1 #include "qemu/osdep.h"
2 #include "target/arm/idau.h"
6 #include "exec/gdbstub.h"
7 #include "exec/helper-proto.h"
8 #include "qemu/host-utils.h"
9 #include "sysemu/arch_init.h"
10 #include "sysemu/sysemu.h"
11 #include "qemu/bitops.h"
12 #include "qemu/crc32c.h"
13 #include "exec/exec-all.h"
14 #include "exec/cpu_ldst.h"
16 #include <zlib.h> /* For crc32 */
17 #include "exec/semihost.h"
18 #include "sysemu/kvm.h"
19 #include "fpu/softfloat.h"
20 #include "qemu/range.h"
22 #define ARM_CPU_FREQ 1000000000 /* FIXME: 1 GHz, should be configurable */
24 #ifndef CONFIG_USER_ONLY
25 /* Cacheability and shareability attributes for a memory access */
26 typedef struct ARMCacheAttrs
{
27 unsigned int attrs
:8; /* as in the MAIR register encoding */
28 unsigned int shareability
:2; /* as in the SH field of the VMSAv8-64 PTEs */
31 static bool get_phys_addr(CPUARMState
*env
, target_ulong address
,
32 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
33 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
34 target_ulong
*page_size
,
35 ARMMMUFaultInfo
*fi
, ARMCacheAttrs
*cacheattrs
);
37 static bool get_phys_addr_lpae(CPUARMState
*env
, target_ulong address
,
38 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
39 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
, int *prot
,
40 target_ulong
*page_size_ptr
,
41 ARMMMUFaultInfo
*fi
, ARMCacheAttrs
*cacheattrs
);
43 /* Security attributes for an address, as returned by v8m_security_lookup. */
44 typedef struct V8M_SAttributes
{
45 bool subpage
; /* true if these attrs don't cover the whole TARGET_PAGE */
54 static void v8m_security_lookup(CPUARMState
*env
, uint32_t address
,
55 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
56 V8M_SAttributes
*sattrs
);
59 static void switch_mode(CPUARMState
*env
, int mode
);
61 static int vfp_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
65 /* VFP data registers are always little-endian. */
66 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
68 stq_le_p(buf
, *aa32_vfp_dreg(env
, reg
));
71 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
72 /* Aliases for Q regs. */
75 uint64_t *q
= aa32_vfp_qreg(env
, reg
- 32);
77 stq_le_p(buf
+ 8, q
[1]);
81 switch (reg
- nregs
) {
82 case 0: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSID
]); return 4;
83 case 1: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSCR
]); return 4;
84 case 2: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPEXC
]); return 4;
89 static int vfp_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
93 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
95 *aa32_vfp_dreg(env
, reg
) = ldq_le_p(buf
);
98 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
101 uint64_t *q
= aa32_vfp_qreg(env
, reg
- 32);
102 q
[0] = ldq_le_p(buf
);
103 q
[1] = ldq_le_p(buf
+ 8);
107 switch (reg
- nregs
) {
108 case 0: env
->vfp
.xregs
[ARM_VFP_FPSID
] = ldl_p(buf
); return 4;
109 case 1: env
->vfp
.xregs
[ARM_VFP_FPSCR
] = ldl_p(buf
); return 4;
110 case 2: env
->vfp
.xregs
[ARM_VFP_FPEXC
] = ldl_p(buf
) & (1 << 30); return 4;
115 static int aarch64_fpu_gdb_get_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
119 /* 128 bit FP register */
121 uint64_t *q
= aa64_vfp_qreg(env
, reg
);
123 stq_le_p(buf
+ 8, q
[1]);
128 stl_p(buf
, vfp_get_fpsr(env
));
132 stl_p(buf
, vfp_get_fpcr(env
));
139 static int aarch64_fpu_gdb_set_reg(CPUARMState
*env
, uint8_t *buf
, int reg
)
143 /* 128 bit FP register */
145 uint64_t *q
= aa64_vfp_qreg(env
, reg
);
146 q
[0] = ldq_le_p(buf
);
147 q
[1] = ldq_le_p(buf
+ 8);
152 vfp_set_fpsr(env
, ldl_p(buf
));
156 vfp_set_fpcr(env
, ldl_p(buf
));
163 static uint64_t raw_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
165 assert(ri
->fieldoffset
);
166 if (cpreg_field_is_64bit(ri
)) {
167 return CPREG_FIELD64(env
, ri
);
169 return CPREG_FIELD32(env
, ri
);
173 static void raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
176 assert(ri
->fieldoffset
);
177 if (cpreg_field_is_64bit(ri
)) {
178 CPREG_FIELD64(env
, ri
) = value
;
180 CPREG_FIELD32(env
, ri
) = value
;
184 static void *raw_ptr(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
186 return (char *)env
+ ri
->fieldoffset
;
189 uint64_t read_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
191 /* Raw read of a coprocessor register (as needed for migration, etc). */
192 if (ri
->type
& ARM_CP_CONST
) {
193 return ri
->resetvalue
;
194 } else if (ri
->raw_readfn
) {
195 return ri
->raw_readfn(env
, ri
);
196 } else if (ri
->readfn
) {
197 return ri
->readfn(env
, ri
);
199 return raw_read(env
, ri
);
203 static void write_raw_cp_reg(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
206 /* Raw write of a coprocessor register (as needed for migration, etc).
