xen: introduce 'xen-block', 'xen-disk' and 'xen-cdrom'
[qemu.git] / target / arm / internals.h
blob78e026d6e902dd99304a6f6f8f056bcbd3eeb346
1 /*
2 * QEMU ARM CPU -- internal functions and types
4 * Copyright (c) 2014 Linaro Ltd
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
20 * This header defines functions, types, etc which need to be shared
21 * between different source files within target/arm/ but which are
22 * private to it and not required by the rest of QEMU.
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
28 #include "hw/registerfields.h"
30 /* register banks for CPU modes */
31 #define BANK_USRSYS 0
32 #define BANK_SVC 1
33 #define BANK_ABT 2
34 #define BANK_UND 3
35 #define BANK_IRQ 4
36 #define BANK_FIQ 5
37 #define BANK_HYP 6
38 #define BANK_MON 7
40 static inline bool excp_is_internal(int excp)
42 /* Return true if this exception number represents a QEMU-internal
43 * exception that will not be passed to the guest.
45 return excp == EXCP_INTERRUPT
46 || excp == EXCP_HLT
47 || excp == EXCP_DEBUG
48 || excp == EXCP_HALTED
49 || excp == EXCP_EXCEPTION_EXIT
50 || excp == EXCP_KERNEL_TRAP
51 || excp == EXCP_SEMIHOST;
54 /* Scale factor for generic timers, ie number of ns per tick.
55 * This gives a 62.5MHz timer.
57 #define GTIMER_SCALE 16
59 /* Bit definitions for the v7M CONTROL register */
60 FIELD(V7M_CONTROL, NPRIV, 0, 1)
61 FIELD(V7M_CONTROL, SPSEL, 1, 1)
62 FIELD(V7M_CONTROL, FPCA, 2, 1)
63 FIELD(V7M_CONTROL, SFPA, 3, 1)
65 /* Bit definitions for v7M exception return payload */
66 FIELD(V7M_EXCRET, ES, 0, 1)
67 FIELD(V7M_EXCRET, RES0, 1, 1)
68 FIELD(V7M_EXCRET, SPSEL, 2, 1)
69 FIELD(V7M_EXCRET, MODE, 3, 1)
70 FIELD(V7M_EXCRET, FTYPE, 4, 1)
71 FIELD(V7M_EXCRET, DCRS, 5, 1)
72 FIELD(V7M_EXCRET, S, 6, 1)
73 FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
75 /* Minimum value which is a magic number for exception return */
76 #define EXC_RETURN_MIN_MAGIC 0xff000000
77 /* Minimum number which is a magic number for function or exception return
78 * when using v8M security extension
80 #define FNC_RETURN_MIN_MAGIC 0xfefffffe
82 /* We use a few fake FSR values for internal purposes in M profile.
83 * M profile cores don't have A/R format FSRs, but currently our
84 * get_phys_addr() code assumes A/R profile and reports failures via
85 * an A/R format FSR value. We then translate that into the proper
86 * M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
87 * Mostly the FSR values we use for this are those defined for v7PMSA,
88 * since we share some of that codepath. A few kinds of fault are
89 * only for M profile and have no A/R equivalent, though, so we have
90 * to pick a value from the reserved range (which we never otherwise
91 * generate) to use for these.
92 * These values will never be visible to the guest.
94 #define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
95 #define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
97 /**
98 * raise_exception: Raise the specified exception.
99 * Raise a guest exception with the specified value, syndrome register
100 * and target exception level. This should be called from helper functions,
101 * and never returns because we will longjump back up to the CPU main loop.
103 void QEMU_NORETURN raise_exception(CPUARMState *env, uint32_t excp,
104 uint32_t syndrome, uint32_t target_el);
107 * For AArch64, map a given EL to an index in the banked_spsr array.
108 * Note that this mapping and the AArch32 mapping defined in bank_number()
109 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
110 * mandated mapping between each other.
