439 if (optlen < sizeof(uint32_t))
2440 return -TARGET_EINVAL;
2442 if (get_user_u32(val, optval_addr))
2443 return -TARGET_EFAULT;
2444 ret = get_errno(setsockopt(sockfd, SOL_SOCKET, optname, &val, sizeof(val)));
2445 break;
2446 default:
2447 unimplemented:
2448 gemu_log("Unsupported setsockopt level=%d optname=%d\n", level, optname);
2449 ret = -TARGET_ENOPROTOOPT;
2451 return ret;
2454 /* do_getsockopt() Must return target values and target errnos. */
2455 static abi_long do_getsockopt(int sockfd, int level, int optname,
2456 abi_ulong optval_addr, abi_ulong optlen)
2458 abi_long ret;
2459 int len, val;
2460 socklen_t lv;
2462 switch(level) {
2463 case TARGET_SOL_SOCKET:
2464 level = SOL_SOCKET;
2465 switch (optname) {
2466 /* These don't just return a single integer */
2467 case TARGET_SO_LINGER:
2468 case TARGET_SO_RCVTIMEO:
2469 case TARGET_SO_SNDTIMEO:
2470 case TARGET_SO_PEERNAME:
2471 goto unimplemented;
2472 case TARGET_SO_PEERCRED: {
2473 struct ucred cr;
2474 socklen_t crlen;
2475 struct target_ucred *tcr;
2477 if (get_user_u32(len, optlen)) {
2478 return -TARGET_EFAULT;
2480 if (len < 0) {
2481 return -TARGET_EINVAL;
2484 crlen = sizeof(cr);
2485 ret = get_errno(getsockopt(sockfd, level, SO_PEERCRED,
2486 &cr, &crlen));
2487 if (ret < 0) {
2488 return ret;
2490 if (len > crlen) {
2491 len = crlen;
2493 if (!lock_user_struct(VERIFY_WRITE, tcr, optval_addr, 0)) {
2494 return -TARGET_EFAULT;
2496 __put_user(cr.pid, &tcr->pid);
2497 __put_user(cr.uid, &tcr->uid);
2498 __put_user(cr.gid, &tcr->gid);
2499 unlock_user_struct(tcr, optval_addr, 1);
2500 if (put_user_u32(len, optlen)) {
2501 return -TARGET_EFAULT;
2503 break;
2505 /* Options with 'int' argument. */
2506 case TARGET_SO_DEBUG:
2507 optname = SO_DEBUG;
2508 goto int_case;
2509 case TARGET_SO_REUSEADDR:
2510 optname = SO_REUSEADDR;
2511 goto int_case;
2512 case TARGET_SO_TYPE:
2513 optname = SO_TYPE;
2514 goto int_case;
2515 case TARGET_SO_ERROR:
2516 optname = SO_ERROR;
2517 goto int_case;
2518 case TARGET_SO_DONTROUTE:
2519 optname = SO_DONTROUTE;
2520 goto int_case;
2521 case TARGET_SO_BROADCAST:
2522 optname = SO_BROADCAST;
2523 goto int_case;
2524 case TARGET_SO_SNDBUF:
2525 optname = SO_SNDBUF;
2526 goto int_case;
2527 case TARGET_SO_RCVBUF:
2528 optname = SO_RCVBUF;
2529 goto int_case;
2530 case TARGET_SO_KEEPALIVE:
2531 optname = SO_KEEPALIVE;
2532 goto int_case;
2533 case TARGET_SO_OOBINLINE:
2534 optname = SO_OOBINLINE;
2535 goto int_case;
2536 case TARGET_SO_NO_CHECK:
2537 optname = SO_NO_CHECK;
2538 goto int_case;
2539 case TARGET_SO_PRIORITY:
2540 optname = SO_PRIORITY;
2541 goto int_case;
2542 #ifdef SO_BSDCOMPAT
2543 case TARGET_SO_BSDCOMPAT:
2544 optname = SO_BSDCOMPAT;
2545 goto int_case;
2546 #endif
2547 case TARGET_SO_PASSCRED:
2548 optname = SO_PASSCRED;
2549 goto int_case;
2550 case TARGET_SO_TIMESTAMP:
2551 optname = SO_TIMESTAMP;
2552 goto int_case;
2553 case TARGET_SO_RCVLOWAT:
2554 optname = SO_RCVLOWAT;
2555 goto int_case;
2556 case TARGET_SO_ACCEPTCONN:
2557 optname = SO_ACCEPTCONN;
2558 goto int_case;
2559 default:
2560 goto int_case;
2562 break;
2563 case SOL_TCP:
2564 /* TCP options all take an 'int' value. */
2565 int_case:
2566 if (get_user_u32(len, optlen))
2567 return -TARGET_EFAULT;
2568 if (len < 0)
2569 return -TARGET_EINVAL;
2570 lv = sizeof(lv);
2571 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2572 if (ret < 0)
2573 return ret;
2574 if (optname == SO_TYPE) {
2575 val = host_to_target_sock_type(val);
2577 if (len > lv)
2578 len = lv;
2579 if (len == 4) {
2580 if (put_user_u32(val, optval_addr))
2581 return -TARGET_EFAULT;
2582 } else {
2583 if (put_user_u8(val, optval_addr))
2584 return -TARGET_EFAULT;
2586 if (put_user_u32(len, optlen))
2587 return -TARGET_EFAULT;
2588 break;
2589 case SOL_IP:
2590 switch(optname) {
2591 case IP_TOS:
2592 case IP_TTL:
2593 case IP_HDRINCL:
2594 case IP_ROUTER_ALERT:
2595 case IP_RECVOPTS:
2596 case IP_RETOPTS:
2597 case IP_PKTINFO:
2598 case IP_MTU_DISCOVER:
2599 case IP_RECVERR:
2600 case IP_RECVTOS:
2601 #ifdef IP_FREEBIND
2602 case IP_FREEBIND:
2603 #endif
2604 case IP_MULTICAST_TTL:
2605 case IP_MULTICAST_LOOP:
2606 if (get_user_u32(len, optlen))
2607 return -TARGET_EFAULT;
2608 if (len < 0)
2609 return -TARGET_EINVAL;
2610 lv = sizeof(lv);
2611 ret = get_errno(getsockopt(sockfd, level, optname, &val, &lv));
2612 if (ret < 0)
2613 return ret;
2614 if (len < sizeof(int) && len > 0 && val >= 0 && val < 255) {
2615 len = 1;
2616 if (put_user_u32(len, optlen)
2617 || put_user_u8(val, optval_addr))
2618 return -TARGET_EFAULT;
2619 } else {
2620 if (len > sizeof(int))
2621 len = sizeof(int);
2622 if (put_user_u32(len, optlen)
2623 || put_user_u32(val, optval_addr))
2624 return -TARGET_EFAULT;
2626 break;
2627 default:
2628 ret = -TARGET_ENOPROTOOPT;
2629 break;
2631 break;
2632 default:
2633 unimplemented:
2634 gemu_log("getsockopt level=%d optname=%d not yet supported\n",
2635 level, optname);
2636 ret = -TARGET_EOPNOTSUPP;
2637 break;
2639 return ret;
2642 static struct iovec *lock_iovec(int type, abi_ulong target_addr,
2643 int count, int copy)
2645 struct target_iovec *target_vec;
2646 struct iovec *vec;
2647 abi_ulong total_len, max_len;
2648 int i;
2649 int err = 0;
2650 bool bad_address = false;
2652 if (count == 0) {
2653 errno = 0;
2654 return NULL;
2656 if (count < 0 || count > IOV_MAX) {
2657 errno = EINVAL;
2658 return NULL;
2661 vec = g_try_new0(struct iovec, count);
2662 if (vec == NULL) {
2663 errno = ENOMEM;
2664 return NULL;
2667 target_vec = lock_user(VERIFY_READ, target_addr,
2668 count * sizeof(struct target_iovec), 1);
2669 if (target_vec == NULL) {
2670 err = EFAULT;
2671 goto fail2;
2674 /* ??? If host page size > target page size, this will result in a
2675 value larger than what we can actually support. */
2676 max_len = 0x7fffffff & TARGET_PAGE_MASK;
2677 total_len = 0;
2679 for (i = 0; i < count; i++) {
2680 abi_ulong base = tswapal(target_vec[i].iov_base);
2681 abi_long len = tswapal(target_vec[i].iov_len);
2683 if (len < 0) {
2684 err = EINVAL;
2685 goto fail;
2686 } else if (len == 0) {
2687 /* Zero length pointer is ignored. */
2688 vec[i].iov_base = 0;
2689 } else {
2690 vec[i].iov_base = lock_user(type, base, len, copy);
2691 /* If the first buffer pointer is bad, this is a fault. But
2692 * subsequent bad buffers will result in a partial write; this
2693 * is realized by filling the vector with null pointers and
2694 * zero lengths. */
2695 if (!vec[i].iov_base) {
2696 if (i == 0) {
2697 err = EFAULT;
2698 goto fail;
2699 } else {
2700 bad_address = true;
2703 if (bad_address) {
2704 len = 0;
2706 if (len > max_len - total_len) {
2707 len = max_len - total_len;
2710 vec[i].iov_len = len;
2711 total_len += len;
2714 unlock_user(target_vec, target_addr, 0);
2715 return vec;
2717 fail:
2718 while (--i >= 0) {
2719 if (tswapal(target_vec[i].iov_len) > 0) {
2720 unlock_user(vec[i].iov_base, tswapal(target_vec[i].iov_base), 0);
2723 unlock_user(target_vec, target_addr, 0);
2724 fail2:
2725 g_free(vec);
2726 errno = err;
2727 return NULL;
2730 static void unlock_iovec(struct iovec *vec, abi_ulong target_addr,
2731 int count, int copy)
2733 struct target_iovec *target_vec;
2734 int i;
2736 target_vec = lock_user(VERIFY_READ, target_addr,
2737 count * sizeof(struct target_iovec), 1);
2738 if (target_vec) {
2739 for (i = 0; i < count; i++) {
2740 abi_ulong base = tswapal(target_vec[i].iov_base);
2741 abi_long len = tswapal(target_vec[i].iov_len);
2742 if (len < 0) {
2743 break;
2745 unlock_user(vec[i].iov_base, base, copy ? vec[i].iov_len : 0);
2747 unlock_user(target_vec, target_addr, 0);
2750 g_free(vec);
2753 static inline int target_to_host_sock_type(int *type)
2755 int host_type = 0;
2756 int target_type = *type;
2758 switch (target_type & TARGET_SOCK_TYPE_MASK) {
2759 case TARGET_SOCK_DGRAM:
2760 host_type = SOCK_DGRAM;
2761 break;
2762 case TARGET_SOCK_STREAM:
2763 host_type = SOCK_STREAM;
2764 break;
2765 default:
2766 host_type = target_type & TARGET_SOCK_TYPE_MASK;
2767 break;
2769 if (target_type & TARGET_SOCK_CLOEXEC) {
2770 #if defined(SOCK_CLOEXEC)
2771 host_type |= SOCK_CLOEXEC;
2772 #else
2773 return -TARGET_EINVAL;
2774 #endif
2776 if (target_type & TARGET_SOCK_NONBLOCK) {
2777 #if defined(SOCK_NONBLOCK)
2778 host_type |= SOCK_NONBLOCK;
2779 #elif !defined(O_NONBLOCK)
2780 return -TARGET_EINVAL;
2781 #endif
2783 *type = host_type;
2784 return 0;
2787 /* Try to emulate socket type flags after socket creation. */
2788 static int sock_flags_fixup(int fd, int target_type)
2790 #if !defined(SOCK_NONBLOCK) && defined(O_NONBLOCK)
2791 if (target_type & TARGET_SOCK_NONBLOCK) {
2792 int flags = fcntl(fd, F_GETFL);
2793 if (fcntl(fd, F_SETFL, O_NONBLOCK | flags) == -1) {
2794 close(fd);
2795 return -TARGET_EINVAL;
2798 #endif
2799 return fd;
2802 static abi_long packet_target_to_host_sockaddr(void *host_addr,
2803 abi_ulong target_addr,
2804 socklen_t len)
2806 struct sockaddr *addr = host_addr;
2807 struct target_sockaddr *target_saddr;
2809 target_saddr = lock_user(VERIFY_READ, target_addr, len, 1);
2810 if (!target_saddr) {
2811 return -TARGET_EFAULT;
2814 memcpy(addr, target_saddr, len);
2815 addr->sa_family = tswap16(target_saddr->sa_family);
2816 /* spkt_protocol is big-endian */
2818 unlock_user(target_saddr, target_addr, 0);
2819 return 0;
2822 static TargetFdTrans target_packet_trans = {
2823 .target_to_host_addr = packet_target_to_host_sockaddr,
2826 #ifdef CONFIG_RTNETLINK
2827 static abi_long netlink_route_target_to_host(void *buf, size_t len)
2829 return target_to_host_nlmsg_route(buf, len);
2832 static abi_long netlink_route_host_to_target(void *buf, size_t len)
2834 return host_to_target_nlmsg_route(buf, len);
2837 static TargetFdTrans target_netlink_route_trans = {
2838 .target_to_host_data = netlink_route_target_to_host,
2839 .host_to_target_data = netlink_route_host_to_target,
2841 #endif /* CONFIG_RTNETLINK */
2843 static abi_long netlink_audit_target_to_host(void *buf, size_t len)
2845 return target_to_host_nlmsg_audit(buf, len);
2848 static abi_long netlink_audit_host_to_target(void *buf, size_t len)
2850 return host_to_target_nlmsg_audit(buf, len);
2853 static TargetFdTrans target_netlink_audit_trans = {
2854 .target_to_host_data = netlink_audit_target_to_host,
2855 .host_to_target_data = netlink_audit_host_to_target,
2858 /* do_socket() Must return target values and target errnos. */
2859 static abi_long do_socket(int domain, int type, int protocol)
2861 int target_type = type;
2862 int ret;
2864 ret = target_to_host_sock_type(&type);
2865 if (ret) {
2866 return ret;
2869 if (domain == PF_NETLINK && !(
2870 #ifdef CONFIG_RTNETLINK
2871 protocol == NETLINK_ROUTE ||
2872 #endif
2873 protocol == NETLINK_KOBJECT_UEVENT ||
2874 protocol == NETLINK_AUDIT)) {
2875 return -EPFNOSUPPORT;
2878 if (domain == AF_PACKET ||
2879 (domain == AF_INET && type == SOCK_PACKET)) {
2880 protocol = tswap16(protocol);
2883 ret = get_errno(socket(domain, type, protocol));
2884 if (ret >= 0) {
2885 ret = sock_flags_fixup(ret, target_type);
2886 if (type == SOCK_PACKET) {
2887 /* Manage an obsolete case :
2888 * if socket type is SOCK_PACKET, bind by name
2890 fd_trans_register(ret, &target_packet_trans);
2891 } else if (domain == PF_NETLINK) {
2892 switch (protocol) {
2893 #ifdef CONFIG_RTNETLINK
2894 case NETLINK_ROUTE:
2895 fd_trans_register(ret, &target_netlink_route_trans);
2896 break;
2897 #endif
2898 case NETLINK_KOBJECT_UEVENT:
2899 /* nothing to do: messages are strings */
2900 break;
2901 case NETLINK_AUDIT:
2902 fd_trans_register(ret, &target_netlink_audit_trans);
2903 break;
2904 default:
2905 g_assert_not_reached();
2909 return ret;
2912 /* do_bind() Must return target values and target errnos. */
2913 static abi_long do_bind(int sockfd, abi_ulong target_addr,
2914 socklen_t addrlen)
2916 void *addr;
2917 abi_long ret;
2919 if ((int)addrlen < 0) {
2920 return -TARGET_EINVAL;
2923 addr = alloca(addrlen+1);
2925 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
2926 if (ret)
2927 return ret;
2929 return get_errno(bind(sockfd, addr, addrlen));
2932 /* do_connect() Must return target values and target errnos. */
2933 static abi_long do_connect(int sockfd, abi_ulong target_addr,
2934 socklen_t addrlen)
2936 void *addr;
2937 abi_long ret;
2939 if ((int)addrlen < 0) {
2940 return -TARGET_EINVAL;
2943 addr = alloca(addrlen+1);
2945 ret = target_to_host_sockaddr(sockfd, addr, target_addr, addrlen);
2946 if (ret)
2947 return ret;
2949 return get_errno(safe_connect(sockfd, addr, addrlen));
2952 /* do_sendrecvmsg_locked() Must return target values and target errnos. */
2953 static abi_long do_sendrecvmsg_locked(int fd, struct target_msghdr *msgp,
2954 int flags, int send)
2956 abi_long ret, len;
2957 struct msghdr msg;
2958 int count;
2959 struct iovec *vec;
2960 abi_ulong target_vec;
2962 if (msgp->msg_name) {
2963 msg.msg_namelen = tswap32(msgp->msg_namelen);
2964 msg.msg_name = alloca(msg.msg_namelen+1);
2965 ret = target_to_host_sockaddr(fd, msg.msg_name,
2966 tswapal(msgp->msg_name),
2967 msg.msg_namelen);
2968 if (ret) {
2969 goto out2;
2971 } else {
2972 msg.msg_name = NULL;
2973 msg.msg_namelen = 0;
2975 msg.msg_controllen = 2 * tswapal(msgp->msg_controllen);
2976 msg.msg_control = alloca(msg.msg_controllen);
2977 msg.msg_flags = tswap32(msgp->msg_flags);
2979 count = tswapal(msgp->msg_iovlen);
2980 target_vec = tswapal(msgp->msg_iov);
2981 vec = lock_iovec(send ? VERIFY_READ : VERIFY_WRITE,
2982 target_vec, count, send);
2983 if (vec == NULL) {
2984 ret = -host_to_target_errno(errno);
2985 goto out2;
2987 msg.msg_iovlen = count;
2988 msg.msg_iov = vec;
2990 if (send) {
2991 if (fd_trans_target_to_host_data(fd)) {
2992 ret = fd_trans_target_to_host_data(fd)(msg.msg_iov->iov_base,
2993 msg.msg_iov->iov_len);
2994 } else {
2995 ret = target_to_host_cmsg(&msg, msgp);
2997 if (ret == 0) {
2998 ret = get_errno(safe_sendmsg(fd, &msg, flags));
3000 } else {
3001 ret = get_errno(safe_recvmsg(fd, &msg, flags));
3002 if (!is_error(ret)) {
3003 len = ret;
3004 if (fd_trans_host_to_target_data(fd)) {
3005 ret = fd_trans_host_to_target_data(fd)(msg.msg_iov->iov_base,
3006 len);
3007 } else {
3008 ret = host_to_target_cmsg(msgp, &msg);
3010 if (!is_error(ret)) {
3011 msgp->msg_namelen = tswap32(msg.msg_namelen);
3012 if (msg.msg_name != NULL) {
3013 ret = host_to_target_sockaddr(tswapal(msgp->msg_name),
3014 msg.msg_name, msg.msg_namelen);
3015 if (ret) {
3016 goto out;
3020 ret = len;
3025 out:
3026 unlock_iovec(vec, target_vec, count, !send);
3027 out2:
3028 return ret;
3031 static abi_long do_sendrecvmsg(int fd, abi_ulong target_msg,
3032 int flags, int send)
3034 abi_long ret;
3035 struct target_msghdr *msgp;
3037 if (!lock_user_struct(send ? VERIFY_READ : VERIFY_WRITE,
3038 msgp,
3039 target_msg,
3040 send ? 1 : 0)) {
3041 return -TARGET_EFAULT;
3043 ret = do_sendrecvmsg_locked(fd, msgp, flags, send);
3044 unlock_user_struct(msgp, target_msg, send ? 0 : 1);
3045 return ret;
3048 /* We don't rely on the C library to have sendmmsg/recvmmsg support,
3049 * so it might not have this *mmsg-specific flag either.
3051 #ifndef MSG_WAITFORONE
3052 #define MSG_WAITFORONE 0x10000
3053 #endif
3055 static abi_long do_sendrecvmmsg(int fd, abi_ulong target_msgvec,
3056 unsigned int vlen, unsigned int flags,
3057 int send)
3059 struct target_mmsghdr *mmsgp;
3060 abi_long ret = 0;
3061 int i;
3063 if (vlen > UIO_MAXIOV) {
3064 vlen = UIO_MAXIOV;
3067 mmsgp = lock_user(VERIFY_WRITE, target_msgvec, sizeof(*mmsgp) * vlen, 1);
3068 if (!mmsgp) {
3069 return -TARGET_EFAULT;
3072 for (i = 0; i < vlen; i++) {
3073 ret = do_sendrecvmsg_locked(fd, &mmsgp[i].msg_hdr, flags, send);
3074 if (is_error(ret)) {
3075 break;
3077 mmsgp[i].msg_len = tswap32(ret);
3078 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
3079 if (flags & MSG_WAITFORONE) {
3080 flags |= MSG_DONTWAIT;
3084 unlock_user(mmsgp, target_msgvec, sizeof(*mmsgp) * i);
3086 /* Return number of datagrams sent if we sent any at all;
3087 * otherwise return the error.
3089 if (i) {
3090 return i;
3092 return ret;
3095 /* do_accept4() Must return target values and target errnos. */
3096 static abi_long do_accept4(int fd, abi_ulong target_addr,
3097 abi_ulong target_addrlen_addr, int flags)
3099 socklen_t addrlen;
3100 void *addr;
3101 abi_long ret;
3102 int host_flags;
3104 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
3106 if (target_addr == 0) {
3107 return get_errno(safe_accept4(fd, NULL, NULL, host_flags));
3110 /* linux returns EINVAL if addrlen pointer is invalid */
3111 if (get_user_u32(addrlen, target_addrlen_addr))
3112 return -TARGET_EINVAL;
3114 if ((int)addrlen < 0) {
3115 return -TARGET_EINVAL;
3118 if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
3119 return -TARGET_EINVAL;
3121 addr = alloca(addrlen);
3123 ret = get_errno(safe_accept4(fd, addr, &addrlen, host_flags));
3124 if (!is_error(ret)) {
3125 host_to_target_sockaddr(target_addr, addr, addrlen);
3126 if (put_user_u32(addrlen, target_addrlen_addr))
3127 ret = -TARGET_EFAULT;
3129 return ret;
3132 /* do_getpeername() Must return target values and target errnos. */
3133 static abi_long do_getpeername(int fd, abi_ulong target_addr,
3134 abi_ulong target_addrlen_addr)
3136 socklen_t addrlen;
3137 void *addr;
3138 abi_long ret;
3140 if (get_user_u32(addrlen, target_addrlen_addr))
3141 return -TARGET_EFAULT;
3143 if ((int)addrlen < 0) {
3144 return -TARGET_EINVAL;
3147 if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
3148 return -TARGET_EFAULT;
3150 addr = alloca(addrlen);
3152 ret = get_errno(getpeername(fd, addr, &addrlen));
3153 if (!is_error(ret)) {
3154 host_to_target_sockaddr(target_addr, addr, addrlen);
3155 if (put_user_u32(addrlen, target_addrlen_addr))
3156 ret = -TARGET_EFAULT;
3158 return ret;
3161 /* do_getsockname() Must return target values and target errnos. */
3162 static abi_long do_getsockname(int fd, abi_ulong target_addr,
3163 abi_ulong target_addrlen_addr)
3165 socklen_t addrlen;
3166 void *addr;
3167 abi_long ret;
3169 if (get_user_u32(addrlen, target_addrlen_addr))
3170 return -TARGET_EFAULT;
3172 if ((int)addrlen < 0) {
3173 return -TARGET_EINVAL;
3176 if (!access_ok(VERIFY_WRITE, target_addr, addrlen))
3177 return -TARGET_EFAULT;
3179 addr = alloca(addrlen);
3181 ret = get_errno(getsockname(fd, addr, &addrlen));
3182 if (!is_error(ret)) {
3183 host_to_target_sockaddr(target_addr, addr, addrlen);
3184 if (put_user_u32(addrlen, target_addrlen_addr))
3185 ret = -TARGET_EFAULT;
3187 return ret;
3190 /* do_socketpair() Must return target values and target errnos. */
3191 static abi_long do_socketpair(int domain, int type, int protocol,
3192 abi_ulong target_tab_addr)
3194 int tab[2];
3195 abi_long ret;
3197 target_to_host_sock_type(&type);
3199 ret = get_errno(socketpair(domain, type, protocol, tab));
3200 if (!is_error(ret)) {
3201 if (put_user_s32(tab[0], target_tab_addr)
3202 || put_user_s32(tab[1], target_tab_addr + sizeof(tab[0])))
3203 ret = -TARGET_EFAULT;
3205 return ret;
3208 /* do_sendto() Must return target values and target errnos. */
3209 static abi_long do_sendto(int fd, abi_ulong msg, size_t len, int flags,
3210 abi_ulong target_addr, socklen_t addrlen)
3212 void *addr;
3213 void *host_msg;
3214 abi_long ret;
3216 if ((int)addrlen < 0) {
3217 return -TARGET_EINVAL;
3220 host_msg = lock_user(VERIFY_READ, msg, len, 1);
3221 if (!host_msg)
3222 return -TARGET_EFAULT;
3223 if (fd_trans_target_to_host_data(fd)) {
3224 ret = fd_trans_target_to_host_data(fd)(host_msg, len);
3225 if (ret < 0) {
3226 unlock_user(host_msg, msg, 0);
3227 return ret;
3230 if (target_addr) {
3231 addr = alloca(addrlen+1);
3232 ret = target_to_host_sockaddr(fd, addr, target_addr, addrlen);
3233 if (ret) {
3234 unlock_user(host_msg, msg, 0);
3235 return ret;
3237 ret = get_errno(safe_sendto(fd, host_msg, len, flags, addr, addrlen));
3238 } else {
3239 ret = get_errno(safe_sendto(fd, host_msg, len, flags, NULL, 0));
3241 unlock_user(host_msg, msg, 0);
3242 return ret;
3245 /* do_recvfrom() Must return target values and target errnos. */
3246 static abi_long do_recvfrom(int fd, abi_ulong msg, size_t len, int flags,
3247 abi_ulong target_addr,
3248 abi_ulong target_addrlen)
3250 socklen_t addrlen;
3251 void *addr;
3252 void *host_msg;
3253 abi_long ret;
3255 host_msg = lock_user(VERIFY_WRITE, msg, len, 0);
3256 if (!host_msg)
3257 return -TARGET_EFAULT;
3258 if (target_addr) {
3259 if (get_user_u32(addrlen, target_addrlen)) {
3260 ret = -TARGET_EFAULT;
3261 goto fail;
3263 if ((int)addrlen < 0) {
3264 ret = -TARGET_EINVAL;
3265 goto fail;
3267 addr = alloca(addrlen);
3268 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags,
3269 addr, &addrlen));
3270 } else {
3271 addr = NULL; /* To keep compiler quiet. */
3272 ret = get_errno(safe_recvfrom(fd, host_msg, len, flags, NULL, 0));
3274 if (!is_error(ret)) {
3275 if (target_addr) {
3276 host_to_target_sockaddr(target_addr, addr, addrlen);
3277 if (put_user_u32(addrlen, target_addrlen)) {
3278 ret = -TARGET_EFAULT;
3279 goto fail;
3282 unlock_user(host_msg, msg, len);
3283 } else {
3284 fail:
3285 unlock_user(host_msg, msg, 0);
3287 return ret;
3290 #ifdef TARGET_NR_socketcall
3291 /* do_socketcall() Must return target values and target errnos. */
3292 static abi_long do_socketcall(int num, abi_ulong vptr)
3294 static const unsigned ac[] = { /* number of arguments per call */
3295 [SOCKOP_socket] = 3, /* domain, type, protocol */
3296 [SOCKOP_bind] = 3, /* sockfd, addr, addrlen */
3297 [SOCKOP_connect] = 3, /* sockfd, addr, addrlen */
3298 [SOCKOP_listen] = 2, /* sockfd, backlog */
3299 [SOCKOP_accept] = 3, /* sockfd, addr, addrlen */
3300 [SOCKOP_accept4] = 4, /* sockfd, addr, addrlen, flags */
3301 [SOCKOP_getsockname] = 3, /* sockfd, addr, addrlen */
3302 [SOCKOP_getpeername] = 3, /* sockfd, addr, addrlen */
3303 [SOCKOP_socketpair] = 4, /* domain, type, protocol, tab */
3304 [SOCKOP_send] = 4, /* sockfd, msg, len, flags */
3305 [SOCKOP_recv] = 4, /* sockfd, msg, len, flags */
3306 [SOCKOP_sendto] = 6, /* sockfd, msg, len, flags, addr, addrlen */
3307 [SOCKOP_recvfrom] = 6, /* sockfd, msg, len, flags, addr, addrlen */
3308 [SOCKOP_shutdown] = 2, /* sockfd, how */
3309 [SOCKOP_sendmsg] = 3, /* sockfd, msg, flags */
3310 [SOCKOP_recvmsg] = 3, /* sockfd, msg, flags */
3311 [SOCKOP_sendmmsg] = 4, /* sockfd, msgvec, vlen, flags */
3312 [SOCKOP_recvmmsg] = 4, /* sockfd, msgvec, vlen, flags */
3313 [SOCKOP_setsockopt] = 5, /* sockfd, level, optname, optval, optlen */
3314 [SOCKOP_getsockopt] = 5, /* sockfd, level, optname, optval, optlen */
3316 abi_long a[6]; /* max 6 args */
3318 /* first, collect the arguments in a[] according to ac[] */
3319 if (num >= 0 && num < ARRAY_SIZE(ac)) {
3320 unsigned i;
3321 assert(ARRAY_SIZE(a) >= ac[num]); /* ensure we have space for args */
3322 for (i = 0; i < ac[num]; ++i) {
3323 if (get_user_ual(a[i], vptr + i * sizeof(abi_long)) != 0) {
3324 return -TARGET_EFAULT;
3329 /* now when we have the args, actually handle the call */
3330 switch (num) {
3331 case SOCKOP_socket: /* domain, type, protocol */
3332 return do_socket(a[0], a[1], a[2]);
3333 case SOCKOP_bind: /* sockfd, addr, addrlen */
3334 return do_bind(a[0], a[1], a[2]);
3335 case SOCKOP_connect: /* sockfd, addr, addrlen */
3336 return do_connect(a[0], a[1], a[2]);
3337 case SOCKOP_listen: /* sockfd, backlog */
3338 return get_errno(listen(a[0], a[1]));
3339 case SOCKOP_accept: /* sockfd, addr, addrlen */
3340 return do_accept4(a[0], a[1], a[2], 0);
3341 case SOCKOP_accept4: /* sockfd, addr, addrlen, flags */
3342 return do_accept4(a[0], a[1], a[2], a[3]);
3343 case SOCKOP_getsockname: /* sockfd, addr, addrlen */
3344 return do_getsockname(a[0], a[1], a[2]);
3345 case SOCKOP_getpeername: /* sockfd, addr, addrlen */
3346 return do_getpeername(a[0], a[1], a[2]);
3347 case SOCKOP_socketpair: /* domain, type, protocol, tab */
3348 return do_socketpair(a[0], a[1], a[2], a[3]);
3349 case SOCKOP_send: /* sockfd, msg, len, flags */
3350 return do_sendto(a[0], a[1], a[2], a[3], 0, 0);
3351 case SOCKOP_recv: /* sockfd, msg, len, flags */
3352 return do_recvfrom(a[0], a[1], a[2], a[3], 0, 0);
3353 case SOCKOP_sendto: /* sockfd, msg, len, flags, addr, addrlen */
3354 return do_sendto(a[0], a[1], a[2], a[3], a[4], a[5]);
3355 case SOCKOP_recvfrom: /* sockfd, msg, len, flags, addr, addrlen */
3356 return do_recvfrom(a[0], a[1], a[2], a[3], a[4], a[5]);
3357 case SOCKOP_shutdown: /* sockfd, how */
3358 return get_errno(shutdown(a[0], a[1]));
3359 case SOCKOP_sendmsg: /* sockfd, msg, flags */
3360 return do_sendrecvmsg(a[0], a[1], a[2], 1);
3361 case SOCKOP_recvmsg: /* sockfd, msg, flags */
3362 return do_sendrecvmsg(a[0], a[1], a[2], 0);
3363 case SOCKOP_sendmmsg: /* sockfd, msgvec, vlen, flags */
3364 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 1);
3365 case SOCKOP_recvmmsg: /* sockfd, msgvec, vlen, flags */
3366 return do_sendrecvmmsg(a[0], a[1], a[2], a[3], 0);
3367 case SOCKOP_setsockopt: /* sockfd, level, optname, optval, optlen */
3368 return do_setsockopt(a[0], a[1], a[2], a[3], a[4]);
3369 case SOCKOP_getsockopt: /* sockfd, level, optname, optval, optlen */
3370 return do_getsockopt(a[0], a[1], a[2], a[3], a[4]);
3371 default:
3372 gemu_log("Unsupported socketcall: %d\n", num);
3373 return -TARGET_ENOSYS;
3376 #endif
3378 #define N_SHM_REGIONS 32
3380 static struct shm_region {
3381 abi_ulong start;
3382 abi_ulong size;
3383 bool in_use;
3384 } shm_regions[N_SHM_REGIONS];
3386 struct target_semid_ds
3388 struct target_ipc_perm sem_perm;
3389 abi_ulong sem_otime;
3390 #if !defined(TARGET_PPC64)
3391 abi_ulong __unused1;
3392 #endif
3393 abi_ulong sem_ctime;
3394 #if !defined(TARGET_PPC64)
3395 abi_ulong __unused2;
3396 #endif
3397 abi_ulong sem_nsems;
3398 abi_ulong __unused3;
3399 abi_ulong __unused4;
3402 static inline abi_long target_to_host_ipc_perm(struct ipc_perm *host_ip,
3403 abi_ulong target_addr)
3405 struct target_ipc_perm *target_ip;
3406 struct target_semid_ds *target_sd;
3408 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3409 return -TARGET_EFAULT;
3410 target_ip = &(target_sd->sem_perm);
3411 host_ip->__key = tswap32(target_ip->__key);
3412 host_ip->uid = tswap32(target_ip->uid);
3413 host_ip->gid = tswap32(target_ip->gid);
3414 host_ip->cuid = tswap32(target_ip->cuid);
3415 host_ip->cgid = tswap32(target_ip->cgid);
3416 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3417 host_ip->mode = tswap32(target_ip->mode);
3418 #else
3419 host_ip->mode = tswap16(target_ip->mode);
3420 #endif
3421 #if defined(TARGET_PPC)
3422 host_ip->__seq = tswap32(target_ip->__seq);
3423 #else
3424 host_ip->__seq = tswap16(target_ip->__seq);
3425 #endif
3426 unlock_user_struct(target_sd, target_addr, 0);
3427 return 0;
3430 static inline abi_long host_to_target_ipc_perm(abi_ulong target_addr,
3431 struct ipc_perm *host_ip)
3433 struct target_ipc_perm *target_ip;
3434 struct target_semid_ds *target_sd;
3436 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3437 return -TARGET_EFAULT;
3438 target_ip = &(target_sd->sem_perm);