207 * Note that constant registers are treated as write-ignored; the
208 * caller should check for success by whether a readback gives the
211 if (ri
->type
& ARM_CP_CONST
) {
213 } else if (ri
->raw_writefn
) {
214 ri
->raw_writefn(env
, ri
, v
);
215 } else if (ri
->writefn
) {
216 ri
->writefn(env
, ri
, v
);
218 raw_write(env
, ri
, v
);
222 static int arm_gdb_get_sysreg(CPUARMState
*env
, uint8_t *buf
, int reg
)
224 ARMCPU
*cpu
= arm_env_get_cpu(env
);
225 const ARMCPRegInfo
*ri
;
228 key
= cpu
->dyn_xml
.cpregs_keys
[reg
];
229 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, key
);
231 if (cpreg_field_is_64bit(ri
)) {
232 return gdb_get_reg64(buf
, (uint64_t)read_raw_cp_reg(env
, ri
));
234 return gdb_get_reg32(buf
, (uint32_t)read_raw_cp_reg(env
, ri
));
240 static int arm_gdb_set_sysreg(CPUARMState
*env
, uint8_t *buf
, int reg
)
245 static bool raw_accessors_invalid(const ARMCPRegInfo
*ri
)
247 /* Return true if the regdef would cause an assertion if you called
248 * read_raw_cp_reg() or write_raw_cp_reg() on it (ie if it is a
249 * program bug for it not to have the NO_RAW flag).
250 * NB that returning false here doesn't necessarily mean that calling
251 * read/write_raw_cp_reg() is safe, because we can't distinguish "has
252 * read/write access functions which are safe for raw use" from "has
253 * read/write access functions which have side effects but has forgotten
254 * to provide raw access functions".
255 * The tests here line up with the conditions in read/write_raw_cp_reg()
256 * and assertions in raw_read()/raw_write().
258 if ((ri
->type
& ARM_CP_CONST
) ||
260 ((ri
->raw_writefn
|| ri
->writefn
) && (ri
->raw_readfn
|| ri
->readfn
))) {
266 bool write_cpustate_to_list(ARMCPU
*cpu
)
268 /* Write the coprocessor state from cpu->env to the (index,value) list. */
272 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
273 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
274 const ARMCPRegInfo
*ri
;
276 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
281 if (ri
->type
& ARM_CP_NO_RAW
) {
284 cpu
->cpreg_values
[i
] = read_raw_cp_reg(&cpu
->env
, ri
);
289 bool write_list_to_cpustate(ARMCPU
*cpu
)
294 for (i
= 0; i
< cpu
->cpreg_array_len
; i
++) {
295 uint32_t regidx
= kvm_to_cpreg_id(cpu
->cpreg_indexes
[i
]);
296 uint64_t v
= cpu
->cpreg_values
[i
];
297 const ARMCPRegInfo
*ri
;
299 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
304 if (ri
->type
& ARM_CP_NO_RAW
) {
307 /* Write value and confirm it reads back as written
308 * (to catch read-only registers and partially read-only
309 * registers where the incoming migration value doesn't match)
311 write_raw_cp_reg(&cpu
->env
, ri
, v
);
312 if (read_raw_cp_reg(&cpu
->env
, ri
) != v
) {
319 static void add_cpreg_to_list(gpointer key
, gpointer opaque
)
321 ARMCPU
*cpu
= opaque
;
323 const ARMCPRegInfo
*ri
;
325 regidx
= *(uint32_t *)key
;
326 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
328 if (!(ri
->type
& (ARM_CP_NO_RAW
|ARM_CP_ALIAS
))) {
329 cpu
->cpreg_indexes
[cpu
->cpreg_array_len
] = cpreg_to_kvm_id(regidx
);
330 /* The value array need not be initialized at this point */
331 cpu
->cpreg_array_len
++;
335 static void count_cpreg(gpointer key
, gpointer opaque
)
337 ARMCPU
*cpu
= opaque
;
339 const ARMCPRegInfo
*ri
;
341 regidx
= *(uint32_t *)key
;
342 ri
= get_arm_cp_reginfo(cpu
->cp_regs
, regidx
);
344 if (!(ri
->type
& (ARM_CP_NO_RAW
|ARM_CP_ALIAS
))) {
345 cpu
->cpreg_array_len
++;
349 static gint
cpreg_key_compare(gconstpointer a
, gconstpointer b
)
351 uint64_t aidx
= cpreg_to_kvm_id(*(uint32_t *)a
);
352 uint64_t bidx
= cpreg_to_kvm_id(*(uint32_t *)b
);
363 void init_cpreg_list(ARMCPU
*cpu
)
365 /* Initialise the cpreg_tuples[] array based on the cp_regs hash.