112 static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
114 static const unsigned int map[4] = {
115 [1] = BANK_SVC, /* EL1. */
116 [2] = BANK_HYP, /* EL2. */
117 [3] = BANK_MON, /* EL3. */
119 assert(el >= 1 && el <= 3);
120 return map[el];
123 /* Map CPU modes onto saved register banks. */
124 static inline int bank_number(int mode)
126 switch (mode) {
127 case ARM_CPU_MODE_USR:
128 case ARM_CPU_MODE_SYS:
129 return BANK_USRSYS;
130 case ARM_CPU_MODE_SVC:
131 return BANK_SVC;
132 case ARM_CPU_MODE_ABT:
133 return BANK_ABT;
134 case ARM_CPU_MODE_UND:
135 return BANK_UND;
136 case ARM_CPU_MODE_IRQ:
137 return BANK_IRQ;
138 case ARM_CPU_MODE_FIQ:
139 return BANK_FIQ;
140 case ARM_CPU_MODE_HYP:
141 return BANK_HYP;
142 case ARM_CPU_MODE_MON:
143 return BANK_MON;
145 g_assert_not_reached();
149 * r14_bank_number: Map CPU mode onto register bank for r14
151 * Given an AArch32 CPU mode, return the index into the saved register
152 * banks to use for the R14 (LR) in that mode. This is the same as
153 * bank_number(), except for the special case of Hyp mode, where
154 * R14 is shared with USR and SYS, unlike its R13 and SPSR.
155 * This should be used as the index into env->banked_r14[], and
156 * bank_number() used for the index into env->banked_r13[] and
157 * env->banked_spsr[].
159 static inline int r14_bank_number(int mode)
161 return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
164 void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
165 void arm_translate_init(void);
167 enum arm_fprounding {
168 FPROUNDING_TIEEVEN,
169 FPROUNDING_POSINF,
170 FPROUNDING_NEGINF,
171 FPROUNDING_ZERO,
172 FPROUNDING_TIEAWAY,
173 FPROUNDING_ODD
176 int arm_rmode_to_sf(int rmode);
178 static inline void aarch64_save_sp(CPUARMState *env, int el)
180 if (env->pstate & PSTATE_SP) {
181 env->sp_el[el] = env->xregs[31];
182 } else {
183 env->sp_el[0] = env->xregs[31];
187 static inline void aarch64_restore_sp(CPUARMState *env, int el)
189 if (env->pstate & PSTATE_SP) {
190 env->xregs[31] = env->sp_el[el];
191 } else {
192 env->xregs[31] = env->sp_el[0];
196 static inline void update_spsel(CPUARMState *env, uint32_t imm)
198 unsigned int cur_el = arm_current_el(env);
199 /* Update PSTATE SPSel bit; this requires us to update the
200 * working stack pointer in xregs[31].
202 if (!((imm ^ env->pstate) & PSTATE_SP)) {
203 return;
205 aarch64_save_sp(env, cur_el);
206 env->pstate = deposit32(env->pstate, 0, 1, imm);
208 /* We rely on illegal updates to SPsel from EL0 to get trapped
209 * at translation time.
211 assert(cur_el >= 1 && cur_el <= 3);
212 aarch64_restore_sp(env, cur_el);
216 * arm_pamax
217 * @cpu: ARMCPU
219 * Returns the implementation defined bit-width of physical addresses.
220 * The ARMv8 reference manuals refer to this as PAMax().
222 static inline unsigned int arm_pamax(ARMCPU *cpu)
224 static const unsigned int pamax_map[] = {
225 [0] = 32,
226 [1] = 36,
227 [2] = 40,
228 [3] = 42,
229 [4] = 44,
230 [5] = 48,
232 unsigned int parange =
233 FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
235 /* id_aa64mmfr0 is a read-only register so values outside of the
236 * supported mappings can be considered an implementation error. */
237 assert(parange < ARRAY_SIZE(pamax_map));
238 return pamax_map[parange];
241 /* Return true if extended addresses are enabled.