3439 target_ip->__key = tswap32(host_ip->__key);
3440 target_ip->uid = tswap32(host_ip->uid);
3441 target_ip->gid = tswap32(host_ip->gid);
3442 target_ip->cuid = tswap32(host_ip->cuid);
3443 target_ip->cgid = tswap32(host_ip->cgid);
3444 #if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_PPC)
3445 target_ip->mode = tswap32(host_ip->mode);
3446 #else
3447 target_ip->mode = tswap16(host_ip->mode);
3448 #endif
3449 #if defined(TARGET_PPC)
3450 target_ip->__seq = tswap32(host_ip->__seq);
3451 #else
3452 target_ip->__seq = tswap16(host_ip->__seq);
3453 #endif
3454 unlock_user_struct(target_sd, target_addr, 1);
3455 return 0;
3458 static inline abi_long target_to_host_semid_ds(struct semid_ds *host_sd,
3459 abi_ulong target_addr)
3461 struct target_semid_ds *target_sd;
3463 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3464 return -TARGET_EFAULT;
3465 if (target_to_host_ipc_perm(&(host_sd->sem_perm),target_addr))
3466 return -TARGET_EFAULT;
3467 host_sd->sem_nsems = tswapal(target_sd->sem_nsems);
3468 host_sd->sem_otime = tswapal(target_sd->sem_otime);
3469 host_sd->sem_ctime = tswapal(target_sd->sem_ctime);
3470 unlock_user_struct(target_sd, target_addr, 0);
3471 return 0;
3474 static inline abi_long host_to_target_semid_ds(abi_ulong target_addr,
3475 struct semid_ds *host_sd)
3477 struct target_semid_ds *target_sd;
3479 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3480 return -TARGET_EFAULT;
3481 if (host_to_target_ipc_perm(target_addr,&(host_sd->sem_perm)))
3482 return -TARGET_EFAULT;
3483 target_sd->sem_nsems = tswapal(host_sd->sem_nsems);
3484 target_sd->sem_otime = tswapal(host_sd->sem_otime);
3485 target_sd->sem_ctime = tswapal(host_sd->sem_ctime);
3486 unlock_user_struct(target_sd, target_addr, 1);
3487 return 0;
3490 struct target_seminfo {
3491 int semmap;
3492 int semmni;
3493 int semmns;
3494 int semmnu;
3495 int semmsl;
3496 int semopm;
3497 int semume;
3498 int semusz;
3499 int semvmx;
3500 int semaem;
3503 static inline abi_long host_to_target_seminfo(abi_ulong target_addr,
3504 struct seminfo *host_seminfo)
3506 struct target_seminfo *target_seminfo;
3507 if (!lock_user_struct(VERIFY_WRITE, target_seminfo, target_addr, 0))
3508 return -TARGET_EFAULT;
3509 __put_user(host_seminfo->semmap, &target_seminfo->semmap);
3510 __put_user(host_seminfo->semmni, &target_seminfo->semmni);
3511 __put_user(host_seminfo->semmns, &target_seminfo->semmns);
3512 __put_user(host_seminfo->semmnu, &target_seminfo->semmnu);
3513 __put_user(host_seminfo->semmsl, &target_seminfo->semmsl);
3514 __put_user(host_seminfo->semopm, &target_seminfo->semopm);
3515 __put_user(host_seminfo->semume, &target_seminfo->semume);
3516 __put_user(host_seminfo->semusz, &target_seminfo->semusz);
3517 __put_user(host_seminfo->semvmx, &target_seminfo->semvmx);
3518 __put_user(host_seminfo->semaem, &target_seminfo->semaem);
3519 unlock_user_struct(target_seminfo, target_addr, 1);
3520 return 0;
3523 union semun {
3524 int val;
3525 struct semid_ds *buf;
3526 unsigned short *array;
3527 struct seminfo *__buf;
3530 union target_semun {
3531 int val;
3532 abi_ulong buf;
3533 abi_ulong array;
3534 abi_ulong __buf;
3537 static inline abi_long target_to_host_semarray(int semid, unsigned short **host_array,
3538 abi_ulong target_addr)
3540 int nsems;
3541 unsigned short *array;
3542 union semun semun;
3543 struct semid_ds semid_ds;
3544 int i, ret;
3546 semun.buf = &semid_ds;
3548 ret = semctl(semid, 0, IPC_STAT, semun);
3549 if (ret == -1)
3550 return get_errno(ret);
3552 nsems = semid_ds.sem_nsems;
3554 *host_array = g_try_new(unsigned short, nsems);
3555 if (!*host_array) {
3556 return -TARGET_ENOMEM;
3558 array = lock_user(VERIFY_READ, target_addr,
3559 nsems*sizeof(unsigned short), 1);
3560 if (!array) {
3561 g_free(*host_array);
3562 return -TARGET_EFAULT;
3565 for(i=0; i<nsems; i++) {
3566 __get_user((*host_array)[i], &array[i]);
3568 unlock_user(array, target_addr, 0);
3570 return 0;
3573 static inline abi_long host_to_target_semarray(int semid, abi_ulong target_addr,
3574 unsigned short **host_array)
3576 int nsems;
3577 unsigned short *array;
3578 union semun semun;
3579 struct semid_ds semid_ds;
3580 int i, ret;
3582 semun.buf = &semid_ds;
3584 ret = semctl(semid, 0, IPC_STAT, semun);
3585 if (ret == -1)
3586 return get_errno(ret);
3588 nsems = semid_ds.sem_nsems;
3590 array = lock_user(VERIFY_WRITE, target_addr,
3591 nsems*sizeof(unsigned short), 0);
3592 if (!array)
3593 return -TARGET_EFAULT;
3595 for(i=0; i<nsems; i++) {
3596 __put_user((*host_array)[i], &array[i]);
3598 g_free(*host_array);
3599 unlock_user(array, target_addr, 1);
3601 return 0;
3604 static inline abi_long do_semctl(int semid, int semnum, int cmd,
3605 abi_ulong target_arg)
3607 union target_semun target_su = { .buf = target_arg };
3608 union semun arg;
3609 struct semid_ds dsarg;
3610 unsigned short *array = NULL;
3611 struct seminfo seminfo;
3612 abi_long ret = -TARGET_EINVAL;
3613 abi_long err;
3614 cmd &= 0xff;
3616 switch( cmd ) {
3617 case GETVAL:
3618 case SETVAL:
3619 /* In 64 bit cross-endian situations, we will erroneously pick up
3620 * the wrong half of the union for the "val" element. To rectify
3621 * this, the entire 8-byte structure is byteswapped, followed by
3622 * a swap of the 4 byte val field. In other cases, the data is
3623 * already in proper host byte order. */
3624 if (sizeof(target_su.val) != (sizeof(target_su.buf))) {
3625 target_su.buf = tswapal(target_su.buf);
3626 arg.val = tswap32(target_su.val);
3627 } else {
3628 arg.val = target_su.val;
3630 ret = get_errno(semctl(semid, semnum, cmd, arg));
3631 break;
3632 case GETALL:
3633 case SETALL:
3634 err = target_to_host_semarray(semid, &array, target_su.array);
3635 if (err)
3636 return err;
3637 arg.array = array;
3638 ret = get_errno(semctl(semid, semnum, cmd, arg));
3639 err = host_to_target_semarray(semid, target_su.array, &array);
3640 if (err)
3641 return err;
3642 break;
3643 case IPC_STAT:
3644 case IPC_SET:
3645 case SEM_STAT:
3646 err = target_to_host_semid_ds(&dsarg, target_su.buf);
3647 if (err)
3648 return err;
3649 arg.buf = &dsarg;
3650 ret = get_errno(semctl(semid, semnum, cmd, arg));
3651 err = host_to_target_semid_ds(target_su.buf, &dsarg);
3652 if (err)
3653 return err;
3654 break;
3655 case IPC_INFO:
3656 case SEM_INFO:
3657 arg.__buf = &seminfo;
3658 ret = get_errno(semctl(semid, semnum, cmd, arg));
3659 err = host_to_target_seminfo(target_su.__buf, &seminfo);
3660 if (err)
3661 return err;
3662 break;
3663 case IPC_RMID:
3664 case GETPID:
3665 case GETNCNT:
3666 case GETZCNT:
3667 ret = get_errno(semctl(semid, semnum, cmd, NULL));
3668 break;
3671 return ret;
3674 struct target_sembuf {
3675 unsigned short sem_num;
3676 short sem_op;
3677 short sem_flg;
3680 static inline abi_long target_to_host_sembuf(struct sembuf *host_sembuf,
3681 abi_ulong target_addr,
3682 unsigned nsops)
3684 struct target_sembuf *target_sembuf;
3685 int i;
3687 target_sembuf = lock_user(VERIFY_READ, target_addr,
3688 nsops*sizeof(struct target_sembuf), 1);
3689 if (!target_sembuf)
3690 return -TARGET_EFAULT;
3692 for(i=0; i<nsops; i++) {
3693 __get_user(host_sembuf[i].sem_num, &target_sembuf[i].sem_num);
3694 __get_user(host_sembuf[i].sem_op, &target_sembuf[i].sem_op);
3695 __get_user(host_sembuf[i].sem_flg, &target_sembuf[i].sem_flg);
3698 unlock_user(target_sembuf, target_addr, 0);
3700 return 0;
3703 static inline abi_long do_semop(int semid, abi_long ptr, unsigned nsops)
3705 struct sembuf sops[nsops];
3707 if (target_to_host_sembuf(sops, ptr, nsops))
3708 return -TARGET_EFAULT;
3710 return get_errno(safe_semtimedop(semid, sops, nsops, NULL));
3713 struct target_msqid_ds
3715 struct target_ipc_perm msg_perm;
3716 abi_ulong msg_stime;
3717 #if TARGET_ABI_BITS == 32
3718 abi_ulong __unused1;
3719 #endif
3720 abi_ulong msg_rtime;
3721 #if TARGET_ABI_BITS == 32
3722 abi_ulong __unused2;
3723 #endif
3724 abi_ulong msg_ctime;
3725 #if TARGET_ABI_BITS == 32
3726 abi_ulong __unused3;
3727 #endif
3728 abi_ulong __msg_cbytes;
3729 abi_ulong msg_qnum;
3730 abi_ulong msg_qbytes;
3731 abi_ulong msg_lspid;
3732 abi_ulong msg_lrpid;
3733 abi_ulong __unused4;
3734 abi_ulong __unused5;
3737 static inline abi_long target_to_host_msqid_ds(struct msqid_ds *host_md,
3738 abi_ulong target_addr)
3740 struct target_msqid_ds *target_md;
3742 if (!lock_user_struct(VERIFY_READ, target_md, target_addr, 1))
3743 return -TARGET_EFAULT;
3744 if (target_to_host_ipc_perm(&(host_md->msg_perm),target_addr))
3745 return -TARGET_EFAULT;
3746 host_md->msg_stime = tswapal(target_md->msg_stime);
3747 host_md->msg_rtime = tswapal(target_md->msg_rtime);
3748 host_md->msg_ctime = tswapal(target_md->msg_ctime);
3749 host_md->__msg_cbytes = tswapal(target_md->__msg_cbytes);
3750 host_md->msg_qnum = tswapal(target_md->msg_qnum);
3751 host_md->msg_qbytes = tswapal(target_md->msg_qbytes);
3752 host_md->msg_lspid = tswapal(target_md->msg_lspid);
3753 host_md->msg_lrpid = tswapal(target_md->msg_lrpid);
3754 unlock_user_struct(target_md, target_addr, 0);
3755 return 0;
3758 static inline abi_long host_to_target_msqid_ds(abi_ulong target_addr,
3759 struct msqid_ds *host_md)
3761 struct target_msqid_ds *target_md;
3763 if (!lock_user_struct(VERIFY_WRITE, target_md, target_addr, 0))
3764 return -TARGET_EFAULT;
3765 if (host_to_target_ipc_perm(target_addr,&(host_md->msg_perm)))
3766 return -TARGET_EFAULT;
3767 target_md->msg_stime = tswapal(host_md->msg_stime);
3768 target_md->msg_rtime = tswapal(host_md->msg_rtime);
3769 target_md->msg_ctime = tswapal(host_md->msg_ctime);
3770 target_md->__msg_cbytes = tswapal(host_md->__msg_cbytes);
3771 target_md->msg_qnum = tswapal(host_md->msg_qnum);
3772 target_md->msg_qbytes = tswapal(host_md->msg_qbytes);
3773 target_md->msg_lspid = tswapal(host_md->msg_lspid);
3774 target_md->msg_lrpid = tswapal(host_md->msg_lrpid);
3775 unlock_user_struct(target_md, target_addr, 1);
3776 return 0;
3779 struct target_msginfo {
3780 int msgpool;
3781 int msgmap;
3782 int msgmax;
3783 int msgmnb;
3784 int msgmni;
3785 int msgssz;
3786 int msgtql;
3787 unsigned short int msgseg;
3790 static inline abi_long host_to_target_msginfo(abi_ulong target_addr,
3791 struct msginfo *host_msginfo)
3793 struct target_msginfo *target_msginfo;
3794 if (!lock_user_struct(VERIFY_WRITE, target_msginfo, target_addr, 0))
3795 return -TARGET_EFAULT;
3796 __put_user(host_msginfo->msgpool, &target_msginfo->msgpool);
3797 __put_user(host_msginfo->msgmap, &target_msginfo->msgmap);
3798 __put_user(host_msginfo->msgmax, &target_msginfo->msgmax);
3799 __put_user(host_msginfo->msgmnb, &target_msginfo->msgmnb);
3800 __put_user(host_msginfo->msgmni, &target_msginfo->msgmni);
3801 __put_user(host_msginfo->msgssz, &target_msginfo->msgssz);
3802 __put_user(host_msginfo->msgtql, &target_msginfo->msgtql);
3803 __put_user(host_msginfo->msgseg, &target_msginfo->msgseg);
3804 unlock_user_struct(target_msginfo, target_addr, 1);
3805 return 0;
3808 static inline abi_long do_msgctl(int msgid, int cmd, abi_long ptr)
3810 struct msqid_ds dsarg;
3811 struct msginfo msginfo;
3812 abi_long ret = -TARGET_EINVAL;
3814 cmd &= 0xff;
3816 switch (cmd) {
3817 case IPC_STAT:
3818 case IPC_SET:
3819 case MSG_STAT:
3820 if (target_to_host_msqid_ds(&dsarg,ptr))
3821 return -TARGET_EFAULT;
3822 ret = get_errno(msgctl(msgid, cmd, &dsarg));
3823 if (host_to_target_msqid_ds(ptr,&dsarg))
3824 return -TARGET_EFAULT;
3825 break;
3826 case IPC_RMID:
3827 ret = get_errno(msgctl(msgid, cmd, NULL));
3828 break;
3829 case IPC_INFO:
3830 case MSG_INFO:
3831 ret = get_errno(msgctl(msgid, cmd, (struct msqid_ds *)&msginfo));
3832 if (host_to_target_msginfo(ptr, &msginfo))
3833 return -TARGET_EFAULT;
3834 break;
3837 return ret;
3840 struct target_msgbuf {
3841 abi_long mtype;
3842 char mtext[1];
3845 static inline abi_long do_msgsnd(int msqid, abi_long msgp,
3846 ssize_t msgsz, int msgflg)
3848 struct target_msgbuf *target_mb;
3849 struct msgbuf *host_mb;
3850 abi_long ret = 0;
3852 if (msgsz < 0) {
3853 return -TARGET_EINVAL;
3856 if (!lock_user_struct(VERIFY_READ, target_mb, msgp, 0))
3857 return -TARGET_EFAULT;
3858 host_mb = g_try_malloc(msgsz + sizeof(long));
3859 if (!host_mb) {
3860 unlock_user_struct(target_mb, msgp, 0);
3861 return -TARGET_ENOMEM;
3863 host_mb->mtype = (abi_long) tswapal(target_mb->mtype);
3864 memcpy(host_mb->mtext, target_mb->mtext, msgsz);
3865 ret = get_errno(safe_msgsnd(msqid, host_mb, msgsz, msgflg));
3866 g_free(host_mb);
3867 unlock_user_struct(target_mb, msgp, 0);
3869 return ret;
3872 static inline abi_long do_msgrcv(int msqid, abi_long msgp,
3873 ssize_t msgsz, abi_long msgtyp,
3874 int msgflg)
3876 struct target_msgbuf *target_mb;
3877 char *target_mtext;
3878 struct msgbuf *host_mb;
3879 abi_long ret = 0;
3881 if (msgsz < 0) {
3882 return -TARGET_EINVAL;
3885 if (!lock_user_struct(VERIFY_WRITE, target_mb, msgp, 0))
3886 return -TARGET_EFAULT;
3888 host_mb = g_try_malloc(msgsz + sizeof(long));
3889 if (!host_mb) {
3890 ret = -TARGET_ENOMEM;
3891 goto end;
3893 ret = get_errno(safe_msgrcv(msqid, host_mb, msgsz, msgtyp, msgflg));
3895 if (ret > 0) {
3896 abi_ulong target_mtext_addr = msgp + sizeof(abi_ulong);
3897 target_mtext = lock_user(VERIFY_WRITE, target_mtext_addr, ret, 0);
3898 if (!target_mtext) {
3899 ret = -TARGET_EFAULT;
3900 goto end;
3902 memcpy(target_mb->mtext, host_mb->mtext, ret);
3903 unlock_user(target_mtext, target_mtext_addr, ret);
3906 target_mb->mtype = tswapal(host_mb->mtype);
3908 end:
3909 if (target_mb)
3910 unlock_user_struct(target_mb, msgp, 1);
3911 g_free(host_mb);
3912 return ret;
3915 static inline abi_long target_to_host_shmid_ds(struct shmid_ds *host_sd,
3916 abi_ulong target_addr)
3918 struct target_shmid_ds *target_sd;
3920 if (!lock_user_struct(VERIFY_READ, target_sd, target_addr, 1))
3921 return -TARGET_EFAULT;
3922 if (target_to_host_ipc_perm(&(host_sd->shm_perm), target_addr))
3923 return -TARGET_EFAULT;
3924 __get_user(host_sd->shm_segsz, &target_sd->shm_segsz);
3925 __get_user(host_sd->shm_atime, &target_sd->shm_atime);
3926 __get_user(host_sd->shm_dtime, &target_sd->shm_dtime);
3927 __get_user(host_sd->shm_ctime, &target_sd->shm_ctime);
3928 __get_user(host_sd->shm_cpid, &target_sd->shm_cpid);
3929 __get_user(host_sd->shm_lpid, &target_sd->shm_lpid);
3930 __get_user(host_sd->shm_nattch, &target_sd->shm_nattch);
3931 unlock_user_struct(target_sd, target_addr, 0);
3932 return 0;
3935 static inline abi_long host_to_target_shmid_ds(abi_ulong target_addr,
3936 struct shmid_ds *host_sd)
3938 struct target_shmid_ds *target_sd;
3940 if (!lock_user_struct(VERIFY_WRITE, target_sd, target_addr, 0))
3941 return -TARGET_EFAULT;
3942 if (host_to_target_ipc_perm(target_addr, &(host_sd->shm_perm)))
3943 return -TARGET_EFAULT;
3944 __put_user(host_sd->shm_segsz, &target_sd->shm_segsz);
3945 __put_user(host_sd->shm_atime, &target_sd->shm_atime);
3946 __put_user(host_sd->shm_dtime, &target_sd->shm_dtime);
3947 __put_user(host_sd->shm_ctime, &target_sd->shm_ctime);
3948 __put_user(host_sd->shm_cpid, &target_sd->shm_cpid);
3949 __put_user(host_sd->shm_lpid, &target_sd->shm_lpid);
3950 __put_user(host_sd->shm_nattch, &target_sd->shm_nattch);
3951 unlock_user_struct(target_sd, target_addr, 1);
3952 return 0;
3955 struct target_shminfo {
3956 abi_ulong shmmax;
3957 abi_ulong shmmin;
3958 abi_ulong shmmni;
3959 abi_ulong shmseg;
3960 abi_ulong shmall;
3963 static inline abi_long host_to_target_shminfo(abi_ulong target_addr,
3964 struct shminfo *host_shminfo)
3966 struct target_shminfo *target_shminfo;
3967 if (!lock_user_struct(VERIFY_WRITE, target_shminfo, target_addr, 0))
3968 return -TARGET_EFAULT;
3969 __put_user(host_shminfo->shmmax, &target_shminfo->shmmax);
3970 __put_user(host_shminfo->shmmin, &target_shminfo->shmmin);
3971 __put_user(host_shminfo->shmmni, &target_shminfo->shmmni);
3972 __put_user(host_shminfo->shmseg, &target_shminfo->shmseg);
3973 __put_user(host_shminfo->shmall, &target_shminfo->shmall);
3974 unlock_user_struct(target_shminfo, target_addr, 1);
3975 return 0;
3978 struct target_shm_info {
3979 int used_ids;
3980 abi_ulong shm_tot;
3981 abi_ulong shm_rss;
3982 abi_ulong shm_swp;
3983 abi_ulong swap_attempts;
3984 abi_ulong swap_successes;
3987 static inline abi_long host_to_target_shm_info(abi_ulong target_addr,
3988 struct shm_info *host_shm_info)
3990 struct target_shm_info *target_shm_info;
3991 if (!lock_user_struct(VERIFY_WRITE, target_shm_info, target_addr, 0))
3992 return -TARGET_EFAULT;
3993 __put_user(host_shm_info->used_ids, &target_shm_info->used_ids);
3994 __put_user(host_shm_info->shm_tot, &target_shm_info->shm_tot);
3995 __put_user(host_shm_info->shm_rss, &target_shm_info->shm_rss);
3996 __put_user(host_shm_info->shm_swp, &target_shm_info->shm_swp);
3997 __put_user(host_shm_info->swap_attempts, &target_shm_info->swap_attempts);
3998 __put_user(host_shm_info->swap_successes, &target_shm_info->swap_successes);
3999 unlock_user_struct(target_shm_info, target_addr, 1);
4000 return 0;
4003 static inline abi_long do_shmctl(int shmid, int cmd, abi_long buf)
4005 struct shmid_ds dsarg;
4006 struct shminfo shminfo;
4007 struct shm_info shm_info;
4008 abi_long ret = -TARGET_EINVAL;
4010 cmd &= 0xff;
4012 switch(cmd) {
4013 case IPC_STAT:
4014 case IPC_SET:
4015 case SHM_STAT:
4016 if (target_to_host_shmid_ds(&dsarg, buf))
4017 return -TARGET_EFAULT;
4018 ret = get_errno(shmctl(shmid, cmd, &dsarg));
4019 if (host_to_target_shmid_ds(buf, &dsarg))
4020 return -TARGET_EFAULT;
4021 break;
4022 case IPC_INFO:
4023 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shminfo));
4024 if (host_to_target_shminfo(buf, &shminfo))
4025 return -TARGET_EFAULT;
4026 break;
4027 case SHM_INFO:
4028 ret = get_errno(shmctl(shmid, cmd, (struct shmid_ds *)&shm_info));
4029 if (host_to_target_shm_info(buf, &shm_info))
4030 return -TARGET_EFAULT;
4031 break;
4032 case IPC_RMID:
4033 case SHM_LOCK:
4034 case SHM_UNLOCK:
4035 ret = get_errno(shmctl(shmid, cmd, NULL));
4036 break;
4039 return ret;
4042 static inline abi_ulong do_shmat(int shmid, abi_ulong shmaddr, int shmflg)
4044 abi_long raddr;
4045 void *host_raddr;
4046 struct shmid_ds shm_info;
4047 int i,ret;
4049 /* find out the length of the shared memory segment */
4050 ret = get_errno(shmctl(shmid, IPC_STAT, &shm_info));
4051 if (is_error(ret)) {
4052 /* can't get length, bail out */
4053 return ret;
4056 mmap_lock();
4058 if (shmaddr)
4059 host_raddr = shmat(shmid, (void *)g2h(shmaddr), shmflg);
4060 else {
4061 abi_ulong mmap_start;
4063 mmap_start = mmap_find_vma(0, shm_info.shm_segsz);
4065 if (mmap_start == -1) {
4066 errno = ENOMEM;
4067 host_raddr = (void *)-1;
4068 } else
4069 host_raddr = shmat(shmid, g2h(mmap_start), shmflg | SHM_REMAP);
4072 if (host_raddr == (void *)-1) {
4073 mmap_unlock();
4074 return get_errno((long)host_raddr);
4076 raddr=h2g((unsigned long)host_raddr);
4078 page_set_flags(raddr, raddr + shm_info.shm_segsz,
4079 PAGE_VALID | PAGE_READ |
4080 ((shmflg & SHM_RDONLY)? 0 : PAGE_WRITE));
4082 for (i = 0; i < N_SHM_REGIONS; i++) {
4083 if (!shm_regions[i].in_use) {
4084 shm_regions[i].in_use = true;
4085 shm_regions[i].start = raddr;
4086 shm_regions[i].size = shm_info.shm_segsz;
4087 break;
4091 mmap_unlock();
4092 return raddr;
4096 static inline abi_long do_shmdt(abi_ulong shmaddr)
4098 int i;
4100 for (i = 0; i < N_SHM_REGIONS; ++i) {
4101 if (shm_regions[i].in_use && shm_regions[i].start == shmaddr) {
4102 shm_regions[i].in_use = false;
4103 page_set_flags(shmaddr, shmaddr + shm_regions[i].size, 0);
4104 break;
4108 return get_errno(shmdt(g2h(shmaddr)));
4111 #ifdef TARGET_NR_ipc
4112 /* ??? This only works with linear mappings. */
4113 /* do_ipc() must return target values and target errnos. */
4114 static abi_long do_ipc(unsigned int call, abi_long first,
4115 abi_long second, abi_long third,
4116 abi_long ptr, abi_long fifth)
4118 int version;
4119 abi_long ret = 0;
4121 version = call >> 16;
4122 call &= 0xffff;
4124 switch (call) {
4125 case IPCOP_semop:
4126 ret = do_semop(first, ptr, second);
4127 break;
4129 case IPCOP_semget:
4130 ret = get_errno(semget(first, second, third));
4131 break;
4133 case IPCOP_semctl: {
4134 /* The semun argument to semctl is passed by value, so dereference the
4135 * ptr argument. */
4136 abi_ulong atptr;
4137 get_user_ual(atptr, ptr);
4138 ret = do_semctl(first, second, third, atptr);
4139 break;
4142 case IPCOP_msgget:
4143 ret = get_errno(msgget(first, second));
4144 break;
4146 case IPCOP_msgsnd:
4147 ret = do_msgsnd(first, ptr, second, third);
4148 break;
4150 case IPCOP_msgctl:
4151 ret = do_msgctl(first, second, ptr);
4152 break;
4154 case IPCOP_msgrcv:
4155 switch (version) {
4156 case 0:
4158 struct target_ipc_kludge {
4159 abi_long msgp;
4160 abi_long msgtyp;
4161 } *tmp;
4163 if (!lock_user_struct(VERIFY_READ, tmp, ptr, 1)) {
4164 ret = -TARGET_EFAULT;
4165 break;
4168 ret = do_msgrcv(first, tswapal(tmp->msgp), second, tswapal(tmp->msgtyp), third);
4170 unlock_user_struct(tmp, ptr, 0);
4171 break;
4173 default:
4174 ret = do_msgrcv(first, ptr, second, fifth, third);
4176 break;
4178 case IPCOP_shmat:
4179 switch (version) {
4180 default:
4182 abi_ulong raddr;
4183 raddr = do_shmat(first, ptr, second);
4184 if (is_error(raddr))
4185 return get_errno(raddr);
4186 if (put_user_ual(raddr, third))
4187 return -TARGET_EFAULT;
4188 break;
4190 case 1:
4191 ret = -TARGET_EINVAL;
4192 break;
4194 break;
4195 case IPCOP_shmdt:
4196 ret = do_shmdt(ptr);
4197 break;
4199 case IPCOP_shmget:
4200 /* IPC_* flag values are the same on all linux platforms */
4201 ret = get_errno(shmget(first, second, third));
4202 break;
4204 /* IPC_* and SHM_* command values are the same on all linux platforms */
4205 case IPCOP_shmctl:
4206 ret = do_shmctl(first, second, ptr);
4207 break;
4208 default:
4209 gemu_log("Unsupported ipc call: %d (version %d)\n", call, version);
4210 ret = -TARGET_ENOSYS;
4211 break;
4213 return ret;
4215 #endif
4217 /* kernel structure types definitions */
4219 #define STRUCT(name, ...) STRUCT_ ## name,
4220 #define STRUCT_SPECIAL(name) STRUCT_ ## name,
4221 enum {
4222 #include "syscall_types.h"
4223 STRUCT_MAX
4225 #undef STRUCT
4226 #undef STRUCT_SPECIAL
4228 #define STRUCT(name, ...) static const argtype struct_ ## name ## _def[] = { __VA_ARGS__, TYPE_NULL };
4229 #define STRUCT_SPECIAL(name)
4230 #include "syscall_types.h"
4231 #undef STRUCT
4232 #undef STRUCT_SPECIAL
4234 typedef struct IOCTLEntry IOCTLEntry;
4236 typedef abi_long do_ioctl_fn(const IOCTLEntry *ie, uint8_t *buf_temp,
4237 int fd, int cmd, abi_long arg);
4239 struct IOCTLEntry {
4240 int target_cmd;
4241 unsigned int host_cmd;
4242 const char *name;
4243 int access;
4244 do_ioctl_fn *do_ioctl;
4245 const argtype arg_type[5];
4248 #define IOC_R 0x0001
4249 #define IOC_W 0x0002
4250 #define IOC_RW (IOC_R | IOC_W)
4252 #define MAX_STRUCT_SIZE 4096
4254 #ifdef CONFIG_FIEMAP
4255 /* So fiemap access checks don't overflow on 32 bit systems.
4256 * This is very slightly smaller than the limit imposed by
4257 * the underlying kernel.
4259 #define FIEMAP_MAX_EXTENTS ((UINT_MAX - sizeof(struct fiemap)) \
4260 / sizeof(struct fiemap_extent))
4262 static abi_long do_ioctl_fs_ioc_fiemap(const IOCTLEntry *ie, uint8_t *buf_temp,
4263 int fd, int cmd, abi_long arg)
4265 /* The parameter for this ioctl is a struct fiemap followed
4266 * by an array of struct fiemap_extent whose size is set
4267 * in fiemap->fm_extent_count. The array is filled in by the
4268 * ioctl.
4270 int target_size_in, target_size_out;
4271 struct fiemap *fm;
4272 const argtype *arg_type = ie->arg_type;
4273 const argtype extent_arg_type[] = { MK_STRUCT(STRUCT_fiemap_extent) };
4274 void *argptr, *p;
4275 abi_long ret;
4276 int i, extent_size = thunk_type_size(extent_arg_type, 0);
4277 uint32_t outbufsz;
4278 int free_fm = 0;
4280 assert(arg_type[0] == TYPE_PTR);
4281 assert(ie->access == IOC_RW);
4282 arg_type++;
4283 target_size_in = thunk_type_size(arg_type, 0);
4284 argptr = lock_user(VERIFY_READ, arg, target_size_in, 1);
4285 if (!argptr) {
4286 return -TARGET_EFAULT;
4288 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4289 unlock_user(argptr, arg, 0);
4290 fm = (struct fiemap *)buf_temp;
4291 if (fm->fm_extent_count > FIEMAP_MAX_EXTENTS) {
4292 return -TARGET_EINVAL;
4295 outbufsz = sizeof (*fm) +
4296 (sizeof(struct fiemap_extent) * fm->fm_extent_count);
4298 if (outbufsz > MAX_STRUCT_SIZE) {
4299 /* We can't fit all the extents into the fixed size buffer.
4300 * Allocate one that is large enough and use it instead.
4302 fm = g_try_malloc(outbufsz);
4303 if (!fm) {
4304 return -TARGET_ENOMEM;
4306 memcpy(fm, buf_temp, sizeof(struct fiemap));
4307 free_fm = 1;
4309 ret = get_errno(safe_ioctl(fd, ie->host_cmd, fm));
4310 if (!is_error(ret)) {
4311 target_size_out = target_size_in;
4312 /* An extent_count of 0 means we were only counting the extents
4313 * so there are no structs to copy
4315 if (fm->fm_extent_count != 0) {
4316 target_size_out += fm->fm_mapped_extents * extent_size;
4318 argptr = lock_user(VERIFY_WRITE, arg, target_size_out, 0);
4319 if (!argptr) {
4320 ret = -TARGET_EFAULT;
4321 } else {
4322 /* Convert the struct fiemap */
4323 thunk_convert(argptr, fm, arg_type, THUNK_TARGET);
4324 if (fm->fm_extent_count != 0) {
4325 p = argptr + target_size_in;
4326 /* ...and then all the struct fiemap_extents */
4327 for (i = 0; i < fm->fm_mapped_extents; i++) {
4328 thunk_convert(p, &fm->fm_extents[i], extent_arg_type,
4329 THUNK_TARGET);
4330 p += extent_size;
4333 unlock_user(argptr, arg, target_size_out);
4336 if (free_fm) {
4337 g_free(fm);
4339 return ret;
4341 #endif
4343 static abi_long do_ioctl_ifconf(const IOCTLEntry *ie, uint8_t *buf_temp,
4344 int fd, int cmd, abi_long arg)
4346 const argtype *arg_type = ie->arg_type;
4347 int target_size;
4348 void *argptr;
4349 int ret;
4350 struct ifconf *host_ifconf;
4351 uint32_t outbufsz;
4352 const argtype ifreq_arg_type[] = { MK_STRUCT(STRUCT_sockaddr_ifreq) };
4353 int target_ifreq_size;
4354 int nb_ifreq;
4355 int free_buf = 0;
4356 int i;
4357 int target_ifc_len;
4358 abi_long target_ifc_buf;
4359 int host_ifc_len;
4360 char *host_ifc_buf;
4362 assert(arg_type[0] == TYPE_PTR);
4363 assert(ie->access == IOC_RW);
4365 arg_type++;
4366 target_size = thunk_type_size(arg_type, 0);
4368 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4369 if (!argptr)
4370 return -TARGET_EFAULT;
4371 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4372 unlock_user(argptr, arg, 0);
4374 host_ifconf = (struct ifconf *)(unsigned long)buf_temp;
4375 target_ifc_len = host_ifconf->ifc_len;
4376 target_ifc_buf = (abi_long)(unsigned long)host_ifconf->ifc_buf;
4378 target_ifreq_size = thunk_type_size(ifreq_arg_type, 0);
4379 nb_ifreq = target_ifc_len / target_ifreq_size;
4380 host_ifc_len = nb_ifreq * sizeof(struct ifreq);
4382 outbufsz = sizeof(*host_ifconf) + host_ifc_len;
4383 if (outbufsz > MAX_STRUCT_SIZE) {
4384 /* We can't fit all the extents into the fixed size buffer.
4385 * Allocate one that is large enough and use it instead.