366 * Note that we require cpreg_tuples[] to be sorted by key ID.
371 keys
= g_hash_table_get_keys(cpu
->cp_regs
);
372 keys
= g_list_sort(keys
, cpreg_key_compare
);
374 cpu
->cpreg_array_len
= 0;
376 g_list_foreach(keys
, count_cpreg
, cpu
);
378 arraylen
= cpu
->cpreg_array_len
;
379 cpu
->cpreg_indexes
= g_new(uint64_t, arraylen
);
380 cpu
->cpreg_values
= g_new(uint64_t, arraylen
);
381 cpu
->cpreg_vmstate_indexes
= g_new(uint64_t, arraylen
);
382 cpu
->cpreg_vmstate_values
= g_new(uint64_t, arraylen
);
383 cpu
->cpreg_vmstate_array_len
= cpu
->cpreg_array_len
;
384 cpu
->cpreg_array_len
= 0;
386 g_list_foreach(keys
, add_cpreg_to_list
, cpu
);
388 assert(cpu
->cpreg_array_len
== arraylen
);
394 * Some registers are not accessible if EL3.NS=0 and EL3 is using AArch32 but
395 * they are accessible when EL3 is using AArch64 regardless of EL3.NS.
397 * access_el3_aa32ns: Used to check AArch32 register views.
398 * access_el3_aa32ns_aa64any: Used to check both AArch32/64 register views.
400 static CPAccessResult
access_el3_aa32ns(CPUARMState
*env
,
401 const ARMCPRegInfo
*ri
,
404 bool secure
= arm_is_secure_below_el3(env
);
406 assert(!arm_el_is_aa64(env
, 3));
408 return CP_ACCESS_TRAP_UNCATEGORIZED
;
413 static CPAccessResult
access_el3_aa32ns_aa64any(CPUARMState
*env
,
414 const ARMCPRegInfo
*ri
,
417 if (!arm_el_is_aa64(env
, 3)) {
418 return access_el3_aa32ns(env
, ri
, isread
);
423 /* Some secure-only AArch32 registers trap to EL3 if used from
424 * Secure EL1 (but are just ordinary UNDEF in other non-EL3 contexts).
425 * Note that an access from Secure EL1 can only happen if EL3 is AArch64.
426 * We assume that the .access field is set to PL1_RW.