242 * This is always the case if our translation regime is 64 bit,
243 * but depends on TTBCR.EAE for 32 bit.
245 static inline bool extended_addresses_enabled(CPUARMState *env)
247 TCR *tcr = &env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
248 return arm_el_is_aa64(env, 1) ||
249 (arm_feature(env, ARM_FEATURE_LPAE) && (tcr->raw_tcr & TTBCR_EAE));
252 /* Valid Syndrome Register EC field values */
253 enum arm_exception_class {
254 EC_UNCATEGORIZED = 0x00,
255 EC_WFX_TRAP = 0x01,
256 EC_CP15RTTRAP = 0x03,
257 EC_CP15RRTTRAP = 0x04,
258 EC_CP14RTTRAP = 0x05,
259 EC_CP14DTTRAP = 0x06,
260 EC_ADVSIMDFPACCESSTRAP = 0x07,
261 EC_FPIDTRAP = 0x08,
262 EC_CP14RRTTRAP = 0x0c,
263 EC_ILLEGALSTATE = 0x0e,
264 EC_AA32_SVC = 0x11,
265 EC_AA32_HVC = 0x12,
266 EC_AA32_SMC = 0x13,
267 EC_AA64_SVC = 0x15,
268 EC_AA64_HVC = 0x16,
269 EC_AA64_SMC = 0x17,
270 EC_SYSTEMREGISTERTRAP = 0x18,
271 EC_SVEACCESSTRAP = 0x19,
272 EC_INSNABORT = 0x20,
273 EC_INSNABORT_SAME_EL = 0x21,
274 EC_PCALIGNMENT = 0x22,
275 EC_DATAABORT = 0x24,
276 EC_DATAABORT_SAME_EL = 0x25,
277 EC_SPALIGNMENT = 0x26,
278 EC_AA32_FPTRAP = 0x28,
279 EC_AA64_FPTRAP = 0x2c,
280 EC_SERROR = 0x2f,
281 EC_BREAKPOINT = 0x30,
282 EC_BREAKPOINT_SAME_EL = 0x31,
283 EC_SOFTWARESTEP = 0x32,
284 EC_SOFTWARESTEP_SAME_EL = 0x33,
285 EC_WATCHPOINT = 0x34,
286 EC_WATCHPOINT_SAME_EL = 0x35,
287 EC_AA32_BKPT = 0x38,
288 EC_VECTORCATCH = 0x3a,
289 EC_AA64_BKPT = 0x3c,
292 #define ARM_EL_EC_SHIFT 26
293 #define ARM_EL_IL_SHIFT 25
294 #define ARM_EL_ISV_SHIFT 24
295 #define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
296 #define ARM_EL_ISV (1 << ARM_EL_ISV_SHIFT)
298 static inline uint32_t syn_get_ec(uint32_t syn)
300 return syn >> ARM_EL_EC_SHIFT;
303 /* Utility functions for constructing various kinds of syndrome value.
304 * Note that in general we follow the AArch64 syndrome values; in a
305 * few cases the value in HSR for exceptions taken to AArch32 Hyp
306 * mode differs slightly, and we fix this up when populating HSR in
307 * arm_cpu_do_interrupt_aarch32_hyp().
308 * The exception is FP/SIMD access traps -- these report extra information
309 * when taking an exception to AArch32. For those we include the extra coproc
310 * and TA fields, and mask them out when taking the exception to AArch64.