4387 host_ifconf = malloc(outbufsz);
4388 if (!host_ifconf) {
4389 return -TARGET_ENOMEM;
4391 memcpy(host_ifconf, buf_temp, sizeof(*host_ifconf));
4392 free_buf = 1;
4394 host_ifc_buf = (char*)host_ifconf + sizeof(*host_ifconf);
4396 host_ifconf->ifc_len = host_ifc_len;
4397 host_ifconf->ifc_buf = host_ifc_buf;
4399 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_ifconf));
4400 if (!is_error(ret)) {
4401 /* convert host ifc_len to target ifc_len */
4403 nb_ifreq = host_ifconf->ifc_len / sizeof(struct ifreq);
4404 target_ifc_len = nb_ifreq * target_ifreq_size;
4405 host_ifconf->ifc_len = target_ifc_len;
4407 /* restore target ifc_buf */
4409 host_ifconf->ifc_buf = (char *)(unsigned long)target_ifc_buf;
4411 /* copy struct ifconf to target user */
4413 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4414 if (!argptr)
4415 return -TARGET_EFAULT;
4416 thunk_convert(argptr, host_ifconf, arg_type, THUNK_TARGET);
4417 unlock_user(argptr, arg, target_size);
4419 /* copy ifreq[] to target user */
4421 argptr = lock_user(VERIFY_WRITE, target_ifc_buf, target_ifc_len, 0);
4422 for (i = 0; i < nb_ifreq ; i++) {
4423 thunk_convert(argptr + i * target_ifreq_size,
4424 host_ifc_buf + i * sizeof(struct ifreq),
4425 ifreq_arg_type, THUNK_TARGET);
4427 unlock_user(argptr, target_ifc_buf, target_ifc_len);
4430 if (free_buf) {
4431 free(host_ifconf);
4434 return ret;
4437 static abi_long do_ioctl_dm(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
4438 int cmd, abi_long arg)
4440 void *argptr;
4441 struct dm_ioctl *host_dm;
4442 abi_long guest_data;
4443 uint32_t guest_data_size;
4444 int target_size;
4445 const argtype *arg_type = ie->arg_type;
4446 abi_long ret;
4447 void *big_buf = NULL;
4448 char *host_data;
4450 arg_type++;
4451 target_size = thunk_type_size(arg_type, 0);
4452 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4453 if (!argptr) {
4454 ret = -TARGET_EFAULT;
4455 goto out;
4457 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4458 unlock_user(argptr, arg, 0);
4460 /* buf_temp is too small, so fetch things into a bigger buffer */
4461 big_buf = g_malloc0(((struct dm_ioctl*)buf_temp)->data_size * 2);
4462 memcpy(big_buf, buf_temp, target_size);
4463 buf_temp = big_buf;
4464 host_dm = big_buf;
4466 guest_data = arg + host_dm->data_start;
4467 if ((guest_data - arg) < 0) {
4468 ret = -EINVAL;
4469 goto out;
4471 guest_data_size = host_dm->data_size - host_dm->data_start;
4472 host_data = (char*)host_dm + host_dm->data_start;
4474 argptr = lock_user(VERIFY_READ, guest_data, guest_data_size, 1);
4475 switch (ie->host_cmd) {
4476 case DM_REMOVE_ALL:
4477 case DM_LIST_DEVICES:
4478 case DM_DEV_CREATE:
4479 case DM_DEV_REMOVE:
4480 case DM_DEV_SUSPEND:
4481 case DM_DEV_STATUS:
4482 case DM_DEV_WAIT:
4483 case DM_TABLE_STATUS:
4484 case DM_TABLE_CLEAR:
4485 case DM_TABLE_DEPS:
4486 case DM_LIST_VERSIONS:
4487 /* no input data */
4488 break;
4489 case DM_DEV_RENAME:
4490 case DM_DEV_SET_GEOMETRY:
4491 /* data contains only strings */
4492 memcpy(host_data, argptr, guest_data_size);
4493 break;
4494 case DM_TARGET_MSG:
4495 memcpy(host_data, argptr, guest_data_size);
4496 *(uint64_t*)host_data = tswap64(*(uint64_t*)argptr);
4497 break;
4498 case DM_TABLE_LOAD:
4500 void *gspec = argptr;
4501 void *cur_data = host_data;
4502 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
4503 int spec_size = thunk_type_size(arg_type, 0);
4504 int i;
4506 for (i = 0; i < host_dm->target_count; i++) {
4507 struct dm_target_spec *spec = cur_data;
4508 uint32_t next;
4509 int slen;
4511 thunk_convert(spec, gspec, arg_type, THUNK_HOST);
4512 slen = strlen((char*)gspec + spec_size) + 1;
4513 next = spec->next;
4514 spec->next = sizeof(*spec) + slen;
4515 strcpy((char*)&spec[1], gspec + spec_size);
4516 gspec += next;
4517 cur_data += spec->next;
4519 break;
4521 default:
4522 ret = -TARGET_EINVAL;
4523 unlock_user(argptr, guest_data, 0);
4524 goto out;
4526 unlock_user(argptr, guest_data, 0);
4528 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
4529 if (!is_error(ret)) {
4530 guest_data = arg + host_dm->data_start;
4531 guest_data_size = host_dm->data_size - host_dm->data_start;
4532 argptr = lock_user(VERIFY_WRITE, guest_data, guest_data_size, 0);
4533 switch (ie->host_cmd) {
4534 case DM_REMOVE_ALL:
4535 case DM_DEV_CREATE:
4536 case DM_DEV_REMOVE:
4537 case DM_DEV_RENAME:
4538 case DM_DEV_SUSPEND:
4539 case DM_DEV_STATUS:
4540 case DM_TABLE_LOAD:
4541 case DM_TABLE_CLEAR:
4542 case DM_TARGET_MSG:
4543 case DM_DEV_SET_GEOMETRY:
4544 /* no return data */
4545 break;
4546 case DM_LIST_DEVICES:
4548 struct dm_name_list *nl = (void*)host_dm + host_dm->data_start;
4549 uint32_t remaining_data = guest_data_size;
4550 void *cur_data = argptr;
4551 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_name_list) };
4552 int nl_size = 12; /* can't use thunk_size due to alignment */
4554 while (1) {
4555 uint32_t next = nl->next;
4556 if (next) {
4557 nl->next = nl_size + (strlen(nl->name) + 1);
4559 if (remaining_data < nl->next) {
4560 host_dm->flags |= DM_BUFFER_FULL_FLAG;
4561 break;
4563 thunk_convert(cur_data, nl, arg_type, THUNK_TARGET);
4564 strcpy(cur_data + nl_size, nl->name);
4565 cur_data += nl->next;
4566 remaining_data -= nl->next;
4567 if (!next) {
4568 break;
4570 nl = (void*)nl + next;
4572 break;
4574 case DM_DEV_WAIT:
4575 case DM_TABLE_STATUS:
4577 struct dm_target_spec *spec = (void*)host_dm + host_dm->data_start;
4578 void *cur_data = argptr;
4579 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_spec) };
4580 int spec_size = thunk_type_size(arg_type, 0);
4581 int i;
4583 for (i = 0; i < host_dm->target_count; i++) {
4584 uint32_t next = spec->next;
4585 int slen = strlen((char*)&spec[1]) + 1;
4586 spec->next = (cur_data - argptr) + spec_size + slen;
4587 if (guest_data_size < spec->next) {
4588 host_dm->flags |= DM_BUFFER_FULL_FLAG;
4589 break;
4591 thunk_convert(cur_data, spec, arg_type, THUNK_TARGET);
4592 strcpy(cur_data + spec_size, (char*)&spec[1]);
4593 cur_data = argptr + spec->next;
4594 spec = (void*)host_dm + host_dm->data_start + next;
4596 break;
4598 case DM_TABLE_DEPS:
4600 void *hdata = (void*)host_dm + host_dm->data_start;
4601 int count = *(uint32_t*)hdata;
4602 uint64_t *hdev = hdata + 8;
4603 uint64_t *gdev = argptr + 8;
4604 int i;
4606 *(uint32_t*)argptr = tswap32(count);
4607 for (i = 0; i < count; i++) {
4608 *gdev = tswap64(*hdev);
4609 gdev++;
4610 hdev++;
4612 break;
4614 case DM_LIST_VERSIONS:
4616 struct dm_target_versions *vers = (void*)host_dm + host_dm->data_start;
4617 uint32_t remaining_data = guest_data_size;
4618 void *cur_data = argptr;
4619 const argtype arg_type[] = { MK_STRUCT(STRUCT_dm_target_versions) };
4620 int vers_size = thunk_type_size(arg_type, 0);
4622 while (1) {
4623 uint32_t next = vers->next;
4624 if (next) {
4625 vers->next = vers_size + (strlen(vers->name) + 1);
4627 if (remaining_data < vers->next) {
4628 host_dm->flags |= DM_BUFFER_FULL_FLAG;
4629 break;
4631 thunk_convert(cur_data, vers, arg_type, THUNK_TARGET);
4632 strcpy(cur_data + vers_size, vers->name);
4633 cur_data += vers->next;
4634 remaining_data -= vers->next;
4635 if (!next) {
4636 break;
4638 vers = (void*)vers + next;
4640 break;
4642 default:
4643 unlock_user(argptr, guest_data, 0);
4644 ret = -TARGET_EINVAL;
4645 goto out;
4647 unlock_user(argptr, guest_data, guest_data_size);
4649 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4650 if (!argptr) {
4651 ret = -TARGET_EFAULT;
4652 goto out;
4654 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
4655 unlock_user(argptr, arg, target_size);
4657 out:
4658 g_free(big_buf);
4659 return ret;
4662 static abi_long do_ioctl_blkpg(const IOCTLEntry *ie, uint8_t *buf_temp, int fd,
4663 int cmd, abi_long arg)
4665 void *argptr;
4666 int target_size;
4667 const argtype *arg_type = ie->arg_type;
4668 const argtype part_arg_type[] = { MK_STRUCT(STRUCT_blkpg_partition) };
4669 abi_long ret;
4671 struct blkpg_ioctl_arg *host_blkpg = (void*)buf_temp;
4672 struct blkpg_partition host_part;
4674 /* Read and convert blkpg */
4675 arg_type++;
4676 target_size = thunk_type_size(arg_type, 0);
4677 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4678 if (!argptr) {
4679 ret = -TARGET_EFAULT;
4680 goto out;
4682 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4683 unlock_user(argptr, arg, 0);
4685 switch (host_blkpg->op) {
4686 case BLKPG_ADD_PARTITION:
4687 case BLKPG_DEL_PARTITION:
4688 /* payload is struct blkpg_partition */
4689 break;
4690 default:
4691 /* Unknown opcode */
4692 ret = -TARGET_EINVAL;
4693 goto out;
4696 /* Read and convert blkpg->data */
4697 arg = (abi_long)(uintptr_t)host_blkpg->data;
4698 target_size = thunk_type_size(part_arg_type, 0);
4699 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4700 if (!argptr) {
4701 ret = -TARGET_EFAULT;
4702 goto out;
4704 thunk_convert(&host_part, argptr, part_arg_type, THUNK_HOST);
4705 unlock_user(argptr, arg, 0);
4707 /* Swizzle the data pointer to our local copy and call! */
4708 host_blkpg->data = &host_part;
4709 ret = get_errno(safe_ioctl(fd, ie->host_cmd, host_blkpg));
4711 out:
4712 return ret;
4715 static abi_long do_ioctl_rt(const IOCTLEntry *ie, uint8_t *buf_temp,
4716 int fd, int cmd, abi_long arg)
4718 const argtype *arg_type = ie->arg_type;
4719 const StructEntry *se;
4720 const argtype *field_types;
4721 const int *dst_offsets, *src_offsets;
4722 int target_size;
4723 void *argptr;
4724 abi_ulong *target_rt_dev_ptr;
4725 unsigned long *host_rt_dev_ptr;
4726 abi_long ret;
4727 int i;
4729 assert(ie->access == IOC_W);
4730 assert(*arg_type == TYPE_PTR);
4731 arg_type++;
4732 assert(*arg_type == TYPE_STRUCT);
4733 target_size = thunk_type_size(arg_type, 0);
4734 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4735 if (!argptr) {
4736 return -TARGET_EFAULT;
4738 arg_type++;
4739 assert(*arg_type == (int)STRUCT_rtentry);
4740 se = struct_entries + *arg_type++;
4741 assert(se->convert[0] == NULL);
4742 /* convert struct here to be able to catch rt_dev string */
4743 field_types = se->field_types;
4744 dst_offsets = se->field_offsets[THUNK_HOST];
4745 src_offsets = se->field_offsets[THUNK_TARGET];
4746 for (i = 0; i < se->nb_fields; i++) {
4747 if (dst_offsets[i] == offsetof(struct rtentry, rt_dev)) {
4748 assert(*field_types == TYPE_PTRVOID);
4749 target_rt_dev_ptr = (abi_ulong *)(argptr + src_offsets[i]);
4750 host_rt_dev_ptr = (unsigned long *)(buf_temp + dst_offsets[i]);
4751 if (*target_rt_dev_ptr != 0) {
4752 *host_rt_dev_ptr = (unsigned long)lock_user_string(
4753 tswapal(*target_rt_dev_ptr));
4754 if (!*host_rt_dev_ptr) {
4755 unlock_user(argptr, arg, 0);
4756 return -TARGET_EFAULT;
4758 } else {
4759 *host_rt_dev_ptr = 0;
4761 field_types++;
4762 continue;
4764 field_types = thunk_convert(buf_temp + dst_offsets[i],
4765 argptr + src_offsets[i],
4766 field_types, THUNK_HOST);
4768 unlock_user(argptr, arg, 0);
4770 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
4771 if (*host_rt_dev_ptr != 0) {
4772 unlock_user((void *)*host_rt_dev_ptr,
4773 *target_rt_dev_ptr, 0);
4775 return ret;
4778 static abi_long do_ioctl_kdsigaccept(const IOCTLEntry *ie, uint8_t *buf_temp,
4779 int fd, int cmd, abi_long arg)
4781 int sig = target_to_host_signal(arg);
4782 return get_errno(safe_ioctl(fd, ie->host_cmd, sig));
4785 static IOCTLEntry ioctl_entries[] = {
4786 #define IOCTL(cmd, access, ...) \
4787 { TARGET_ ## cmd, cmd, #cmd, access, 0, { __VA_ARGS__ } },
4788 #define IOCTL_SPECIAL(cmd, access, dofn, ...) \
4789 { TARGET_ ## cmd, cmd, #cmd, access, dofn, { __VA_ARGS__ } },
4790 #include "ioctls.h"
4791 { 0, 0, },
4794 /* ??? Implement proper locking for ioctls. */
4795 /* do_ioctl() Must return target values and target errnos. */
4796 static abi_long do_ioctl(int fd, int cmd, abi_long arg)
4798 const IOCTLEntry *ie;
4799 const argtype *arg_type;
4800 abi_long ret;
4801 uint8_t buf_temp[MAX_STRUCT_SIZE];
4802 int target_size;
4803 void *argptr;
4805 ie = ioctl_entries;
4806 for(;;) {
4807 if (ie->target_cmd == 0) {
4808 gemu_log("Unsupported ioctl: cmd=0x%04lx\n", (long)cmd);
4809 return -TARGET_ENOSYS;
4811 if (ie->target_cmd == cmd)
4812 break;
4813 ie++;
4815 arg_type = ie->arg_type;
4816 #if defined(DEBUG)
4817 gemu_log("ioctl: cmd=0x%04lx (%s)\n", (long)cmd, ie->name);
4818 #endif
4819 if (ie->do_ioctl) {
4820 return ie->do_ioctl(ie, buf_temp, fd, cmd, arg);
4823 switch(arg_type[0]) {
4824 case TYPE_NULL:
4825 /* no argument */
4826 ret = get_errno(safe_ioctl(fd, ie->host_cmd));
4827 break;
4828 case TYPE_PTRVOID:
4829 case TYPE_INT:
4830 ret = get_errno(safe_ioctl(fd, ie->host_cmd, arg));
4831 break;
4832 case TYPE_PTR:
4833 arg_type++;
4834 target_size = thunk_type_size(arg_type, 0);
4835 switch(ie->access) {
4836 case IOC_R:
4837 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
4838 if (!is_error(ret)) {
4839 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4840 if (!argptr)
4841 return -TARGET_EFAULT;
4842 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
4843 unlock_user(argptr, arg, target_size);
4845 break;
4846 case IOC_W:
4847 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4848 if (!argptr)
4849 return -TARGET_EFAULT;
4850 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4851 unlock_user(argptr, arg, 0);
4852 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
4853 break;
4854 default:
4855 case IOC_RW:
4856 argptr = lock_user(VERIFY_READ, arg, target_size, 1);
4857 if (!argptr)
4858 return -TARGET_EFAULT;
4859 thunk_convert(buf_temp, argptr, arg_type, THUNK_HOST);
4860 unlock_user(argptr, arg, 0);
4861 ret = get_errno(safe_ioctl(fd, ie->host_cmd, buf_temp));
4862 if (!is_error(ret)) {
4863 argptr = lock_user(VERIFY_WRITE, arg, target_size, 0);
4864 if (!argptr)
4865 return -TARGET_EFAULT;
4866 thunk_convert(argptr, buf_temp, arg_type, THUNK_TARGET);
4867 unlock_user(argptr, arg, target_size);
4869 break;
4871 break;
4872 default:
4873 gemu_log("Unsupported ioctl type: cmd=0x%04lx type=%d\n",
4874 (long)cmd, arg_type[0]);
4875 ret = -TARGET_ENOSYS;
4876 break;
4878 return ret;
4881 static const bitmask_transtbl iflag_tbl[] = {
4882 { TARGET_IGNBRK, TARGET_IGNBRK, IGNBRK, IGNBRK },
4883 { TARGET_BRKINT, TARGET_BRKINT, BRKINT, BRKINT },
4884 { TARGET_IGNPAR, TARGET_IGNPAR, IGNPAR, IGNPAR },
4885 { TARGET_PARMRK, TARGET_PARMRK, PARMRK, PARMRK },
4886 { TARGET_INPCK, TARGET_INPCK, INPCK, INPCK },
4887 { TARGET_ISTRIP, TARGET_ISTRIP, ISTRIP, ISTRIP },
4888 { TARGET_INLCR, TARGET_INLCR, INLCR, INLCR },
4889 { TARGET_IGNCR, TARGET_IGNCR, IGNCR, IGNCR },
4890 { TARGET_ICRNL, TARGET_ICRNL, ICRNL, ICRNL },
4891 { TARGET_IUCLC, TARGET_IUCLC, IUCLC, IUCLC },
4892 { TARGET_IXON, TARGET_IXON, IXON, IXON },
4893 { TARGET_IXANY, TARGET_IXANY, IXANY, IXANY },
4894 { TARGET_IXOFF, TARGET_IXOFF, IXOFF, IXOFF },
4895 { TARGET_IMAXBEL, TARGET_IMAXBEL, IMAXBEL, IMAXBEL },
4896 { 0, 0, 0, 0 }
4899 static const bitmask_transtbl oflag_tbl[] = {
4900 { TARGET_OPOST, TARGET_OPOST, OPOST, OPOST },
4901 { TARGET_OLCUC, TARGET_OLCUC, OLCUC, OLCUC },
4902 { TARGET_ONLCR, TARGET_ONLCR, ONLCR, ONLCR },
4903 { TARGET_OCRNL, TARGET_OCRNL, OCRNL, OCRNL },
4904 { TARGET_ONOCR, TARGET_ONOCR, ONOCR, ONOCR },
4905 { TARGET_ONLRET, TARGET_ONLRET, ONLRET, ONLRET },
4906 { TARGET_OFILL, TARGET_OFILL, OFILL, OFILL },
4907 { TARGET_OFDEL, TARGET_OFDEL, OFDEL, OFDEL },
4908 { TARGET_NLDLY, TARGET_NL0, NLDLY, NL0 },
4909 { TARGET_NLDLY, TARGET_NL1, NLDLY, NL1 },
4910 { TARGET_CRDLY, TARGET_CR0, CRDLY, CR0 },
4911 { TARGET_CRDLY, TARGET_CR1, CRDLY, CR1 },
4912 { TARGET_CRDLY, TARGET_CR2, CRDLY, CR2 },
4913 { TARGET_CRDLY, TARGET_CR3, CRDLY, CR3 },
4914 { TARGET_TABDLY, TARGET_TAB0, TABDLY, TAB0 },
4915 { TARGET_TABDLY, TARGET_TAB1, TABDLY, TAB1 },
4916 { TARGET_TABDLY, TARGET_TAB2, TABDLY, TAB2 },
4917 { TARGET_TABDLY, TARGET_TAB3, TABDLY, TAB3 },
4918 { TARGET_BSDLY, TARGET_BS0, BSDLY, BS0 },
4919 { TARGET_BSDLY, TARGET_BS1, BSDLY, BS1 },
4920 { TARGET_VTDLY, TARGET_VT0, VTDLY, VT0 },
4921 { TARGET_VTDLY, TARGET_VT1, VTDLY, VT1 },
4922 { TARGET_FFDLY, TARGET_FF0, FFDLY, FF0 },
4923 { TARGET_FFDLY, TARGET_FF1, FFDLY, FF1 },
4924 { 0, 0, 0, 0 }
4927 static const bitmask_transtbl cflag_tbl[] = {
4928 { TARGET_CBAUD, TARGET_B0, CBAUD, B0 },
4929 { TARGET_CBAUD, TARGET_B50, CBAUD, B50 },
4930 { TARGET_CBAUD, TARGET_B75, CBAUD, B75 },
4931 { TARGET_CBAUD, TARGET_B110, CBAUD, B110 },
4932 { TARGET_CBAUD, TARGET_B134, CBAUD, B134 },
4933 { TARGET_CBAUD, TARGET_B150, CBAUD, B150 },
4934 { TARGET_CBAUD, TARGET_B200, CBAUD, B200 },
4935 { TARGET_CBAUD, TARGET_B300, CBAUD, B300 },
4936 { TARGET_CBAUD, TARGET_B600, CBAUD, B600 },
4937 { TARGET_CBAUD, TARGET_B1200, CBAUD, B1200 },
4938 { TARGET_CBAUD, TARGET_B1800, CBAUD, B1800 },
4939 { TARGET_CBAUD, TARGET_B2400, CBAUD, B2400 },
4940 { TARGET_CBAUD, TARGET_B4800, CBAUD, B4800 },
4941 { TARGET_CBAUD, TARGET_B9600, CBAUD, B9600 },
4942 { TARGET_CBAUD, TARGET_B19200, CBAUD, B19200 },
4943 { TARGET_CBAUD, TARGET_B38400, CBAUD, B38400 },
4944 { TARGET_CBAUD, TARGET_B57600, CBAUD, B57600 },
4945 { TARGET_CBAUD, TARGET_B115200, CBAUD, B115200 },
4946 { TARGET_CBAUD, TARGET_B230400, CBAUD, B230400 },
4947 { TARGET_CBAUD, TARGET_B460800, CBAUD, B460800 },
4948 { TARGET_CSIZE, TARGET_CS5, CSIZE, CS5 },
4949 { TARGET_CSIZE, TARGET_CS6, CSIZE, CS6 },
4950 { TARGET_CSIZE, TARGET_CS7, CSIZE, CS7 },
4951 { TARGET_CSIZE, TARGET_CS8, CSIZE, CS8 },
4952 { TARGET_CSTOPB, TARGET_CSTOPB, CSTOPB, CSTOPB },
4953 { TARGET_CREAD, TARGET_CREAD, CREAD, CREAD },
4954 { TARGET_PARENB, TARGET_PARENB, PARENB, PARENB },
4955 { TARGET_PARODD, TARGET_PARODD, PARODD, PARODD },
4956 { TARGET_HUPCL, TARGET_HUPCL, HUPCL, HUPCL },
4957 { TARGET_CLOCAL, TARGET_CLOCAL, CLOCAL, CLOCAL },
4958 { TARGET_CRTSCTS, TARGET_CRTSCTS, CRTSCTS, CRTSCTS },
4959 { 0, 0, 0, 0 }
4962 static const bitmask_transtbl lflag_tbl[] = {
4963 { TARGET_ISIG, TARGET_ISIG, ISIG, ISIG },
4964 { TARGET_ICANON, TARGET_ICANON, ICANON, ICANON },
4965 { TARGET_XCASE, TARGET_XCASE, XCASE, XCASE },
4966 { TARGET_ECHO, TARGET_ECHO, ECHO, ECHO },
4967 { TARGET_ECHOE, TARGET_ECHOE, ECHOE, ECHOE },
4968 { TARGET_ECHOK, TARGET_ECHOK, ECHOK, ECHOK },
4969 { TARGET_ECHONL, TARGET_ECHONL, ECHONL, ECHONL },
4970 { TARGET_NOFLSH, TARGET_NOFLSH, NOFLSH, NOFLSH },
4971 { TARGET_TOSTOP, TARGET_TOSTOP, TOSTOP, TOSTOP },
4972 { TARGET_ECHOCTL, TARGET_ECHOCTL, ECHOCTL, ECHOCTL },
4973 { TARGET_ECHOPRT, TARGET_ECHOPRT, ECHOPRT, ECHOPRT },
4974 { TARGET_ECHOKE, TARGET_ECHOKE, ECHOKE, ECHOKE },
4975 { TARGET_FLUSHO, TARGET_FLUSHO, FLUSHO, FLUSHO },
4976 { TARGET_PENDIN, TARGET_PENDIN, PENDIN, PENDIN },
4977 { TARGET_IEXTEN, TARGET_IEXTEN, IEXTEN, IEXTEN },
4978 { 0, 0, 0, 0 }
4981 static void target_to_host_termios (void *dst, const void *src)
4983 struct host_termios *host = dst;
4984 const struct target_termios *target = src;
4986 host->c_iflag =
4987 target_to_host_bitmask(tswap32(target->c_iflag), iflag_tbl);
4988 host->c_oflag =
4989 target_to_host_bitmask(tswap32(target->c_oflag), oflag_tbl);
4990 host->c_cflag =
4991 target_to_host_bitmask(tswap32(target->c_cflag), cflag_tbl);
4992 host->c_lflag =
4993 target_to_host_bitmask(tswap32(target->c_lflag), lflag_tbl);
4994 host->c_line = target->c_line;
4996 memset(host->c_cc, 0, sizeof(host->c_cc));
4997 host->c_cc[VINTR] = target->c_cc[TARGET_VINTR];
4998 host->c_cc[VQUIT] = target->c_cc[TARGET_VQUIT];
4999 host->c_cc[VERASE] = target->c_cc[TARGET_VERASE];
5000 host->c_cc[VKILL] = target->c_cc[TARGET_VKILL];
5001 host->c_cc[VEOF] = target->c_cc[TARGET_VEOF];
5002 host->c_cc[VTIME] = target->c_cc[TARGET_VTIME];
5003 host->c_cc[VMIN] = target->c_cc[TARGET_VMIN];
5004 host->c_cc[VSWTC] = target->c_cc[TARGET_VSWTC];
5005 host->c_cc[VSTART] = target->c_cc[TARGET_VSTART];
5006 host->c_cc[VSTOP] = target->c_cc[TARGET_VSTOP];
5007 host->c_cc[VSUSP] = target->c_cc[TARGET_VSUSP];
5008 host->c_cc[VEOL] = target->c_cc[TARGET_VEOL];
5009 host->c_cc[VREPRINT] = target->c_cc[TARGET_VREPRINT];
5010 host->c_cc[VDISCARD] = target->c_cc[TARGET_VDISCARD];
5011 host->c_cc[VWERASE] = target->c_cc[TARGET_VWERASE];
5012 host->c_cc[VLNEXT] = target->c_cc[TARGET_VLNEXT];
5013 host->c_cc[VEOL2] = target->c_cc[TARGET_VEOL2];
5016 static void host_to_target_termios (void *dst, const void *src)
5018 struct target_termios *target = dst;
5019 const struct host_termios *host = src;
5021 target->c_iflag =
5022 tswap32(host_to_target_bitmask(host->c_iflag, iflag_tbl));
5023 target->c_oflag =
5024 tswap32(host_to_target_bitmask(host->c_oflag, oflag_tbl));
5025 target->c_cflag =
5026 tswap32(host_to_target_bitmask(host->c_cflag, cflag_tbl));
5027 target->c_lflag =
5028 tswap32(host_to_target_bitmask(host->c_lflag, lflag_tbl));
5029 target->c_line = host->c_line;
5031 memset(target->c_cc, 0, sizeof(target->c_cc));
5032 target->c_cc[TARGET_VINTR] = host->c_cc[VINTR];
5033 target->c_cc[TARGET_VQUIT] = host->c_cc[VQUIT];
5034 target->c_cc[TARGET_VERASE] = host->c_cc[VERASE];
5035 target->c_cc[TARGET_VKILL] = host->c_cc[VKILL];
5036 target->c_cc[TARGET_VEOF] = host->c_cc[VEOF];
5037 target->c_cc[TARGET_VTIME] = host->c_cc[VTIME];
5038 target->c_cc[TARGET_VMIN] = host->c_cc[VMIN];
5039 target->c_cc[TARGET_VSWTC] = host->c_cc[VSWTC];
5040 target->c_cc[TARGET_VSTART] = host->c_cc[VSTART];
5041 target->c_cc[TARGET_VSTOP] = host->c_cc[VSTOP];
5042 target->c_cc[TARGET_VSUSP] = host->c_cc[VSUSP];
5043 target->c_cc[TARGET_VEOL] = host->c_cc[VEOL];
5044 target->c_cc[TARGET_VREPRINT] = host->c_cc[VREPRINT];
5045 target->c_cc[TARGET_VDISCARD] = host->c_cc[VDISCARD];
5046 target->c_cc[TARGET_VWERASE] = host->c_cc[VWERASE];
5047 target->c_cc[TARGET_VLNEXT] = host->c_cc[VLNEXT];
5048 target->c_cc[TARGET_VEOL2] = host->c_cc[VEOL2];
5051 static const StructEntry struct_termios_def = {
5052 .convert = { host_to_target_termios, target_to_host_termios },
5053 .size = { sizeof(struct target_termios), sizeof(struct host_termios) },
5054 .align = { __alignof__(struct target_termios), __alignof__(struct host_termios) },
5057 static bitmask_transtbl mmap_flags_tbl[] = {
5058 { TARGET_MAP_SHARED, TARGET_MAP_SHARED, MAP_SHARED, MAP_SHARED },
5059 { TARGET_MAP_PRIVATE, TARGET_MAP_PRIVATE, MAP_PRIVATE, MAP_PRIVATE },
5060 { TARGET_MAP_FIXED, TARGET_MAP_FIXED, MAP_FIXED, MAP_FIXED },
5061 { TARGET_MAP_ANONYMOUS, TARGET_MAP_ANONYMOUS, MAP_ANONYMOUS, MAP_ANONYMOUS },
5062 { TARGET_MAP_GROWSDOWN, TARGET_MAP_GROWSDOWN, MAP_GROWSDOWN, MAP_GROWSDOWN },
5063 { TARGET_MAP_DENYWRITE, TARGET_MAP_DENYWRITE, MAP_DENYWRITE, MAP_DENYWRITE },
5064 { TARGET_MAP_EXECUTABLE, TARGET_MAP_EXECUTABLE, MAP_EXECUTABLE, MAP_EXECUTABLE },
5065 { TARGET_MAP_LOCKED, TARGET_MAP_LOCKED, MAP_LOCKED, MAP_LOCKED },
5066 { TARGET_MAP_NORESERVE, TARGET_MAP_NORESERVE, MAP_NORESERVE,
5067 MAP_NORESERVE },
5068 { 0, 0, 0, 0 }
5071 #if defined(TARGET_I386)
5073 /* NOTE: there is really one LDT for all the threads */
5074 static uint8_t *ldt_table;
5076 static abi_long read_ldt(abi_ulong ptr, unsigned long bytecount)
5078 int size;
5079 void *p;
5081 if (!ldt_table)
5082 return 0;
5083 size = TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE;
5084 if (size > bytecount)
5085 size = bytecount;
5086 p = lock_user(VERIFY_WRITE, ptr, size, 0);
5087 if (!p)
5088 return -TARGET_EFAULT;
5089 /* ??? Should this by byteswapped? */
5090 memcpy(p, ldt_table, size);
5091 unlock_user(p, ptr, size);
5092 return size;
5095 /* XXX: add locking support */
5096 static abi_long write_ldt(CPUX86State *env,
5097 abi_ulong ptr, unsigned long bytecount, int oldmode)
5099 struct target_modify_ldt_ldt_s ldt_info;
5100 struct target_modify_ldt_ldt_s *target_ldt_info;
5101 int seg_32bit, contents, read_exec_only, limit_in_pages;
5102 int seg_not_present, useable, lm;
5103 uint32_t *lp, entry_1, entry_2;
5105 if (bytecount != sizeof(ldt_info))
5106 return -TARGET_EINVAL;
5107 if (!lock_user_struct(VERIFY_READ, target_ldt_info, ptr, 1))
5108 return -TARGET_EFAULT;
5109 ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
5110 ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
5111 ldt_info.limit = tswap32(target_ldt_info->limit);
5112 ldt_info.flags = tswap32(target_ldt_info->flags);
5113 unlock_user_struct(target_ldt_info, ptr, 0);
5115 if (ldt_info.entry_number >= TARGET_LDT_ENTRIES)
5116 return -TARGET_EINVAL;
5117 seg_32bit = ldt_info.flags & 1;
5118 contents = (ldt_info.flags >> 1) & 3;
5119 read_exec_only = (ldt_info.flags >> 3) & 1;
5120 limit_in_pages = (ldt_info.flags >> 4) & 1;
5121 seg_not_present = (ldt_info.flags >> 5) & 1;
5122 useable = (ldt_info.flags >> 6) & 1;
5123 #ifdef TARGET_ABI32
5124 lm = 0;
5125 #else
5126 lm = (ldt_info.flags >> 7) & 1;
5127 #endif
5128 if (contents == 3) {
5129 if (oldmode)
5130 return -TARGET_EINVAL;
5131 if (seg_not_present == 0)
5132 return -TARGET_EINVAL;
5134 /* allocate the LDT */
5135 if (!ldt_table) {
5136 env->ldt.base = target_mmap(0,
5137 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE,
5138 PROT_READ|PROT_WRITE,
5139 MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
5140 if (env->ldt.base == -1)
5141 return -TARGET_ENOMEM;
5142 memset(g2h(env->ldt.base), 0,
5143 TARGET_LDT_ENTRIES * TARGET_LDT_ENTRY_SIZE);
5144 env->ldt.limit = 0xffff;
5145 ldt_table = g2h(env->ldt.base);
5148 /* NOTE: same code as Linux kernel */
5149 /* Allow LDTs to be cleared by the user. */
5150 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
5151 if (oldmode ||
5152 (contents == 0 &&
5153 read_exec_only == 1 &&
5154 seg_32bit == 0 &&
5155 limit_in_pages == 0 &&
5156 seg_not_present == 1 &&
5157 useable == 0 )) {
5158 entry_1 = 0;
5159 entry_2 = 0;
5160 goto install;
5164 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
5165 (ldt_info.limit & 0x0ffff);
5166 entry_2 = (ldt_info.base_addr & 0xff000000) |
5167 ((ldt_info.base_addr & 0x00ff0000) >> 16) |
5168 (ldt_info.limit & 0xf0000) |
5169 ((read_exec_only ^ 1) << 9) |
5170 (contents << 10) |
5171 ((seg_not_present ^ 1) << 15) |
5172 (seg_32bit << 22) |
5173 (limit_in_pages << 23) |
5174 (lm << 21) |
5175 0x7000;
5176 if (!oldmode)
5177 entry_2 |= (useable << 20);
5179 /* Install the new entry ... */
5180 install:
5181 lp = (uint32_t *)(ldt_table + (ldt_info.entry_number << 3));
5182 lp[0] = tswap32(entry_1);
5183 lp[1] = tswap32(entry_2);
5184 return 0;
5187 /* specific and weird i386 syscalls */
5188 static abi_long do_modify_ldt(CPUX86State *env, int func, abi_ulong ptr,
5189 unsigned long bytecount)
5191 abi_long ret;
5193 switch (func) {
5194 case 0:
5195 ret = read_ldt(ptr, bytecount);
5196 break;
5197 case 1:
5198 ret = write_ldt(env, ptr, bytecount, 1);
5199 break;
5200 case 0x11:
5201 ret = write_ldt(env, ptr, bytecount, 0);
5202 break;
5203 default:
5204 ret = -TARGET_ENOSYS;
5205 break;
5207 return ret;
5210 #if defined(TARGET_I386) && defined(TARGET_ABI32)
5211 abi_long do_set_thread_area(CPUX86State *env, abi_ulong ptr)
5213 uint64_t *gdt_table = g2h(env->gdt.base);
5214 struct target_modify_ldt_ldt_s ldt_info;
5215 struct target_modify_ldt_ldt_s *target_ldt_info;
5216 int seg_32bit, contents, read_exec_only, limit_in_pages;
5217 int seg_not_present, useable, lm;
5218 uint32_t *lp, entry_1, entry_2;
5219 int i;
5221 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
5222 if (!target_ldt_info)
5223 return -TARGET_EFAULT;
5224 ldt_info.entry_number = tswap32(target_ldt_info->entry_number);
5225 ldt_info.base_addr = tswapal(target_ldt_info->base_addr);
5226 ldt_info.limit = tswap32(target_ldt_info->limit);
5227 ldt_info.flags = tswap32(target_ldt_info->flags);
5228 if (ldt_info.entry_number == -1) {
5229 for (i=TARGET_GDT_ENTRY_TLS_MIN; i<=TARGET_GDT_ENTRY_TLS_MAX; i++) {
5230 if (gdt_table[i] == 0) {
5231 ldt_info.entry_number = i;
5232 target_ldt_info->entry_number = tswap32(i);
5233 break;
5237 unlock_user_struct(target_ldt_info, ptr, 1);
5239 if (ldt_info.entry_number < TARGET_GDT_ENTRY_TLS_MIN ||
5240 ldt_info.entry_number > TARGET_GDT_ENTRY_TLS_MAX)
5241 return -TARGET_EINVAL;
5242 seg_32bit = ldt_info.flags & 1;
5243 contents = (ldt_info.flags >> 1) & 3;
5244 read_exec_only = (ldt_info.flags >> 3) & 1;
5245 limit_in_pages = (ldt_info.flags >> 4) & 1;
5246 seg_not_present = (ldt_info.flags >> 5) & 1;
5247 useable = (ldt_info.flags >> 6) & 1;
5248 #ifdef TARGET_ABI32
5249 lm = 0;
5250 #else
5251 lm = (ldt_info.flags >> 7) & 1;
5252 #endif
5254 if (contents == 3) {
5255 if (seg_not_present == 0)
5256 return -TARGET_EINVAL;
5259 /* NOTE: same code as Linux kernel */
5260 /* Allow LDTs to be cleared by the user. */
5261 if (ldt_info.base_addr == 0 && ldt_info.limit == 0) {
5262 if ((contents == 0 &&
5263 read_exec_only == 1 &&
5264 seg_32bit == 0 &&
5265 limit_in_pages == 0 &&
5266 seg_not_present == 1 &&
5267 useable == 0 )) {
5268 entry_1 = 0;
5269 entry_2 = 0;
5270 goto install;
5274 entry_1 = ((ldt_info.base_addr & 0x0000ffff) << 16) |
5275 (ldt_info.limit & 0x0ffff);
5276 entry_2 = (ldt_info.base_addr & 0xff000000) |
5277 ((ldt_info.base_addr & 0x00ff0000) >> 16) |
5278 (ldt_info.limit & 0xf0000) |
5279 ((read_exec_only ^ 1) << 9) |
5280 (contents << 10) |
5281 ((seg_not_present ^ 1) << 15) |
5282 (seg_32bit << 22) |
5283 (limit_in_pages << 23) |
5284 (useable << 20) |
5285 (lm << 21) |
5286 0x7000;
5288 /* Install the new entry ... */
5289 install:
5290 lp = (uint32_t *)(gdt_table + ldt_info.entry_number);
5291 lp[0] = tswap32(entry_1);
5292 lp[1] = tswap32(entry_2);
5293 return 0;
5296 static abi_long do_get_thread_area(CPUX86State *env, abi_ulong ptr)
5298 struct target_modify_ldt_ldt_s *target_ldt_info;
5299 uint64_t *gdt_table = g2h(env->gdt.base);
5300 uint32_t base_addr, limit, flags;
5301 int seg_32bit, contents, read_exec_only, limit_in_pages, idx;
5302 int seg_not_present, useable, lm;
5303 uint32_t *lp, entry_1, entry_2;
5305 lock_user_struct(VERIFY_WRITE, target_ldt_info, ptr, 1);
5306 if (!target_ldt_info)
5307 return -TARGET_EFAULT;
5308 idx = tswap32(target_ldt_info->entry_number);
5309 if (idx < TARGET_GDT_ENTRY_TLS_MIN ||
5310 idx > TARGET_GDT_ENTRY_TLS_MAX) {
5311 unlock_user_struct(target_ldt_info, ptr, 1);
5312 return -TARGET_EINVAL;
5314 lp = (uint32_t *)(gdt_table + idx);
5315 entry_1 = tswap32(lp[0]);
5316 entry_2 = tswap32(lp[1]);
5318 read_exec_only = ((entry_2 >> 9) & 1) ^ 1;
5319 contents = (entry_2 >> 10) & 3;
5320 seg_not_present = ((entry_2 >> 15) & 1) ^ 1;
5321 seg_32bit = (entry_2 >> 22) & 1;
5322 limit_in_pages = (entry_2 >> 23) & 1;
5323 useable = (entry_2 >> 20) & 1;
5324 #ifdef TARGET_ABI32
5325 lm = 0;
5326 #else
5327 lm = (entry_2 >> 21) & 1;
5328 #endif
5329 flags = (seg_32bit << 0) | (contents << 1) |
5330 (read_exec_only << 3) | (limit_in_pages << 4) |
5331 (seg_not_present << 5) | (useable << 6) | (lm << 7);
5332 limit = (entry_1 & 0xffff) | (entry_2 & 0xf0000);
5333 base_addr = (entry_1 >> 16) |
5334 (entry_2 & 0xff000000) |
5335 ((entry_2 & 0xff) << 16);
5336 target_ldt_info->base_addr = tswapal(base_addr);
5337 target_ldt_info->limit = tswap32(limit);
5338 target_ldt_info->flags = tswap32(flags);
5339 unlock_user_struct(target_ldt_info, ptr, 1);
5340 return 0;
5342 #endif /* TARGET_I386 && TARGET_ABI32 */
5344 #ifndef TARGET_ABI32
5345 abi_long do_arch_prctl(CPUX86State *env, int code, abi_ulong addr)
5347 abi_long ret = 0;
5348 abi_ulong val;
5349 int idx;
5351 switch(code) {
5352 case TARGET_ARCH_SET_GS:
5353 case TARGET_ARCH_SET_FS:
5354 if (code == TARGET_ARCH_SET_GS)
5355 idx = R_GS;
5356 else
5357 idx = R_FS;
5358 cpu_x86_load_seg(env, idx, 0);
5359 env->segs[idx].base = addr;
5360 break;
5361 case TARGET_ARCH_GET_GS:
5362 case TARGET_ARCH_GET_FS:
5363 if (code == TARGET_ARCH_GET_GS)
5364 idx = R_GS;
5365 else
5366 idx = R_FS;
5367 val = env->segs[idx].base;
5368 if (put_user(val, addr, abi_ulong))
5369 ret = -TARGET_EFAULT;
5370 break;
5371 default:
5372 ret = -TARGET_EINVAL;
5373 break;
5375 return ret;
5377 #endif
5379 #endif /* defined(TARGET_I386) */
5381 #define NEW_STACK_SIZE 0x40000
5384 static pthread_mutex_t clone_lock = PTHREAD_MUTEX_INITIALIZER;
5385 typedef struct {
5386 CPUArchState *env;
5387 pthread_mutex_t mutex;
5388 pthread_cond_t cond;
5389 pthread_t thread;
5390 uint32_t tid;
5391 abi_ulong child_tidptr;
5392 abi_ulong parent_tidptr;
5393 sigset_t sigmask;
5394 } new_thread_info;
5396 static void *clone_func(void *arg)
5398 new_thread_info *info = arg;
5399 CPUArchState *env;
5400 CPUState *cpu;
5401 TaskState *ts;
5403 rcu_register_thread();
5404 env = info->env;
5405 cpu = ENV_GET_CPU(env);
5406 thread_cpu = cpu;
5407 ts = (TaskState *)cpu->opaque;
5408 info->tid = gettid();
5409 cpu->host_tid = info->tid;
5410 task_settid(ts);
5411 if (info->child_tidptr)
5412 put_user_u32(info->tid, info->child_tidptr);
5413 if (info->parent_tidptr)
5414 put_user_u32(info->tid, info->parent_tidptr);
5415 /* Enable signals. */
5416 sigprocmask(SIG_SETMASK, &info->sigmask, NULL);
5417 /* Signal to the parent that we're ready. */
5418 pthread_mutex_lock(&info->mutex);
5419 pthread_cond_broadcast(&info->cond);
5420 pthread_mutex_unlock(&info->mutex);
5421 /* Wait until the parent has finshed initializing the tls state. */
5422 pthread_mutex_lock(&clone_lock);
5423 pthread_mutex_unlock(&clone_lock);
5424 cpu_loop(env);
5425 /* never exits */
5426 return NULL;
5429 /* do_fork() Must return host values and target errnos (unlike most
5430 do_*() functions). */
5431 static int do_fork(CPUArchState *env, unsigned int flags, abi_ulong newsp,
5432 abi_ulong parent_tidptr, target_ulong newtls,
5433 abi_ulong child_tidptr)
5435 CPUState *cpu = ENV_GET_CPU(env);
5436 int ret;
5437 TaskState *ts;
5438 CPUState *new_cpu;
5439 CPUArchState *new_env;
5440 unsigned int nptl_flags;
5441 sigset_t sigmask;
5443 /* Emulate vfork() with fork() */
5444 if (flags & CLONE_VFORK)
5445 flags &= ~(CLONE_VFORK | CLONE_VM);
5447 if (flags & CLONE_VM) {
5448 TaskState *parent_ts = (TaskState *)cpu->opaque;
5449 new_thread_info info;
5450 pthread_attr_t attr;
5452 ts = g_new0(TaskState, 1);
5453 init_task_state(ts);
5454 /* we create a new CPU instance. */
5455 new_env = cpu_copy(env);
5456 /* Init regs that differ from the parent. */
5457 cpu_clone_regs(new_env, newsp);
5458 new_cpu = ENV_GET_CPU(new_env);
5459 new_cpu->opaque = ts;
5460 ts->bprm = parent_ts->bprm;
5461 ts->info = parent_ts->info;
5462 ts->signal_mask = parent_ts->signal_mask;
5463 nptl_flags = flags;
5464 flags &= ~CLONE_NPTL_FLAGS2;
5466 if (nptl_flags & CLONE_CHILD_CLEARTID) {
5467 ts->child_tidptr = child_tidptr;
5470 if (nptl_flags & CLONE_SETTLS)
5471 cpu_set_tls (new_env, newtls);
5473 /* Grab a mutex so that thread setup appears atomic. */
5474 pthread_mutex_lock(&clone_lock);
5476 memset(&info, 0, sizeof(info));
5477 pthread_mutex_init(&info.mutex, NULL);
5478 pthread_mutex_lock(&info.mutex);
5479 pthread_cond_init(&info.cond, NULL);
5480 info.env = new_env;
5481 if (nptl_flags & CLONE_CHILD_SETTID)
5482 info.child_tidptr = child_tidptr;
5483 if (nptl_flags & CLONE_PARENT_SETTID)
5484 info.parent_tidptr = parent_tidptr;
5486 ret = pthread_attr_init(&attr);
5487 ret = pthread_attr_setstacksize(&attr, NEW_STACK_SIZE);
5488 ret = pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
5489 /* It is not safe to deliver signals until the child has finished
5490 initializing, so temporarily block all signals. */
5491 sigfillset(&sigmask);
5492 sigprocmask(SIG_BLOCK, &sigmask, &info.sigmask);
5494 ret = pthread_create(&info.thread, &attr, clone_func, &info);
5495 /* TODO: Free new CPU state if thread creation failed. */
5497 sigprocmask(SIG_SETMASK, &info.sigmask, NULL);
5498 pthread_attr_destroy(&attr);
5499 if (ret == 0) {
5500 /* Wait for the child to initialize. */
5501 pthread_cond_wait(&info.cond, &info.mutex);
5502 ret = info.tid;
5503 if (flags & CLONE_PARENT_SETTID)
5504 put_user_u32(ret, parent_tidptr);
5505 } else {
5506 ret = -1;
5508 pthread_mutex_unlock(&info.mutex);
5509 pthread_cond_destroy(&info.cond);
5510 pthread_mutex_destroy(&info.mutex);
5511 pthread_mutex_unlock(&clone_lock);
5512 } else {
5513 /* if no CLONE_VM, we consider it is a fork */
5514 if ((flags & ~(CSIGNAL | CLONE_NPTL_FLAGS2)) != 0) {
5515 return -TARGET_EINVAL;
5518 if (block_signals()) {
5519 return -TARGET_ERESTARTSYS;
5522 fork_start();
5523 ret = fork();
5524 if (ret == 0) {
5525 /* Child Process. */
5526 rcu_after_fork();
5527 cpu_clone_regs(env, newsp);
5528 fork_end(1);
5529 /* There is a race condition here. The parent process could
5530 theoretically read the TID in the child process before the child
5531 tid is set. This would require using either ptrace
5532 (not implemented) or having *_tidptr to point at a shared memory
5533 mapping. We can't repeat the spinlock hack used above because
5534 the child process gets its own copy of the lock. */
5535 if (flags & CLONE_CHILD_SETTID)
5536 put_user_u32(gettid(), child_tidptr);
5537 if (flags & CLONE_PARENT_SETTID)
5538 put_user_u32(gettid(), parent_tidptr);
5539 ts = (TaskState *)cpu->opaque;
5540 if (flags & CLONE_SETTLS)
5541 cpu_set_tls (env, newtls);
5542 if (flags & CLONE_CHILD_CLEARTID)
5543 ts->child_tidptr = child_tidptr;
5544 } else {
5545 fork_end(0);
5548 return ret;
5551 /* warning : doesn't handle linux specific flags... */
5552 static int target_to_host_fcntl_cmd(int cmd)
5554 switch(cmd) {
5555 case TARGET_F_DUPFD:
5556 case TARGET_F_GETFD:
5557 case TARGET_F_SETFD:
5558 case TARGET_F_GETFL:
5559 case TARGET_F_SETFL:
5560 return cmd;
5561 case TARGET_F_GETLK:
5562 return F_GETLK64;
5563 case TARGET_F_SETLK:
5564 return F_SETLK64;
5565 case TARGET_F_SETLKW:
5566 return F_SETLKW64;
5567 case TARGET_F_GETOWN:
5568 return F_GETOWN;
5569 case TARGET_F_SETOWN:
5570 return F_SETOWN;
5571 case TARGET_F_GETSIG:
5572 return F_GETSIG;
5573 case TARGET_F_SETSIG:
5574 return F_SETSIG;
5575 #if TARGET_ABI_BITS == 32
5576 case TARGET_F_GETLK64:
5577 return F_GETLK64;
5578 case TARGET_F_SETLK64:
5579 return F_SETLK64;
5580 case TARGET_F_SETLKW64:
5581 return F_SETLKW64;
5582 #endif
5583 case TARGET_F_SETLEASE:
5584 return F_SETLEASE;
5585 case TARGET_F_GETLEASE:
5586 return F_GETLEASE;
5587 #ifdef F_DUPFD_CLOEXEC
5588 case TARGET_F_DUPFD_CLOEXEC:
5589 return F_DUPFD_CLOEXEC;
5590 #endif
5591 case TARGET_F_NOTIFY:
5592 return F_NOTIFY;
5593 #ifdef F_GETOWN_EX
5594 case TARGET_F_GETOWN_EX:
5595 return F_GETOWN_EX;
5596 #endif
5597 #ifdef F_SETOWN_EX
5598 case TARGET_F_SETOWN_EX:
5599 return F_SETOWN_EX;
5600 #endif
5601 case TARGET_F_SETPIPE_SZ:
5602 return F_SETPIPE_SZ;
5603 case TARGET_F_GETPIPE_SZ:
5604 return F_GETPIPE_SZ;
5605 default:
5606 return -TARGET_EINVAL;
5608 return -TARGET_EINVAL;
5611 #define TRANSTBL_CONVERT(a) { -1, TARGET_##a, -1, a }
5612 static const bitmask_transtbl flock_tbl[] = {
5613 TRANSTBL_CONVERT(F_RDLCK),
5614 TRANSTBL_CONVERT(F_WRLCK),
5615 TRANSTBL_CONVERT(F_UNLCK),
5616 TRANSTBL_CONVERT(F_EXLCK),
5617 TRANSTBL_CONVERT(F_SHLCK),
5618 { 0, 0, 0, 0 }
5621 static inline abi_long copy_from_user_flock(struct flock64 *fl,
5622 abi_ulong target_flock_addr)
5624 struct target_flock *target_fl;
5625 short l_type;
5627 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
5628 return -TARGET_EFAULT;
5631 __get_user(l_type, &target_fl->l_type);
5632 fl->l_type = target_to_host_bitmask(l_type, flock_tbl);
5633 __get_user(fl->l_whence, &target_fl->l_whence);
5634 __get_user(fl->l_start, &target_fl->l_start);
5635 __get_user(fl->l_len, &target_fl->l_len);
5636 __get_user(fl->l_pid, &target_fl->l_pid);
5637 unlock_user_struct(target_fl, target_flock_addr, 0);
5638 return 0;
5641 static inline abi_long copy_to_user_flock(abi_ulong target_flock_addr,
5642 const struct flock64 *fl)
5644 struct target_flock *target_fl;
5645 short l_type;
5647 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
5648 return -TARGET_EFAULT;
5651 l_type = host_to_target_bitmask(fl->l_type, flock_tbl);
5652 __put_user(l_type, &target_fl->l_type);
5653 __put_user(fl->l_whence, &target_fl->l_whence);
5654 __put_user(fl->l_start, &target_fl->l_start);
5655 __put_user(fl->l_len, &target_fl->l_len);
5656 __put_user(fl->l_pid, &target_fl->l_pid);
5657 unlock_user_struct(target_fl, target_flock_addr, 1);
5658 return 0;
5661 typedef abi_long from_flock64_fn(struct flock64 *fl, abi_ulong target_addr);
5662 typedef abi_long to_flock64_fn(abi_ulong target_addr, const struct flock64 *fl);
5664 #if defined(TARGET_ARM) && TARGET_ABI_BITS == 32
5665 static inline abi_long copy_from_user_eabi_flock64(struct flock64 *fl,
5666 abi_ulong target_flock_addr)
5668 struct target_eabi_flock64 *target_fl;
5669 short l_type;
5671 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
5672 return -TARGET_EFAULT;
5675 __get_user(l_type, &target_fl->l_type);
5676 fl->l_type = target_to_host_bitmask(l_type, flock_tbl);
5677 __get_user(fl->l_whence, &target_fl->l_whence);
5678 __get_user(fl->l_start, &target_fl->l_start);
5679 __get_user(fl->l_len, &target_fl->l_len);
5680 __get_user(fl->l_pid, &target_fl->l_pid);
5681 unlock_user_struct(target_fl, target_flock_addr, 0);
5682 return 0;
5685 static inline abi_long copy_to_user_eabi_flock64(abi_ulong target_flock_addr,
5686 const struct flock64 *fl)
5688 struct target_eabi_flock64 *target_fl;
5689 short l_type;
5691 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
5692 return -TARGET_EFAULT;
5695 l_type = host_to_target_bitmask(fl->l_type, flock_tbl);
5696 __put_user(l_type, &target_fl->l_type);
5697 __put_user(fl->l_whence, &target_fl->l_whence);
5698 __put_user(fl->l_start, &target_fl->l_start);
5699 __put_user(fl->l_len, &target_fl->l_len);
5700 __put_user(fl->l_pid, &target_fl->l_pid);
5701 unlock_user_struct(target_fl, target_flock_addr, 1);
5702 return 0;
5704 #endif
5706 static inline abi_long copy_from_user_flock64(struct flock64 *fl,
5707 abi_ulong target_flock_addr)
5709 struct target_flock64 *target_fl;
5710 short l_type;
5712 if (!lock_user_struct(VERIFY_READ, target_fl, target_flock_addr, 1)) {
5713 return -TARGET_EFAULT;
5716 __get_user(l_type, &target_fl->l_type);
5717 fl->l_type = target_to_host_bitmask(l_type, flock_tbl);
5718 __get_user(fl->l_whence, &target_fl->l_whence);
5719 __get_user(fl->l_start, &target_fl->l_start);
5720 __get_user(fl->l_len, &target_fl->l_len);
5721 __get_user(fl->l_pid, &target_fl->l_pid);
5722 unlock_user_struct(target_fl, target_flock_addr, 0);
5723 return 0;
5726 static inline abi_long copy_to_user_flock64(abi_ulong target_flock_addr,
5727 const struct flock64 *fl)
5729 struct target_flock64 *target_fl;
5730 short l_type;
5732 if (!lock_user_struct(VERIFY_WRITE, target_fl, target_flock_addr, 0)) {
5733 return -TARGET_EFAULT;
5736 l_type = host_to_target_bitmask(fl->l_type, flock_tbl);
5737 __put_user(l_type, &target_fl->l_type);
5738 __put_user(fl->l_whence, &target_fl->l_whence);
5739 __put_user(fl->l_start, &target_fl->l_start);
5740 __put_user(fl->l_len, &target_fl->l_len);
5741 __put_user(fl->l_pid, &target_fl->l_pid);
5742 unlock_user_struct(target_fl, target_flock_addr, 1);
5743 return 0;
5746 static abi_long do_fcntl(int fd, int cmd, abi_ulong arg)
5748 struct flock64 fl64;
5749 #ifdef F_GETOWN_EX
5750 struct f_owner_ex fox;
5751 struct target_f_owner_ex *target_fox;
5752 #endif
5753 abi_long ret;
5754 int host_cmd = target_to_host_fcntl_cmd(cmd);
5756 if (host_cmd == -TARGET_EINVAL)
5757 return host_cmd;
5759 switch(cmd) {
5760 case TARGET_F_GETLK:
5761 ret = copy_from_user_flock(&fl64, arg);
5762 if (ret) {
5763 return ret;
5765 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
5766 if (ret == 0) {
5767 ret = copy_to_user_flock(arg, &fl64);
5769 break;
5771 case TARGET_F_SETLK:
5772 case TARGET_F_SETLKW:
5773 ret = copy_from_user_flock(&fl64, arg);
5774 if (ret) {
5775 return ret;
5777 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
5778 break;
5780 case TARGET_F_GETLK64:
5781 ret = copy_from_user_flock64(&fl64, arg);
5782 if (ret) {
5783 return ret;
5785 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
5786 if (ret == 0) {
5787 ret = copy_to_user_flock64(arg, &fl64);
5789 break;
5790 case TARGET_F_SETLK64:
5791 case TARGET_F_SETLKW64:
5792 ret = copy_from_user_flock64(&fl64, arg);
5793 if (ret) {
5794 return ret;
5796 ret = get_errno(safe_fcntl(fd, host_cmd, &fl64));
5797 break;
5799 case TARGET_F_GETFL:
5800 ret = get_errno(safe_fcntl(fd, host_cmd, arg));
5801 if (ret >= 0) {
5802 ret = host_to_target_bitmask(ret, fcntl_flags_tbl);
5804 break;
5806 case TARGET_F_SETFL:
5807 ret = get_errno(safe_fcntl(fd, host_cmd,
5808 target_to_host_bitmask(arg,
5809 fcntl_flags_tbl)));
5810 break;
5812 #ifdef F_GETOWN_EX
5813 case TARGET_F_GETOWN_EX:
5814 ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
5815 if (ret >= 0) {
5816 if (!lock_user_struct(VERIFY_WRITE, target_fox, arg, 0))
5817 return -TARGET_EFAULT;
5818 target_fox->type = tswap32(fox.type);
5819 target_fox->pid = tswap32(fox.pid);
5820 unlock_user_struct(target_fox, arg, 1);
5822 break;
5823 #endif
5825 #ifdef F_SETOWN_EX
5826 case TARGET_F_SETOWN_EX:
5827 if (!lock_user_struct(VERIFY_READ, target_fox, arg, 1))
5828 return -TARGET_EFAULT;
5829 fox.type = tswap32(target_fox->type);
5830 fox.pid = tswap32(target_fox->pid);
5831 unlock_user_struct(target_fox, arg, 0);
5832 ret = get_errno(safe_fcntl(fd, host_cmd, &fox));
5833 break;
5834 #endif
5836 case TARGET_F_SETOWN:
5837 case TARGET_F_GETOWN:
5838 case TARGET_F_SETSIG:
5839 case TARGET_F_GETSIG:
5840 case TARGET_F_SETLEASE:
5841 case TARGET_F_GETLEASE:
5842 case TARGET_F_SETPIPE_SZ:
5843 case TARGET_F_GETPIPE_SZ:
5844 ret = get_errno(safe_fcntl(fd, host_cmd, arg));
5845 break;
5847 default:
5848 ret = get_errno(safe_fcntl(fd, cmd, arg));
5849 break;
5851 return ret;
5854 #ifdef USE_UID16
5856 static inline int high2lowuid(int uid)
5858 if (uid > 65535)
5859 return 65534;
5860 else
5861 return uid;
5864 static inline int high2lowgid(int gid)
5866 if (gid > 65535)
5867 return 65534;
5868 else
5869 return gid;
5872 static inline int low2highuid(int uid)
5874 if ((int16_t)uid == -1)
5875 return -1;
5876 else
5877 return uid;
5880 static inline int low2highgid(int gid)
5882 if ((int16_t)gid == -1)
5883 return -1;
5884 else
5885 return gid;
5887 static inline int tswapid(int id)
5889 return tswap16(id);
5892 #define put_user_id(x, gaddr) put_user_u16(x, gaddr)
5894 #else /* !USE_UID16 */
5895 static inline int high2lowuid(int uid)
5897 return uid;
5899 static inline int high2lowgid(int gid)
5901 return gid;
5903 static inline int low2highuid(int uid)
5905 return uid;
5907 static inline int low2highgid(int gid)
5909 return gid;
5911 static inline int tswapid(int id)
5913 return tswap32(id);
5916 #define put_user_id(x, gaddr) put_user_u32(x, gaddr)
5918 #endif /* USE_UID16 */
5920 /* We must do direct syscalls for setting UID/GID, because we want to
5921 * implement the Linux system call semantics of "change only for this thread",
5922 * not the libc/POSIX semantics of "change for all threads in process".