428 static CPAccessResult
access_trap_aa32s_el1(CPUARMState
*env
,
429 const ARMCPRegInfo
*ri
,
432 if (arm_current_el(env
) == 3) {
435 if (arm_is_secure_below_el3(env
)) {
436 return CP_ACCESS_TRAP_EL3
;
438 /* This will be EL1 NS and EL2 NS, which just UNDEF */
439 return CP_ACCESS_TRAP_UNCATEGORIZED
;
442 /* Check for traps to "powerdown debug" registers, which are controlled
445 static CPAccessResult
access_tdosa(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
448 int el
= arm_current_el(env
);
449 bool mdcr_el2_tdosa
= (env
->cp15
.mdcr_el2
& MDCR_TDOSA
) ||
450 (env
->cp15
.mdcr_el2
& MDCR_TDE
) ||
451 (arm_hcr_el2_eff(env
) & HCR_TGE
);
453 if (el
< 2 && mdcr_el2_tdosa
&& !arm_is_secure_below_el3(env
)) {
454 return CP_ACCESS_TRAP_EL2
;
456 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TDOSA
)) {
457 return CP_ACCESS_TRAP_EL3
;
462 /* Check for traps to "debug ROM" registers, which are controlled
463 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
465 static CPAccessResult
access_tdra(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
468 int el
= arm_current_el(env
);
469 bool mdcr_el2_tdra
= (env
->cp15
.mdcr_el2
& MDCR_TDRA
) ||
470 (env
->cp15
.mdcr_el2
& MDCR_TDE
) ||
471 (arm_hcr_el2_eff(env
) & HCR_TGE
);
473 if (el
< 2 && mdcr_el2_tdra
&& !arm_is_secure_below_el3(env
)) {
474 return CP_ACCESS_TRAP_EL2
;
476 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TDA
)) {
477 return CP_ACCESS_TRAP_EL3
;
482 /* Check for traps to general debug registers, which are controlled
483 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
485 static CPAccessResult
access_tda(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
488 int el
= arm_current_el(env
);
489 bool mdcr_el2_tda
= (env
->cp15
.mdcr_el2
& MDCR_TDA
) ||
490 (env
->cp15
.mdcr_el2
& MDCR_TDE
) ||
491 (arm_hcr_el2_eff(env
) & HCR_TGE
);
493 if (el
< 2 && mdcr_el2_tda
&& !arm_is_secure_below_el3(env
)) {
494 return CP_ACCESS_TRAP_EL2
;
496 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TDA
)) {
497 return CP_ACCESS_TRAP_EL3
;
502 /* Check for traps to performance monitor registers, which are controlled
503 * by MDCR_EL2.TPM for EL2 and MDCR_EL3.TPM for EL3.
505 static CPAccessResult
access_tpm(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
508 int el
= arm_current_el(env
);
510 if (el
< 2 && (env
->cp15
.mdcr_el2
& MDCR_TPM
)
511 && !arm_is_secure_below_el3(env
)) {
512 return CP_ACCESS_TRAP_EL2
;
514 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TPM
)) {
515 return CP_ACCESS_TRAP_EL3
;
520 static void dacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
522 ARMCPU
*cpu
= arm_env_get_cpu(env
);
524 raw_write(env
, ri
, value
);
525 tlb_flush(CPU(cpu
)); /* Flush TLB as domain not tracked in TLB */
528 static void fcse_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
530 ARMCPU
*cpu
= arm_env_get_cpu(env
);
532 if (raw_read(env
, ri
) != value
) {
533 /* Unlike real hardware the qemu TLB uses virtual addresses,
534 * not modified virtual addresses, so this causes a TLB flush.
537 raw_write(env
, ri
, value
);
541 static void contextidr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
544 ARMCPU
*cpu
= arm_env_get_cpu(env
);
546 if (raw_read(env
, ri
) != value
&& !arm_feature(env
, ARM_FEATURE_PMSA
)
547 && !extended_addresses_enabled(env
)) {
548 /* For VMSA (when not using the LPAE long descriptor page table
549 * format) this register includes the ASID, so do a TLB flush.
550 * For PMSA it is purely a process ID and no action is needed.
554 raw_write(env
, ri
, value
);
557 /* IS variants of TLB operations must affect all cores */
558 static void tlbiall_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
561 CPUState
*cs
= ENV_GET_CPU(env
);
563 tlb_flush_all_cpus_synced(cs
);
566 static void tlbiasid_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
569 CPUState
*cs
= ENV_GET_CPU(env
);
571 tlb_flush_all_cpus_synced(cs
);
574 static void tlbimva_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
577 CPUState
*cs
= ENV_GET_CPU(env
);
579 tlb_flush_page_all_cpus_synced(cs
, value
& TARGET_PAGE_MASK
);
582 static void tlbimvaa_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
585 CPUState
*cs
= ENV_GET_CPU(env
);
587 tlb_flush_page_all_cpus_synced(cs
, value
& TARGET_PAGE_MASK
);
591 * Non-IS variants of TLB operations are upgraded to
592 * IS versions if we are at NS EL1 and HCR_EL2.FB is set to
593 * force broadcast of these operations.