312 static inline uint32_t syn_uncategorized(void)
314 return (EC_UNCATEGORIZED << ARM_EL_EC_SHIFT) | ARM_EL_IL;
317 static inline uint32_t syn_aa64_svc(uint32_t imm16)
319 return (EC_AA64_SVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
322 static inline uint32_t syn_aa64_hvc(uint32_t imm16)
324 return (EC_AA64_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
327 static inline uint32_t syn_aa64_smc(uint32_t imm16)
329 return (EC_AA64_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
332 static inline uint32_t syn_aa32_svc(uint32_t imm16, bool is_16bit)
334 return (EC_AA32_SVC << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
335 | (is_16bit ? 0 : ARM_EL_IL);
338 static inline uint32_t syn_aa32_hvc(uint32_t imm16)
340 return (EC_AA32_HVC << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
343 static inline uint32_t syn_aa32_smc(void)
345 return (EC_AA32_SMC << ARM_EL_EC_SHIFT) | ARM_EL_IL;
348 static inline uint32_t syn_aa64_bkpt(uint32_t imm16)
350 return (EC_AA64_BKPT << ARM_EL_EC_SHIFT) | ARM_EL_IL | (imm16 & 0xffff);
353 static inline uint32_t syn_aa32_bkpt(uint32_t imm16, bool is_16bit)
355 return (EC_AA32_BKPT << ARM_EL_EC_SHIFT) | (imm16 & 0xffff)
356 | (is_16bit ? 0 : ARM_EL_IL);
359 static inline uint32_t syn_aa64_sysregtrap(int op0, int op1, int op2,
360 int crn, int crm, int rt,
361 int isread)
363 return (EC_SYSTEMREGISTERTRAP << ARM_EL_EC_SHIFT) | ARM_EL_IL
364 | (op0 << 20) | (op2 << 17) | (op1 << 14) | (crn << 10) | (rt << 5)
365 | (crm << 1) | isread;
368 static inline uint32_t syn_cp14_rt_trap(int cv, int cond, int opc1, int opc2,
369 int crn, int crm, int rt, int isread,
370 bool is_16bit)
372 return (EC_CP14RTTRAP << ARM_EL_EC_SHIFT)
373 | (is_16bit ? 0 : ARM_EL_IL)
374 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
375 | (crn << 10) | (rt << 5) | (crm << 1) | isread;
378 static inline uint32_t syn_cp15_rt_trap(int cv, int cond, int opc1, int opc2,
379 int crn, int crm, int rt, int isread,
380 bool is_16bit)
382 return (EC_CP15RTTRAP << ARM_EL_EC_SHIFT)
383 | (is_16bit ? 0 : ARM_EL_IL)
384 | (cv << 24) | (cond << 20) | (opc2 << 17) | (opc1 << 14)
385 | (crn << 10) | (rt << 5) | (crm << 1) | isread;
388 static inline uint32_t syn_cp14_rrt_trap(int cv, int cond, int opc1, int crm,
389 int rt, int rt2, int isread,
390 bool is_16bit)
392 return (EC_CP14RRTTRAP << ARM_EL_EC_SHIFT)
393 | (is_16bit ? 0 : ARM_EL_IL)
394 | (cv << 24) | (cond << 20) | (opc1 << 16)
395 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
398 static inline uint32_t syn_cp15_rrt_trap(int cv, int cond, int opc1, int crm,
399 int rt, int rt2, int isread,
400 bool is_16bit)
402 return (EC_CP15RRTTRAP << ARM_EL_EC_SHIFT)
403 | (is_16bit ? 0 : ARM_EL_IL)
404 | (cv << 24) | (cond << 20) | (opc1 << 16)
405 | (rt2 << 10) | (rt << 5) | (crm << 1) | isread;
408 static inline uint32_t syn_fp_access_trap(int cv, int cond, bool is_16bit)
410 /* AArch32 FP trap or any AArch64 FP/SIMD trap: TA == 0 coproc == 0xa */
411 return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
412 | (is_16bit ? 0 : ARM_EL_IL)
413 | (cv << 24) | (cond << 20) | 0xa;
416 static inline uint32_t syn_simd_access_trap(int cv, int cond, bool is_16bit)
418 /* AArch32 SIMD trap: TA == 1 coproc == 0 */
419 return (EC_ADVSIMDFPACCESSTRAP << ARM_EL_EC_SHIFT)
420 | (is_16bit ? 0 : ARM_EL_IL)
421 | (cv << 24) | (cond << 20) | (1 << 5);
424 static inline uint32_t syn_sve_access_trap(void)
426 return EC_SVEACCESSTRAP << ARM_EL_EC_SHIFT;