5923 * (See http://ewontfix.com/17/ for more details.)
5924 * We use the 32-bit version of the syscalls if present; if it is not
5925 * then either the host architecture supports 32-bit UIDs natively with
5926 * the standard syscall, or the 16-bit UID is the best we can do.
5928 #ifdef __NR_setuid32
5929 #define __NR_sys_setuid __NR_setuid32
5930 #else
5931 #define __NR_sys_setuid __NR_setuid
5932 #endif
5933 #ifdef __NR_setgid32
5934 #define __NR_sys_setgid __NR_setgid32
5935 #else
5936 #define __NR_sys_setgid __NR_setgid
5937 #endif
5938 #ifdef __NR_setresuid32
5939 #define __NR_sys_setresuid __NR_setresuid32
5940 #else
5941 #define __NR_sys_setresuid __NR_setresuid
5942 #endif
5943 #ifdef __NR_setresgid32
5944 #define __NR_sys_setresgid __NR_setresgid32
5945 #else
5946 #define __NR_sys_setresgid __NR_setresgid
5947 #endif
5949 _syscall1(int, sys_setuid, uid_t, uid)
5950 _syscall1(int, sys_setgid, gid_t, gid)
5951 _syscall3(int, sys_setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
5952 _syscall3(int, sys_setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
5954 void syscall_init(void)
5956 IOCTLEntry *ie;
5957 const argtype *arg_type;
5958 int size;
5959 int i;
5961 thunk_init(STRUCT_MAX);
5963 #define STRUCT(name, ...) thunk_register_struct(STRUCT_ ## name, #name, struct_ ## name ## _def);
5964 #define STRUCT_SPECIAL(name) thunk_register_struct_direct(STRUCT_ ## name, #name, &struct_ ## name ## _def);
5965 #include "syscall_types.h"
5966 #undef STRUCT
5967 #undef STRUCT_SPECIAL
5969 /* Build target_to_host_errno_table[] table from
5970 * host_to_target_errno_table[]. */
5971 for (i = 0; i < ERRNO_TABLE_SIZE; i++) {
5972 target_to_host_errno_table[host_to_target_errno_table[i]] = i;
5975 /* we patch the ioctl size if necessary. We rely on the fact that
5976 no ioctl has all the bits at '1' in the size field */
5977 ie = ioctl_entries;
5978 while (ie->target_cmd != 0) {
5979 if (((ie->target_cmd >> TARGET_IOC_SIZESHIFT) & TARGET_IOC_SIZEMASK) ==
5980 TARGET_IOC_SIZEMASK) {
5981 arg_type = ie->arg_type;
5982 if (arg_type[0] != TYPE_PTR) {
5983 fprintf(stderr, "cannot patch size for ioctl 0x%x\n",
5984 ie->target_cmd);
5985 exit(1);
5987 arg_type++;
5988 size = thunk_type_size(arg_type, 0);
5989 ie->target_cmd = (ie->target_cmd &
5990 ~(TARGET_IOC_SIZEMASK << TARGET_IOC_SIZESHIFT)) |
5991 (size << TARGET_IOC_SIZESHIFT);
5994 /* automatic consistency check if same arch */
5995 #if (defined(__i386__) && defined(TARGET_I386) && defined(TARGET_ABI32)) || \
5996 (defined(__x86_64__) && defined(TARGET_X86_64))
5997 if (unlikely(ie->target_cmd != ie->host_cmd)) {
5998 fprintf(stderr, "ERROR: ioctl(%s): target=0x%x host=0x%x\n",
5999 ie->name, ie->target_cmd, ie->host_cmd);
6001 #endif
6002 ie++;
6006 #if TARGET_ABI_BITS == 32
6007 static inline uint64_t target_offset64(uint32_t word0, uint32_t word1)
6009 #ifdef TARGET_WORDS_BIGENDIAN
6010 return ((uint64_t)word0 << 32) | word1;
6011 #else
6012 return ((uint64_t)word1 << 32) | word0;
6013 #endif
6015 #else /* TARGET_ABI_BITS == 32 */
6016 static inline uint64_t target_offset64(uint64_t word0, uint64_t word1)
6018 return word0;
6020 #endif /* TARGET_ABI_BITS != 32 */
6022 #ifdef TARGET_NR_truncate64
6023 static inline abi_long target_truncate64(void *cpu_env, const char *arg1,
6024 abi_long arg2,
6025 abi_long arg3,
6026 abi_long arg4)
6028 if (regpairs_aligned(cpu_env)) {
6029 arg2 = arg3;
6030 arg3 = arg4;
6032 return get_errno(truncate64(arg1, target_offset64(arg2, arg3)));
6034 #endif
6036 #ifdef TARGET_NR_ftruncate64
6037 static inline abi_long target_ftruncate64(void *cpu_env, abi_long arg1,
6038 abi_long arg2,
6039 abi_long arg3,
6040 abi_long arg4)
6042 if (regpairs_aligned(cpu_env)) {
6043 arg2 = arg3;
6044 arg3 = arg4;
6046 return get_errno(ftruncate64(arg1, target_offset64(arg2, arg3)));
6048 #endif
6050 static inline abi_long target_to_host_timespec(struct timespec *host_ts,
6051 abi_ulong target_addr)
6053 struct target_timespec *target_ts;
6055 if (!lock_user_struct(VERIFY_READ, target_ts, target_addr, 1))
6056 return -TARGET_EFAULT;
6057 __get_user(host_ts->tv_sec, &target_ts->tv_sec);
6058 __get_user(host_ts->tv_nsec, &target_ts->tv_nsec);
6059 unlock_user_struct(target_ts, target_addr, 0);
6060 return 0;
6063 static inline abi_long host_to_target_timespec(abi_ulong target_addr,
6064 struct timespec *host_ts)
6066 struct target_timespec *target_ts;
6068 if (!lock_user_struct(VERIFY_WRITE, target_ts, target_addr, 0))
6069 return -TARGET_EFAULT;
6070 __put_user(host_ts->tv_sec, &target_ts->tv_sec);
6071 __put_user(host_ts->tv_nsec, &target_ts->tv_nsec);
6072 unlock_user_struct(target_ts, target_addr, 1);
6073 return 0;
6076 static inline abi_long target_to_host_itimerspec(struct itimerspec *host_itspec,
6077 abi_ulong target_addr)
6079 struct target_itimerspec *target_itspec;
6081 if (!lock_user_struct(VERIFY_READ, target_itspec, target_addr, 1)) {
6082 return -TARGET_EFAULT;
6085 host_itspec->it_interval.tv_sec =
6086 tswapal(target_itspec->it_interval.tv_sec);
6087 host_itspec->it_interval.tv_nsec =
6088 tswapal(target_itspec->it_interval.tv_nsec);
6089 host_itspec->it_value.tv_sec = tswapal(target_itspec->it_value.tv_sec);
6090 host_itspec->it_value.tv_nsec = tswapal(target_itspec->it_value.tv_nsec);
6092 unlock_user_struct(target_itspec, target_addr, 1);
6093 return 0;
6096 static inline abi_long host_to_target_itimerspec(abi_ulong target_addr,
6097 struct itimerspec *host_its)
6099 struct target_itimerspec *target_itspec;
6101 if (!lock_user_struct(VERIFY_WRITE, target_itspec, target_addr, 0)) {
6102 return -TARGET_EFAULT;
6105 target_itspec->it_interval.tv_sec = tswapal(host_its->it_interval.tv_sec);
6106 target_itspec->it_interval.tv_nsec = tswapal(host_its->it_interval.tv_nsec);
6108 target_itspec->it_value.tv_sec = tswapal(host_its->it_value.tv_sec);
6109 target_itspec->it_value.tv_nsec = tswapal(host_its->it_value.tv_nsec);
6111 unlock_user_struct(target_itspec, target_addr, 0);
6112 return 0;
6115 static inline abi_long target_to_host_sigevent(struct sigevent *host_sevp,
6116 abi_ulong target_addr)
6118 struct target_sigevent *target_sevp;
6120 if (!lock_user_struct(VERIFY_READ, target_sevp, target_addr, 1)) {
6121 return -TARGET_EFAULT;
6124 /* This union is awkward on 64 bit systems because it has a 32 bit
6125 * integer and a pointer in it; we follow the conversion approach
6126 * used for handling sigval types in signal.c so the guest should get
6127 * the correct value back even if we did a 64 bit byteswap and it's
6128 * using the 32 bit integer.
6130 host_sevp->sigev_value.sival_ptr =
6131 (void *)(uintptr_t)tswapal(target_sevp->sigev_value.sival_ptr);
6132 host_sevp->sigev_signo =
6133 target_to_host_signal(tswap32(target_sevp->sigev_signo));
6134 host_sevp->sigev_notify = tswap32(target_sevp->sigev_notify);
6135 host_sevp->_sigev_un._tid = tswap32(target_sevp->_sigev_un._tid);
6137 unlock_user_struct(target_sevp, target_addr, 1);
6138 return 0;
6141 #if defined(TARGET_NR_mlockall)
6142 static inline int target_to_host_mlockall_arg(int arg)
6144 int result = 0;
6146 if (arg & TARGET_MLOCKALL_MCL_CURRENT) {
6147 result |= MCL_CURRENT;
6149 if (arg & TARGET_MLOCKALL_MCL_FUTURE) {
6150 result |= MCL_FUTURE;
6152 return result;
6154 #endif
6156 static inline abi_long host_to_target_stat64(void *cpu_env,
6157 abi_ulong target_addr,
6158 struct stat *host_st)
6160 #if defined(TARGET_ARM) && defined(TARGET_ABI32)
6161 if (((CPUARMState *)cpu_env)->eabi) {
6162 struct target_eabi_stat64 *target_st;
6164 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
6165 return -TARGET_EFAULT;
6166 memset(target_st, 0, sizeof(struct target_eabi_stat64));
6167 __put_user(host_st->st_dev, &target_st->st_dev);
6168 __put_user(host_st->st_ino, &target_st->st_ino);
6169 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
6170 __put_user(host_st->st_ino, &target_st->__st_ino);
6171 #endif
6172 __put_user(host_st->st_mode, &target_st->st_mode);
6173 __put_user(host_st->st_nlink, &target_st->st_nlink);
6174 __put_user(host_st->st_uid, &target_st->st_uid);
6175 __put_user(host_st->st_gid, &target_st->st_gid);
6176 __put_user(host_st->st_rdev, &target_st->st_rdev);
6177 __put_user(host_st->st_size, &target_st->st_size);
6178 __put_user(host_st->st_blksize, &target_st->st_blksize);
6179 __put_user(host_st->st_blocks, &target_st->st_blocks);
6180 __put_user(host_st->st_atime, &target_st->target_st_atime);
6181 __put_user(host_st->st_mtime, &target_st->target_st_mtime);
6182 __put_user(host_st->st_ctime, &target_st->target_st_ctime);
6183 unlock_user_struct(target_st, target_addr, 1);
6184 } else
6185 #endif
6187 #if defined(TARGET_HAS_STRUCT_STAT64)
6188 struct target_stat64 *target_st;
6189 #else
6190 struct target_stat *target_st;
6191 #endif
6193 if (!lock_user_struct(VERIFY_WRITE, target_st, target_addr, 0))
6194 return -TARGET_EFAULT;
6195 memset(target_st, 0, sizeof(*target_st));
6196 __put_user(host_st->st_dev, &target_st->st_dev);
6197 __put_user(host_st->st_ino, &target_st->st_ino);
6198 #ifdef TARGET_STAT64_HAS_BROKEN_ST_INO
6199 __put_user(host_st->st_ino, &target_st->__st_ino);
6200 #endif
6201 __put_user(host_st->st_mode, &target_st->st_mode);
6202 __put_user(host_st->st_nlink, &target_st->st_nlink);
6203 __put_user(host_st->st_uid, &target_st->st_uid);
6204 __put_user(host_st->st_gid, &target_st->st_gid);
6205 __put_user(host_st->st_rdev, &target_st->st_rdev);
6206 /* XXX: better use of kernel struct */
6207 __put_user(host_st->st_size, &target_st->st_size);
6208 __put_user(host_st->st_blksize, &target_st->st_blksize);
6209 __put_user(host_st->st_blocks, &target_st->st_blocks);
6210 __put_user(host_st->st_atime, &target_st->target_st_atime);
6211 __put_user(host_st->st_mtime, &target_st->target_st_mtime);
6212 __put_user(host_st->st_ctime, &target_st->target_st_ctime);
6213 unlock_user_struct(target_st, target_addr, 1);
6216 return 0;
6219 /* ??? Using host futex calls even when target atomic operations
6220 are not really atomic probably breaks things. However implementing
6221 futexes locally would make futexes shared between multiple processes
6222 tricky. However they're probably useless because guest atomic
6223 operations won't work either. */
6224 static int do_futex(target_ulong uaddr, int op, int val, target_ulong timeout,
6225 target_ulong uaddr2, int val3)
6227 struct timespec ts, *pts;
6228 int base_op;
6230 /* ??? We assume FUTEX_* constants are the same on both host
6231 and target. */
6232 #ifdef FUTEX_CMD_MASK
6233 base_op = op & FUTEX_CMD_MASK;
6234 #else
6235 base_op = op;
6236 #endif
6237 switch (base_op) {
6238 case FUTEX_WAIT:
6239 case FUTEX_WAIT_BITSET:
6240 if (timeout) {
6241 pts = &ts;
6242 target_to_host_timespec(pts, timeout);
6243 } else {
6244 pts = NULL;
6246 return get_errno(safe_futex(g2h(uaddr), op, tswap32(val),
6247 pts, NULL, val3));
6248 case FUTEX_WAKE:
6249 return get_errno(safe_futex(g2h(uaddr), op, val, NULL, NULL, 0));
6250 case FUTEX_FD:
6251 return get_errno(safe_futex(g2h(uaddr), op, val, NULL, NULL, 0));
6252 case FUTEX_REQUEUE:
6253 case FUTEX_CMP_REQUEUE:
6254 case FUTEX_WAKE_OP:
6255 /* For FUTEX_REQUEUE, FUTEX_CMP_REQUEUE, and FUTEX_WAKE_OP, the
6256 TIMEOUT parameter is interpreted as a uint32_t by the kernel.
6257 But the prototype takes a `struct timespec *'; insert casts
6258 to satisfy the compiler. We do not need to tswap TIMEOUT
6259 since it's not compared to guest memory. */
6260 pts = (struct timespec *)(uintptr_t) timeout;
6261 return get_errno(safe_futex(g2h(uaddr), op, val, pts,
6262 g2h(uaddr2),
6263 (base_op == FUTEX_CMP_REQUEUE
6264 ? tswap32(val3)
6265 : val3)));
6266 default:
6267 return -TARGET_ENOSYS;
6270 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
6271 static abi_long do_name_to_handle_at(abi_long dirfd, abi_long pathname,
6272 abi_long handle, abi_long mount_id,
6273 abi_long flags)
6275 struct file_handle *target_fh;
6276 struct file_handle *fh;
6277 int mid = 0;
6278 abi_long ret;
6279 char *name;
6280 unsigned int size, total_size;
6282 if (get_user_s32(size, handle)) {
6283 return -TARGET_EFAULT;
6286 name = lock_user_string(pathname);
6287 if (!name) {
6288 return -TARGET_EFAULT;
6291 total_size = sizeof(struct file_handle) + size;
6292 target_fh = lock_user(VERIFY_WRITE, handle, total_size, 0);
6293 if (!target_fh) {
6294 unlock_user(name, pathname, 0);
6295 return -TARGET_EFAULT;
6298 fh = g_malloc0(total_size);
6299 fh->handle_bytes = size;
6301 ret = get_errno(name_to_handle_at(dirfd, path(name), fh, &mid, flags));
6302 unlock_user(name, pathname, 0);
6304 /* man name_to_handle_at(2):
6305 * Other than the use of the handle_bytes field, the caller should treat
6306 * the file_handle structure as an opaque data type
6309 memcpy(target_fh, fh, total_size);
6310 target_fh->handle_bytes = tswap32(fh->handle_bytes);
6311 target_fh->handle_type = tswap32(fh->handle_type);
6312 g_free(fh);
6313 unlock_user(target_fh, handle, total_size);
6315 if (put_user_s32(mid, mount_id)) {
6316 return -TARGET_EFAULT;
6319 return ret;
6322 #endif
6324 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
6325 static abi_long do_open_by_handle_at(abi_long mount_fd, abi_long handle,
6326 abi_long flags)
6328 struct file_handle *target_fh;
6329 struct file_handle *fh;
6330 unsigned int size, total_size;
6331 abi_long ret;
6333 if (get_user_s32(size, handle)) {
6334 return -TARGET_EFAULT;
6337 total_size = sizeof(struct file_handle) + size;
6338 target_fh = lock_user(VERIFY_READ, handle, total_size, 1);
6339 if (!target_fh) {
6340 return -TARGET_EFAULT;
6343 fh = g_memdup(target_fh, total_size);
6344 fh->handle_bytes = size;
6345 fh->handle_type = tswap32(target_fh->handle_type);
6347 ret = get_errno(open_by_handle_at(mount_fd, fh,
6348 target_to_host_bitmask(flags, fcntl_flags_tbl)));
6350 g_free(fh);
6352 unlock_user(target_fh, handle, total_size);
6354 return ret;
6356 #endif
6358 #if defined(TARGET_NR_signalfd) || defined(TARGET_NR_signalfd4)
6360 /* signalfd siginfo conversion */
6362 static void
6363 host_to_target_signalfd_siginfo(struct signalfd_siginfo *tinfo,
6364 const struct signalfd_siginfo *info)
6366 int sig = host_to_target_signal(info->ssi_signo);
6368 /* linux/signalfd.h defines a ssi_addr_lsb
6369 * not defined in sys/signalfd.h but used by some kernels
6372 #ifdef BUS_MCEERR_AO
6373 if (tinfo->ssi_signo == SIGBUS &&
6374 (tinfo->ssi_code == BUS_MCEERR_AR ||
6375 tinfo->ssi_code == BUS_MCEERR_AO)) {
6376 uint16_t *ssi_addr_lsb = (uint16_t *)(&info->ssi_addr + 1);
6377 uint16_t *tssi_addr_lsb = (uint16_t *)(&tinfo->ssi_addr + 1);
6378 *tssi_addr_lsb = tswap16(*ssi_addr_lsb);
6380 #endif
6382 tinfo->ssi_signo = tswap32(sig);
6383 tinfo->ssi_errno = tswap32(tinfo->ssi_errno);
6384 tinfo->ssi_code = tswap32(info->ssi_code);
6385 tinfo->ssi_pid = tswap32(info->ssi_pid);
6386 tinfo->ssi_uid = tswap32(info->ssi_uid);
6387 tinfo->ssi_fd = tswap32(info->ssi_fd);
6388 tinfo->ssi_tid = tswap32(info->ssi_tid);
6389 tinfo->ssi_band = tswap32(info->ssi_band);
6390 tinfo->ssi_overrun = tswap32(info->ssi_overrun);
6391 tinfo->ssi_trapno = tswap32(info->ssi_trapno);
6392 tinfo->ssi_status = tswap32(info->ssi_status);
6393 tinfo->ssi_int = tswap32(info->ssi_int);
6394 tinfo->ssi_ptr = tswap64(info->ssi_ptr);
6395 tinfo->ssi_utime = tswap64(info->ssi_utime);
6396 tinfo->ssi_stime = tswap64(info->ssi_stime);
6397 tinfo->ssi_addr = tswap64(info->ssi_addr);
6400 static abi_long host_to_target_data_signalfd(void *buf, size_t len)
6402 int i;
6404 for (i = 0; i < len; i += sizeof(struct signalfd_siginfo)) {
6405 host_to_target_signalfd_siginfo(buf + i, buf + i);
6408 return len;
6411 static TargetFdTrans target_signalfd_trans = {
6412 .host_to_target_data = host_to_target_data_signalfd,
6415 static abi_long do_signalfd4(int fd, abi_long mask, int flags)
6417 int host_flags;
6418 target_sigset_t *target_mask;
6419 sigset_t host_mask;
6420 abi_long ret;
6422 if (flags & ~(TARGET_O_NONBLOCK | TARGET_O_CLOEXEC)) {
6423 return -TARGET_EINVAL;
6425 if (!lock_user_struct(VERIFY_READ, target_mask, mask, 1)) {
6426 return -TARGET_EFAULT;
6429 target_to_host_sigset(&host_mask, target_mask);
6431 host_flags = target_to_host_bitmask(flags, fcntl_flags_tbl);
6433 ret = get_errno(signalfd(fd, &host_mask, host_flags));
6434 if (ret >= 0) {
6435 fd_trans_register(ret, &target_signalfd_trans);
6438 unlock_user_struct(target_mask, mask, 0);
6440 return ret;
6442 #endif
6444 /* Map host to target signal numbers for the wait family of syscalls.
6445 Assume all other status bits are the same. */
6446 int host_to_target_waitstatus(int status)
6448 if (WIFSIGNALED(status)) {
6449 return host_to_target_signal(WTERMSIG(status)) | (status & ~0x7f);
6451 if (WIFSTOPPED(status)) {
6452 return (host_to_target_signal(WSTOPSIG(status)) << 8)
6453 | (status & 0xff);
6455 return status;
6458 static int open_self_cmdline(void *cpu_env, int fd)
6460 int fd_orig = -1;
6461 bool word_skipped = false;
6463 fd_orig = open("/proc/self/cmdline", O_RDONLY);
6464 if (fd_orig < 0) {
6465 return fd_orig;
6468 while (true) {
6469 ssize_t nb_read;
6470 char buf[128];
6471 char *cp_buf = buf;
6473 nb_read = read(fd_orig, buf, sizeof(buf));
6474 if (nb_read < 0) {
6475 int e = errno;
6476 fd_orig = close(fd_orig);
6477 errno = e;
6478 return -1;
6479 } else if (nb_read == 0) {
6480 break;
6483 if (!word_skipped) {
6484 /* Skip the first string, which is the path to qemu-*-static
6485 instead of the actual command. */
6486 cp_buf = memchr(buf, 0, sizeof(buf));
6487 if (cp_buf) {
6488 /* Null byte found, skip one string */
6489 cp_buf++;
6490 nb_read -= cp_buf - buf;
6491 word_skipped = true;
6495 if (word_skipped) {
6496 if (write(fd, cp_buf, nb_read) != nb_read) {
6497 int e = errno;
6498 close(fd_orig);
6499 errno = e;
6500 return -1;
6505 return close(fd_orig);
6508 static int open_self_maps(void *cpu_env, int fd)
6510 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env);
6511 TaskState *ts = cpu->opaque;
6512 FILE *fp;
6513 char *line = NULL;
6514 size_t len = 0;
6515 ssize_t read;
6517 fp = fopen("/proc/self/maps", "r");
6518 if (fp == NULL) {
6519 return -1;
6522 while ((read = getline(&line, &len, fp)) != -1) {
6523 int fields, dev_maj, dev_min, inode;
6524 uint64_t min, max, offset;
6525 char flag_r, flag_w, flag_x, flag_p;
6526 char path[512] = "";
6527 fields = sscanf(line, "%"PRIx64"-%"PRIx64" %c%c%c%c %"PRIx64" %x:%x %d"
6528 " %512s", &min, &max, &flag_r, &flag_w, &flag_x,
6529 &flag_p, &offset, &dev_maj, &dev_min, &inode, path);
6531 if ((fields < 10) || (fields > 11)) {
6532 continue;
6534 if (h2g_valid(min)) {
6535 int flags = page_get_flags(h2g(min));
6536 max = h2g_valid(max - 1) ? max : (uintptr_t)g2h(GUEST_ADDR_MAX);
6537 if (page_check_range(h2g(min), max - min, flags) == -1) {
6538 continue;
6540 if (h2g(min) == ts->info->stack_limit) {
6541 pstrcpy(path, sizeof(path), " [stack]");
6543 dprintf(fd, TARGET_ABI_FMT_lx "-" TARGET_ABI_FMT_lx
6544 " %c%c%c%c %08" PRIx64 " %02x:%02x %d %s%s\n",
6545 h2g(min), h2g(max - 1) + 1, flag_r, flag_w,
6546 flag_x, flag_p, offset, dev_maj, dev_min, inode,
6547 path[0] ? " " : "", path);
6551 free(line);
6552 fclose(fp);
6554 return 0;
6557 static int open_self_stat(void *cpu_env, int fd)
6559 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env);
6560 TaskState *ts = cpu->opaque;
6561 abi_ulong start_stack = ts->info->start_stack;
6562 int i;
6564 for (i = 0; i < 44; i++) {
6565 char buf[128];
6566 int len;
6567 uint64_t val = 0;
6569 if (i == 0) {
6570 /* pid */
6571 val = getpid();
6572 snprintf(buf, sizeof(buf), "%"PRId64 " ", val);
6573 } else if (i == 1) {
6574 /* app name */
6575 snprintf(buf, sizeof(buf), "(%s) ", ts->bprm->argv[0]);
6576 } else if (i == 27) {
6577 /* stack bottom */
6578 val = start_stack;
6579 snprintf(buf, sizeof(buf), "%"PRId64 " ", val);
6580 } else {
6581 /* for the rest, there is MasterCard */
6582 snprintf(buf, sizeof(buf), "0%c", i == 43 ? '\n' : ' ');
6585 len = strlen(buf);
6586 if (write(fd, buf, len) != len) {
6587 return -1;
6591 return 0;
6594 static int open_self_auxv(void *cpu_env, int fd)
6596 CPUState *cpu = ENV_GET_CPU((CPUArchState *)cpu_env);
6597 TaskState *ts = cpu->opaque;
6598 abi_ulong auxv = ts->info->saved_auxv;
6599 abi_ulong len = ts->info->auxv_len;
6600 char *ptr;
6603 * Auxiliary vector is stored in target process stack.
6604 * read in whole auxv vector and copy it to file
6606 ptr = lock_user(VERIFY_READ, auxv, len, 0);
6607 if (ptr != NULL) {
6608 while (len > 0) {
6609 ssize_t r;
6610 r = write(fd, ptr, len);
6611 if (r <= 0) {
6612 break;
6614 len -= r;
6615 ptr += r;
6617 lseek(fd, 0, SEEK_SET);
6618 unlock_user(ptr, auxv, len);
6621 return 0;
6624 static int is_proc_myself(const char *filename, const char *entry)
6626 if (!strncmp(filename, "/proc/", strlen("/proc/"))) {
6627 filename += strlen("/proc/");
6628 if (!strncmp(filename, "self/", strlen("self/"))) {
6629 filename += strlen("self/");
6630 } else if (*filename >= '1' && *filename <= '9') {
6631 char myself[80];
6632 snprintf(myself, sizeof(myself), "%d/", getpid());
6633 if (!strncmp(filename, myself, strlen(myself))) {
6634 filename += strlen(myself);
6635 } else {
6636 return 0;
6638 } else {
6639 return 0;
6641 if (!strcmp(filename, entry)) {
6642 return 1;
6645 return 0;
6648 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
6649 static int is_proc(const char *filename, const char *entry)
6651 return strcmp(filename, entry) == 0;
6654 static int open_net_route(void *cpu_env, int fd)
6656 FILE *fp;
6657 char *line = NULL;
6658 size_t len = 0;
6659 ssize_t read;
6661 fp = fopen("/proc/net/route", "r");
6662 if (fp == NULL) {
6663 return -1;
6666 /* read header */
6668 read = getline(&line, &len, fp);
6669 dprintf(fd, "%s", line);
6671 /* read routes */
6673 while ((read = getline(&line, &len, fp)) != -1) {
6674 char iface[16];
6675 uint32_t dest, gw, mask;
6676 unsigned int flags, refcnt, use, metric, mtu, window, irtt;
6677 sscanf(line, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
6678 iface, &dest, &gw, &flags, &refcnt, &use, &metric,
6679 &mask, &mtu, &window, &irtt);
6680 dprintf(fd, "%s\t%08x\t%08x\t%04x\t%d\t%d\t%d\t%08x\t%d\t%u\t%u\n",
6681 iface, tswap32(dest), tswap32(gw), flags, refcnt, use,
6682 metric, tswap32(mask), mtu, window, irtt);
6685 free(line);
6686 fclose(fp);
6688 return 0;
6690 #endif
6692 static int do_openat(void *cpu_env, int dirfd, const char *pathname, int flags, mode_t mode)
6694 struct fake_open {
6695 const char *filename;
6696 int (*fill)(void *cpu_env, int fd);
6697 int (*cmp)(const char *s1, const char *s2);
6699 const struct fake_open *fake_open;
6700 static const struct fake_open fakes[] = {
6701 { "maps", open_self_maps, is_proc_myself },
6702 { "stat", open_self_stat, is_proc_myself },
6703 { "auxv", open_self_auxv, is_proc_myself },
6704 { "cmdline", open_self_cmdline, is_proc_myself },
6705 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
6706 { "/proc/net/route", open_net_route, is_proc },
6707 #endif
6708 { NULL, NULL, NULL }
6711 if (is_proc_myself(pathname, "exe")) {
6712 int execfd = qemu_getauxval(AT_EXECFD);
6713 return execfd ? execfd : safe_openat(dirfd, exec_path, flags, mode);
6716 for (fake_open = fakes; fake_open->filename; fake_open++) {
6717 if (fake_open->cmp(pathname, fake_open->filename)) {
6718 break;
6722 if (fake_open->filename) {
6723 const char *tmpdir;
6724 char filename[PATH_MAX];
6725 int fd, r;
6727 /* create temporary file to map stat to */
6728 tmpdir = getenv("TMPDIR");
6729 if (!tmpdir)
6730 tmpdir = "/tmp";
6731 snprintf(filename, sizeof(filename), "%s/qemu-open.XXXXXX", tmpdir);
6732 fd = mkstemp(filename);
6733 if (fd < 0) {
6734 return fd;
6736 unlink(filename);
6738 if ((r = fake_open->fill(cpu_env, fd))) {
6739 int e = errno;
6740 close(fd);
6741 errno = e;
6742 return r;
6744 lseek(fd, 0, SEEK_SET);
6746 return fd;
6749 return safe_openat(dirfd, path(pathname), flags, mode);
6752 #define TIMER_MAGIC 0x0caf0000
6753 #define TIMER_MAGIC_MASK 0xffff0000
6755 /* Convert QEMU provided timer ID back to internal 16bit index format */
6756 static target_timer_t get_timer_id(abi_long arg)
6758 target_timer_t timerid = arg;
6760 if ((timerid & TIMER_MAGIC_MASK) != TIMER_MAGIC) {
6761 return -TARGET_EINVAL;
6764 timerid &= 0xffff;
6766 if (timerid >= ARRAY_SIZE(g_posix_timers)) {
6767 return -TARGET_EINVAL;
6770 return timerid;
6773 /* do_syscall() should always have a single exit point at the end so
6774 that actions, such as logging of syscall results, can be performed.