595 static bool tlb_force_broadcast(CPUARMState
*env
)
597 return (env
->cp15
.hcr_el2
& HCR_FB
) &&
598 arm_current_el(env
) == 1 && arm_is_secure_below_el3(env
);
601 static void tlbiall_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
604 /* Invalidate all (TLBIALL) */
605 ARMCPU
*cpu
= arm_env_get_cpu(env
);
607 if (tlb_force_broadcast(env
)) {
608 tlbiall_is_write(env
, NULL
, value
);
615 static void tlbimva_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
618 /* Invalidate single TLB entry by MVA and ASID (TLBIMVA) */
619 ARMCPU
*cpu
= arm_env_get_cpu(env
);
621 if (tlb_force_broadcast(env
)) {
622 tlbimva_is_write(env
, NULL
, value
);
626 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
629 static void tlbiasid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
632 /* Invalidate by ASID (TLBIASID) */
633 ARMCPU
*cpu
= arm_env_get_cpu(env
);
635 if (tlb_force_broadcast(env
)) {
636 tlbiasid_is_write(env
, NULL
, value
);
643 static void tlbimvaa_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
646 /* Invalidate single entry by MVA, all ASIDs (TLBIMVAA) */
647 ARMCPU
*cpu
= arm_env_get_cpu(env
);
649 if (tlb_force_broadcast(env
)) {
650 tlbimvaa_is_write(env
, NULL
, value
);
654 tlb_flush_page(CPU(cpu
), value
& TARGET_PAGE_MASK
);
657 static void tlbiall_nsnh_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
660 CPUState
*cs
= ENV_GET_CPU(env
);
662 tlb_flush_by_mmuidx(cs
,
663 ARMMMUIdxBit_S12NSE1
|
664 ARMMMUIdxBit_S12NSE0
|
668 static void tlbiall_nsnh_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
671 CPUState
*cs
= ENV_GET_CPU(env
);
673 tlb_flush_by_mmuidx_all_cpus_synced(cs
,
674 ARMMMUIdxBit_S12NSE1
|
675 ARMMMUIdxBit_S12NSE0
|
679 static void tlbiipas2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
682 /* Invalidate by IPA. This has to invalidate any structures that
683 * contain only stage 2 translation information, but does not need
684 * to apply to structures that contain combined stage 1 and stage 2
685 * translation information.
686 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
688 CPUState
*cs
= ENV_GET_CPU(env
);
691 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
695 pageaddr
= sextract64(value
<< 12, 0, 40);
697 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdxBit_S2NS
);
700 static void tlbiipas2_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
703 CPUState
*cs
= ENV_GET_CPU(env
);
706 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
710 pageaddr
= sextract64(value
<< 12, 0, 40);
712 tlb_flush_page_by_mmuidx_all_cpus_synced(cs
, pageaddr
,
716 static void tlbiall_hyp_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
719 CPUState
*cs
= ENV_GET_CPU(env
);
721 tlb_flush_by_mmuidx(cs
, ARMMMUIdxBit_S1E2
);
724 static void tlbiall_hyp_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
727 CPUState
*cs
= ENV_GET_CPU(env
);
729 tlb_flush_by_mmuidx_all_cpus_synced(cs
, ARMMMUIdxBit_S1E2
);
732 static void tlbimva_hyp_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
735 CPUState
*cs
= ENV_GET_CPU(env
);
736 uint64_t pageaddr
= value
& ~MAKE_64BIT_MASK(0, 12);
738 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdxBit_S1E2
);
741 static void tlbimva_hyp_is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
744 CPUState
*cs
= ENV_GET_CPU(env
);
745 uint64_t pageaddr
= value
& ~MAKE_64BIT_MASK(0, 12);
747 tlb_flush_page_by_mmuidx_all_cpus_synced(cs
, pageaddr
,
751 static const ARMCPRegInfo cp_reginfo
[] = {
752 /* Define the secure and non-secure FCSE identifier CP registers
753 * separately because there is no secure bank in V8 (no _EL3). This allows
754 * the secure register to be properly reset and migrated. There is also no
755 * v8 EL1 version of the register so the non-secure instance stands alone.
758 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
759 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
760 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_ns
),
761 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
762 { .name
= "FCSEIDR_S",
763 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 0,
764 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
765 .fieldoffset
= offsetof(CPUARMState
, cp15
.fcseidr_s
),
766 .resetvalue
= 0, .writefn
= fcse_write
, .raw_writefn
= raw_write
, },
767 /* Define the secure and non-secure context identifier CP registers
768 * separately because there is no secure bank in V8 (no _EL3). This allows
769 * the secure register to be properly reset and migrated. In the
770 * non-secure case, the 32-bit register will have reset and migration
771 * disabled during registration as it is handled by the 64-bit instance.
773 { .name
= "CONTEXTIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
774 .opc0
= 3, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
775 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_NS
,
776 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_el
[1]),
777 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
778 { .name
= "CONTEXTIDR_S", .state
= ARM_CP_STATE_AA32
,
779 .cp
= 15, .opc1
= 0, .crn
= 13, .crm
= 0, .opc2
= 1,
780 .access
= PL1_RW
, .secure
= ARM_CP_SECSTATE_S
,
781 .fieldoffset
= offsetof(CPUARMState
, cp15
.contextidr_s
),
782 .resetvalue
= 0, .writefn
= contextidr_write
, .raw_writefn
= raw_write
, },
786 static const ARMCPRegInfo not_v8_cp_reginfo
[] = {
787 /* NB: Some of these registers exist in v8 but with more precise
788 * definitions that don't use CP_ANY wildcards (mostly in v8_cp_reginfo[]).