429 static inline uint32_t syn_insn_abort(int same_el, int ea, int s1ptw, int fsc)
431 return (EC_INSNABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
432 | ARM_EL_IL | (ea << 9) | (s1ptw << 7) | fsc;
435 static inline uint32_t syn_data_abort_no_iss(int same_el,
436 int ea, int cm, int s1ptw,
437 int wnr, int fsc)
439 return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
440 | ARM_EL_IL
441 | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
444 static inline uint32_t syn_data_abort_with_iss(int same_el,
445 int sas, int sse, int srt,
446 int sf, int ar,
447 int ea, int cm, int s1ptw,
448 int wnr, int fsc,
449 bool is_16bit)
451 return (EC_DATAABORT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
452 | (is_16bit ? 0 : ARM_EL_IL)
453 | ARM_EL_ISV | (sas << 22) | (sse << 21) | (srt << 16)
454 | (sf << 15) | (ar << 14)
455 | (ea << 9) | (cm << 8) | (s1ptw << 7) | (wnr << 6) | fsc;
458 static inline uint32_t syn_swstep(int same_el, int isv, int ex)
460 return (EC_SOFTWARESTEP << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
461 | ARM_EL_IL | (isv << 24) | (ex << 6) | 0x22;
464 static inline uint32_t syn_watchpoint(int same_el, int cm, int wnr)
466 return (EC_WATCHPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
467 | ARM_EL_IL | (cm << 8) | (wnr << 6) | 0x22;
470 static inline uint32_t syn_breakpoint(int same_el)
472 return (EC_BREAKPOINT << ARM_EL_EC_SHIFT) | (same_el << ARM_EL_EC_SHIFT)
473 | ARM_EL_IL | 0x22;
476 static inline uint32_t syn_wfx(int cv, int cond, int ti, bool is_16bit)
478 return (EC_WFX_TRAP << ARM_EL_EC_SHIFT) |
479 (is_16bit ? 0 : (1 << ARM_EL_IL_SHIFT)) |
480 (cv << 24) | (cond << 20) | ti;
483 /* Update a QEMU watchpoint based on the information the guest has set in the
484 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
486 void hw_watchpoint_update(ARMCPU *cpu, int n);
487 /* Update the QEMU watchpoints for every guest watchpoint. This does a
488 * complete delete-and-reinstate of the QEMU watchpoint list and so is
489 * suitable for use after migration or on reset.
491 void hw_watchpoint_update_all(ARMCPU *cpu);
492 /* Update a QEMU breakpoint based on the information the guest has set in the
493 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
495 void hw_breakpoint_update(ARMCPU *cpu, int n);
496 /* Update the QEMU breakpoints for every guest breakpoint. This does a
497 * complete delete-and-reinstate of the QEMU breakpoint list and so is
498 * suitable for use after migration or on reset.
500 void hw_breakpoint_update_all(ARMCPU *cpu);
502 /* Callback function for checking if a watchpoint should trigger. */
503 bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
505 /* Adjust addresses (in BE32 mode) before testing against watchpoint
506 * addresses.
508 vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
510 /* Callback function for when a watchpoint or breakpoint triggers. */
511 void arm_debug_excp_handler(CPUState *cs);
513 #ifdef CONFIG_USER_ONLY
514 static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
516 return false;
518 #else
519 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
520 bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
521 /* Actually handle a PSCI call */
522 void arm_handle_psci_call(ARMCPU *cpu);
523 #endif
526 * arm_clear_exclusive: clear the exclusive monitor
527 * @env: CPU env
528 * Clear the CPU's exclusive monitor, like the guest CLREX instruction.