6775 All errnos that do_syscall() returns must be -TARGET_<errcode>. */
6776 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
6777 abi_long arg2, abi_long arg3, abi_long arg4,
6778 abi_long arg5, abi_long arg6, abi_long arg7,
6779 abi_long arg8)
6781 CPUState *cpu = ENV_GET_CPU(cpu_env);
6782 abi_long ret;
6783 struct stat st;
6784 struct statfs stfs;
6785 void *p;
6787 #if defined(DEBUG_ERESTARTSYS)
6788 /* Debug-only code for exercising the syscall-restart code paths
6789 * in the per-architecture cpu main loops: restart every syscall
6790 * the guest makes once before letting it through.
6793 static int flag;
6795 flag = !flag;
6796 if (flag) {
6797 return -TARGET_ERESTARTSYS;
6800 #endif
6802 #ifdef DEBUG
6803 gemu_log("syscall %d", num);
6804 #endif
6805 trace_guest_user_syscall(cpu, num, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8);
6806 if(do_strace)
6807 print_syscall(num, arg1, arg2, arg3, arg4, arg5, arg6);
6809 switch(num) {
6810 case TARGET_NR_exit:
6811 /* In old applications this may be used to implement _exit(2).
6812 However in threaded applictions it is used for thread termination,
6813 and _exit_group is used for application termination.
6814 Do thread termination if we have more then one thread. */
6816 if (block_signals()) {
6817 ret = -TARGET_ERESTARTSYS;
6818 break;
6821 if (CPU_NEXT(first_cpu)) {
6822 TaskState *ts;
6824 cpu_list_lock();
6825 /* Remove the CPU from the list. */
6826 QTAILQ_REMOVE(&cpus, cpu, node);
6827 cpu_list_unlock();
6828 ts = cpu->opaque;
6829 if (ts->child_tidptr) {
6830 put_user_u32(0, ts->child_tidptr);
6831 sys_futex(g2h(ts->child_tidptr), FUTEX_WAKE, INT_MAX,
6832 NULL, NULL, 0);
6834 thread_cpu = NULL;
6835 object_unref(OBJECT(cpu));
6836 g_free(ts);
6837 rcu_unregister_thread();
6838 pthread_exit(NULL);
6840 #ifdef TARGET_GPROF
6841 _mcleanup();
6842 #endif
6843 gdb_exit(cpu_env, arg1);
6844 _exit(arg1);
6845 ret = 0; /* avoid warning */
6846 break;
6847 case TARGET_NR_read:
6848 if (arg3 == 0)
6849 ret = 0;
6850 else {
6851 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
6852 goto efault;
6853 ret = get_errno(safe_read(arg1, p, arg3));
6854 if (ret >= 0 &&
6855 fd_trans_host_to_target_data(arg1)) {
6856 ret = fd_trans_host_to_target_data(arg1)(p, ret);
6858 unlock_user(p, arg2, ret);
6860 break;
6861 case TARGET_NR_write:
6862 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
6863 goto efault;
6864 ret = get_errno(safe_write(arg1, p, arg3));
6865 unlock_user(p, arg2, 0);
6866 break;
6867 #ifdef TARGET_NR_open
6868 case TARGET_NR_open:
6869 if (!(p = lock_user_string(arg1)))
6870 goto efault;
6871 ret = get_errno(do_openat(cpu_env, AT_FDCWD, p,
6872 target_to_host_bitmask(arg2, fcntl_flags_tbl),
6873 arg3));
6874 fd_trans_unregister(ret);
6875 unlock_user(p, arg1, 0);
6876 break;
6877 #endif
6878 case TARGET_NR_openat:
6879 if (!(p = lock_user_string(arg2)))
6880 goto efault;
6881 ret = get_errno(do_openat(cpu_env, arg1, p,
6882 target_to_host_bitmask(arg3, fcntl_flags_tbl),
6883 arg4));
6884 fd_trans_unregister(ret);
6885 unlock_user(p, arg2, 0);
6886 break;
6887 #if defined(TARGET_NR_name_to_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
6888 case TARGET_NR_name_to_handle_at:
6889 ret = do_name_to_handle_at(arg1, arg2, arg3, arg4, arg5);
6890 break;
6891 #endif
6892 #if defined(TARGET_NR_open_by_handle_at) && defined(CONFIG_OPEN_BY_HANDLE)
6893 case TARGET_NR_open_by_handle_at:
6894 ret = do_open_by_handle_at(arg1, arg2, arg3);
6895 fd_trans_unregister(ret);
6896 break;
6897 #endif
6898 case TARGET_NR_close:
6899 fd_trans_unregister(arg1);
6900 ret = get_errno(close(arg1));
6901 break;
6902 case TARGET_NR_brk:
6903 ret = do_brk(arg1);
6904 break;
6905 #ifdef TARGET_NR_fork
6906 case TARGET_NR_fork:
6907 ret = get_errno(do_fork(cpu_env, SIGCHLD, 0, 0, 0, 0));
6908 break;
6909 #endif
6910 #ifdef TARGET_NR_waitpid
6911 case TARGET_NR_waitpid:
6913 int status;
6914 ret = get_errno(safe_wait4(arg1, &status, arg3, 0));
6915 if (!is_error(ret) && arg2 && ret
6916 && put_user_s32(host_to_target_waitstatus(status), arg2))
6917 goto efault;
6919 break;
6920 #endif
6921 #ifdef TARGET_NR_waitid
6922 case TARGET_NR_waitid:
6924 siginfo_t info;
6925 info.si_pid = 0;
6926 ret = get_errno(safe_waitid(arg1, arg2, &info, arg4, NULL));
6927 if (!is_error(ret) && arg3 && info.si_pid != 0) {
6928 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_siginfo_t), 0)))
6929 goto efault;
6930 host_to_target_siginfo(p, &info);
6931 unlock_user(p, arg3, sizeof(target_siginfo_t));
6934 break;
6935 #endif
6936 #ifdef TARGET_NR_creat /* not on alpha */
6937 case TARGET_NR_creat:
6938 if (!(p = lock_user_string(arg1)))
6939 goto efault;
6940 ret = get_errno(creat(p, arg2));
6941 fd_trans_unregister(ret);
6942 unlock_user(p, arg1, 0);
6943 break;
6944 #endif
6945 #ifdef TARGET_NR_link
6946 case TARGET_NR_link:
6948 void * p2;
6949 p = lock_user_string(arg1);
6950 p2 = lock_user_string(arg2);
6951 if (!p || !p2)
6952 ret = -TARGET_EFAULT;
6953 else
6954 ret = get_errno(link(p, p2));
6955 unlock_user(p2, arg2, 0);
6956 unlock_user(p, arg1, 0);
6958 break;
6959 #endif
6960 #if defined(TARGET_NR_linkat)
6961 case TARGET_NR_linkat:
6963 void * p2 = NULL;
6964 if (!arg2 || !arg4)
6965 goto efault;
6966 p = lock_user_string(arg2);
6967 p2 = lock_user_string(arg4);
6968 if (!p || !p2)
6969 ret = -TARGET_EFAULT;
6970 else
6971 ret = get_errno(linkat(arg1, p, arg3, p2, arg5));
6972 unlock_user(p, arg2, 0);
6973 unlock_user(p2, arg4, 0);
6975 break;
6976 #endif
6977 #ifdef TARGET_NR_unlink
6978 case TARGET_NR_unlink:
6979 if (!(p = lock_user_string(arg1)))
6980 goto efault;
6981 ret = get_errno(unlink(p));
6982 unlock_user(p, arg1, 0);
6983 break;
6984 #endif
6985 #if defined(TARGET_NR_unlinkat)
6986 case TARGET_NR_unlinkat:
6987 if (!(p = lock_user_string(arg2)))
6988 goto efault;
6989 ret = get_errno(unlinkat(arg1, p, arg3));
6990 unlock_user(p, arg2, 0);
6991 break;
6992 #endif
6993 case TARGET_NR_execve:
6995 char **argp, **envp;
6996 int argc, envc;
6997 abi_ulong gp;
6998 abi_ulong guest_argp;
6999 abi_ulong guest_envp;
7000 abi_ulong addr;
7001 char **q;
7002 int total_size = 0;
7004 argc = 0;
7005 guest_argp = arg2;
7006 for (gp = guest_argp; gp; gp += sizeof(abi_ulong)) {
7007 if (get_user_ual(addr, gp))
7008 goto efault;
7009 if (!addr)
7010 break;
7011 argc++;
7013 envc = 0;
7014 guest_envp = arg3;
7015 for (gp = guest_envp; gp; gp += sizeof(abi_ulong)) {
7016 if (get_user_ual(addr, gp))
7017 goto efault;
7018 if (!addr)
7019 break;
7020 envc++;
7023 argp = alloca((argc + 1) * sizeof(void *));
7024 envp = alloca((envc + 1) * sizeof(void *));
7026 for (gp = guest_argp, q = argp; gp;
7027 gp += sizeof(abi_ulong), q++) {
7028 if (get_user_ual(addr, gp))
7029 goto execve_efault;
7030 if (!addr)
7031 break;
7032 if (!(*q = lock_user_string(addr)))
7033 goto execve_efault;
7034 total_size += strlen(*q) + 1;
7036 *q = NULL;
7038 for (gp = guest_envp, q = envp; gp;
7039 gp += sizeof(abi_ulong), q++) {
7040 if (get_user_ual(addr, gp))
7041 goto execve_efault;
7042 if (!addr)
7043 break;
7044 if (!(*q = lock_user_string(addr)))
7045 goto execve_efault;
7046 total_size += strlen(*q) + 1;
7048 *q = NULL;
7050 if (!(p = lock_user_string(arg1)))
7051 goto execve_efault;
7052 /* Although execve() is not an interruptible syscall it is
7053 * a special case where we must use the safe_syscall wrapper:
7054 * if we allow a signal to happen before we make the host
7055 * syscall then we will 'lose' it, because at the point of
7056 * execve the process leaves QEMU's control. So we use the
7057 * safe syscall wrapper to ensure that we either take the
7058 * signal as a guest signal, or else it does not happen
7059 * before the execve completes and makes it the other
7060 * program's problem.
7062 ret = get_errno(safe_execve(p, argp, envp));
7063 unlock_user(p, arg1, 0);
7065 goto execve_end;
7067 execve_efault:
7068 ret = -TARGET_EFAULT;
7070 execve_end:
7071 for (gp = guest_argp, q = argp; *q;
7072 gp += sizeof(abi_ulong), q++) {
7073 if (get_user_ual(addr, gp)
7074 || !addr)
7075 break;
7076 unlock_user(*q, addr, 0);
7078 for (gp = guest_envp, q = envp; *q;
7079 gp += sizeof(abi_ulong), q++) {
7080 if (get_user_ual(addr, gp)
7081 || !addr)
7082 break;
7083 unlock_user(*q, addr, 0);
7086 break;
7087 case TARGET_NR_chdir:
7088 if (!(p = lock_user_string(arg1)))
7089 goto efault;
7090 ret = get_errno(chdir(p));
7091 unlock_user(p, arg1, 0);
7092 break;
7093 #ifdef TARGET_NR_time
7094 case TARGET_NR_time:
7096 time_t host_time;
7097 ret = get_errno(time(&host_time));
7098 if (!is_error(ret)
7099 && arg1
7100 && put_user_sal(host_time, arg1))
7101 goto efault;
7103 break;
7104 #endif
7105 #ifdef TARGET_NR_mknod
7106 case TARGET_NR_mknod:
7107 if (!(p = lock_user_string(arg1)))
7108 goto efault;
7109 ret = get_errno(mknod(p, arg2, arg3));
7110 unlock_user(p, arg1, 0);
7111 break;
7112 #endif
7113 #if defined(TARGET_NR_mknodat)
7114 case TARGET_NR_mknodat:
7115 if (!(p = lock_user_string(arg2)))
7116 goto efault;
7117 ret = get_errno(mknodat(arg1, p, arg3, arg4));
7118 unlock_user(p, arg2, 0);
7119 break;
7120 #endif
7121 #ifdef TARGET_NR_chmod
7122 case TARGET_NR_chmod:
7123 if (!(p = lock_user_string(arg1)))
7124 goto efault;
7125 ret = get_errno(chmod(p, arg2));
7126 unlock_user(p, arg1, 0);
7127 break;
7128 #endif
7129 #ifdef TARGET_NR_break
7130 case TARGET_NR_break:
7131 goto unimplemented;
7132 #endif
7133 #ifdef TARGET_NR_oldstat
7134 case TARGET_NR_oldstat:
7135 goto unimplemented;
7136 #endif
7137 case TARGET_NR_lseek:
7138 ret = get_errno(lseek(arg1, arg2, arg3));
7139 break;
7140 #if defined(TARGET_NR_getxpid) && defined(TARGET_ALPHA)
7141 /* Alpha specific */
7142 case TARGET_NR_getxpid:
7143 ((CPUAlphaState *)cpu_env)->ir[IR_A4] = getppid();
7144 ret = get_errno(getpid());
7145 break;
7146 #endif
7147 #ifdef TARGET_NR_getpid
7148 case TARGET_NR_getpid:
7149 ret = get_errno(getpid());
7150 break;
7151 #endif
7152 case TARGET_NR_mount:
7154 /* need to look at the data field */
7155 void *p2, *p3;
7157 if (arg1) {
7158 p = lock_user_string(arg1);
7159 if (!p) {
7160 goto efault;
7162 } else {
7163 p = NULL;
7166 p2 = lock_user_string(arg2);
7167 if (!p2) {
7168 if (arg1) {
7169 unlock_user(p, arg1, 0);
7171 goto efault;
7174 if (arg3) {
7175 p3 = lock_user_string(arg3);
7176 if (!p3) {
7177 if (arg1) {
7178 unlock_user(p, arg1, 0);
7180 unlock_user(p2, arg2, 0);
7181 goto efault;
7183 } else {
7184 p3 = NULL;
7187 /* FIXME - arg5 should be locked, but it isn't clear how to
7188 * do that since it's not guaranteed to be a NULL-terminated
7189 * string.
7191 if (!arg5) {
7192 ret = mount(p, p2, p3, (unsigned long)arg4, NULL);
7193 } else {
7194 ret = mount(p, p2, p3, (unsigned long)arg4, g2h(arg5));
7196 ret = get_errno(ret);
7198 if (arg1) {
7199 unlock_user(p, arg1, 0);
7201 unlock_user(p2, arg2, 0);
7202 if (arg3) {
7203 unlock_user(p3, arg3, 0);
7206 break;
7207 #ifdef TARGET_NR_umount
7208 case TARGET_NR_umount:
7209 if (!(p = lock_user_string(arg1)))
7210 goto efault;
7211 ret = get_errno(umount(p));
7212 unlock_user(p, arg1, 0);
7213 break;
7214 #endif
7215 #ifdef TARGET_NR_stime /* not on alpha */
7216 case TARGET_NR_stime:
7218 time_t host_time;
7219 if (get_user_sal(host_time, arg1))
7220 goto efault;
7221 ret = get_errno(stime(&host_time));
7223 break;
7224 #endif
7225 case TARGET_NR_ptrace:
7226 goto unimplemented;
7227 #ifdef TARGET_NR_alarm /* not on alpha */
7228 case TARGET_NR_alarm:
7229 ret = alarm(arg1);
7230 break;
7231 #endif
7232 #ifdef TARGET_NR_oldfstat
7233 case TARGET_NR_oldfstat:
7234 goto unimplemented;
7235 #endif
7236 #ifdef TARGET_NR_pause /* not on alpha */
7237 case TARGET_NR_pause:
7238 if (!block_signals()) {
7239 sigsuspend(&((TaskState *)cpu->opaque)->signal_mask);
7241 ret = -TARGET_EINTR;
7242 break;
7243 #endif
7244 #ifdef TARGET_NR_utime
7245 case TARGET_NR_utime:
7247 struct utimbuf tbuf, *host_tbuf;
7248 struct target_utimbuf *target_tbuf;
7249 if (arg2) {
7250 if (!lock_user_struct(VERIFY_READ, target_tbuf, arg2, 1))
7251 goto efault;
7252 tbuf.actime = tswapal(target_tbuf->actime);
7253 tbuf.modtime = tswapal(target_tbuf->modtime);
7254 unlock_user_struct(target_tbuf, arg2, 0);
7255 host_tbuf = &tbuf;
7256 } else {
7257 host_tbuf = NULL;
7259 if (!(p = lock_user_string(arg1)))
7260 goto efault;
7261 ret = get_errno(utime(p, host_tbuf));
7262 unlock_user(p, arg1, 0);
7264 break;
7265 #endif
7266 #ifdef TARGET_NR_utimes
7267 case TARGET_NR_utimes:
7269 struct timeval *tvp, tv[2];
7270 if (arg2) {
7271 if (copy_from_user_timeval(&tv[0], arg2)
7272 || copy_from_user_timeval(&tv[1],
7273 arg2 + sizeof(struct target_timeval)))
7274 goto efault;
7275 tvp = tv;
7276 } else {
7277 tvp = NULL;
7279 if (!(p = lock_user_string(arg1)))
7280 goto efault;
7281 ret = get_errno(utimes(p, tvp));
7282 unlock_user(p, arg1, 0);
7284 break;
7285 #endif
7286 #if defined(TARGET_NR_futimesat)
7287 case TARGET_NR_futimesat:
7289 struct timeval *tvp, tv[2];
7290 if (arg3) {
7291 if (copy_from_user_timeval(&tv[0], arg3)
7292 || copy_from_user_timeval(&tv[1],
7293 arg3 + sizeof(struct target_timeval)))
7294 goto efault;
7295 tvp = tv;
7296 } else {
7297 tvp = NULL;
7299 if (!(p = lock_user_string(arg2)))
7300 goto efault;
7301 ret = get_errno(futimesat(arg1, path(p), tvp));
7302 unlock_user(p, arg2, 0);
7304 break;
7305 #endif
7306 #ifdef TARGET_NR_stty
7307 case TARGET_NR_stty:
7308 goto unimplemented;
7309 #endif
7310 #ifdef TARGET_NR_gtty
7311 case TARGET_NR_gtty:
7312 goto unimplemented;
7313 #endif
7314 #ifdef TARGET_NR_access
7315 case TARGET_NR_access:
7316 if (!(p = lock_user_string(arg1)))
7317 goto efault;
7318 ret = get_errno(access(path(p), arg2));
7319 unlock_user(p, arg1, 0);
7320 break;
7321 #endif
7322 #if defined(TARGET_NR_faccessat) && defined(__NR_faccessat)
7323 case TARGET_NR_faccessat:
7324 if (!(p = lock_user_string(arg2)))
7325 goto efault;
7326 ret = get_errno(faccessat(arg1, p, arg3, 0));
7327 unlock_user(p, arg2, 0);
7328 break;
7329 #endif
7330 #ifdef TARGET_NR_nice /* not on alpha */
7331 case TARGET_NR_nice:
7332 ret = get_errno(nice(arg1));
7333 break;
7334 #endif
7335 #ifdef TARGET_NR_ftime
7336 case TARGET_NR_ftime:
7337 goto unimplemented;
7338 #endif
7339 case TARGET_NR_sync:
7340 sync();
7341 ret = 0;
7342 break;
7343 case TARGET_NR_kill:
7344 ret = get_errno(safe_kill(arg1, target_to_host_signal(arg2)));
7345 break;
7346 #ifdef TARGET_NR_rename
7347 case TARGET_NR_rename:
7349 void *p2;
7350 p = lock_user_string(arg1);
7351 p2 = lock_user_string(arg2);
7352 if (!p || !p2)
7353 ret = -TARGET_EFAULT;
7354 else
7355 ret = get_errno(rename(p, p2));
7356 unlock_user(p2, arg2, 0);
7357 unlock_user(p, arg1, 0);
7359 break;
7360 #endif
7361 #if defined(TARGET_NR_renameat)
7362 case TARGET_NR_renameat:
7364 void *p2;
7365 p = lock_user_string(arg2);
7366 p2 = lock_user_string(arg4);
7367 if (!p || !p2)
7368 ret = -TARGET_EFAULT;
7369 else
7370 ret = get_errno(renameat(arg1, p, arg3, p2));
7371 unlock_user(p2, arg4, 0);
7372 unlock_user(p, arg2, 0);
7374 break;
7375 #endif
7376 #ifdef TARGET_NR_mkdir
7377 case TARGET_NR_mkdir:
7378 if (!(p = lock_user_string(arg1)))
7379 goto efault;
7380 ret = get_errno(mkdir(p, arg2));
7381 unlock_user(p, arg1, 0);
7382 break;
7383 #endif
7384 #if defined(TARGET_NR_mkdirat)
7385 case TARGET_NR_mkdirat:
7386 if (!(p = lock_user_string(arg2)))
7387 goto efault;
7388 ret = get_errno(mkdirat(arg1, p, arg3));
7389 unlock_user(p, arg2, 0);
7390 break;
7391 #endif
7392 #ifdef TARGET_NR_rmdir
7393 case TARGET_NR_rmdir:
7394 if (!(p = lock_user_string(arg1)))
7395 goto efault;
7396 ret = get_errno(rmdir(p));
7397 unlock_user(p, arg1, 0);
7398 break;
7399 #endif
7400 case TARGET_NR_dup:
7401 ret = get_errno(dup(arg1));
7402 if (ret >= 0) {
7403 fd_trans_dup(arg1, ret);
7405 break;
7406 #ifdef TARGET_NR_pipe
7407 case TARGET_NR_pipe:
7408 ret = do_pipe(cpu_env, arg1, 0, 0);
7409 break;
7410 #endif
7411 #ifdef TARGET_NR_pipe2
7412 case TARGET_NR_pipe2:
7413 ret = do_pipe(cpu_env, arg1,
7414 target_to_host_bitmask(arg2, fcntl_flags_tbl), 1);
7415 break;
7416 #endif
7417 case TARGET_NR_times:
7419 struct target_tms *tmsp;
7420 struct tms tms;
7421 ret = get_errno(times(&tms));
7422 if (arg1) {
7423 tmsp = lock_user(VERIFY_WRITE, arg1, sizeof(struct target_tms), 0);
7424 if (!tmsp)
7425 goto efault;
7426 tmsp->tms_utime = tswapal(host_to_target_clock_t(tms.tms_utime));
7427 tmsp->tms_stime = tswapal(host_to_target_clock_t(tms.tms_stime));
7428 tmsp->tms_cutime = tswapal(host_to_target_clock_t(tms.tms_cutime));
7429 tmsp->tms_cstime = tswapal(host_to_target_clock_t(tms.tms_cstime));
7431 if (!is_error(ret))
7432 ret = host_to_target_clock_t(ret);
7434 break;
7435 #ifdef TARGET_NR_prof
7436 case TARGET_NR_prof:
7437 goto unimplemented;
7438 #endif
7439 #ifdef TARGET_NR_signal
7440 case TARGET_NR_signal:
7441 goto unimplemented;
7442 #endif
7443 case TARGET_NR_acct:
7444 if (arg1 == 0) {
7445 ret = get_errno(acct(NULL));
7446 } else {
7447 if (!(p = lock_user_string(arg1)))
7448 goto efault;
7449 ret = get_errno(acct(path(p)));
7450 unlock_user(p, arg1, 0);
7452 break;
7453 #ifdef TARGET_NR_umount2
7454 case TARGET_NR_umount2:
7455 if (!(p = lock_user_string(arg1)))
7456 goto efault;
7457 ret = get_errno(umount2(p, arg2));
7458 unlock_user(p, arg1, 0);
7459 break;
7460 #endif
7461 #ifdef TARGET_NR_lock
7462 case TARGET_NR_lock:
7463 goto unimplemented;
7464 #endif
7465 case TARGET_NR_ioctl:
7466 ret = do_ioctl(arg1, arg2, arg3);
7467 break;
7468 case TARGET_NR_fcntl:
7469 ret = do_fcntl(arg1, arg2, arg3);
7470 break;
7471 #ifdef TARGET_NR_mpx
7472 case TARGET_NR_mpx:
7473 goto unimplemented;
7474 #endif
7475 case TARGET_NR_setpgid:
7476 ret = get_errno(setpgid(arg1, arg2));
7477 break;
7478 #ifdef TARGET_NR_ulimit
7479 case TARGET_NR_ulimit:
7480 goto unimplemented;
7481 #endif
7482 #ifdef TARGET_NR_oldolduname
7483 case TARGET_NR_oldolduname:
7484 goto unimplemented;
7485 #endif
7486 case TARGET_NR_umask:
7487 ret = get_errno(umask(arg1));
7488 break;
7489 case TARGET_NR_chroot:
7490 if (!(p = lock_user_string(arg1)))
7491 goto efault;
7492 ret = get_errno(chroot(p));
7493 unlock_user(p, arg1, 0);
7494 break;
7495 #ifdef TARGET_NR_ustat
7496 case TARGET_NR_ustat:
7497 goto unimplemented;
7498 #endif
7499 #ifdef TARGET_NR_dup2
7500 case TARGET_NR_dup2:
7501 ret = get_errno(dup2(arg1, arg2));
7502 if (ret >= 0) {
7503 fd_trans_dup(arg1, arg2);
7505 break;
7506 #endif
7507 #if defined(CONFIG_DUP3) && defined(TARGET_NR_dup3)
7508 case TARGET_NR_dup3:
7509 ret = get_errno(dup3(arg1, arg2, arg3));
7510 if (ret >= 0) {
7511 fd_trans_dup(arg1, arg2);
7513 break;
7514 #endif
7515 #ifdef TARGET_NR_getppid /* not on alpha */
7516 case TARGET_NR_getppid:
7517 ret = get_errno(getppid());
7518 break;
7519 #endif
7520 #ifdef TARGET_NR_getpgrp
7521 case TARGET_NR_getpgrp:
7522 ret = get_errno(getpgrp());
7523 break;
7524 #endif
7525 case TARGET_NR_setsid:
7526 ret = get_errno(setsid());
7527 break;
7528 #ifdef TARGET_NR_sigaction
7529 case TARGET_NR_sigaction:
7531 #if defined(TARGET_ALPHA)
7532 struct target_sigaction act, oact, *pact = 0;
7533 struct target_old_sigaction *old_act;
7534 if (arg2) {
7535 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
7536 goto efault;
7537 act._sa_handler = old_act->_sa_handler;
7538 target_siginitset(&act.sa_mask, old_act->sa_mask);
7539 act.sa_flags = old_act->sa_flags;
7540 act.sa_restorer = 0;
7541 unlock_user_struct(old_act, arg2, 0);
7542 pact = &act;
7544 ret = get_errno(do_sigaction(arg1, pact, &oact));
7545 if (!is_error(ret) && arg3) {
7546 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
7547 goto efault;
7548 old_act->_sa_handler = oact._sa_handler;
7549 old_act->sa_mask = oact.sa_mask.sig[0];
7550 old_act->sa_flags = oact.sa_flags;
7551 unlock_user_struct(old_act, arg3, 1);
7553 #elif defined(TARGET_MIPS)
7554 struct target_sigaction act, oact, *pact, *old_act;
7556 if (arg2) {
7557 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
7558 goto efault;
7559 act._sa_handler = old_act->_sa_handler;
7560 target_siginitset(&act.sa_mask, old_act->sa_mask.sig[0]);
7561 act.sa_flags = old_act->sa_flags;
7562 unlock_user_struct(old_act, arg2, 0);
7563 pact = &act;
7564 } else {
7565 pact = NULL;
7568 ret = get_errno(do_sigaction(arg1, pact, &oact));
7570 if (!is_error(ret) && arg3) {
7571 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
7572 goto efault;
7573 old_act->_sa_handler = oact._sa_handler;
7574 old_act->sa_flags = oact.sa_flags;
7575 old_act->sa_mask.sig[0] = oact.sa_mask.sig[0];
7576 old_act->sa_mask.sig[1] = 0;
7577 old_act->sa_mask.sig[2] = 0;
7578 old_act->sa_mask.sig[3] = 0;
7579 unlock_user_struct(old_act, arg3, 1);
7581 #else
7582 struct target_old_sigaction *old_act;
7583 struct target_sigaction act, oact, *pact;
7584 if (arg2) {
7585 if (!lock_user_struct(VERIFY_READ, old_act, arg2, 1))
7586 goto efault;
7587 act._sa_handler = old_act->_sa_handler;
7588 target_siginitset(&act.sa_mask, old_act->sa_mask);
7589 act.sa_flags = old_act->sa_flags;
7590 act.sa_restorer = old_act->sa_restorer;
7591 unlock_user_struct(old_act, arg2, 0);
7592 pact = &act;
7593 } else {
7594 pact = NULL;
7596 ret = get_errno(do_sigaction(arg1, pact, &oact));
7597 if (!is_error(ret) && arg3) {
7598 if (!lock_user_struct(VERIFY_WRITE, old_act, arg3, 0))
7599 goto efault;
7600 old_act->_sa_handler = oact._sa_handler;
7601 old_act->sa_mask = oact.sa_mask.sig[0];
7602 old_act->sa_flags = oact.sa_flags;
7603 old_act->sa_restorer = oact.sa_restorer;
7604 unlock_user_struct(old_act, arg3, 1);
7606 #endif
7608 break;
7609 #endif
7610 case TARGET_NR_rt_sigaction:
7612 #if defined(TARGET_ALPHA)
7613 struct target_sigaction act, oact, *pact = 0;
7614 struct target_rt_sigaction *rt_act;
7615 /* ??? arg4 == sizeof(sigset_t). */
7616 if (arg2) {
7617 if (!lock_user_struct(VERIFY_READ, rt_act, arg2, 1))
7618 goto efault;
7619 act._sa_handler = rt_act->_sa_handler;
7620 act.sa_mask = rt_act->sa_mask;
7621 act.sa_flags = rt_act->sa_flags;
7622 act.sa_restorer = arg5;
7623 unlock_user_struct(rt_act, arg2, 0);
7624 pact = &act;
7626 ret = get_errno(do_sigaction(arg1, pact, &oact));
7627 if (!is_error(ret) && arg3) {
7628 if (!lock_user_struct(VERIFY_WRITE, rt_act, arg3, 0))
7629 goto efault;
7630 rt_act->_sa_handler = oact._sa_handler;
7631 rt_act->sa_mask = oact.sa_mask;
7632 rt_act->sa_flags = oact.sa_flags;
7633 unlock_user_struct(rt_act, arg3, 1);
7635 #else
7636 struct target_sigaction *act;
7637 struct target_sigaction *oact;
7639 if (arg2) {
7640 if (!lock_user_struct(VERIFY_READ, act, arg2, 1))
7641 goto efault;
7642 } else
7643 act = NULL;
7644 if (arg3) {
7645 if (!lock_user_struct(VERIFY_WRITE, oact, arg3, 0)) {
7646 ret = -TARGET_EFAULT;
7647 goto rt_sigaction_fail;
7649 } else
7650 oact = NULL;
7651 ret = get_errno(do_sigaction(arg1, act, oact));
7652 rt_sigaction_fail:
7653 if (act)
7654 unlock_user_struct(act, arg2, 0);
7655 if (oact)
7656 unlock_user_struct(oact, arg3, 1);
7657 #endif
7659 break;
7660 #ifdef TARGET_NR_sgetmask /* not on alpha */
7661 case TARGET_NR_sgetmask:
7663 sigset_t cur_set;
7664 abi_ulong target_set;
7665 ret = do_sigprocmask(0, NULL, &cur_set);
7666 if (!ret) {
7667 host_to_target_old_sigset(&target_set, &cur_set);
7668 ret = target_set;
7671 break;
7672 #endif
7673 #ifdef TARGET_NR_ssetmask /* not on alpha */
7674 case TARGET_NR_ssetmask:
7676 sigset_t set, oset, cur_set;
7677 abi_ulong target_set = arg1;
7678 /* We only have one word of the new mask so we must read
7679 * the rest of it with do_sigprocmask() and OR in this word.
7680 * We are guaranteed that a do_sigprocmask() that only queries
7681 * the signal mask will not fail.
7683 ret = do_sigprocmask(0, NULL, &cur_set);
7684 assert(!ret);
7685 target_to_host_old_sigset(&set, &target_set);
7686 sigorset(&set, &set, &cur_set);
7687 ret = do_sigprocmask(SIG_SETMASK, &set, &oset);
7688 if (!ret) {
7689 host_to_target_old_sigset(&target_set, &oset);
7690 ret = target_set;
7693 break;
7694 #endif
7695 #ifdef TARGET_NR_sigprocmask
7696 case TARGET_NR_sigprocmask:
7698 #if defined(TARGET_ALPHA)
7699 sigset_t set, oldset;
7700 abi_ulong mask;
7701 int how;
7703 switch (arg1) {
7704 case TARGET_SIG_BLOCK:
7705 how = SIG_BLOCK;
7706 break;
7707 case TARGET_SIG_UNBLOCK:
7708 how = SIG_UNBLOCK;
7709 break;
7710 case TARGET_SIG_SETMASK:
7711 how = SIG_SETMASK;
7712 break;
7713 default:
7714 ret = -TARGET_EINVAL;
7715 goto fail;
7717 mask = arg2;
7718 target_to_host_old_sigset(&set, &mask);
7720 ret = do_sigprocmask(how, &set, &oldset);
7721 if (!is_error(ret)) {
7722 host_to_target_old_sigset(&mask, &oldset);
7723 ret = mask;
7724 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0; /* force no error */
7726 #else
7727 sigset_t set, oldset, *set_ptr;
7728 int how;
7730 if (arg2) {
7731 switch (arg1) {
7732 case TARGET_SIG_BLOCK:
7733 how = SIG_BLOCK;
7734 break;
7735 case TARGET_SIG_UNBLOCK:
7736 how = SIG_UNBLOCK;
7737 break;
7738 case TARGET_SIG_SETMASK:
7739 how = SIG_SETMASK;
7740 break;
7741 default:
7742 ret = -TARGET_EINVAL;
7743 goto fail;
7745 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1)))
7746 goto efault;
7747 target_to_host_old_sigset(&set, p);
7748 unlock_user(p, arg2, 0);
7749 set_ptr = &set;
7750 } else {
7751 how = 0;
7752 set_ptr = NULL;
7754 ret = do_sigprocmask(how, set_ptr, &oldset);
7755 if (!is_error(ret) && arg3) {
7756 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
7757 goto efault;
7758 host_to_target_old_sigset(p, &oldset);
7759 unlock_user(p, arg3, sizeof(target_sigset_t));
7761 #endif
7763 break;
7764 #endif
7765 case TARGET_NR_rt_sigprocmask:
7767 int how = arg1;
7768 sigset_t set, oldset, *set_ptr;
7770 if (arg2) {
7771 switch(how) {
7772 case TARGET_SIG_BLOCK:
7773 how = SIG_BLOCK;
7774 break;
7775 case TARGET_SIG_UNBLOCK:
7776 how = SIG_UNBLOCK;
7777 break;
7778 case TARGET_SIG_SETMASK:
7779 how = SIG_SETMASK;
7780 break;
7781 default:
7782 ret = -TARGET_EINVAL;
7783 goto fail;
7785 if (!(p = lock_user(VERIFY_READ, arg2, sizeof(target_sigset_t), 1)))
7786 goto efault;
7787 target_to_host_sigset(&set, p);
7788 unlock_user(p, arg2, 0);
7789 set_ptr = &set;
7790 } else {
7791 how = 0;
7792 set_ptr = NULL;
7794 ret = do_sigprocmask(how, set_ptr, &oldset);
7795 if (!is_error(ret) && arg3) {
7796 if (!(p = lock_user(VERIFY_WRITE, arg3, sizeof(target_sigset_t), 0)))
7797 goto efault;
7798 host_to_target_sigset(p, &oldset);
7799 unlock_user(p, arg3, sizeof(target_sigset_t));
7802 break;
7803 #ifdef TARGET_NR_sigpending
7804 case TARGET_NR_sigpending:
7806 sigset_t set;
7807 ret = get_errno(sigpending(&set));
7808 if (!is_error(ret)) {
7809 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
7810 goto efault;
7811 host_to_target_old_sigset(p, &set);
7812 unlock_user(p, arg1, sizeof(target_sigset_t));
7815 break;
7816 #endif
7817 case TARGET_NR_rt_sigpending:
7819 sigset_t set;
7820 ret = get_errno(sigpending(&set));
7821 if (!is_error(ret)) {
7822 if (!(p = lock_user(VERIFY_WRITE, arg1, sizeof(target_sigset_t), 0)))
7823 goto efault;
7824 host_to_target_sigset(p, &set);
7825 unlock_user(p, arg1, sizeof(target_sigset_t));
7828 break;
7829 #ifdef TARGET_NR_sigsuspend
7830 case TARGET_NR_sigsuspend:
7832 TaskState *ts = cpu->opaque;
7833 #if defined(TARGET_ALPHA)
7834 abi_ulong mask = arg1;
7835 target_to_host_old_sigset(&ts->sigsuspend_mask, &mask);
7836 #else
7837 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
7838 goto efault;
7839 target_to_host_old_sigset(&ts->sigsuspend_mask, p);
7840 unlock_user(p, arg1, 0);
7841 #endif
7842 ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask,
7843 SIGSET_T_SIZE));
7844 if (ret != -TARGET_ERESTARTSYS) {
7845 ts->in_sigsuspend = 1;
7848 break;
7849 #endif
7850 case TARGET_NR_rt_sigsuspend:
7852 TaskState *ts = cpu->opaque;
7853 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
7854 goto efault;
7855 target_to_host_sigset(&ts->sigsuspend_mask, p);
7856 unlock_user(p, arg1, 0);
7857 ret = get_errno(safe_rt_sigsuspend(&ts->sigsuspend_mask,
7858 SIGSET_T_SIZE));
7859 if (ret != -TARGET_ERESTARTSYS) {
7860 ts->in_sigsuspend = 1;
7863 break;
7864 case TARGET_NR_rt_sigtimedwait:
7866 sigset_t set;
7867 struct timespec uts, *puts;
7868 siginfo_t uinfo;
7870 if (!(p = lock_user(VERIFY_READ, arg1, sizeof(target_sigset_t), 1)))
7871 goto efault;
7872 target_to_host_sigset(&set, p);
7873 unlock_user(p, arg1, 0);
7874 if (arg3) {
7875 puts = &uts;
7876 target_to_host_timespec(puts, arg3);
7877 } else {
7878 puts = NULL;
7880 ret = get_errno(safe_rt_sigtimedwait(&set, &uinfo, puts,
7881 SIGSET_T_SIZE));
7882 if (!is_error(ret)) {
7883 if (arg2) {
7884 p = lock_user(VERIFY_WRITE, arg2, sizeof(target_siginfo_t),
7886 if (!p) {
7887 goto efault;
7889 host_to_target_siginfo(p, &uinfo);
7890 unlock_user(p, arg2, sizeof(target_siginfo_t));
7892 ret = host_to_target_signal(ret);
7895 break;
7896 case TARGET_NR_rt_sigqueueinfo:
7898 siginfo_t uinfo;
7900 p = lock_user(VERIFY_READ, arg3, sizeof(target_siginfo_t), 1);
7901 if (!p) {
7902 goto efault;
7904 target_to_host_siginfo(&uinfo, p);
7905 unlock_user(p, arg1, 0);
7906 ret = get_errno(sys_rt_sigqueueinfo(arg1, arg2, &uinfo));
7908 break;
7909 #ifdef TARGET_NR_sigreturn
7910 case TARGET_NR_sigreturn:
7911 if (block_signals()) {
7912 ret = -TARGET_ERESTARTSYS;
7913 } else {
7914 ret = do_sigreturn(cpu_env);
7916 break;
7917 #endif
7918 case TARGET_NR_rt_sigreturn:
7919 if (block_signals()) {
7920 ret = -TARGET_ERESTARTSYS;
7921 } else {
7922 ret = do_rt_sigreturn(cpu_env);
7924 break;
7925 case TARGET_NR_sethostname:
7926 if (!(p = lock_user_string(arg1)))
7927 goto efault;
7928 ret = get_errno(sethostname(p, arg2));
7929 unlock_user(p, arg1, 0);
7930 break;
7931 case TARGET_NR_setrlimit:
7933 int resource = target_to_host_resource(arg1);
7934 struct target_rlimit *target_rlim;
7935 struct rlimit rlim;
7936 if (!lock_user_struct(VERIFY_READ, target_rlim, arg2, 1))
7937 goto efault;
7938 rlim.rlim_cur = target_to_host_rlim(target_rlim->rlim_cur);
7939 rlim.rlim_max = target_to_host_rlim(target_rlim->rlim_max);
7940 unlock_user_struct(target_rlim, arg2, 0);
7941 ret = get_errno(setrlimit(resource, &rlim));
7943 break;
7944 case TARGET_NR_getrlimit:
7946 int resource = target_to_host_resource(arg1);
7947 struct target_rlimit *target_rlim;
7948 struct rlimit rlim;
7950 ret = get_errno(getrlimit(resource, &rlim));
7951 if (!is_error(ret)) {
7952 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
7953 goto efault;
7954 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
7955 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
7956 unlock_user_struct(target_rlim, arg2, 1);
7959 break;
7960 case TARGET_NR_getrusage:
7962 struct rusage rusage;
7963 ret = get_errno(getrusage(arg1, &rusage));
7964 if (!is_error(ret)) {
7965 ret = host_to_target_rusage(arg2, &rusage);
7968 break;
7969 case TARGET_NR_gettimeofday:
7971 struct timeval tv;
7972 ret = get_errno(gettimeofday(&tv, NULL));
7973 if (!is_error(ret)) {
7974 if (copy_to_user_timeval(arg1, &tv))
7975 goto efault;
7978 break;
7979 case TARGET_NR_settimeofday:
7981 struct timeval tv, *ptv = NULL;
7982 struct timezone tz, *ptz = NULL;
7984 if (arg1) {
7985 if (copy_from_user_timeval(&tv, arg1)) {
7986 goto efault;
7988 ptv = &tv;
7991 if (arg2) {
7992 if (copy_from_user_timezone(&tz, arg2)) {
7993 goto efault;
7995 ptz = &tz;
7998 ret = get_errno(settimeofday(ptv, ptz));
8000 break;
8001 #if defined(TARGET_NR_select)
8002 case TARGET_NR_select:
8003 #if defined(TARGET_S390X) || defined(TARGET_ALPHA)
8004 ret = do_select(arg1, arg2, arg3, arg4, arg5);
8005 #else
8007 struct target_sel_arg_struct *sel;
8008 abi_ulong inp, outp, exp, tvp;
8009 long nsel;
8011 if (!lock_user_struct(VERIFY_READ, sel, arg1, 1))
8012 goto efault;
8013 nsel = tswapal(sel->n);
8014 inp = tswapal(sel->inp);
8015 outp = tswapal(sel->outp);
8016 exp = tswapal(sel->exp);
8017 tvp = tswapal(sel->tvp);
8018 unlock_user_struct(sel, arg1, 0);
8019 ret = do_select(nsel, inp, outp, exp, tvp);
8021 #endif
8022 break;
8023 #endif
8024 #ifdef TARGET_NR_pselect6
8025 case TARGET_NR_pselect6:
8027 abi_long rfd_addr, wfd_addr, efd_addr, n, ts_addr;
8028 fd_set rfds, wfds, efds;
8029 fd_set *rfds_ptr, *wfds_ptr, *efds_ptr;
8030 struct timespec ts, *ts_ptr;
8033 * The 6th arg is actually two args smashed together,
8034 * so we cannot use the C library.