790 /* MMU Domain access control / MPU write buffer control */
792 .cp
= 15, .opc1
= CP_ANY
, .crn
= 3, .crm
= CP_ANY
, .opc2
= CP_ANY
,
793 .access
= PL1_RW
, .resetvalue
= 0,
794 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
795 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
796 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
797 /* ARMv7 allocates a range of implementation defined TLB LOCKDOWN regs.
798 * For v6 and v5, these mappings are overly broad.
800 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 0,
801 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
802 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 1,
803 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
804 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 4,
805 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
806 { .name
= "TLB_LOCKDOWN", .cp
= 15, .crn
= 10, .crm
= 8,
807 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
808 /* Cache maintenance ops; some of this space may be overridden later. */
809 { .name
= "CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
810 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
811 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
},
815 static const ARMCPRegInfo not_v6_cp_reginfo
[] = {
816 /* Not all pre-v6 cores implemented this WFI, so this is slightly
819 { .name
= "WFI_v5", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= 2,
820 .access
= PL1_W
, .type
= ARM_CP_WFI
},
824 static const ARMCPRegInfo not_v7_cp_reginfo
[] = {
825 /* Standard v6 WFI (also used in some pre-v6 cores); not in v7 (which
826 * is UNPREDICTABLE; we choose to NOP as most implementations do).
828 { .name
= "WFI_v6", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
829 .access
= PL1_W
, .type
= ARM_CP_WFI
},
830 /* L1 cache lockdown. Not architectural in v6 and earlier but in practice
831 * implemented in 926, 946, 1026, 1136, 1176 and 11MPCore. StrongARM and
832 * OMAPCP will override this space.
834 { .name
= "DLOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 0,
835 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_data
),
837 { .name
= "ILOCKDOWN", .cp
= 15, .crn
= 9, .crm
= 0, .opc1
= 0, .opc2
= 1,
838 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_insn
),
840 /* v6 doesn't have the cache ID registers but Linux reads them anyway */
841 { .name
= "DUMMY", .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= CP_ANY
,
842 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
844 /* We don't implement pre-v7 debug but most CPUs had at least a DBGDIDR;
845 * implementing it as RAZ means the "debug architecture version" bits
846 * will read as a reserved value, which should cause Linux to not try
847 * to use the debug hardware.
849 { .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
850 .access
= PL0_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
851 /* MMU TLB control. Note that the wildcarding means we cover not just
852 * the unified TLB ops but also the dside/iside/inner-shareable variants.
854 { .name
= "TLBIALL", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
855 .opc1
= CP_ANY
, .opc2
= 0, .access
= PL1_W
, .writefn
= tlbiall_write
,
856 .type
= ARM_CP_NO_RAW
},
857 { .name
= "TLBIMVA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
858 .opc1
= CP_ANY
, .opc2
= 1, .access
= PL1_W
, .writefn
= tlbimva_write
,
859 .type
= ARM_CP_NO_RAW
},
860 { .name
= "TLBIASID", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
861 .opc1
= CP_ANY
, .opc2
= 2, .access
= PL1_W
, .writefn
= tlbiasid_write
,
862 .type
= ARM_CP_NO_RAW
},
863 { .name
= "TLBIMVAA", .cp
= 15, .crn
= 8, .crm
= CP_ANY
,
864 .opc1
= CP_ANY
, .opc2
= 3, .access
= PL1_W
, .writefn
= tlbimvaa_write
,
865 .type
= ARM_CP_NO_RAW
},
866 { .name
= "PRRR", .cp
= 15, .crn
= 10, .crm
= 2,
867 .opc1
= 0, .opc2
= 0, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
868 { .name
= "NMRR", .cp
= 15, .crn
= 10, .crm
= 2,
869 .opc1
= 0, .opc2
= 1, .access
= PL1_RW
, .type
= ARM_CP_NOP
},
873 static void cpacr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
878 /* In ARMv8 most bits of CPACR_EL1 are RES0. */
879 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
880 /* ARMv7 defines bits for unimplemented coprocessors as RAZ/WI.
881 * ASEDIS [31] and D32DIS [30] are both UNK/SBZP without VFP.
882 * TRCDIS [28] is RAZ/WI since we do not implement a trace macrocell.