530 static inline void arm_clear_exclusive(CPUARMState *env)
532 env->exclusive_addr = -1;
536 * ARMFaultType: type of an ARM MMU fault
537 * This corresponds to the v8A pseudocode's Fault enumeration,
538 * with extensions for QEMU internal conditions.
540 typedef enum ARMFaultType {
541 ARMFault_None,
542 ARMFault_AccessFlag,
543 ARMFault_Alignment,
544 ARMFault_Background,
545 ARMFault_Domain,
546 ARMFault_Permission,
547 ARMFault_Translation,
548 ARMFault_AddressSize,
549 ARMFault_SyncExternal,
550 ARMFault_SyncExternalOnWalk,
551 ARMFault_SyncParity,
552 ARMFault_SyncParityOnWalk,
553 ARMFault_AsyncParity,
554 ARMFault_AsyncExternal,
555 ARMFault_Debug,
556 ARMFault_TLBConflict,
557 ARMFault_Lockdown,
558 ARMFault_Exclusive,
559 ARMFault_ICacheMaint,
560 ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
561 ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
562 } ARMFaultType;
565 * ARMMMUFaultInfo: Information describing an ARM MMU Fault
566 * @type: Type of fault
567 * @level: Table walk level (for translation, access flag and permission faults)
568 * @domain: Domain of the fault address (for non-LPAE CPUs only)
569 * @s2addr: Address that caused a fault at stage 2
570 * @stage2: True if we faulted at stage 2
571 * @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
572 * @ea: True if we should set the EA (external abort type) bit in syndrome
574 typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
575 struct ARMMMUFaultInfo {
576 ARMFaultType type;
577 target_ulong s2addr;
578 int level;
579 int domain;
580 bool stage2;
581 bool s1ptw;
582 bool ea;
586 * arm_fi_to_sfsc: Convert fault info struct to short-format FSC
587 * Compare pseudocode EncodeSDFSC(), though unlike that function
588 * we set up a whole FSR-format code including domain field and
589 * putting the high bit of the FSC into bit 10.
591 static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
593 uint32_t fsc;
595 switch (fi->type) {
596 case ARMFault_None:
597 return 0;
598 case ARMFault_AccessFlag:
599 fsc = fi->level == 1 ? 0x3 : 0x6;
600 break;
601 case ARMFault_Alignment:
602 fsc = 0x1;
603 break;
604 case ARMFault_Permission:
605 fsc = fi->level == 1 ? 0xd : 0xf;
606 break;
607 case ARMFault_Domain:
608 fsc = fi->level == 1 ? 0x9 : 0xb;
609 break;
610 case ARMFault_Translation:
611 fsc = fi->level == 1 ? 0x5 : 0x7;
612 break;
613 case ARMFault_SyncExternal:
614 fsc = 0x8 | (fi->ea << 12);
615 break;
616 case ARMFault_SyncExternalOnWalk:
617 fsc = fi->level == 1 ? 0xc : 0xe;
618 fsc |= (fi->ea << 12);
619 break;
620 case ARMFault_SyncParity:
621 fsc = 0x409;
622 break;
623 case ARMFault_SyncParityOnWalk:
624 fsc = fi->level == 1 ? 0x40c : 0x40e;
625 break;
626 case ARMFault_AsyncParity:
627 fsc = 0x408;
628 break;
629 case ARMFault_AsyncExternal:
630 fsc = 0x406 | (fi->ea << 12);
631 break;
632 case ARMFault_Debug:
633 fsc = 0x2;
634 break;
635 case ARMFault_TLBConflict:
636 fsc = 0x400;
637 break;
638 case ARMFault_Lockdown:
639 fsc = 0x404;
640 break;
641 case ARMFault_Exclusive:
642 fsc = 0x405;
643 break;
644 case ARMFault_ICacheMaint:
645 fsc = 0x4;
646 break;
647 case ARMFault_Background:
648 fsc = 0x0;
649 break;
650 case ARMFault_QEMU_NSCExec:
651 fsc = M_FAKE_FSR_NSC_EXEC;
652 break;
653 case ARMFault_QEMU_SFault:
654 fsc = M_FAKE_FSR_SFAULT;
655 break;
656 default:
657 /* Other faults can't occur in a context that requires a
658 * short-format status code.