8036 sigset_t set;
8037 struct {
8038 sigset_t *set;
8039 size_t size;
8040 } sig, *sig_ptr;
8042 abi_ulong arg_sigset, arg_sigsize, *arg7;
8043 target_sigset_t *target_sigset;
8045 n = arg1;
8046 rfd_addr = arg2;
8047 wfd_addr = arg3;
8048 efd_addr = arg4;
8049 ts_addr = arg5;
8051 ret = copy_from_user_fdset_ptr(&rfds, &rfds_ptr, rfd_addr, n);
8052 if (ret) {
8053 goto fail;
8055 ret = copy_from_user_fdset_ptr(&wfds, &wfds_ptr, wfd_addr, n);
8056 if (ret) {
8057 goto fail;
8059 ret = copy_from_user_fdset_ptr(&efds, &efds_ptr, efd_addr, n);
8060 if (ret) {
8061 goto fail;
8065 * This takes a timespec, and not a timeval, so we cannot
8066 * use the do_select() helper ...
8068 if (ts_addr) {
8069 if (target_to_host_timespec(&ts, ts_addr)) {
8070 goto efault;
8072 ts_ptr = &ts;
8073 } else {
8074 ts_ptr = NULL;
8077 /* Extract the two packed args for the sigset */
8078 if (arg6) {
8079 sig_ptr = &sig;
8080 sig.size = SIGSET_T_SIZE;
8082 arg7 = lock_user(VERIFY_READ, arg6, sizeof(*arg7) * 2, 1);
8083 if (!arg7) {
8084 goto efault;
8086 arg_sigset = tswapal(arg7[0]);
8087 arg_sigsize = tswapal(arg7[1]);
8088 unlock_user(arg7, arg6, 0);
8090 if (arg_sigset) {
8091 sig.set = &set;
8092 if (arg_sigsize != sizeof(*target_sigset)) {
8093 /* Like the kernel, we enforce correct size sigsets */
8094 ret = -TARGET_EINVAL;
8095 goto fail;
8097 target_sigset = lock_user(VERIFY_READ, arg_sigset,
8098 sizeof(*target_sigset), 1);
8099 if (!target_sigset) {
8100 goto efault;
8102 target_to_host_sigset(&set, target_sigset);
8103 unlock_user(target_sigset, arg_sigset, 0);
8104 } else {
8105 sig.set = NULL;
8107 } else {
8108 sig_ptr = NULL;
8111 ret = get_errno(safe_pselect6(n, rfds_ptr, wfds_ptr, efds_ptr,
8112 ts_ptr, sig_ptr));
8114 if (!is_error(ret)) {
8115 if (rfd_addr && copy_to_user_fdset(rfd_addr, &rfds, n))
8116 goto efault;
8117 if (wfd_addr && copy_to_user_fdset(wfd_addr, &wfds, n))
8118 goto efault;
8119 if (efd_addr && copy_to_user_fdset(efd_addr, &efds, n))
8120 goto efault;
8122 if (ts_addr && host_to_target_timespec(ts_addr, &ts))
8123 goto efault;
8126 break;
8127 #endif
8128 #ifdef TARGET_NR_symlink
8129 case TARGET_NR_symlink:
8131 void *p2;
8132 p = lock_user_string(arg1);
8133 p2 = lock_user_string(arg2);
8134 if (!p || !p2)
8135 ret = -TARGET_EFAULT;
8136 else
8137 ret = get_errno(symlink(p, p2));
8138 unlock_user(p2, arg2, 0);
8139 unlock_user(p, arg1, 0);
8141 break;
8142 #endif
8143 #if defined(TARGET_NR_symlinkat)
8144 case TARGET_NR_symlinkat:
8146 void *p2;
8147 p = lock_user_string(arg1);
8148 p2 = lock_user_string(arg3);
8149 if (!p || !p2)
8150 ret = -TARGET_EFAULT;
8151 else
8152 ret = get_errno(symlinkat(p, arg2, p2));
8153 unlock_user(p2, arg3, 0);
8154 unlock_user(p, arg1, 0);
8156 break;
8157 #endif
8158 #ifdef TARGET_NR_oldlstat
8159 case TARGET_NR_oldlstat:
8160 goto unimplemented;
8161 #endif
8162 #ifdef TARGET_NR_readlink
8163 case TARGET_NR_readlink:
8165 void *p2;
8166 p = lock_user_string(arg1);
8167 p2 = lock_user(VERIFY_WRITE, arg2, arg3, 0);
8168 if (!p || !p2) {
8169 ret = -TARGET_EFAULT;
8170 } else if (!arg3) {
8171 /* Short circuit this for the magic exe check. */
8172 ret = -TARGET_EINVAL;
8173 } else if (is_proc_myself((const char *)p, "exe")) {
8174 char real[PATH_MAX], *temp;
8175 temp = realpath(exec_path, real);
8176 /* Return value is # of bytes that we wrote to the buffer. */
8177 if (temp == NULL) {
8178 ret = get_errno(-1);
8179 } else {
8180 /* Don't worry about sign mismatch as earlier mapping
8181 * logic would have thrown a bad address error. */
8182 ret = MIN(strlen(real), arg3);
8183 /* We cannot NUL terminate the string. */
8184 memcpy(p2, real, ret);
8186 } else {
8187 ret = get_errno(readlink(path(p), p2, arg3));
8189 unlock_user(p2, arg2, ret);
8190 unlock_user(p, arg1, 0);
8192 break;
8193 #endif
8194 #if defined(TARGET_NR_readlinkat)
8195 case TARGET_NR_readlinkat:
8197 void *p2;
8198 p = lock_user_string(arg2);
8199 p2 = lock_user(VERIFY_WRITE, arg3, arg4, 0);
8200 if (!p || !p2) {
8201 ret = -TARGET_EFAULT;
8202 } else if (is_proc_myself((const char *)p, "exe")) {
8203 char real[PATH_MAX], *temp;
8204 temp = realpath(exec_path, real);
8205 ret = temp == NULL ? get_errno(-1) : strlen(real) ;
8206 snprintf((char *)p2, arg4, "%s", real);
8207 } else {
8208 ret = get_errno(readlinkat(arg1, path(p), p2, arg4));
8210 unlock_user(p2, arg3, ret);
8211 unlock_user(p, arg2, 0);
8213 break;
8214 #endif
8215 #ifdef TARGET_NR_uselib
8216 case TARGET_NR_uselib:
8217 goto unimplemented;
8218 #endif
8219 #ifdef TARGET_NR_swapon
8220 case TARGET_NR_swapon:
8221 if (!(p = lock_user_string(arg1)))
8222 goto efault;
8223 ret = get_errno(swapon(p, arg2));
8224 unlock_user(p, arg1, 0);
8225 break;
8226 #endif
8227 case TARGET_NR_reboot:
8228 if (arg3 == LINUX_REBOOT_CMD_RESTART2) {
8229 /* arg4 must be ignored in all other cases */
8230 p = lock_user_string(arg4);
8231 if (!p) {
8232 goto efault;
8234 ret = get_errno(reboot(arg1, arg2, arg3, p));
8235 unlock_user(p, arg4, 0);
8236 } else {
8237 ret = get_errno(reboot(arg1, arg2, arg3, NULL));
8239 break;
8240 #ifdef TARGET_NR_readdir
8241 case TARGET_NR_readdir:
8242 goto unimplemented;
8243 #endif
8244 #ifdef TARGET_NR_mmap
8245 case TARGET_NR_mmap:
8246 #if (defined(TARGET_I386) && defined(TARGET_ABI32)) || \
8247 (defined(TARGET_ARM) && defined(TARGET_ABI32)) || \
8248 defined(TARGET_M68K) || defined(TARGET_CRIS) || defined(TARGET_MICROBLAZE) \
8249 || defined(TARGET_S390X)
8251 abi_ulong *v;
8252 abi_ulong v1, v2, v3, v4, v5, v6;
8253 if (!(v = lock_user(VERIFY_READ, arg1, 6 * sizeof(abi_ulong), 1)))
8254 goto efault;
8255 v1 = tswapal(v[0]);
8256 v2 = tswapal(v[1]);
8257 v3 = tswapal(v[2]);
8258 v4 = tswapal(v[3]);
8259 v5 = tswapal(v[4]);
8260 v6 = tswapal(v[5]);
8261 unlock_user(v, arg1, 0);
8262 ret = get_errno(target_mmap(v1, v2, v3,
8263 target_to_host_bitmask(v4, mmap_flags_tbl),
8264 v5, v6));
8266 #else
8267 ret = get_errno(target_mmap(arg1, arg2, arg3,
8268 target_to_host_bitmask(arg4, mmap_flags_tbl),
8269 arg5,
8270 arg6));
8271 #endif
8272 break;
8273 #endif
8274 #ifdef TARGET_NR_mmap2
8275 case TARGET_NR_mmap2:
8276 #ifndef MMAP_SHIFT
8277 #define MMAP_SHIFT 12
8278 #endif
8279 ret = get_errno(target_mmap(arg1, arg2, arg3,
8280 target_to_host_bitmask(arg4, mmap_flags_tbl),
8281 arg5,
8282 arg6 << MMAP_SHIFT));
8283 break;
8284 #endif
8285 case TARGET_NR_munmap:
8286 ret = get_errno(target_munmap(arg1, arg2));
8287 break;
8288 case TARGET_NR_mprotect:
8290 TaskState *ts = cpu->opaque;
8291 /* Special hack to detect libc making the stack executable. */
8292 if ((arg3 & PROT_GROWSDOWN)
8293 && arg1 >= ts->info->stack_limit
8294 && arg1 <= ts->info->start_stack) {
8295 arg3 &= ~PROT_GROWSDOWN;
8296 arg2 = arg2 + arg1 - ts->info->stack_limit;
8297 arg1 = ts->info->stack_limit;
8300 ret = get_errno(target_mprotect(arg1, arg2, arg3));
8301 break;
8302 #ifdef TARGET_NR_mremap
8303 case TARGET_NR_mremap:
8304 ret = get_errno(target_mremap(arg1, arg2, arg3, arg4, arg5));
8305 break;
8306 #endif
8307 /* ??? msync/mlock/munlock are broken for softmmu. */
8308 #ifdef TARGET_NR_msync
8309 case TARGET_NR_msync:
8310 ret = get_errno(msync(g2h(arg1), arg2, arg3));
8311 break;
8312 #endif
8313 #ifdef TARGET_NR_mlock
8314 case TARGET_NR_mlock:
8315 ret = get_errno(mlock(g2h(arg1), arg2));
8316 break;
8317 #endif
8318 #ifdef TARGET_NR_munlock
8319 case TARGET_NR_munlock:
8320 ret = get_errno(munlock(g2h(arg1), arg2));
8321 break;
8322 #endif
8323 #ifdef TARGET_NR_mlockall
8324 case TARGET_NR_mlockall:
8325 ret = get_errno(mlockall(target_to_host_mlockall_arg(arg1)));
8326 break;
8327 #endif
8328 #ifdef TARGET_NR_munlockall
8329 case TARGET_NR_munlockall:
8330 ret = get_errno(munlockall());
8331 break;
8332 #endif
8333 case TARGET_NR_truncate:
8334 if (!(p = lock_user_string(arg1)))
8335 goto efault;
8336 ret = get_errno(truncate(p, arg2));
8337 unlock_user(p, arg1, 0);
8338 break;
8339 case TARGET_NR_ftruncate:
8340 ret = get_errno(ftruncate(arg1, arg2));
8341 break;
8342 case TARGET_NR_fchmod:
8343 ret = get_errno(fchmod(arg1, arg2));
8344 break;
8345 #if defined(TARGET_NR_fchmodat)
8346 case TARGET_NR_fchmodat:
8347 if (!(p = lock_user_string(arg2)))
8348 goto efault;
8349 ret = get_errno(fchmodat(arg1, p, arg3, 0));
8350 unlock_user(p, arg2, 0);
8351 break;
8352 #endif
8353 case TARGET_NR_getpriority:
8354 /* Note that negative values are valid for getpriority, so we must
8355 differentiate based on errno settings. */
8356 errno = 0;
8357 ret = getpriority(arg1, arg2);
8358 if (ret == -1 && errno != 0) {
8359 ret = -host_to_target_errno(errno);
8360 break;
8362 #ifdef TARGET_ALPHA
8363 /* Return value is the unbiased priority. Signal no error. */
8364 ((CPUAlphaState *)cpu_env)->ir[IR_V0] = 0;
8365 #else
8366 /* Return value is a biased priority to avoid negative numbers. */
8367 ret = 20 - ret;
8368 #endif
8369 break;
8370 case TARGET_NR_setpriority:
8371 ret = get_errno(setpriority(arg1, arg2, arg3));
8372 break;
8373 #ifdef TARGET_NR_profil
8374 case TARGET_NR_profil:
8375 goto unimplemented;
8376 #endif
8377 case TARGET_NR_statfs:
8378 if (!(p = lock_user_string(arg1)))
8379 goto efault;
8380 ret = get_errno(statfs(path(p), &stfs));
8381 unlock_user(p, arg1, 0);
8382 convert_statfs:
8383 if (!is_error(ret)) {
8384 struct target_statfs *target_stfs;
8386 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg2, 0))
8387 goto efault;
8388 __put_user(stfs.f_type, &target_stfs->f_type);
8389 __put_user(stfs.f_bsize, &target_stfs->f_bsize);
8390 __put_user(stfs.f_blocks, &target_stfs->f_blocks);
8391 __put_user(stfs.f_bfree, &target_stfs->f_bfree);
8392 __put_user(stfs.f_bavail, &target_stfs->f_bavail);
8393 __put_user(stfs.f_files, &target_stfs->f_files);
8394 __put_user(stfs.f_ffree, &target_stfs->f_ffree);
8395 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
8396 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
8397 __put_user(stfs.f_namelen, &target_stfs->f_namelen);
8398 __put_user(stfs.f_frsize, &target_stfs->f_frsize);
8399 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
8400 unlock_user_struct(target_stfs, arg2, 1);
8402 break;
8403 case TARGET_NR_fstatfs:
8404 ret = get_errno(fstatfs(arg1, &stfs));
8405 goto convert_statfs;
8406 #ifdef TARGET_NR_statfs64
8407 case TARGET_NR_statfs64:
8408 if (!(p = lock_user_string(arg1)))
8409 goto efault;
8410 ret = get_errno(statfs(path(p), &stfs));
8411 unlock_user(p, arg1, 0);
8412 convert_statfs64:
8413 if (!is_error(ret)) {
8414 struct target_statfs64 *target_stfs;
8416 if (!lock_user_struct(VERIFY_WRITE, target_stfs, arg3, 0))
8417 goto efault;
8418 __put_user(stfs.f_type, &target_stfs->f_type);
8419 __put_user(stfs.f_bsize, &target_stfs->f_bsize);
8420 __put_user(stfs.f_blocks, &target_stfs->f_blocks);
8421 __put_user(stfs.f_bfree, &target_stfs->f_bfree);
8422 __put_user(stfs.f_bavail, &target_stfs->f_bavail);
8423 __put_user(stfs.f_files, &target_stfs->f_files);
8424 __put_user(stfs.f_ffree, &target_stfs->f_ffree);
8425 __put_user(stfs.f_fsid.__val[0], &target_stfs->f_fsid.val[0]);
8426 __put_user(stfs.f_fsid.__val[1], &target_stfs->f_fsid.val[1]);
8427 __put_user(stfs.f_namelen, &target_stfs->f_namelen);
8428 __put_user(stfs.f_frsize, &target_stfs->f_frsize);
8429 memset(target_stfs->f_spare, 0, sizeof(target_stfs->f_spare));
8430 unlock_user_struct(target_stfs, arg3, 1);
8432 break;
8433 case TARGET_NR_fstatfs64:
8434 ret = get_errno(fstatfs(arg1, &stfs));
8435 goto convert_statfs64;
8436 #endif
8437 #ifdef TARGET_NR_ioperm
8438 case TARGET_NR_ioperm:
8439 goto unimplemented;
8440 #endif
8441 #ifdef TARGET_NR_socketcall
8442 case TARGET_NR_socketcall:
8443 ret = do_socketcall(arg1, arg2);
8444 break;
8445 #endif
8446 #ifdef TARGET_NR_accept
8447 case TARGET_NR_accept:
8448 ret = do_accept4(arg1, arg2, arg3, 0);
8449 break;
8450 #endif
8451 #ifdef TARGET_NR_accept4
8452 case TARGET_NR_accept4:
8453 ret = do_accept4(arg1, arg2, arg3, arg4);
8454 break;
8455 #endif
8456 #ifdef TARGET_NR_bind
8457 case TARGET_NR_bind:
8458 ret = do_bind(arg1, arg2, arg3);
8459 break;
8460 #endif
8461 #ifdef TARGET_NR_connect
8462 case TARGET_NR_connect:
8463 ret = do_connect(arg1, arg2, arg3);
8464 break;
8465 #endif
8466 #ifdef TARGET_NR_getpeername
8467 case TARGET_NR_getpeername:
8468 ret = do_getpeername(arg1, arg2, arg3);
8469 break;
8470 #endif
8471 #ifdef TARGET_NR_getsockname
8472 case TARGET_NR_getsockname:
8473 ret = do_getsockname(arg1, arg2, arg3);
8474 break;
8475 #endif
8476 #ifdef TARGET_NR_getsockopt
8477 case TARGET_NR_getsockopt:
8478 ret = do_getsockopt(arg1, arg2, arg3, arg4, arg5);
8479 break;
8480 #endif
8481 #ifdef TARGET_NR_listen
8482 case TARGET_NR_listen:
8483 ret = get_errno(listen(arg1, arg2));
8484 break;
8485 #endif
8486 #ifdef TARGET_NR_recv
8487 case TARGET_NR_recv:
8488 ret = do_recvfrom(arg1, arg2, arg3, arg4, 0, 0);
8489 break;
8490 #endif
8491 #ifdef TARGET_NR_recvfrom
8492 case TARGET_NR_recvfrom:
8493 ret = do_recvfrom(arg1, arg2, arg3, arg4, arg5, arg6);
8494 break;
8495 #endif
8496 #ifdef TARGET_NR_recvmsg
8497 case TARGET_NR_recvmsg:
8498 ret = do_sendrecvmsg(arg1, arg2, arg3, 0);
8499 break;
8500 #endif
8501 #ifdef TARGET_NR_send
8502 case TARGET_NR_send:
8503 ret = do_sendto(arg1, arg2, arg3, arg4, 0, 0);
8504 break;
8505 #endif
8506 #ifdef TARGET_NR_sendmsg
8507 case TARGET_NR_sendmsg:
8508 ret = do_sendrecvmsg(arg1, arg2, arg3, 1);
8509 break;
8510 #endif
8511 #ifdef TARGET_NR_sendmmsg
8512 case TARGET_NR_sendmmsg:
8513 ret = do_sendrecvmmsg(arg1, arg2, arg3, arg4, 1);
8514 break;
8515 case TARGET_NR_recvmmsg:
8516 ret = do_sendrecvmmsg(arg1, arg2, arg3, arg4, 0);
8517 break;
8518 #endif
8519 #ifdef TARGET_NR_sendto
8520 case TARGET_NR_sendto:
8521 ret = do_sendto(arg1, arg2, arg3, arg4, arg5, arg6);
8522 break;
8523 #endif
8524 #ifdef TARGET_NR_shutdown
8525 case TARGET_NR_shutdown:
8526 ret = get_errno(shutdown(arg1, arg2));
8527 break;
8528 #endif
8529 #if defined(TARGET_NR_getrandom) && defined(__NR_getrandom)
8530 case TARGET_NR_getrandom:
8531 p = lock_user(VERIFY_WRITE, arg1, arg2, 0);
8532 if (!p) {
8533 goto efault;
8535 ret = get_errno(getrandom(p, arg2, arg3));
8536 unlock_user(p, arg1, ret);
8537 break;
8538 #endif
8539 #ifdef TARGET_NR_socket
8540 case TARGET_NR_socket:
8541 ret = do_socket(arg1, arg2, arg3);
8542 fd_trans_unregister(ret);
8543 break;
8544 #endif
8545 #ifdef TARGET_NR_socketpair
8546 case TARGET_NR_socketpair:
8547 ret = do_socketpair(arg1, arg2, arg3, arg4);
8548 break;
8549 #endif
8550 #ifdef TARGET_NR_setsockopt
8551 case TARGET_NR_setsockopt:
8552 ret = do_setsockopt(arg1, arg2, arg3, arg4, (socklen_t) arg5);
8553 break;
8554 #endif
8556 case TARGET_NR_syslog:
8557 if (!(p = lock_user_string(arg2)))
8558 goto efault;
8559 ret = get_errno(sys_syslog((int)arg1, p, (int)arg3));
8560 unlock_user(p, arg2, 0);
8561 break;
8563 case TARGET_NR_setitimer:
8565 struct itimerval value, ovalue, *pvalue;
8567 if (arg2) {
8568 pvalue = &value;
8569 if (copy_from_user_timeval(&pvalue->it_interval, arg2)
8570 || copy_from_user_timeval(&pvalue->it_value,
8571 arg2 + sizeof(struct target_timeval)))
8572 goto efault;
8573 } else {
8574 pvalue = NULL;
8576 ret = get_errno(setitimer(arg1, pvalue, &ovalue));
8577 if (!is_error(ret) && arg3) {
8578 if (copy_to_user_timeval(arg3,
8579 &ovalue.it_interval)
8580 || copy_to_user_timeval(arg3 + sizeof(struct target_timeval),
8581 &ovalue.it_value))
8582 goto efault;
8585 break;
8586 case TARGET_NR_getitimer:
8588 struct itimerval value;
8590 ret = get_errno(getitimer(arg1, &value));
8591 if (!is_error(ret) && arg2) {
8592 if (copy_to_user_timeval(arg2,
8593 &value.it_interval)
8594 || copy_to_user_timeval(arg2 + sizeof(struct target_timeval),
8595 &value.it_value))
8596 goto efault;
8599 break;
8600 #ifdef TARGET_NR_stat
8601 case TARGET_NR_stat:
8602 if (!(p = lock_user_string(arg1)))
8603 goto efault;
8604 ret = get_errno(stat(path(p), &st));
8605 unlock_user(p, arg1, 0);
8606 goto do_stat;
8607 #endif
8608 #ifdef TARGET_NR_lstat
8609 case TARGET_NR_lstat:
8610 if (!(p = lock_user_string(arg1)))
8611 goto efault;
8612 ret = get_errno(lstat(path(p), &st));
8613 unlock_user(p, arg1, 0);
8614 goto do_stat;
8615 #endif
8616 case TARGET_NR_fstat:
8618 ret = get_errno(fstat(arg1, &st));
8619 #if defined(TARGET_NR_stat) || defined(TARGET_NR_lstat)
8620 do_stat:
8621 #endif
8622 if (!is_error(ret)) {
8623 struct target_stat *target_st;
8625 if (!lock_user_struct(VERIFY_WRITE, target_st, arg2, 0))
8626 goto efault;
8627 memset(target_st, 0, sizeof(*target_st));
8628 __put_user(st.st_dev, &target_st->st_dev);
8629 __put_user(st.st_ino, &target_st->st_ino);
8630 __put_user(st.st_mode, &target_st->st_mode);
8631 __put_user(st.st_uid, &target_st->st_uid);
8632 __put_user(st.st_gid, &target_st->st_gid);
8633 __put_user(st.st_nlink, &target_st->st_nlink);
8634 __put_user(st.st_rdev, &target_st->st_rdev);
8635 __put_user(st.st_size, &target_st->st_size);
8636 __put_user(st.st_blksize, &target_st->st_blksize);
8637 __put_user(st.st_blocks, &target_st->st_blocks);
8638 __put_user(st.st_atime, &target_st->target_st_atime);
8639 __put_user(st.st_mtime, &target_st->target_st_mtime);
8640 __put_user(st.st_ctime, &target_st->target_st_ctime);
8641 unlock_user_struct(target_st, arg2, 1);
8644 break;
8645 #ifdef TARGET_NR_olduname
8646 case TARGET_NR_olduname:
8647 goto unimplemented;
8648 #endif
8649 #ifdef TARGET_NR_iopl
8650 case TARGET_NR_iopl:
8651 goto unimplemented;
8652 #endif
8653 case TARGET_NR_vhangup:
8654 ret = get_errno(vhangup());
8655 break;
8656 #ifdef TARGET_NR_idle
8657 case TARGET_NR_idle:
8658 goto unimplemented;
8659 #endif
8660 #ifdef TARGET_NR_syscall
8661 case TARGET_NR_syscall:
8662 ret = do_syscall(cpu_env, arg1 & 0xffff, arg2, arg3, arg4, arg5,
8663 arg6, arg7, arg8, 0);
8664 break;
8665 #endif
8666 case TARGET_NR_wait4:
8668 int status;
8669 abi_long status_ptr = arg2;
8670 struct rusage rusage, *rusage_ptr;
8671 abi_ulong target_rusage = arg4;
8672 abi_long rusage_err;
8673 if (target_rusage)
8674 rusage_ptr = &rusage;
8675 else
8676 rusage_ptr = NULL;
8677 ret = get_errno(safe_wait4(arg1, &status, arg3, rusage_ptr));
8678 if (!is_error(ret)) {
8679 if (status_ptr && ret) {
8680 status = host_to_target_waitstatus(status);
8681 if (put_user_s32(status, status_ptr))
8682 goto efault;
8684 if (target_rusage) {
8685 rusage_err = host_to_target_rusage(target_rusage, &rusage);
8686 if (rusage_err) {
8687 ret = rusage_err;
8692 break;
8693 #ifdef TARGET_NR_swapoff
8694 case TARGET_NR_swapoff:
8695 if (!(p = lock_user_string(arg1)))
8696 goto efault;
8697 ret = get_errno(swapoff(p));
8698 unlock_user(p, arg1, 0);
8699 break;
8700 #endif
8701 case TARGET_NR_sysinfo:
8703 struct target_sysinfo *target_value;
8704 struct sysinfo value;
8705 ret = get_errno(sysinfo(&value));
8706 if (!is_error(ret) && arg1)
8708 if (!lock_user_struct(VERIFY_WRITE, target_value, arg1, 0))
8709 goto efault;
8710 __put_user(value.uptime, &target_value->uptime);
8711 __put_user(value.loads[0], &target_value->loads[0]);
8712 __put_user(value.loads[1], &target_value->loads[1]);
8713 __put_user(value.loads[2], &target_value->loads[2]);
8714 __put_user(value.totalram, &target_value->totalram);
8715 __put_user(value.freeram, &target_value->freeram);
8716 __put_user(value.sharedram, &target_value->sharedram);
8717 __put_user(value.bufferram, &target_value->bufferram);
8718 __put_user(value.totalswap, &target_value->totalswap);
8719 __put_user(value.freeswap, &target_value->freeswap);
8720 __put_user(value.procs, &target_value->procs);
8721 __put_user(value.totalhigh, &target_value->totalhigh);
8722 __put_user(value.freehigh, &target_value->freehigh);
8723 __put_user(value.mem_unit, &target_value->mem_unit);
8724 unlock_user_struct(target_value, arg1, 1);
8727 break;
8728 #ifdef TARGET_NR_ipc
8729 case TARGET_NR_ipc:
8730 ret = do_ipc(arg1, arg2, arg3, arg4, arg5, arg6);
8731 break;
8732 #endif
8733 #ifdef TARGET_NR_semget
8734 case TARGET_NR_semget:
8735 ret = get_errno(semget(arg1, arg2, arg3));
8736 break;
8737 #endif
8738 #ifdef TARGET_NR_semop
8739 case TARGET_NR_semop:
8740 ret = do_semop(arg1, arg2, arg3);
8741 break;
8742 #endif
8743 #ifdef TARGET_NR_semctl
8744 case TARGET_NR_semctl:
8745 ret = do_semctl(arg1, arg2, arg3, arg4);
8746 break;
8747 #endif
8748 #ifdef TARGET_NR_msgctl
8749 case TARGET_NR_msgctl:
8750 ret = do_msgctl(arg1, arg2, arg3);
8751 break;
8752 #endif
8753 #ifdef TARGET_NR_msgget
8754 case TARGET_NR_msgget:
8755 ret = get_errno(msgget(arg1, arg2));
8756 break;
8757 #endif
8758 #ifdef TARGET_NR_msgrcv
8759 case TARGET_NR_msgrcv:
8760 ret = do_msgrcv(arg1, arg2, arg3, arg4, arg5);
8761 break;
8762 #endif
8763 #ifdef TARGET_NR_msgsnd
8764 case TARGET_NR_msgsnd:
8765 ret = do_msgsnd(arg1, arg2, arg3, arg4);
8766 break;
8767 #endif
8768 #ifdef TARGET_NR_shmget
8769 case TARGET_NR_shmget:
8770 ret = get_errno(shmget(arg1, arg2, arg3));
8771 break;
8772 #endif
8773 #ifdef TARGET_NR_shmctl
8774 case TARGET_NR_shmctl:
8775 ret = do_shmctl(arg1, arg2, arg3);
8776 break;
8777 #endif
8778 #ifdef TARGET_NR_shmat
8779 case TARGET_NR_shmat:
8780 ret = do_shmat(arg1, arg2, arg3);
8781 break;
8782 #endif
8783 #ifdef TARGET_NR_shmdt
8784 case TARGET_NR_shmdt:
8785 ret = do_shmdt(arg1);
8786 break;
8787 #endif
8788 case TARGET_NR_fsync:
8789 ret = get_errno(fsync(arg1));
8790 break;
8791 case TARGET_NR_clone:
8792 /* Linux manages to have three different orderings for its
8793 * arguments to clone(); the BACKWARDS and BACKWARDS2 defines
8794 * match the kernel's CONFIG_CLONE_* settings.
8795 * Microblaze is further special in that it uses a sixth
8796 * implicit argument to clone for the TLS pointer.
8798 #if defined(TARGET_MICROBLAZE)
8799 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg4, arg6, arg5));
8800 #elif defined(TARGET_CLONE_BACKWARDS)
8801 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg4, arg5));
8802 #elif defined(TARGET_CLONE_BACKWARDS2)
8803 ret = get_errno(do_fork(cpu_env, arg2, arg1, arg3, arg5, arg4));
8804 #else
8805 ret = get_errno(do_fork(cpu_env, arg1, arg2, arg3, arg5, arg4));
8806 #endif
8807 break;
8808 #ifdef __NR_exit_group
8809 /* new thread calls */
8810 case TARGET_NR_exit_group:
8811 #ifdef TARGET_GPROF
8812 _mcleanup();
8813 #endif
8814 gdb_exit(cpu_env, arg1);
8815 ret = get_errno(exit_group(arg1));
8816 break;
8817 #endif
8818 case TARGET_NR_setdomainname:
8819 if (!(p = lock_user_string(arg1)))
8820 goto efault;
8821 ret = get_errno(setdomainname(p, arg2));
8822 unlock_user(p, arg1, 0);
8823 break;
8824 case TARGET_NR_uname:
8825 /* no need to transcode because we use the linux syscall */
8827 struct new_utsname * buf;
8829 if (!lock_user_struct(VERIFY_WRITE, buf, arg1, 0))
8830 goto efault;
8831 ret = get_errno(sys_uname(buf));
8832 if (!is_error(ret)) {
8833 /* Overrite the native machine name with whatever is being
8834 emulated. */
8835 strcpy (buf->machine, cpu_to_uname_machine(cpu_env));
8836 /* Allow the user to override the reported release. */
8837 if (qemu_uname_release && *qemu_uname_release)
8838 strcpy (buf->release, qemu_uname_release);
8840 unlock_user_struct(buf, arg1, 1);
8842 break;
8843 #ifdef TARGET_I386
8844 case TARGET_NR_modify_ldt:
8845 ret = do_modify_ldt(cpu_env, arg1, arg2, arg3);
8846 break;
8847 #if !defined(TARGET_X86_64)
8848 case TARGET_NR_vm86old:
8849 goto unimplemented;
8850 case TARGET_NR_vm86:
8851 ret = do_vm86(cpu_env, arg1, arg2);
8852 break;
8853 #endif
8854 #endif
8855 case TARGET_NR_adjtimex:
8856 goto unimplemented;
8857 #ifdef TARGET_NR_create_module
8858 case TARGET_NR_create_module:
8859 #endif
8860 case TARGET_NR_init_module:
8861 case TARGET_NR_delete_module:
8862 #ifdef TARGET_NR_get_kernel_syms
8863 case TARGET_NR_get_kernel_syms:
8864 #endif
8865 goto unimplemented;
8866 case TARGET_NR_quotactl:
8867 goto unimplemented;
8868 case TARGET_NR_getpgid:
8869 ret = get_errno(getpgid(arg1));
8870 break;
8871 case TARGET_NR_fchdir:
8872 ret = get_errno(fchdir(arg1));
8873 break;
8874 #ifdef TARGET_NR_bdflush /* not on x86_64 */
8875 case TARGET_NR_bdflush:
8876 goto unimplemented;
8877 #endif
8878 #ifdef TARGET_NR_sysfs
8879 case TARGET_NR_sysfs:
8880 goto unimplemented;
8881 #endif
8882 case TARGET_NR_personality:
8883 ret = get_errno(personality(arg1));
8884 break;
8885 #ifdef TARGET_NR_afs_syscall
8886 case TARGET_NR_afs_syscall:
8887 goto unimplemented;
8888 #endif
8889 #ifdef TARGET_NR__llseek /* Not on alpha */
8890 case TARGET_NR__llseek:
8892 int64_t res;
8893 #if !defined(__NR_llseek)
8894 res = lseek(arg1, ((uint64_t)arg2 << 32) | arg3, arg5);
8895 if (res == -1) {
8896 ret = get_errno(res);
8897 } else {
8898 ret = 0;
8900 #else
8901 ret = get_errno(_llseek(arg1, arg2, arg3, &res, arg5));
8902 #endif
8903 if ((ret == 0) && put_user_s64(res, arg4)) {
8904 goto efault;
8907 break;
8908 #endif
8909 #ifdef TARGET_NR_getdents
8910 case TARGET_NR_getdents:
8911 #ifdef __NR_getdents
8912 #if TARGET_ABI_BITS == 32 && HOST_LONG_BITS == 64
8914 struct target_dirent *target_dirp;
8915 struct linux_dirent *dirp;
8916 abi_long count = arg3;
8918 dirp = g_try_malloc(count);
8919 if (!dirp) {
8920 ret = -TARGET_ENOMEM;
8921 goto fail;
8924 ret = get_errno(sys_getdents(arg1, dirp, count));
8925 if (!is_error(ret)) {
8926 struct linux_dirent *de;
8927 struct target_dirent *tde;
8928 int len = ret;
8929 int reclen, treclen;
8930 int count1, tnamelen;
8932 count1 = 0;
8933 de = dirp;
8934 if (!(target_dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
8935 goto efault;
8936 tde = target_dirp;
8937 while (len > 0) {
8938 reclen = de->d_reclen;
8939 tnamelen = reclen - offsetof(struct linux_dirent, d_name);
8940 assert(tnamelen >= 0);
8941 treclen = tnamelen + offsetof(struct target_dirent, d_name);
8942 assert(count1 + treclen <= count);
8943 tde->d_reclen = tswap16(treclen);
8944 tde->d_ino = tswapal(de->d_ino);
8945 tde->d_off = tswapal(de->d_off);
8946 memcpy(tde->d_name, de->d_name, tnamelen);
8947 de = (struct linux_dirent *)((char *)de + reclen);
8948 len -= reclen;
8949 tde = (struct target_dirent *)((char *)tde + treclen);
8950 count1 += treclen;
8952 ret = count1;
8953 unlock_user(target_dirp, arg2, ret);
8955 g_free(dirp);
8957 #else
8959 struct linux_dirent *dirp;
8960 abi_long count = arg3;
8962 if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
8963 goto efault;
8964 ret = get_errno(sys_getdents(arg1, dirp, count));
8965 if (!is_error(ret)) {
8966 struct linux_dirent *de;
8967 int len = ret;
8968 int reclen;
8969 de = dirp;
8970 while (len > 0) {
8971 reclen = de->d_reclen;
8972 if (reclen > len)
8973 break;
8974 de->d_reclen = tswap16(reclen);
8975 tswapls(&de->d_ino);
8976 tswapls(&de->d_off);
8977 de = (struct linux_dirent *)((char *)de + reclen);
8978 len -= reclen;
8981 unlock_user(dirp, arg2, ret);
8983 #endif
8984 #else
8985 /* Implement getdents in terms of getdents64 */
8987 struct linux_dirent64 *dirp;
8988 abi_long count = arg3;
8990 dirp = lock_user(VERIFY_WRITE, arg2, count, 0);
8991 if (!dirp) {
8992 goto efault;
8994 ret = get_errno(sys_getdents64(arg1, dirp, count));
8995 if (!is_error(ret)) {
8996 /* Convert the dirent64 structs to target dirent. We do this
8997 * in-place, since we can guarantee that a target_dirent is no
8998 * larger than a dirent64; however this means we have to be
8999 * careful to read everything before writing in the new format.