884 if (arm_feature(env
, ARM_FEATURE_VFP
)) {
885 /* VFP coprocessor: cp10 & cp11 [23:20] */
886 mask
|= (1 << 31) | (1 << 30) | (0xf << 20);
888 if (!arm_feature(env
, ARM_FEATURE_NEON
)) {
889 /* ASEDIS [31] bit is RAO/WI */
893 /* VFPv3 and upwards with NEON implement 32 double precision
894 * registers (D0-D31).
896 if (!arm_feature(env
, ARM_FEATURE_NEON
) ||
897 !arm_feature(env
, ARM_FEATURE_VFP3
)) {
898 /* D32DIS [30] is RAO/WI if D16-31 are not implemented. */
904 env
->cp15
.cpacr_el1
= value
;
907 static void cpacr_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
909 /* Call cpacr_write() so that we reset with the correct RAO bits set
910 * for our CPU features.
912 cpacr_write(env
, ri
, 0);
915 static CPAccessResult
cpacr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
918 if (arm_feature(env
, ARM_FEATURE_V8
)) {
919 /* Check if CPACR accesses are to be trapped to EL2 */
920 if (arm_current_el(env
) == 1 &&
921 (env
->cp15
.cptr_el
[2] & CPTR_TCPAC
) && !arm_is_secure(env
)) {
922 return CP_ACCESS_TRAP_EL2
;
923 /* Check if CPACR accesses are to be trapped to EL3 */
924 } else if (arm_current_el(env
) < 3 &&
925 (env
->cp15
.cptr_el
[3] & CPTR_TCPAC
)) {
926 return CP_ACCESS_TRAP_EL3
;
933 static CPAccessResult
cptr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
936 /* Check if CPTR accesses are set to trap to EL3 */
937 if (arm_current_el(env
) == 2 && (env
->cp15
.cptr_el
[3] & CPTR_TCPAC
)) {
938 return CP_ACCESS_TRAP_EL3
;
944 static const ARMCPRegInfo v6_cp_reginfo
[] = {
945 /* prefetch by MVA in v6, NOP in v7 */
946 { .name
= "MVA_prefetch",
947 .cp
= 15, .crn
= 7, .crm
= 13, .opc1
= 0, .opc2
= 1,
948 .access
= PL1_W
, .type
= ARM_CP_NOP
},
949 /* We need to break the TB after ISB to execute self-modifying code
950 * correctly and also to take any pending interrupts immediately.
951 * So use arm_cp_write_ignore() function instead of ARM_CP_NOP flag.
953 { .name
= "ISB", .cp
= 15, .crn
= 7, .crm
= 5, .opc1
= 0, .opc2
= 4,
954 .access
= PL0_W
, .type
= ARM_CP_NO_RAW
, .writefn
= arm_cp_write_ignore
},
955 { .name
= "DSB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 4,
956 .access
= PL0_W
, .type
= ARM_CP_NOP
},
957 { .name
= "DMB", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 5,
958 .access
= PL0_W
, .type
= ARM_CP_NOP
},
959 { .name
= "IFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 2,
961 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ifar_s
),
962 offsetof(CPUARMState
, cp15
.ifar_ns
) },
964 /* Watchpoint Fault Address Register : should actually only be present
965 * for 1136, 1176, 11MPCore.
967 { .name
= "WFAR", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 1,
968 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0, },
969 { .name
= "CPACR", .state
= ARM_CP_STATE_BOTH
, .opc0
= 3,
970 .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 2, .accessfn
= cpacr_access
,
971 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.cpacr_el1
),
972 .resetfn
= cpacr_reset
, .writefn
= cpacr_write
},
976 /* Definitions for the PMU registers */
977 #define PMCRN_MASK 0xf800
978 #define PMCRN_SHIFT 11
983 static inline uint32_t pmu_num_counters(CPUARMState
*env
)
985 return (env
->cp15
.c9_pmcr
& PMCRN_MASK
) >> PMCRN_SHIFT
;
988 /* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
989 static inline uint64_t pmu_counter_mask(CPUARMState
*env
)
991 return (1 << 31) | ((1 << pmu_num_counters(env
)) - 1);
994 static CPAccessResult
pmreg_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
997 /* Performance monitor registers user accessibility is controlled
998 * by PMUSERENR. MDCR_EL2.TPM and MDCR_EL3.TPM allow configurable
999 * trapping to EL2 or EL3 for other accesses.