660 g_assert_not_reached();
663 fsc |= (fi->domain << 4);
664 return fsc;
668 * arm_fi_to_lfsc: Convert fault info struct to long-format FSC
669 * Compare pseudocode EncodeLDFSC(), though unlike that function
670 * we fill in also the LPAE bit 9 of a DFSR format.
672 static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
674 uint32_t fsc;
676 switch (fi->type) {
677 case ARMFault_None:
678 return 0;
679 case ARMFault_AddressSize:
680 fsc = fi->level & 3;
681 break;
682 case ARMFault_AccessFlag:
683 fsc = (fi->level & 3) | (0x2 << 2);
684 break;
685 case ARMFault_Permission:
686 fsc = (fi->level & 3) | (0x3 << 2);
687 break;
688 case ARMFault_Translation:
689 fsc = (fi->level & 3) | (0x1 << 2);
690 break;
691 case ARMFault_SyncExternal:
692 fsc = 0x10 | (fi->ea << 12);
693 break;
694 case ARMFault_SyncExternalOnWalk:
695 fsc = (fi->level & 3) | (0x5 << 2) | (fi->ea << 12);
696 break;
697 case ARMFault_SyncParity:
698 fsc = 0x18;
699 break;
700 case ARMFault_SyncParityOnWalk:
701 fsc = (fi->level & 3) | (0x7 << 2);
702 break;
703 case ARMFault_AsyncParity:
704 fsc = 0x19;
705 break;
706 case ARMFault_AsyncExternal:
707 fsc = 0x11 | (fi->ea << 12);
708 break;
709 case ARMFault_Alignment:
710 fsc = 0x21;
711 break;
712 case ARMFault_Debug:
713 fsc = 0x22;
714 break;
715 case ARMFault_TLBConflict:
716 fsc = 0x30;
717 break;
718 case ARMFault_Lockdown:
719 fsc = 0x34;
720 break;
721 case ARMFault_Exclusive:
722 fsc = 0x35;
723 break;
724 default:
725 /* Other faults can't occur in a context that requires a
726 * long-format status code.
728 g_assert_not_reached();
731 fsc |= 1 << 9;
732 return fsc;
735 static inline bool arm_extabort_type(MemTxResult result)
737 /* The EA bit in syndromes and fault status registers is an
738 * IMPDEF classification of external aborts. ARM implementations
739 * usually use this to indicate AXI bus Decode error (0) or
740 * Slave error (1); in QEMU we follow that.
742 return result != MEMTX_DECODE_ERROR;
745 /* Do a page table walk and add page to TLB if possible */
746 bool arm_tlb_fill(CPUState *cpu, vaddr address,
747 MMUAccessType access_type, int mmu_idx,
748 ARMMMUFaultInfo *fi);
750 /* Return true if the stage 1 translation regime is using LPAE format page
751 * tables */
752 bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
754 /* Raise a data fault alignment exception for the specified virtual address */
755 void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
756 MMUAccessType access_type,
757 int mmu_idx, uintptr_t retaddr);
759 /* arm_cpu_do_transaction_failed: handle a memory system error response
760 * (eg "no device/memory present at address") by raising an external abort
761 * exception
763 void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
764 vaddr addr, unsigned size,
765 MMUAccessType access_type,
766 int mmu_idx, MemTxAttrs attrs,
767 MemTxResult response, uintptr_t retaddr);
769 /* Call any registered EL change hooks */
770 static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
772 ARMELChangeHook *hook, *next;
773 QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
774 hook->hook(cpu, hook->opaque);
777 static inline void arm_call_el_change_hook(ARMCPU *cpu)
779 ARMELChangeHook *hook, *next;
780 QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
781 hook->hook(cpu, hook->opaque);
785 /* Return true if this address translation regime is secure */
786 static inline bool regime_is_secure(CPUARMState *env, ARMMMUIdx mmu_idx)