9001 struct linux_dirent64 *de;
9002 struct target_dirent *tde;
9003 int len = ret;
9004 int tlen = 0;
9006 de = dirp;
9007 tde = (struct target_dirent *)dirp;
9008 while (len > 0) {
9009 int namelen, treclen;
9010 int reclen = de->d_reclen;
9011 uint64_t ino = de->d_ino;
9012 int64_t off = de->d_off;
9013 uint8_t type = de->d_type;
9015 namelen = strlen(de->d_name);
9016 treclen = offsetof(struct target_dirent, d_name)
9017 + namelen + 2;
9018 treclen = QEMU_ALIGN_UP(treclen, sizeof(abi_long));
9020 memmove(tde->d_name, de->d_name, namelen + 1);
9021 tde->d_ino = tswapal(ino);
9022 tde->d_off = tswapal(off);
9023 tde->d_reclen = tswap16(treclen);
9024 /* The target_dirent type is in what was formerly a padding
9025 * byte at the end of the structure:
9027 *(((char *)tde) + treclen - 1) = type;
9029 de = (struct linux_dirent64 *)((char *)de + reclen);
9030 tde = (struct target_dirent *)((char *)tde + treclen);
9031 len -= reclen;
9032 tlen += treclen;
9034 ret = tlen;
9036 unlock_user(dirp, arg2, ret);
9038 #endif
9039 break;
9040 #endif /* TARGET_NR_getdents */
9041 #if defined(TARGET_NR_getdents64) && defined(__NR_getdents64)
9042 case TARGET_NR_getdents64:
9044 struct linux_dirent64 *dirp;
9045 abi_long count = arg3;
9046 if (!(dirp = lock_user(VERIFY_WRITE, arg2, count, 0)))
9047 goto efault;
9048 ret = get_errno(sys_getdents64(arg1, dirp, count));
9049 if (!is_error(ret)) {
9050 struct linux_dirent64 *de;
9051 int len = ret;
9052 int reclen;
9053 de = dirp;
9054 while (len > 0) {
9055 reclen = de->d_reclen;
9056 if (reclen > len)
9057 break;
9058 de->d_reclen = tswap16(reclen);
9059 tswap64s((uint64_t *)&de->d_ino);
9060 tswap64s((uint64_t *)&de->d_off);
9061 de = (struct linux_dirent64 *)((char *)de + reclen);
9062 len -= reclen;
9065 unlock_user(dirp, arg2, ret);
9067 break;
9068 #endif /* TARGET_NR_getdents64 */
9069 #if defined(TARGET_NR__newselect)
9070 case TARGET_NR__newselect:
9071 ret = do_select(arg1, arg2, arg3, arg4, arg5);
9072 break;
9073 #endif
9074 #if defined(TARGET_NR_poll) || defined(TARGET_NR_ppoll)
9075 # ifdef TARGET_NR_poll
9076 case TARGET_NR_poll:
9077 # endif
9078 # ifdef TARGET_NR_ppoll
9079 case TARGET_NR_ppoll:
9080 # endif
9082 struct target_pollfd *target_pfd;
9083 unsigned int nfds = arg2;
9084 struct pollfd *pfd;
9085 unsigned int i;
9087 pfd = NULL;
9088 target_pfd = NULL;
9089 if (nfds) {
9090 target_pfd = lock_user(VERIFY_WRITE, arg1,
9091 sizeof(struct target_pollfd) * nfds, 1);
9092 if (!target_pfd) {
9093 goto efault;
9096 pfd = alloca(sizeof(struct pollfd) * nfds);
9097 for (i = 0; i < nfds; i++) {
9098 pfd[i].fd = tswap32(target_pfd[i].fd);
9099 pfd[i].events = tswap16(target_pfd[i].events);
9103 switch (num) {
9104 # ifdef TARGET_NR_ppoll
9105 case TARGET_NR_ppoll:
9107 struct timespec _timeout_ts, *timeout_ts = &_timeout_ts;
9108 target_sigset_t *target_set;
9109 sigset_t _set, *set = &_set;
9111 if (arg3) {
9112 if (target_to_host_timespec(timeout_ts, arg3)) {
9113 unlock_user(target_pfd, arg1, 0);
9114 goto efault;
9116 } else {
9117 timeout_ts = NULL;
9120 if (arg4) {
9121 target_set = lock_user(VERIFY_READ, arg4, sizeof(target_sigset_t), 1);
9122 if (!target_set) {
9123 unlock_user(target_pfd, arg1, 0);
9124 goto efault;
9126 target_to_host_sigset(set, target_set);
9127 } else {
9128 set = NULL;
9131 ret = get_errno(safe_ppoll(pfd, nfds, timeout_ts,
9132 set, SIGSET_T_SIZE));
9134 if (!is_error(ret) && arg3) {
9135 host_to_target_timespec(arg3, timeout_ts);
9137 if (arg4) {
9138 unlock_user(target_set, arg4, 0);
9140 break;
9142 # endif
9143 # ifdef TARGET_NR_poll
9144 case TARGET_NR_poll:
9146 struct timespec ts, *pts;
9148 if (arg3 >= 0) {
9149 /* Convert ms to secs, ns */
9150 ts.tv_sec = arg3 / 1000;
9151 ts.tv_nsec = (arg3 % 1000) * 1000000LL;
9152 pts = &ts;
9153 } else {
9154 /* -ve poll() timeout means "infinite" */
9155 pts = NULL;
9157 ret = get_errno(safe_ppoll(pfd, nfds, pts, NULL, 0));
9158 break;
9160 # endif
9161 default:
9162 g_assert_not_reached();
9165 if (!is_error(ret)) {
9166 for(i = 0; i < nfds; i++) {
9167 target_pfd[i].revents = tswap16(pfd[i].revents);
9170 unlock_user(target_pfd, arg1, sizeof(struct target_pollfd) * nfds);
9172 break;
9173 #endif
9174 case TARGET_NR_flock:
9175 /* NOTE: the flock constant seems to be the same for every
9176 Linux platform */
9177 ret = get_errno(safe_flock(arg1, arg2));
9178 break;
9179 case TARGET_NR_readv:
9181 struct iovec *vec = lock_iovec(VERIFY_WRITE, arg2, arg3, 0);
9182 if (vec != NULL) {
9183 ret = get_errno(safe_readv(arg1, vec, arg3));
9184 unlock_iovec(vec, arg2, arg3, 1);
9185 } else {
9186 ret = -host_to_target_errno(errno);
9189 break;
9190 case TARGET_NR_writev:
9192 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
9193 if (vec != NULL) {
9194 ret = get_errno(safe_writev(arg1, vec, arg3));
9195 unlock_iovec(vec, arg2, arg3, 0);
9196 } else {
9197 ret = -host_to_target_errno(errno);
9200 break;
9201 case TARGET_NR_getsid:
9202 ret = get_errno(getsid(arg1));
9203 break;
9204 #if defined(TARGET_NR_fdatasync) /* Not on alpha (osf_datasync ?) */
9205 case TARGET_NR_fdatasync:
9206 ret = get_errno(fdatasync(arg1));
9207 break;
9208 #endif
9209 #ifdef TARGET_NR__sysctl
9210 case TARGET_NR__sysctl:
9211 /* We don't implement this, but ENOTDIR is always a safe
9212 return value. */
9213 ret = -TARGET_ENOTDIR;
9214 break;
9215 #endif
9216 case TARGET_NR_sched_getaffinity:
9218 unsigned int mask_size;
9219 unsigned long *mask;
9222 * sched_getaffinity needs multiples of ulong, so need to take
9223 * care of mismatches between target ulong and host ulong sizes.
9225 if (arg2 & (sizeof(abi_ulong) - 1)) {
9226 ret = -TARGET_EINVAL;
9227 break;
9229 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
9231 mask = alloca(mask_size);
9232 ret = get_errno(sys_sched_getaffinity(arg1, mask_size, mask));
9234 if (!is_error(ret)) {
9235 if (ret > arg2) {
9236 /* More data returned than the caller's buffer will fit.
9237 * This only happens if sizeof(abi_long) < sizeof(long)
9238 * and the caller passed us a buffer holding an odd number
9239 * of abi_longs. If the host kernel is actually using the
9240 * extra 4 bytes then fail EINVAL; otherwise we can just
9241 * ignore them and only copy the interesting part.
9243 int numcpus = sysconf(_SC_NPROCESSORS_CONF);
9244 if (numcpus > arg2 * 8) {
9245 ret = -TARGET_EINVAL;
9246 break;
9248 ret = arg2;
9251 if (copy_to_user(arg3, mask, ret)) {
9252 goto efault;
9256 break;
9257 case TARGET_NR_sched_setaffinity:
9259 unsigned int mask_size;
9260 unsigned long *mask;
9263 * sched_setaffinity needs multiples of ulong, so need to take
9264 * care of mismatches between target ulong and host ulong sizes.
9266 if (arg2 & (sizeof(abi_ulong) - 1)) {
9267 ret = -TARGET_EINVAL;
9268 break;
9270 mask_size = (arg2 + (sizeof(*mask) - 1)) & ~(sizeof(*mask) - 1);
9272 mask = alloca(mask_size);
9273 if (!lock_user_struct(VERIFY_READ, p, arg3, 1)) {
9274 goto efault;
9276 memcpy(mask, p, arg2);
9277 unlock_user_struct(p, arg2, 0);
9279 ret = get_errno(sys_sched_setaffinity(arg1, mask_size, mask));
9281 break;
9282 case TARGET_NR_sched_setparam:
9284 struct sched_param *target_schp;
9285 struct sched_param schp;
9287 if (arg2 == 0) {
9288 return -TARGET_EINVAL;
9290 if (!lock_user_struct(VERIFY_READ, target_schp, arg2, 1))
9291 goto efault;
9292 schp.sched_priority = tswap32(target_schp->sched_priority);
9293 unlock_user_struct(target_schp, arg2, 0);
9294 ret = get_errno(sched_setparam(arg1, &schp));
9296 break;
9297 case TARGET_NR_sched_getparam:
9299 struct sched_param *target_schp;
9300 struct sched_param schp;
9302 if (arg2 == 0) {
9303 return -TARGET_EINVAL;
9305 ret = get_errno(sched_getparam(arg1, &schp));
9306 if (!is_error(ret)) {
9307 if (!lock_user_struct(VERIFY_WRITE, target_schp, arg2, 0))
9308 goto efault;
9309 target_schp->sched_priority = tswap32(schp.sched_priority);
9310 unlock_user_struct(target_schp, arg2, 1);
9313 break;
9314 case TARGET_NR_sched_setscheduler:
9316 struct sched_param *target_schp;
9317 struct sched_param schp;
9318 if (arg3 == 0) {
9319 return -TARGET_EINVAL;
9321 if (!lock_user_struct(VERIFY_READ, target_schp, arg3, 1))
9322 goto efault;
9323 schp.sched_priority = tswap32(target_schp->sched_priority);
9324 unlock_user_struct(target_schp, arg3, 0);
9325 ret = get_errno(sched_setscheduler(arg1, arg2, &schp));
9327 break;
9328 case TARGET_NR_sched_getscheduler:
9329 ret = get_errno(sched_getscheduler(arg1));
9330 break;
9331 case TARGET_NR_sched_yield:
9332 ret = get_errno(sched_yield());
9333 break;
9334 case TARGET_NR_sched_get_priority_max:
9335 ret = get_errno(sched_get_priority_max(arg1));
9336 break;
9337 case TARGET_NR_sched_get_priority_min:
9338 ret = get_errno(sched_get_priority_min(arg1));
9339 break;
9340 case TARGET_NR_sched_rr_get_interval:
9342 struct timespec ts;
9343 ret = get_errno(sched_rr_get_interval(arg1, &ts));
9344 if (!is_error(ret)) {
9345 ret = host_to_target_timespec(arg2, &ts);
9348 break;
9349 case TARGET_NR_nanosleep:
9351 struct timespec req, rem;
9352 target_to_host_timespec(&req, arg1);
9353 ret = get_errno(safe_nanosleep(&req, &rem));
9354 if (is_error(ret) && arg2) {
9355 host_to_target_timespec(arg2, &rem);
9358 break;
9359 #ifdef TARGET_NR_query_module
9360 case TARGET_NR_query_module:
9361 goto unimplemented;
9362 #endif
9363 #ifdef TARGET_NR_nfsservctl
9364 case TARGET_NR_nfsservctl:
9365 goto unimplemented;
9366 #endif
9367 case TARGET_NR_prctl:
9368 switch (arg1) {
9369 case PR_GET_PDEATHSIG:
9371 int deathsig;
9372 ret = get_errno(prctl(arg1, &deathsig, arg3, arg4, arg5));
9373 if (!is_error(ret) && arg2
9374 && put_user_ual(deathsig, arg2)) {
9375 goto efault;
9377 break;
9379 #ifdef PR_GET_NAME
9380 case PR_GET_NAME:
9382 void *name = lock_user(VERIFY_WRITE, arg2, 16, 1);
9383 if (!name) {
9384 goto efault;
9386 ret = get_errno(prctl(arg1, (unsigned long)name,
9387 arg3, arg4, arg5));
9388 unlock_user(name, arg2, 16);
9389 break;
9391 case PR_SET_NAME:
9393 void *name = lock_user(VERIFY_READ, arg2, 16, 1);
9394 if (!name) {
9395 goto efault;
9397 ret = get_errno(prctl(arg1, (unsigned long)name,
9398 arg3, arg4, arg5));
9399 unlock_user(name, arg2, 0);
9400 break;
9402 #endif
9403 default:
9404 /* Most prctl options have no pointer arguments */
9405 ret = get_errno(prctl(arg1, arg2, arg3, arg4, arg5));
9406 break;
9408 break;
9409 #ifdef TARGET_NR_arch_prctl
9410 case TARGET_NR_arch_prctl:
9411 #if defined(TARGET_I386) && !defined(TARGET_ABI32)
9412 ret = do_arch_prctl(cpu_env, arg1, arg2);
9413 break;
9414 #else
9415 goto unimplemented;
9416 #endif
9417 #endif
9418 #ifdef TARGET_NR_pread64
9419 case TARGET_NR_pread64:
9420 if (regpairs_aligned(cpu_env)) {
9421 arg4 = arg5;
9422 arg5 = arg6;
9424 if (!(p = lock_user(VERIFY_WRITE, arg2, arg3, 0)))
9425 goto efault;
9426 ret = get_errno(pread64(arg1, p, arg3, target_offset64(arg4, arg5)));
9427 unlock_user(p, arg2, ret);
9428 break;
9429 case TARGET_NR_pwrite64:
9430 if (regpairs_aligned(cpu_env)) {
9431 arg4 = arg5;
9432 arg5 = arg6;
9434 if (!(p = lock_user(VERIFY_READ, arg2, arg3, 1)))
9435 goto efault;
9436 ret = get_errno(pwrite64(arg1, p, arg3, target_offset64(arg4, arg5)));
9437 unlock_user(p, arg2, 0);
9438 break;
9439 #endif
9440 case TARGET_NR_getcwd:
9441 if (!(p = lock_user(VERIFY_WRITE, arg1, arg2, 0)))
9442 goto efault;
9443 ret = get_errno(sys_getcwd1(p, arg2));
9444 unlock_user(p, arg1, ret);
9445 break;
9446 case TARGET_NR_capget:
9447 case TARGET_NR_capset:
9449 struct target_user_cap_header *target_header;
9450 struct target_user_cap_data *target_data = NULL;
9451 struct __user_cap_header_struct header;
9452 struct __user_cap_data_struct data[2];
9453 struct __user_cap_data_struct *dataptr = NULL;
9454 int i, target_datalen;
9455 int data_items = 1;
9457 if (!lock_user_struct(VERIFY_WRITE, target_header, arg1, 1)) {
9458 goto efault;
9460 header.version = tswap32(target_header->version);
9461 header.pid = tswap32(target_header->pid);
9463 if (header.version != _LINUX_CAPABILITY_VERSION) {
9464 /* Version 2 and up takes pointer to two user_data structs */
9465 data_items = 2;
9468 target_datalen = sizeof(*target_data) * data_items;
9470 if (arg2) {
9471 if (num == TARGET_NR_capget) {
9472 target_data = lock_user(VERIFY_WRITE, arg2, target_datalen, 0);
9473 } else {
9474 target_data = lock_user(VERIFY_READ, arg2, target_datalen, 1);
9476 if (!target_data) {
9477 unlock_user_struct(target_header, arg1, 0);
9478 goto efault;
9481 if (num == TARGET_NR_capset) {
9482 for (i = 0; i < data_items; i++) {
9483 data[i].effective = tswap32(target_data[i].effective);
9484 data[i].permitted = tswap32(target_data[i].permitted);
9485 data[i].inheritable = tswap32(target_data[i].inheritable);
9489 dataptr = data;
9492 if (num == TARGET_NR_capget) {
9493 ret = get_errno(capget(&header, dataptr));
9494 } else {
9495 ret = get_errno(capset(&header, dataptr));
9498 /* The kernel always updates version for both capget and capset */
9499 target_header->version = tswap32(header.version);
9500 unlock_user_struct(target_header, arg1, 1);
9502 if (arg2) {
9503 if (num == TARGET_NR_capget) {
9504 for (i = 0; i < data_items; i++) {
9505 target_data[i].effective = tswap32(data[i].effective);
9506 target_data[i].permitted = tswap32(data[i].permitted);
9507 target_data[i].inheritable = tswap32(data[i].inheritable);
9509 unlock_user(target_data, arg2, target_datalen);
9510 } else {
9511 unlock_user(target_data, arg2, 0);
9514 break;
9516 case TARGET_NR_sigaltstack:
9517 ret = do_sigaltstack(arg1, arg2, get_sp_from_cpustate((CPUArchState *)cpu_env));
9518 break;
9520 #ifdef CONFIG_SENDFILE
9521 case TARGET_NR_sendfile:
9523 off_t *offp = NULL;
9524 off_t off;
9525 if (arg3) {
9526 ret = get_user_sal(off, arg3);
9527 if (is_error(ret)) {
9528 break;
9530 offp = &off;
9532 ret = get_errno(sendfile(arg1, arg2, offp, arg4));
9533 if (!is_error(ret) && arg3) {
9534 abi_long ret2 = put_user_sal(off, arg3);
9535 if (is_error(ret2)) {
9536 ret = ret2;
9539 break;
9541 #ifdef TARGET_NR_sendfile64
9542 case TARGET_NR_sendfile64:
9544 off_t *offp = NULL;
9545 off_t off;
9546 if (arg3) {
9547 ret = get_user_s64(off, arg3);
9548 if (is_error(ret)) {
9549 break;
9551 offp = &off;
9553 ret = get_errno(sendfile(arg1, arg2, offp, arg4));
9554 if (!is_error(ret) && arg3) {
9555 abi_long ret2 = put_user_s64(off, arg3);
9556 if (is_error(ret2)) {
9557 ret = ret2;
9560 break;
9562 #endif
9563 #else
9564 case TARGET_NR_sendfile:
9565 #ifdef TARGET_NR_sendfile64
9566 case TARGET_NR_sendfile64:
9567 #endif
9568 goto unimplemented;
9569 #endif
9571 #ifdef TARGET_NR_getpmsg
9572 case TARGET_NR_getpmsg:
9573 goto unimplemented;
9574 #endif
9575 #ifdef TARGET_NR_putpmsg
9576 case TARGET_NR_putpmsg:
9577 goto unimplemented;
9578 #endif
9579 #ifdef TARGET_NR_vfork
9580 case TARGET_NR_vfork:
9581 ret = get_errno(do_fork(cpu_env, CLONE_VFORK | CLONE_VM | SIGCHLD,
9582 0, 0, 0, 0));
9583 break;
9584 #endif
9585 #ifdef TARGET_NR_ugetrlimit
9586 case TARGET_NR_ugetrlimit:
9588 struct rlimit rlim;
9589 int resource = target_to_host_resource(arg1);
9590 ret = get_errno(getrlimit(resource, &rlim));
9591 if (!is_error(ret)) {
9592 struct target_rlimit *target_rlim;
9593 if (!lock_user_struct(VERIFY_WRITE, target_rlim, arg2, 0))
9594 goto efault;
9595 target_rlim->rlim_cur = host_to_target_rlim(rlim.rlim_cur);
9596 target_rlim->rlim_max = host_to_target_rlim(rlim.rlim_max);
9597 unlock_user_struct(target_rlim, arg2, 1);
9599 break;
9601 #endif
9602 #ifdef TARGET_NR_truncate64
9603 case TARGET_NR_truncate64:
9604 if (!(p = lock_user_string(arg1)))
9605 goto efault;
9606 ret = target_truncate64(cpu_env, p, arg2, arg3, arg4);
9607 unlock_user(p, arg1, 0);
9608 break;
9609 #endif
9610 #ifdef TARGET_NR_ftruncate64
9611 case TARGET_NR_ftruncate64:
9612 ret = target_ftruncate64(cpu_env, arg1, arg2, arg3, arg4);
9613 break;
9614 #endif
9615 #ifdef TARGET_NR_stat64
9616 case TARGET_NR_stat64:
9617 if (!(p = lock_user_string(arg1)))
9618 goto efault;
9619 ret = get_errno(stat(path(p), &st));
9620 unlock_user(p, arg1, 0);
9621 if (!is_error(ret))
9622 ret = host_to_target_stat64(cpu_env, arg2, &st);
9623 break;
9624 #endif
9625 #ifdef TARGET_NR_lstat64
9626 case TARGET_NR_lstat64:
9627 if (!(p = lock_user_string(arg1)))
9628 goto efault;
9629 ret = get_errno(lstat(path(p), &st));
9630 unlock_user(p, arg1, 0);
9631 if (!is_error(ret))
9632 ret = host_to_target_stat64(cpu_env, arg2, &st);
9633 break;
9634 #endif
9635 #ifdef TARGET_NR_fstat64
9636 case TARGET_NR_fstat64:
9637 ret = get_errno(fstat(arg1, &st));
9638 if (!is_error(ret))
9639 ret = host_to_target_stat64(cpu_env, arg2, &st);
9640 break;
9641 #endif
9642 #if (defined(TARGET_NR_fstatat64) || defined(TARGET_NR_newfstatat))
9643 #ifdef TARGET_NR_fstatat64
9644 case TARGET_NR_fstatat64:
9645 #endif
9646 #ifdef TARGET_NR_newfstatat
9647 case TARGET_NR_newfstatat:
9648 #endif
9649 if (!(p = lock_user_string(arg2)))
9650 goto efault;
9651 ret = get_errno(fstatat(arg1, path(p), &st, arg4));
9652 if (!is_error(ret))
9653 ret = host_to_target_stat64(cpu_env, arg3, &st);
9654 break;
9655 #endif
9656 #ifdef TARGET_NR_lchown
9657 case TARGET_NR_lchown:
9658 if (!(p = lock_user_string(arg1)))
9659 goto efault;
9660 ret = get_errno(lchown(p, low2highuid(arg2), low2highgid(arg3)));
9661 unlock_user(p, arg1, 0);
9662 break;
9663 #endif
9664 #ifdef TARGET_NR_getuid
9665 case TARGET_NR_getuid:
9666 ret = get_errno(high2lowuid(getuid()));
9667 break;
9668 #endif
9669 #ifdef TARGET_NR_getgid
9670 case TARGET_NR_getgid:
9671 ret = get_errno(high2lowgid(getgid()));
9672 break;
9673 #endif
9674 #ifdef TARGET_NR_geteuid
9675 case TARGET_NR_geteuid:
9676 ret = get_errno(high2lowuid(geteuid()));
9677 break;
9678 #endif
9679 #ifdef TARGET_NR_getegid
9680 case TARGET_NR_getegid:
9681 ret = get_errno(high2lowgid(getegid()));
9682 break;
9683 #endif
9684 case TARGET_NR_setreuid:
9685 ret = get_errno(setreuid(low2highuid(arg1), low2highuid(arg2)));
9686 break;
9687 case TARGET_NR_setregid:
9688 ret = get_errno(setregid(low2highgid(arg1), low2highgid(arg2)));
9689 break;
9690 case TARGET_NR_getgroups:
9692 int gidsetsize = arg1;
9693 target_id *target_grouplist;
9694 gid_t *grouplist;
9695 int i;
9697 grouplist = alloca(gidsetsize * sizeof(gid_t));
9698 ret = get_errno(getgroups(gidsetsize, grouplist));
9699 if (gidsetsize == 0)
9700 break;
9701 if (!is_error(ret)) {
9702 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * sizeof(target_id), 0);
9703 if (!target_grouplist)
9704 goto efault;
9705 for(i = 0;i < ret; i++)
9706 target_grouplist[i] = tswapid(high2lowgid(grouplist[i]));
9707 unlock_user(target_grouplist, arg2, gidsetsize * sizeof(target_id));
9710 break;
9711 case TARGET_NR_setgroups:
9713 int gidsetsize = arg1;
9714 target_id *target_grouplist;
9715 gid_t *grouplist = NULL;
9716 int i;
9717 if (gidsetsize) {
9718 grouplist = alloca(gidsetsize * sizeof(gid_t));
9719 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * sizeof(target_id), 1);
9720 if (!target_grouplist) {
9721 ret = -TARGET_EFAULT;
9722 goto fail;
9724 for (i = 0; i < gidsetsize; i++) {
9725 grouplist[i] = low2highgid(tswapid(target_grouplist[i]));
9727 unlock_user(target_grouplist, arg2, 0);
9729 ret = get_errno(setgroups(gidsetsize, grouplist));
9731 break;
9732 case TARGET_NR_fchown:
9733 ret = get_errno(fchown(arg1, low2highuid(arg2), low2highgid(arg3)));
9734 break;
9735 #if defined(TARGET_NR_fchownat)
9736 case TARGET_NR_fchownat:
9737 if (!(p = lock_user_string(arg2)))
9738 goto efault;
9739 ret = get_errno(fchownat(arg1, p, low2highuid(arg3),
9740 low2highgid(arg4), arg5));
9741 unlock_user(p, arg2, 0);
9742 break;
9743 #endif
9744 #ifdef TARGET_NR_setresuid
9745 case TARGET_NR_setresuid:
9746 ret = get_errno(sys_setresuid(low2highuid(arg1),
9747 low2highuid(arg2),
9748 low2highuid(arg3)));
9749 break;
9750 #endif
9751 #ifdef TARGET_NR_getresuid
9752 case TARGET_NR_getresuid:
9754 uid_t ruid, euid, suid;
9755 ret = get_errno(getresuid(&ruid, &euid, &suid));
9756 if (!is_error(ret)) {
9757 if (put_user_id(high2lowuid(ruid), arg1)
9758 || put_user_id(high2lowuid(euid), arg2)
9759 || put_user_id(high2lowuid(suid), arg3))
9760 goto efault;
9763 break;
9764 #endif
9765 #ifdef TARGET_NR_getresgid
9766 case TARGET_NR_setresgid:
9767 ret = get_errno(sys_setresgid(low2highgid(arg1),
9768 low2highgid(arg2),
9769 low2highgid(arg3)));
9770 break;
9771 #endif
9772 #ifdef TARGET_NR_getresgid
9773 case TARGET_NR_getresgid:
9775 gid_t rgid, egid, sgid;
9776 ret = get_errno(getresgid(&rgid, &egid, &sgid));
9777 if (!is_error(ret)) {
9778 if (put_user_id(high2lowgid(rgid), arg1)
9779 || put_user_id(high2lowgid(egid), arg2)
9780 || put_user_id(high2lowgid(sgid), arg3))
9781 goto efault;
9784 break;
9785 #endif
9786 #ifdef TARGET_NR_chown
9787 case TARGET_NR_chown:
9788 if (!(p = lock_user_string(arg1)))
9789 goto efault;
9790 ret = get_errno(chown(p, low2highuid(arg2), low2highgid(arg3)));
9791 unlock_user(p, arg1, 0);
9792 break;
9793 #endif
9794 case TARGET_NR_setuid:
9795 ret = get_errno(sys_setuid(low2highuid(arg1)));
9796 break;
9797 case TARGET_NR_setgid:
9798 ret = get_errno(sys_setgid(low2highgid(arg1)));
9799 break;
9800 case TARGET_NR_setfsuid:
9801 ret = get_errno(setfsuid(arg1));
9802 break;
9803 case TARGET_NR_setfsgid:
9804 ret = get_errno(setfsgid(arg1));
9805 break;
9807 #ifdef TARGET_NR_lchown32
9808 case TARGET_NR_lchown32:
9809 if (!(p = lock_user_string(arg1)))
9810 goto efault;
9811 ret = get_errno(lchown(p, arg2, arg3));
9812 unlock_user(p, arg1, 0);
9813 break;
9814 #endif
9815 #ifdef TARGET_NR_getuid32
9816 case TARGET_NR_getuid32:
9817 ret = get_errno(getuid());
9818 break;
9819 #endif
9821 #if defined(TARGET_NR_getxuid) && defined(TARGET_ALPHA)
9822 /* Alpha specific */
9823 case TARGET_NR_getxuid:
9825 uid_t euid;
9826 euid=geteuid();
9827 ((CPUAlphaState *)cpu_env)->ir[IR_A4]=euid;
9829 ret = get_errno(getuid());
9830 break;
9831 #endif
9832 #if defined(TARGET_NR_getxgid) && defined(TARGET_ALPHA)
9833 /* Alpha specific */
9834 case TARGET_NR_getxgid:
9836 uid_t egid;
9837 egid=getegid();
9838 ((CPUAlphaState *)cpu_env)->ir[IR_A4]=egid;
9840 ret = get_errno(getgid());
9841 break;
9842 #endif
9843 #if defined(TARGET_NR_osf_getsysinfo) && defined(TARGET_ALPHA)
9844 /* Alpha specific */
9845 case TARGET_NR_osf_getsysinfo:
9846 ret = -TARGET_EOPNOTSUPP;
9847 switch (arg1) {
9848 case TARGET_GSI_IEEE_FP_CONTROL:
9850 uint64_t swcr, fpcr = cpu_alpha_load_fpcr (cpu_env);
9852 /* Copied from linux ieee_fpcr_to_swcr. */
9853 swcr = (fpcr >> 35) & SWCR_STATUS_MASK;
9854 swcr |= (fpcr >> 36) & SWCR_MAP_DMZ;
9855 swcr |= (~fpcr >> 48) & (SWCR_TRAP_ENABLE_INV
9856 | SWCR_TRAP_ENABLE_DZE
9857 | SWCR_TRAP_ENABLE_OVF);
9858 swcr |= (~fpcr >> 57) & (SWCR_TRAP_ENABLE_UNF
9859 | SWCR_TRAP_ENABLE_INE);
9860 swcr |= (fpcr >> 47) & SWCR_MAP_UMZ;
9861 swcr |= (~fpcr >> 41) & SWCR_TRAP_ENABLE_DNO;
9863 if (put_user_u64 (swcr, arg2))
9864 goto efault;
9865 ret = 0;
9867 break;
9869 /* case GSI_IEEE_STATE_AT_SIGNAL:
9870 -- Not implemented in linux kernel.
9871 case GSI_UACPROC:
9872 -- Retrieves current unaligned access state; not much used.
9873 case GSI_PROC_TYPE:
9874 -- Retrieves implver information; surely not used.
9875 case GSI_GET_HWRPB:
9876 -- Grabs a copy of the HWRPB; surely not used.
9879 break;
9880 #endif
9881 #if defined(TARGET_NR_osf_setsysinfo) && defined(TARGET_ALPHA)
9882 /* Alpha specific */
9883 case TARGET_NR_osf_setsysinfo:
9884 ret = -TARGET_EOPNOTSUPP;
9885 switch (arg1) {
9886 case TARGET_SSI_IEEE_FP_CONTROL:
9888 uint64_t swcr, fpcr, orig_fpcr;
9890 if (get_user_u64 (swcr, arg2)) {
9891 goto efault;
9893 orig_fpcr = cpu_alpha_load_fpcr(cpu_env);
9894 fpcr = orig_fpcr & FPCR_DYN_MASK;
9896 /* Copied from linux ieee_swcr_to_fpcr. */
9897 fpcr |= (swcr & SWCR_STATUS_MASK) << 35;
9898 fpcr |= (swcr & SWCR_MAP_DMZ) << 36;
9899 fpcr |= (~swcr & (SWCR_TRAP_ENABLE_INV
9900 | SWCR_TRAP_ENABLE_DZE
9901 | SWCR_TRAP_ENABLE_OVF)) << 48;
9902 fpcr |= (~swcr & (SWCR_TRAP_ENABLE_UNF
9903 | SWCR_TRAP_ENABLE_INE)) << 57;
9904 fpcr |= (swcr & SWCR_MAP_UMZ ? FPCR_UNDZ | FPCR_UNFD : 0);
9905 fpcr |= (~swcr & SWCR_TRAP_ENABLE_DNO) << 41;
9907 cpu_alpha_store_fpcr(cpu_env, fpcr);
9908 ret = 0;
9910 break;
9912 case TARGET_SSI_IEEE_RAISE_EXCEPTION:
9914 uint64_t exc, fpcr, orig_fpcr;
9915 int si_code;
9917 if (get_user_u64(exc, arg2)) {
9918 goto efault;
9921 orig_fpcr = cpu_alpha_load_fpcr(cpu_env);
9923 /* We only add to the exception status here. */
9924 fpcr = orig_fpcr | ((exc & SWCR_STATUS_MASK) << 35);
9926 cpu_alpha_store_fpcr(cpu_env, fpcr);
9927 ret = 0;
9929 /* Old exceptions are not signaled. */
9930 fpcr &= ~(orig_fpcr & FPCR_STATUS_MASK);
9932 /* If any exceptions set by this call,
9933 and are unmasked, send a signal. */
9934 si_code = 0;
9935 if ((fpcr & (FPCR_INE | FPCR_INED)) == FPCR_INE) {
9936 si_code = TARGET_FPE_FLTRES;
9938 if ((fpcr & (FPCR_UNF | FPCR_UNFD)) == FPCR_UNF) {
9939 si_code = TARGET_FPE_FLTUND;
9941 if ((fpcr & (FPCR_OVF | FPCR_OVFD)) == FPCR_OVF) {
9942 si_code = TARGET_FPE_FLTOVF;
9944 if ((fpcr & (FPCR_DZE | FPCR_DZED)) == FPCR_DZE) {
9945 si_code = TARGET_FPE_FLTDIV;
9947 if ((fpcr & (FPCR_INV | FPCR_INVD)) == FPCR_INV) {
9948 si_code = TARGET_FPE_FLTINV;
9950 if (si_code != 0) {
9951 target_siginfo_t info;
9952 info.si_signo = SIGFPE;
9953 info.si_errno = 0;
9954 info.si_code = si_code;
9955 info._sifields._sigfault._addr
9956 = ((CPUArchState *)cpu_env)->pc;
9957 queue_signal((CPUArchState *)cpu_env, info.si_signo, &info);
9960 break;
9962 /* case SSI_NVPAIRS:
9963 -- Used with SSIN_UACPROC to enable unaligned accesses.
9964 case SSI_IEEE_STATE_AT_SIGNAL:
9965 case SSI_IEEE_IGNORE_STATE_AT_SIGNAL:
9966 -- Not implemented in linux kernel
9969 break;
9970 #endif
9971 #ifdef TARGET_NR_osf_sigprocmask
9972 /* Alpha specific. */
9973 case TARGET_NR_osf_sigprocmask:
9975 abi_ulong mask;
9976 int how;
9977 sigset_t set, oldset;
9979 switch(arg1) {
9980 case TARGET_SIG_BLOCK:
9981 how = SIG_BLOCK;
9982 break;
9983 case TARGET_SIG_UNBLOCK:
9984 how = SIG_UNBLOCK;
9985 break;
9986 case TARGET_SIG_SETMASK:
9987 how = SIG_SETMASK;
9988 break;
9989 default:
9990 ret = -TARGET_EINVAL;
9991 goto fail;
9993 mask = arg2;
9994 target_to_host_old_sigset(&set, &mask);
9995 ret = do_sigprocmask(how, &set, &oldset);
9996 if (!ret) {
9997 host_to_target_old_sigset(&mask, &oldset);
9998 ret = mask;
10001 break;
10002 #endif
10004 #ifdef TARGET_NR_getgid32
10005 case TARGET_NR_getgid32:
10006 ret = get_errno(getgid());
10007 break;
10008 #endif
10009 #ifdef TARGET_NR_geteuid32
10010 case TARGET_NR_geteuid32:
10011 ret = get_errno(geteuid());
10012 break;
10013 #endif
10014 #ifdef TARGET_NR_getegid32
10015 case TARGET_NR_getegid32:
10016 ret = get_errno(getegid());
10017 break;
10018 #endif
10019 #ifdef TARGET_NR_setreuid32
10020 case TARGET_NR_setreuid32:
10021 ret = get_errno(setreuid(arg1, arg2));
10022 break;
10023 #endif
10024 #ifdef TARGET_NR_setregid32
10025 case TARGET_NR_setregid32:
10026 ret = get_errno(setregid(arg1, arg2));
10027 break;
10028 #endif
10029 #ifdef TARGET_NR_getgroups32
10030 case TARGET_NR_getgroups32:
10032 int gidsetsize = arg1;
10033 uint32_t *target_grouplist;
10034 gid_t *grouplist;
10035 int i;
10037 grouplist = alloca(gidsetsize * sizeof(gid_t));
10038 ret = get_errno(getgroups(gidsetsize, grouplist));
10039 if (gidsetsize == 0)
10040 break;
10041 if (!is_error(ret)) {
10042 target_grouplist = lock_user(VERIFY_WRITE, arg2, gidsetsize * 4, 0);
10043 if (!target_grouplist) {
10044 ret = -TARGET_EFAULT;
10045 goto fail;
10047 for(i = 0;i < ret; i++)
10048 target_grouplist[i] = tswap32(grouplist[i]);
10049 unlock_user(target_grouplist, arg2, gidsetsize * 4);
10052 break;
10053 #endif
10054 #ifdef TARGET_NR_setgroups32
10055 case TARGET_NR_setgroups32:
10057 int gidsetsize = arg1;
10058 uint32_t *target_grouplist;
10059 gid_t *grouplist;
10060 int i;
10062 grouplist = alloca(gidsetsize * sizeof(gid_t));
10063 target_grouplist = lock_user(VERIFY_READ, arg2, gidsetsize * 4, 1);
10064 if (!target_grouplist) {
10065 ret = -TARGET_EFAULT;
10066 goto fail;
10068 for(i = 0;i < gidsetsize; i++)
10069 grouplist[i] = tswap32(target_grouplist[i]);
10070 unlock_user(target_grouplist, arg2, 0);
10071 ret = get_errno(setgroups(gidsetsize, grouplist));
10073 break;
10074 #endif
10075 #ifdef TARGET_NR_fchown32
10076 case TARGET_NR_fchown32:
10077 ret = get_errno(fchown(arg1, arg2, arg3));
10078 break;
10079 #endif
10080 #ifdef TARGET_NR_setresuid32
10081 case TARGET_NR_setresuid32:
10082 ret = get_errno(sys_setresuid(arg1, arg2, arg3));
10083 break;
10084 #endif
10085 #ifdef TARGET_NR_getresuid32
10086 case TARGET_NR_getresuid32:
10088 uid_t ruid, euid, suid;
10089 ret = get_errno(getresuid(&ruid, &euid, &suid));
10090 if (!is_error(ret)) {
10091 if (put_user_u32(ruid, arg1)
10092 || put_user_u32(euid, arg2)
10093 || put_user_u32(suid, arg3))
10094 goto efault;
10097 break;
10098 #endif
10099 #ifdef TARGET_NR_setresgid32
10100 case TARGET_NR_setresgid32:
10101 ret = get_errno(sys_setresgid(arg1, arg2, arg3));
10102 break;
10103 #endif
10104 #ifdef TARGET_NR_getresgid32
10105 case TARGET_NR_getresgid32:
10107 gid_t rgid, egid, sgid;
10108 ret = get_errno(getresgid(&rgid, &egid, &sgid));
10109 if (!is_error(ret)) {
10110 if (put_user_u32(rgid, arg1)
10111 || put_user_u32(egid, arg2)
10112 || put_user_u32(sgid, arg3))
10113 goto efault;
10116 break;
10117 #endif
10118 #ifdef TARGET_NR_chown32
10119 case TARGET_NR_chown32:
10120 if (!(p = lock_user_string(arg1)))
10121 goto efault;
10122 ret = get_errno(chown(p, arg2, arg3));
10123 unlock_user(p, arg1, 0);
10124 break;
10125 #endif
10126 #ifdef TARGET_NR_setuid32
10127 case TARGET_NR_setuid32:
10128 ret = get_errno(sys_setuid(arg1));
10129 break;
10130 #endif
10131 #ifdef TARGET_NR_setgid32
10132 case TARGET_NR_setgid32:
10133 ret = get_errno(sys_setgid(arg1));
10134 break;
10135 #endif
10136 #ifdef TARGET_NR_setfsuid32
10137 case TARGET_NR_setfsuid32:
10138 ret = get_errno(setfsuid(arg1));
10139 break;
10140 #endif
10141 #ifdef TARGET_NR_setfsgid32
10142 case TARGET_NR_setfsgid32:
10143 ret = get_errno(setfsgid(arg1));
10144 break;
10145 #endif
10147 case TARGET_NR_pivot_root:
10148 goto unimplemented;
10149 #ifdef TARGET_NR_mincore
10150 case TARGET_NR_mincore:
10152 void *a;
10153 ret = -TARGET_EFAULT;
10154 if (!(a = lock_user(VERIFY_READ, arg1,arg2, 0)))
10155 goto efault;
10156 if (!(p = lock_user_string(arg3)))
10157 goto mincore_fail;
10158 ret = get_errno(mincore(a, arg2, p));
10159 unlock_user(p, arg3, ret);
10160 mincore_fail:
10161 unlock_user(a, arg1, 0);
10163 break;
10164 #endif
10165 #ifdef TARGET_NR_arm_fadvise64_64
10166 case TARGET_NR_arm_fadvise64_64:
10167 /* arm_fadvise64_64 looks like fadvise64_64 but
10168 * with different argument order: fd, advice, offset, len
10169 * rather than the usual fd, offset, len, advice.
10170 * Note that offset and len are both 64-bit so appear as
10171 * pairs of 32-bit registers.
10173 ret = posix_fadvise(arg1, target_offset64(arg3, arg4),
10174 target_offset64(arg5, arg6), arg2);
10175 ret = -host_to_target_errno(ret);
10176 break;
10177 #endif
10179 #if TARGET_ABI_BITS == 32
10181 #ifdef TARGET_NR_fadvise64_64
10182 case TARGET_NR_fadvise64_64:
10183 /* 6 args: fd, offset (high, low), len (high, low), advice */
10184 if (regpairs_aligned(cpu_env)) {
10185 /* offset is in (3,4), len in (5,6) and advice in 7 */
10186 arg2 = arg3;
10187 arg3 = arg4;
10188 arg4 = arg5;
10189 arg5 = arg6;
10190 arg6 = arg7;
10192 ret = -host_to_target_errno(posix_fadvise(arg1,
10193 target_offset64(arg2, arg3),
10194 target_offset64(arg4, arg5),
10195 arg6));
10196 break;
10197 #endif
10199 #ifdef TARGET_NR_fadvise64
10200 case TARGET_NR_fadvise64:
10201 /* 5 args: fd, offset (high, low), len, advice */
10202 if (regpairs_aligned(cpu_env)) {
10203 /* offset is in (3,4), len in 5 and advice in 6 */
10204 arg2 = arg3;
10205 arg3 = arg4;
10206 arg4 = arg5;
10207 arg5 = arg6;
10209 ret = -host_to_target_errno(posix_fadvise(arg1,
10210 target_offset64(arg2, arg3),
10211 arg4, arg5));
10212 break;
10213 #endif
10215 #else /* not a 32-bit ABI */
10216 #if defined(TARGET_NR_fadvise64_64) || defined(TARGET_NR_fadvise64)
10217 #ifdef TARGET_NR_fadvise64_64
10218 case TARGET_NR_fadvise64_64:
10219 #endif
10220 #ifdef TARGET_NR_fadvise64
10221 case TARGET_NR_fadvise64:
10222 #endif
10223 #ifdef TARGET_S390X
10224 switch (arg4) {
10225 case 4: arg4 = POSIX_FADV_NOREUSE + 1; break; /* make sure it's an invalid value */
10226 case 5: arg4 = POSIX_FADV_NOREUSE + 2; break; /* ditto */
10227 case 6: arg4 = POSIX_FADV_DONTNEED; break;
10228 case 7: arg4 = POSIX_FADV_NOREUSE; break;
10229 default: break;
10231 #endif
10232 ret = -host_to_target_errno(posix_fadvise(arg1, arg2, arg3, arg4));
10233 break;
10234 #endif
10235 #endif /* end of 64-bit ABI fadvise handling */
10237 #ifdef TARGET_NR_madvise
10238 case TARGET_NR_madvise:
10239 /* A straight passthrough may not be safe because qemu sometimes
10240 turns private file-backed mappings into anonymous mappings.
10241 This will break MADV_DONTNEED.
10242 This is a hint, so ignoring and returning success is ok. */
10243 ret = get_errno(0);
10244 break;
10245 #endif
10246 #if TARGET_ABI_BITS == 32
10247 case TARGET_NR_fcntl64:
10249 int cmd;
10250 struct flock64 fl;
10251 from_flock64_fn *copyfrom = copy_from_user_flock64;
10252 to_flock64_fn *copyto = copy_to_user_flock64;
10254 #ifdef TARGET_ARM
10255 if (((CPUARMState *)cpu_env)->eabi) {
10256 copyfrom = copy_from_user_eabi_flock64;
10257 copyto = copy_to_user_eabi_flock64;
10259 #endif
10261 cmd = target_to_host_fcntl_cmd(arg2);
10262 if (cmd == -TARGET_EINVAL) {
10263 ret = cmd;
10264 break;
10267 switch(arg2) {
10268 case TARGET_F_GETLK64:
10269 ret = copyfrom(&fl, arg3);
10270 if (ret) {
10271 break;
10273 ret = get_errno(fcntl(arg1, cmd, &fl));
10274 if (ret == 0) {
10275 ret = copyto(arg3, &fl);
10277 break;
10279 case TARGET_F_SETLK64:
10280 case TARGET_F_SETLKW64:
10281 ret = copyfrom(&fl, arg3);
10282 if (ret) {
10283 break;
10285 ret = get_errno(safe_fcntl(arg1, cmd, &fl));
10286 break;
10287 default:
10288 ret = do_fcntl(arg1, arg2, arg3);
10289 break;
10291 break;
10293 #endif
10294 #ifdef TARGET_NR_cacheflush
10295 case TARGET_NR_cacheflush:
10296 /* self-modifying code is handled automatically, so nothing needed */
10297 ret = 0;
10298 break;
10299 #endif
10300 #ifdef TARGET_NR_security
10301 case TARGET_NR_security:
10302 goto unimplemented;
10303 #endif
10304 #ifdef TARGET_NR_getpagesize
10305 case TARGET_NR_getpagesize:
10306 ret = TARGET_PAGE_SIZE;
10307 break;
10308 #endif
10309 case TARGET_NR_gettid:
10310 ret = get_errno(gettid());
10311 break;
10312 #ifdef TARGET_NR_readahead
10313 case TARGET_NR_readahead:
10314 #if TARGET_ABI_BITS == 32
10315 if (regpairs_aligned(cpu_env)) {
10316 arg2 = arg3;
10317 arg3 = arg4;
10318 arg4 = arg5;
10320 ret = get_errno(readahead(arg1, ((off64_t)arg3 << 32) | arg2, arg4));
10321 #else
10322 ret = get_errno(readahead(arg1, arg2, arg3));
10323 #endif
10324 break;
10325 #endif
10326 #ifdef CONFIG_ATTR
10327 #ifdef TARGET_NR_setxattr
10328 case TARGET_NR_listxattr:
10329 case TARGET_NR_llistxattr:
10331 void *p, *b = 0;
10332 if (arg2) {
10333 b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10334 if (!b) {
10335 ret = -TARGET_EFAULT;
10336 break;
10339 p = lock_user_string(arg1);
10340 if (p) {
10341 if (num == TARGET_NR_listxattr) {
10342 ret = get_errno(listxattr(p, b, arg3));
10343 } else {
10344 ret = get_errno(llistxattr(p, b, arg3));
10346 } else {
10347 ret = -TARGET_EFAULT;
10349 unlock_user(p, arg1, 0);
10350 unlock_user(b, arg2, arg3);
10351 break;
10353 case TARGET_NR_flistxattr:
10355 void *b = 0;
10356 if (arg2) {
10357 b = lock_user(VERIFY_WRITE, arg2, arg3, 0);
10358 if (!b) {
10359 ret = -TARGET_EFAULT;
10360 break;
10363 ret = get_errno(flistxattr(arg1, b, arg3));
10364 unlock_user(b, arg2, arg3);
10365 break;
10367 case TARGET_NR_setxattr:
10368 case TARGET_NR_lsetxattr:
10370 void *p, *n, *v = 0;
10371 if (arg3) {
10372 v = lock_user(VERIFY_READ, arg3, arg4, 1);
10373 if (!v) {
10374 ret = -TARGET_EFAULT;
10375 break;
10378 p = lock_user_string(arg1);
10379 n = lock_user_string(arg2);
10380 if (p && n) {
10381 if (num == TARGET_NR_setxattr) {
10382 ret = get_errno(setxattr(p, n, v, arg4, arg5));
10383 } else {
10384 ret = get_errno(lsetxattr(p, n, v, arg4, arg5));
10386 } else {
10387 ret = -TARGET_EFAULT;
10389 unlock_user(p, arg1, 0);
10390 unlock_user(n, arg2, 0);
10391 unlock_user(v, arg3, 0);
10393 break;
10394 case TARGET_NR_fsetxattr:
10396 void *n, *v = 0;
10397 if (arg3) {
10398 v = lock_user(VERIFY_READ, arg3, arg4, 1);
10399 if (!v) {
10400 ret = -TARGET_EFAULT;
10401 break;
10404 n = lock_user_string(arg2);
10405 if (n) {
10406 ret = get_errno(fsetxattr(arg1, n, v, arg4, arg5));
10407 } else {
10408 ret = -TARGET_EFAULT;
10410 unlock_user(n, arg2, 0);
10411 unlock_user(v, arg3, 0);
10413 break;
10414 case TARGET_NR_getxattr:
10415 case TARGET_NR_lgetxattr:
10417 void *p, *n, *v = 0;
10418 if (arg3) {
10419 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
10420 if (!v) {
10421 ret = -TARGET_EFAULT;
10422 break;
10425 p = lock_user_string(arg1);
10426 n = lock_user_string(arg2);
10427 if (p && n) {
10428 if (num == TARGET_NR_getxattr) {
10429 ret = get_errno(getxattr(p, n, v, arg4));
10430 } else {
10431 ret = get_errno(lgetxattr(p, n, v, arg4));
10433 } else {
10434 ret = -TARGET_EFAULT;
10436 unlock_user(p, arg1, 0);
10437 unlock_user(n, arg2, 0);
10438 unlock_user(v, arg3, arg4);
10440 break;
10441 case TARGET_NR_fgetxattr:
10443 void *n, *v = 0;
10444 if (arg3) {
10445 v = lock_user(VERIFY_WRITE, arg3, arg4, 0);
10446 if (!v) {
10447 ret = -TARGET_EFAULT;
10448 break;
10451 n = lock_user_string(arg2);
10452 if (n) {
10453 ret = get_errno(fgetxattr(arg1, n, v, arg4));
10454 } else {
10455 ret = -TARGET_EFAULT;
10457 unlock_user(n, arg2, 0);
10458 unlock_user(v, arg3, arg4);
10460 break;
10461 case TARGET_NR_removexattr:
10462 case TARGET_NR_lremovexattr:
10464 void *p, *n;
10465 p = lock_user_string(arg1);
10466 n = lock_user_string(arg2);
10467 if (p && n) {
10468 if (num == TARGET_NR_removexattr) {
10469 ret = get_errno(removexattr(p, n));
10470 } else {
10471 ret = get_errno(lremovexattr(p, n));
10473 } else {
10474 ret = -TARGET_EFAULT;
10476 unlock_user(p, arg1, 0);
10477 unlock_user(n, arg2, 0);
10479 break;
10480 case TARGET_NR_fremovexattr:
10482 void *n;
10483 n = lock_user_string(arg2);
10484 if (n) {
10485 ret = get_errno(fremovexattr(arg1, n));
10486 } else {
10487 ret = -TARGET_EFAULT;
10489 unlock_user(n, arg2, 0);
10491 break;
10492 #endif
10493 #endif /* CONFIG_ATTR */
10494 #ifdef TARGET_NR_set_thread_area
10495 case TARGET_NR_set_thread_area:
10496 #if defined(TARGET_MIPS)
10497 ((CPUMIPSState *) cpu_env)->active_tc.CP0_UserLocal = arg1;
10498 ret = 0;
10499 break;
10500 #elif defined(TARGET_CRIS)
10501 if (arg1 & 0xff)
10502 ret = -TARGET_EINVAL;
10503 else {
10504 ((CPUCRISState *) cpu_env)->pregs[PR_PID] = arg1;
10505 ret = 0;
10507 break;
10508 #elif defined(TARGET_I386) && defined(TARGET_ABI32)
10509 ret = do_set_thread_area(cpu_env, arg1);
10510 break;
10511 #elif defined(TARGET_M68K)
10513 TaskState *ts = cpu->opaque;
10514 ts->tp_value = arg1;
10515 ret = 0;
10516 break;
10518 #else
10519 goto unimplemented_nowarn;
10520 #endif
10521 #endif
10522 #ifdef TARGET_NR_get_thread_area
10523 case TARGET_NR_get_thread_area:
10524 #if defined(TARGET_I386) && defined(TARGET_ABI32)
10525 ret = do_get_thread_area(cpu_env, arg1);
10526 break;
10527 #elif defined(TARGET_M68K)
10529 TaskState *ts = cpu->opaque;
10530 ret = ts->tp_value;
10531 break;
10533 #else
10534 goto unimplemented_nowarn;
10535 #endif
10536 #endif
10537 #ifdef TARGET_NR_getdomainname
10538 case TARGET_NR_getdomainname:
10539 goto unimplemented_nowarn;
10540 #endif
10542 #ifdef TARGET_NR_clock_gettime
10543 case TARGET_NR_clock_gettime:
10545 struct timespec ts;
10546 ret = get_errno(clock_gettime(arg1, &ts));
10547 if (!is_error(ret)) {
10548 host_to_target_timespec(arg2, &ts);
10550 break;
10552 #endif
10553 #ifdef TARGET_NR_clock_getres
10554 case TARGET_NR_clock_getres:
10556 struct timespec ts;
10557 ret = get_errno(clock_getres(arg1, &ts));
10558 if (!is_error(ret)) {
10559 host_to_target_timespec(arg2, &ts);
10561 break;
10563 #endif
10564 #ifdef TARGET_NR_clock_nanosleep
10565 case TARGET_NR_clock_nanosleep:
10567 struct timespec ts;
10568 target_to_host_timespec(&ts, arg3);
10569 ret = get_errno(safe_clock_nanosleep(arg1, arg2,
10570 &ts, arg4 ? &ts : NULL));
10571 if (arg4)
10572 host_to_target_timespec(arg4, &ts);
10574 #if defined(TARGET_PPC)
10575 /* clock_nanosleep is odd in that it returns positive errno values.
10576 * On PPC, CR0 bit 3 should be set in such a situation. */
10577 if (ret && ret != -TARGET_ERESTARTSYS) {
10578 ((CPUPPCState *)cpu_env)->crf[0] |= 1;
10580 #endif
10581 break;
10583 #endif
10585 #if defined(TARGET_NR_set_tid_address) && defined(__NR_set_tid_address)
10586 case TARGET_NR_set_tid_address:
10587 ret = get_errno(set_tid_address((int *)g2h(arg1)));
10588 break;
10589 #endif
10591 case TARGET_NR_tkill:
10592 ret = get_errno(safe_tkill((int)arg1, target_to_host_signal(arg2)));
10593 break;
10595 case TARGET_NR_tgkill:
10596 ret = get_errno(safe_tgkill((int)arg1, (int)arg2,
10597 target_to_host_signal(arg3)));
10598 break;
10600 #ifdef TARGET_NR_set_robust_list
10601 case TARGET_NR_set_robust_list:
10602 case TARGET_NR_get_robust_list:
10603 /* The ABI for supporting robust futexes has userspace pass
10604 * the kernel a pointer to a linked list which is updated by
10605 * userspace after the syscall; the list is walked by the kernel
10606 * when the thread exits. Since the linked list in QEMU guest
10607 * memory isn't a valid linked list for the host and we have
10608 * no way to reliably intercept the thread-death event, we can't
10609 * support these. Silently return ENOSYS so that guest userspace
10610 * falls back to a non-robust futex implementation (which should
10611 * be OK except in the corner case of the guest crashing while
10612 * holding a mutex that is shared with another process via
10613 * shared memory).
10615 goto unimplemented_nowarn;
10616 #endif
10618 #if defined(TARGET_NR_utimensat)
10619 case TARGET_NR_utimensat:
10621 struct timespec *tsp, ts[2];
10622 if (!arg3) {
10623 tsp = NULL;
10624 } else {
10625 target_to_host_timespec(ts, arg3);
10626 target_to_host_timespec(ts+1, arg3+sizeof(struct target_timespec));
10627 tsp = ts;
10629 if (!arg2)
10630 ret = get_errno(sys_utimensat(arg1, NULL, tsp, arg4));
10631 else {
10632 if (!(p = lock_user_string(arg2))) {
10633 ret = -TARGET_EFAULT;
10634 goto fail;
10636 ret = get_errno(sys_utimensat(arg1, path(p), tsp, arg4));
10637 unlock_user(p, arg2, 0);
10640 break;
10641 #endif
10642 case TARGET_NR_futex:
10643 ret = do_futex(arg1, arg2, arg3, arg4, arg5, arg6);
10644 break;
10645 #if defined(TARGET_NR_inotify_init) && defined(__NR_inotify_init)
10646 case TARGET_NR_inotify_init:
10647 ret = get_errno(sys_inotify_init());
10648 break;
10649 #endif
10650 #ifdef CONFIG_INOTIFY1
10651 #if defined(TARGET_NR_inotify_init1) && defined(__NR_inotify_init1)
10652 case TARGET_NR_inotify_init1:
10653 ret = get_errno(sys_inotify_init1(arg1));
10654 break;
10655 #endif
10656 #endif
10657 #if defined(TARGET_NR_inotify_add_watch) && defined(__NR_inotify_add_watch)
10658 case TARGET_NR_inotify_add_watch:
10659 p = lock_user_string(arg2);
10660 ret = get_errno(sys_inotify_add_watch(arg1, path(p), arg3));
10661 unlock_user(p, arg2, 0);
10662 break;
10663 #endif
10664 #if defined(TARGET_NR_inotify_rm_watch) && defined(__NR_inotify_rm_watch)
10665 case TARGET_NR_inotify_rm_watch:
10666 ret = get_errno(sys_inotify_rm_watch(arg1, arg2));
10667 break;
10668 #endif
10670 #if defined(TARGET_NR_mq_open) && defined(__NR_mq_open)
10671 case TARGET_NR_mq_open:
10673 struct mq_attr posix_mq_attr, *attrp;
10675 p = lock_user_string(arg1 - 1);
10676 if (arg4 != 0) {
10677 copy_from_user_mq_attr (&posix_mq_attr, arg4);
10678 attrp = &posix_mq_attr;
10679 } else {
10680 attrp = 0;
10682 ret = get_errno(mq_open(p, arg2, arg3, attrp));
10683 unlock_user (p, arg1, 0);
10685 break;
10687 case TARGET_NR_mq_unlink:
10688 p = lock_user_string(arg1 - 1);
10689 ret = get_errno(mq_unlink(p));
10690 unlock_user (p, arg1, 0);
10691 break;
10693 case TARGET_NR_mq_timedsend:
10695 struct timespec ts;
10697 p = lock_user (VERIFY_READ, arg2, arg3, 1);
10698 if (arg5 != 0) {
10699 target_to_host_timespec(&ts, arg5);
10700 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, &ts));
10701 host_to_target_timespec(arg5, &ts);
10702 } else {
10703 ret = get_errno(safe_mq_timedsend(arg1, p, arg3, arg4, NULL));
10705 unlock_user (p, arg2, arg3);
10707 break;
10709 case TARGET_NR_mq_timedreceive:
10711 struct timespec ts;
10712 unsigned int prio;
10714 p = lock_user (VERIFY_READ, arg2, arg3, 1);
10715 if (arg5 != 0) {
10716 target_to_host_timespec(&ts, arg5);
10717 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
10718 &prio, &ts));
10719 host_to_target_timespec(arg5, &ts);
10720 } else {
10721 ret = get_errno(safe_mq_timedreceive(arg1, p, arg3,
10722 &prio, NULL));
10724 unlock_user (p, arg2, arg3);
10725 if (arg4 != 0)
10726 put_user_u32(prio, arg4);
10728 break;
10730 /* Not implemented for now... */
10731 /* case TARGET_NR_mq_notify: */
10732 /* break; */
10734 case TARGET_NR_mq_getsetattr:
10736 struct mq_attr posix_mq_attr_in, posix_mq_attr_out;
10737 ret = 0;
10738 if (arg3 != 0) {
10739 ret = mq_getattr(arg1, &posix_mq_attr_out);
10740 copy_to_user_mq_attr(arg3, &posix_mq_attr_out);
10742 if (arg2 != 0) {
10743 copy_from_user_mq_attr(&posix_mq_attr_in, arg2);
10744 ret |= mq_setattr(arg1, &posix_mq_attr_in, &posix_mq_attr_out);
10748 break;
10749 #endif
10751 #ifdef CONFIG_SPLICE
10752 #ifdef TARGET_NR_tee
10753 case TARGET_NR_tee:
10755 ret = get_errno(tee(arg1,arg2,arg3,arg4));
10757 break;
10758 #endif
10759 #ifdef TARGET_NR_splice
10760 case TARGET_NR_splice:
10762 loff_t loff_in, loff_out;
10763 loff_t *ploff_in = NULL, *ploff_out = NULL;
10764 if (arg2) {
10765 if (get_user_u64(loff_in, arg2)) {
10766 goto efault;
10768 ploff_in = &loff_in;
10770 if (arg4) {
10771 if (get_user_u64(loff_out, arg4)) {
10772 goto efault;
10774 ploff_out = &loff_out;
10776 ret = get_errno(splice(arg1, ploff_in, arg3, ploff_out, arg5, arg6));
10777 if (arg2) {
10778 if (put_user_u64(loff_in, arg2)) {
10779 goto efault;
10782 if (arg4) {
10783 if (put_user_u64(loff_out, arg4)) {
10784 goto efault;
10788 break;
10789 #endif
10790 #ifdef TARGET_NR_vmsplice
10791 case TARGET_NR_vmsplice:
10793 struct iovec *vec = lock_iovec(VERIFY_READ, arg2, arg3, 1);
10794 if (vec != NULL) {
10795 ret = get_errno(vmsplice(arg1, vec, arg3, arg4));
10796 unlock_iovec(vec, arg2, arg3, 0);
10797 } else {
10798 ret = -host_to_target_errno(errno);
10801 break;
10802 #endif
10803 #endif /* CONFIG_SPLICE */
10804 #ifdef CONFIG_EVENTFD
10805 #if defined(TARGET_NR_eventfd)
10806 case TARGET_NR_eventfd:
10807 ret = get_errno(eventfd(arg1, 0));
10808 fd_trans_unregister(ret);
10809 break;
10810 #endif
10811 #if defined(TARGET_NR_eventfd2)
10812 case TARGET_NR_eventfd2:
10814 int host_flags = arg2 & (~(TARGET_O_NONBLOCK | TARGET_O_CLOEXEC));
10815 if (arg2 & TARGET_O_NONBLOCK) {
10816 host_flags |= O_NONBLOCK;
10818 if (arg2 & TARGET_O_CLOEXEC) {
10819 host_flags |= O_CLOEXEC;
10821 ret = get_errno(eventfd(arg1, host_flags));
10822 fd_trans_unregister(ret);
10823 break;
10825 #endif
10826 #endif /* CONFIG_EVENTFD */
10827 #if defined(CONFIG_FALLOCATE) && defined(TARGET_NR_fallocate)
10828 case TARGET_NR_fallocate:
10829 #if TARGET_ABI_BITS == 32
10830 ret = get_errno(fallocate(arg1, arg2, target_offset64(arg3, arg4),
10831 target_offset64(arg5, arg6)));
10832 #else
10833 ret = get_errno(fallocate(arg1, arg2, arg3, arg4));
10834 #endif
10835 break;
10836 #endif
10837 #if defined(CONFIG_SYNC_FILE_RANGE)
10838 #if defined(TARGET_NR_sync_file_range)
10839 case TARGET_NR_sync_file_range:
10840 #if TARGET_ABI_BITS == 32
10841 #if defined(TARGET_MIPS)
10842 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
10843 target_offset64(arg5, arg6), arg7));
10844 #else
10845 ret = get_errno(sync_file_range(arg1, target_offset64(arg2, arg3),
10846 target_offset64(arg4, arg5), arg6));
10847 #endif /* !TARGET_MIPS */
10848 #else
10849 ret = get_errno(sync_file_range(arg1, arg2, arg3, arg4));
10850 #endif
10851 break;
10852 #endif
10853 #if defined(TARGET_NR_sync_file_range2)
10854 case TARGET_NR_sync_file_range2:
10855 /* This is like sync_file_range but the arguments are reordered */
10856 #if TARGET_ABI_BITS == 32
10857 ret = get_errno(sync_file_range(arg1, target_offset64(arg3, arg4),
10858 target_offset64(arg5, arg6), arg2));
10859 #else
10860 ret = get_errno(sync_file_range(arg1, arg3, arg4, arg2));
10861 #endif
10862 break;
10863 #endif
10864 #endif
10865 #if defined(TARGET_NR_signalfd4)
10866 case TARGET_NR_signalfd4:
10867 ret = do_signalfd4(arg1, arg2, arg4);
10868 break;
10869 #endif
10870 #if defined(TARGET_NR_signalfd)
10871 case TARGET_NR_signalfd:
10872 ret = do_signalfd4(arg1, arg2, 0);
10873 break;
10874 #endif
10875 #if defined(CONFIG_EPOLL)
10876 #if defined(TARGET_NR_epoll_create)
10877 case TARGET_NR_epoll_create:
10878 ret = get_errno(epoll_create(arg1));
10879 break;
10880 #endif
10881 #if defined(TARGET_NR_epoll_create1) && defined(CONFIG_EPOLL_CREATE1)
10882 case TARGET_NR_epoll_create1:
10883 ret = get_errno(epoll_create1(arg1));
10884 break;
10885 #endif
10886 #if defined(TARGET_NR_epoll_ctl)
10887 case TARGET_NR_epoll_ctl:
10889 struct epoll_event ep;
10890 struct epoll_event *epp = 0;
10891 if (arg4) {
10892 struct target_epoll_event *target_ep;
10893 if (!lock_user_struct(VERIFY_READ, target_ep, arg4, 1)) {
10894 goto efault;
10896 ep.events = tswap32(target_ep->events);
10897 /* The epoll_data_t union is just opaque data to the kernel,
10898 * so we transfer all 64 bits across and need not worry what
10899 * actual data type it is.
10901 ep.data.u64 = tswap64(target_ep->data.u64);
10902 unlock_user_struct(target_ep, arg4, 0);
10903 epp = &ep;
10905 ret = get_errno(epoll_ctl(arg1, arg2, arg3, epp));
10906 break;
10908 #endif
10910 #if defined(TARGET_NR_epoll_wait) || defined(TARGET_NR_epoll_pwait)
10911 #if defined(TARGET_NR_epoll_wait)
10912 case TARGET_NR_epoll_wait:
10913 #endif
10914 #if defined(TARGET_NR_epoll_pwait)
10915 case TARGET_NR_epoll_pwait:
10916 #endif
10918 struct target_epoll_event *target_ep;
10919 struct epoll_event *ep;
10920 int epfd = arg1;
10921 int maxevents = arg3;
10922 int timeout = arg4;
10924 target_ep = lock_user(VERIFY_WRITE, arg2,
10925 maxevents * sizeof(struct target_epoll_event), 1);
10926 if (!target_ep) {
10927 goto efault;
10930 ep = alloca(maxevents * sizeof(struct epoll_event));
10932 switch (num) {
10933 #if defined(TARGET_NR_epoll_pwait)
10934 case TARGET_NR_epoll_pwait:
10936 target_sigset_t *target_set;
10937 sigset_t _set, *set = &_set;
10939 if (arg5) {
10940 target_set = lock_user(VERIFY_READ, arg5,
10941 sizeof(target_sigset_t), 1);
10942 if (!target_set) {
10943 unlock_user(target_ep, arg2, 0);
10944 goto efault;
10946 target_to_host_sigset(set, target_set);
10947 unlock_user(target_set, arg5, 0);
10948 } else {
10949 set = NULL;
10952 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
10953 set, SIGSET_T_SIZE));
10954 break;
10956 #endif
10957 #if defined(TARGET_NR_epoll_wait)
10958 case TARGET_NR_epoll_wait:
10959 ret = get_errno(safe_epoll_pwait(epfd, ep, maxevents, timeout,
10960 NULL, 0));
10961 break;
10962 #endif
10963 default:
10964 ret = -TARGET_ENOSYS;
10966 if (!is_error(ret)) {
10967 int i;
10968 for (i = 0; i < ret; i++) {
10969 target_ep[i].events = tswap32(ep[i].events);
10970 target_ep[i].data.u64 = tswap64(ep[i].data.u64);
10973 unlock_user(target_ep, arg2, ret * sizeof(struct target_epoll_event));
10974 break;
10976 #endif
10977 #endif
10978 #ifdef TARGET_NR_prlimit64
10979 case TARGET_NR_prlimit64:
10981 /* args: pid, resource number, ptr to new rlimit, ptr to old rlimit */
10982 struct target_rlimit64 *target_rnew, *target_rold;
10983 struct host_rlimit64 rnew, rold, *rnewp = 0;
10984 int resource = target_to_host_resource(arg2);
10985 if (arg3) {
10986 if (!lock_user_struct(VERIFY_READ, target_rnew, arg3, 1)) {
10987 goto efault;
10989 rnew.rlim_cur = tswap64(target_rnew->rlim_cur);
10990 rnew.rlim_max = tswap64(target_rnew->rlim_max);
10991 unlock_user_struct(target_rnew, arg3, 0);
10992 rnewp = &rnew;
10995 ret = get_errno(sys_prlimit64(arg1, resource, rnewp, arg4 ? &rold : 0));
10996 if (!is_error(ret) && arg4) {
10997 if (!lock_user_struct(VERIFY_WRITE, target_rold, arg4, 1)) {
10998 goto efault;
11000 target_rold->rlim_cur = tswap64(rold.rlim_cur);
11001 target_rold->rlim_max = tswap64(rold.rlim_max);
11002 unlock_user_struct(target_rold, arg4, 1);
11004 break;
11006 #endif
11007 #ifdef TARGET_NR_gethostname
11008 case TARGET_NR_gethostname:
11010 char *name = lock_user(VERIFY_WRITE, arg1, arg2, 0);
11011 if (name) {
11012 ret = get_errno(gethostname(name, arg2));
11013 unlock_user(name, arg1, arg2);
11014 } else {
11015 ret = -TARGET_EFAULT;
11017 break;
11019 #endif
11020 #ifdef TARGET_NR_atomic_cmpxchg_32
11021 case TARGET_NR_atomic_cmpxchg_32:
11023 /* should use start_exclusive from main.c */
11024 abi_ulong mem_value;
11025 if (get_user_u32(mem_value, arg6)) {
11026 target_siginfo_t info;
11027 info.si_signo = SIGSEGV;
11028 info.si_errno = 0;
11029 info.si_code = TARGET_SEGV_MAPERR;
11030 info._sifields._sigfault._addr = arg6;
11031 queue_signal((CPUArchState *)cpu_env, info.si_signo, &info);
11032 ret = 0xdeadbeef;
11035 if (mem_value == arg2)
11036 put_user_u32(arg1, arg6);
11037 ret = mem_value;
11038 break;
11040 #endif
11041 #ifdef TARGET_NR_atomic_barrier
11042 case TARGET_NR_atomic_barrier:
11044 /* Like the kernel implementation and the qemu arm barrier, no-op this? */
11045 ret = 0;
11046 break;
11048 #endif
11050 #ifdef TARGET_NR_timer_create
11051 case TARGET_NR_timer_create:
11053 /* args: clockid_t clockid, struct sigevent *sevp, timer_t *timerid */
11055 struct sigevent host_sevp = { {0}, }, *phost_sevp = NULL;
11057 int clkid = arg1;
11058 int timer_index = next_free_host_timer();
11060 if (timer_index < 0) {
11061 ret = -TARGET_EAGAIN;
11062 } else {
11063 timer_t *phtimer = g_posix_timers + timer_index;
11065 if (arg2) {
11066 phost_sevp = &host_sevp;
11067 ret = target_to_host_sigevent(phost_sevp, arg2);
11068 if (ret != 0) {
11069 break;
11073 ret = get_errno(timer_create(clkid, phost_sevp, phtimer));
11074 if (ret) {
11075 phtimer = NULL;
11076 } else {
11077 if (put_user(TIMER_MAGIC | timer_index, arg3, target_timer_t)) {
11078 goto efault;
11082 break;
11084 #endif
11086 #ifdef TARGET_NR_timer_settime
11087 case TARGET_NR_timer_settime:
11089 /* args: timer_t timerid, int flags, const struct itimerspec *new_value,
11090 * struct itimerspec * old_value */
11091 target_timer_t timerid = get_timer_id(arg1);
11093 if (timerid < 0) {
11094 ret = timerid;
11095 } else if (arg3 == 0) {
11096 ret = -TARGET_EINVAL;
11097 } else {
11098 timer_t htimer = g_posix_timers[timerid];
11099 struct itimerspec hspec_new = {{0},}, hspec_old = {{0},};
11101 target_to_host_itimerspec(&hspec_new, arg3);
11102 ret = get_errno(
11103 timer_settime(htimer, arg2, &hspec_new, &hspec_old));
11104 host_to_target_itimerspec(arg2, &hspec_old);
11106 break;
11108 #endif
11110 #ifdef TARGET_NR_timer_gettime
11111 case TARGET_NR_timer_gettime:
11113 /* args: timer_t timerid, struct itimerspec *curr_value */
11114 target_timer_t timerid = get_timer_id(arg1);
11116 if (timerid < 0) {
11117 ret = timerid;
11118 } else if (!arg2) {
11119 ret = -TARGET_EFAULT;
11120 } else {
11121 timer_t htimer = g_posix_timers[timerid];
11122 struct itimerspec hspec;
11123 ret = get_errno(timer_gettime(htimer, &hspec));
11125 if (host_to_target_itimerspec(arg2, &hspec)) {
11126 ret = -TARGET_EFAULT;
11129 break;
11131 #endif
11133 #ifdef TARGET_NR_timer_getoverrun
11134 case TARGET_NR_timer_getoverrun:
11136 /* args: timer_t timerid */
11137 target_timer_t timerid = get_timer_id(arg1);
11139 if (timerid < 0) {
11140 ret = timerid;
11141 } else {
11142 timer_t htimer = g_posix_timers[timerid];
11143 ret = get_errno(timer_getoverrun(htimer));
11145 fd_trans_unregister(ret);
11146 break;
11148 #endif
11150 #ifdef TARGET_NR_timer_delete
11151 case TARGET_NR_timer_delete:
11153 /* args: timer_t timerid */
11154 target_timer_t timerid = get_timer_id(arg1);
11156 if (timerid < 0) {
11157 ret = timerid;
11158 } else {
11159 timer_t htimer = g_posix_timers[timerid];
11160 ret = get_errno(timer_delete(htimer));
11161 g_posix_timers[timerid] = 0;
11163 break;
11165 #endif
11167 #if defined(TARGET_NR_timerfd_create) && defined(CONFIG_TIMERFD)
11168 case TARGET_NR_timerfd_create:
11169 ret = get_errno(timerfd_create(arg1,
11170 target_to_host_bitmask(arg2, fcntl_flags_tbl)));
11171 break;
11172 #endif
11174 #if defined(TARGET_NR_timerfd_gettime) && defined(CONFIG_TIMERFD)
11175 case TARGET_NR_timerfd_gettime:
11177 struct itimerspec its_curr;
11179 ret = get_errno(timerfd_gettime(arg1, &its_curr));
11181 if (arg2 && host_to_target_itimerspec(arg2, &its_curr)) {
11182 goto efault;
11185 break;
11186 #endif
11188 #if defined(TARGET_NR_timerfd_settime) && defined(CONFIG_TIMERFD)
11189 case TARGET_NR_timerfd_settime:
11191 struct itimerspec its_new, its_old, *p_new;
11193 if (arg3) {
11194 if (target_to_host_itimerspec(&its_new, arg3)) {
11195 goto efault;
11197 p_new = &its_new;
11198 } else {
11199 p_new = NULL;
11202 ret = get_errno(timerfd_settime(arg1, arg2, p_new, &its_old));
11204 if (arg4 && host_to_target_itimerspec(arg4, &its_old)) {
11205 goto efault;
11208 break;
11209 #endif
11211 #if defined(TARGET_NR_ioprio_get) && defined(__NR_ioprio_get)
11212 case TARGET_NR_ioprio_get:
11213 ret = get_errno(ioprio_get(arg1, arg2));
11214 break;
11215 #endif
11217 #if defined(TARGET_NR_ioprio_set) && defined(__NR_ioprio_set)
11218 case TARGET_NR_ioprio_set:
11219 ret = get_errno(ioprio_set(arg1, arg2, arg3));
11220 break;
11221 #endif
11223 #if defined(TARGET_NR_setns) && defined(CONFIG_SETNS)
11224 case TARGET_NR_setns:
11225 ret = get_errno(setns(arg1, arg2));
11226 break;
11227 #endif
11228 #if defined(TARGET_NR_unshare) && defined(CONFIG_SETNS)
11229 case TARGET_NR_unshare:
11230 ret = get_errno(unshare(arg1));
11231 break;
11232 #endif
11234 default:
11235 unimplemented:
11236 gemu_log("qemu: Unsupported syscall: %d\n", num);
11237 #if defined(TARGET_NR_setxattr) || defined(TARGET_NR_get_thread_area) || defined(TARGET_NR_getdomainname) || defined(TARGET_NR_set_robust_list)
11238 unimplemented_nowarn:
11239 #endif
11240 ret = -TARGET_ENOSYS;
11241 break;
11243 fail:
11244 #ifdef DEBUG
11245 gemu_log(" = " TARGET_ABI_FMT_ld "\n", ret);
11246 #endif
11247 if(do_strace)
11248 print_syscall_ret(num, ret);
11249 trace_guest_user_syscall_ret(cpu, num, ret);
11250 return ret;
11251 efault:
11252 ret = -TARGET_EFAULT;
11253 goto fail;