788 switch (mmu_idx) {
789 case ARMMMUIdx_S12NSE0:
790 case ARMMMUIdx_S12NSE1:
791 case ARMMMUIdx_S1NSE0:
792 case ARMMMUIdx_S1NSE1:
793 case ARMMMUIdx_S1E2:
794 case ARMMMUIdx_S2NS:
795 case ARMMMUIdx_MPrivNegPri:
796 case ARMMMUIdx_MUserNegPri:
797 case ARMMMUIdx_MPriv:
798 case ARMMMUIdx_MUser:
799 return false;
800 case ARMMMUIdx_S1E3:
801 case ARMMMUIdx_S1SE0:
802 case ARMMMUIdx_S1SE1:
803 case ARMMMUIdx_MSPrivNegPri:
804 case ARMMMUIdx_MSUserNegPri:
805 case ARMMMUIdx_MSPriv:
806 case ARMMMUIdx_MSUser:
807 return true;
808 default:
809 g_assert_not_reached();
813 /* Return the FSR value for a debug exception (watchpoint, hardware
814 * breakpoint or BKPT insn) targeting the specified exception level.
816 static inline uint32_t arm_debug_exception_fsr(CPUARMState *env)
818 ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
819 int target_el = arm_debug_target_el(env);
820 bool using_lpae = false;
822 if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
823 using_lpae = true;
824 } else {
825 if (arm_feature(env, ARM_FEATURE_LPAE) &&
826 (env->cp15.tcr_el[target_el].raw_tcr & TTBCR_EAE)) {
827 using_lpae = true;
831 if (using_lpae) {
832 return arm_fi_to_lfsc(&fi);
833 } else {
834 return arm_fi_to_sfsc(&fi);
838 /* Note make_memop_idx reserves 4 bits for mmu_idx, and MO_BSWAP is bit 3.
839 * Thus a TCGMemOpIdx, without any MO_ALIGN bits, fits in 8 bits.
841 #define MEMOPIDX_SHIFT 8
844 * v7m_using_psp: Return true if using process stack pointer
845 * Return true if the CPU is currently using the process stack
846 * pointer, or false if it is using the main stack pointer.
848 static inline bool v7m_using_psp(CPUARMState *env)
850 /* Handler mode always uses the main stack; for thread mode
851 * the CONTROL.SPSEL bit determines the answer.
852 * Note that in v7M it is not possible to be in Handler mode with
853 * CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
855 return !arm_v7m_is_handler_mode(env) &&
856 env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
860 * v7m_sp_limit: Return SP limit for current CPU state
861 * Return the SP limit value for the current CPU security state
862 * and stack pointer.
864 static inline uint32_t v7m_sp_limit(CPUARMState *env)
866 if (v7m_using_psp(env)) {
867 return env->v7m.psplim[env->v7m.secure];
868 } else {
869 return env->v7m.msplim[env->v7m.secure];
874 * aarch32_mode_name(): Return name of the AArch32 CPU mode
875 * @psr: Program Status Register indicating CPU mode
877 * Returns, for debug logging purposes, a printable representation
878 * of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
879 * the low bits of the specified PSR.
881 static inline const char *aarch32_mode_name(uint32_t psr)
883 static const char cpu_mode_names[16][4] = {
884 "usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
885 "???", "???", "hyp", "und", "???", "???", "???", "sys"
888 return cpu_mode_names[psr & 0xf];
892 * arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
894 * Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
895 * a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
896 * Must be called with the iothread lock held.
898 void arm_cpu_update_virq(ARMCPU *cpu);
901 * arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
903 * Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
904 * a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
905 * Must be called with the iothread lock held.
907 void arm_cpu_update_vfiq(ARMCPU *cpu);
909 #endif