1001 int el
= arm_current_el(env
);
1003 if (el
== 0 && !(env
->cp15
.c9_pmuserenr
& 1)) {
1004 return CP_ACCESS_TRAP
;
1006 if (el
< 2 && (env
->cp15
.mdcr_el2
& MDCR_TPM
)
1007 && !arm_is_secure_below_el3(env
)) {
1008 return CP_ACCESS_TRAP_EL2
;
1010 if (el
< 3 && (env
->cp15
.mdcr_el3
& MDCR_TPM
)) {
1011 return CP_ACCESS_TRAP_EL3
;
1014 return CP_ACCESS_OK
;
1017 static CPAccessResult
pmreg_access_xevcntr(CPUARMState
*env
,
1018 const ARMCPRegInfo
*ri
,
1021 /* ER: event counter read trap control */
1022 if (arm_feature(env
, ARM_FEATURE_V8
)
1023 && arm_current_el(env
) == 0
1024 && (env
->cp15
.c9_pmuserenr
& (1 << 3)) != 0
1026 return CP_ACCESS_OK
;
1029 return pmreg_access(env
, ri
, isread
);
1032 static CPAccessResult
pmreg_access_swinc(CPUARMState
*env
,
1033 const ARMCPRegInfo
*ri
,
1036 /* SW: software increment write trap control */
1037 if (arm_feature(env
, ARM_FEATURE_V8
)
1038 && arm_current_el(env
) == 0
1039 && (env
->cp15
.c9_pmuserenr
& (1 << 1)) != 0
1041 return CP_ACCESS_OK
;
1044 return pmreg_access(env
, ri
, isread
);
1047 #ifndef CONFIG_USER_ONLY
1049 static CPAccessResult
pmreg_access_selr(CPUARMState
*env
,
1050 const ARMCPRegInfo
*ri
,
1053 /* ER: event counter read trap control */
1054 if (arm_feature(env
, ARM_FEATURE_V8
)
1055 && arm_current_el(env
) == 0
1056 && (env
->cp15
.c9_pmuserenr
& (1 << 3)) != 0) {
1057 return CP_ACCESS_OK
;
1060 return pmreg_access(env
, ri
, isread
);
1063 static CPAccessResult
pmreg_access_ccntr(CPUARMState
*env
,
1064 const ARMCPRegInfo
*ri
,
1067 /* CR: cycle counter read trap control */
1068 if (arm_feature(env
, ARM_FEATURE_V8
)
1069 && arm_current_el(env
) == 0
1070 && (env
->cp15
.c9_pmuserenr
& (1 << 2)) != 0
1072 return CP_ACCESS_OK
;
1075 return pmreg_access(env
, ri
, isread
);
1078 static inline bool arm_ccnt_enabled(CPUARMState
*env
)
1080 /* This does not support checking PMCCFILTR_EL0 register */
1082 if (!(env
->cp15
.c9_pmcr
& PMCRE
) || !(env
->cp15
.c9_pmcnten
& (1 << 31))) {
1089 void pmccntr_sync(CPUARMState
*env
)
1091 uint64_t temp_ticks
;
1093 temp_ticks
= muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
1094 ARM_CPU_FREQ
, NANOSECONDS_PER_SECOND
);
1096 if (env
->cp15
.c9_pmcr
& PMCRD
) {
1097 /* Increment once every 64 processor clock cycles */
1101 if (arm_ccnt_enabled(env
)) {
1102 env
->cp15
.c15_ccnt
= temp_ticks
- env
->cp15
.c15_ccnt
;
1106 static void pmcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1111 if (value
& PMCRC
) {
1112 /* The counter has been reset */
1113 env
->cp15
.c15_ccnt
= 0;
1116 /* only the DP, X, D and E bits are writable */
1117 env
->cp15
.c9_pmcr
&= ~0x39;
1118 env
->cp15
.c9_pmcr
|= (value
& 0x39);
1123 static uint64_t pmccntr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1125 uint64_t total_ticks
;
1127 if (!arm_ccnt_enabled(env
)) {
1128 /* Counter is disabled, do not change value */
1129 return env
->cp15
.c15_ccnt
;
1132 total_ticks
= muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
1133 ARM_CPU_FREQ
, NANOSECONDS_PER_SECOND
);
1135 if (env
->cp15
.c9_pmcr
& PMCRD
) {
1136 /* Increment once every 64 processor clock cycles */
1139 return total_ticks
- env
->cp15
.c15_ccnt
;
1142 static void pmselr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1145 /* The value of PMSELR.SEL affects the behavior of PMXEVTYPER and
1146 * PMXEVCNTR. We allow [0..31] to be written to PMSELR here; in the
1147 * meanwhile, we check PMSELR.SEL when PMXEVTYPER and PMXEVCNTR are
1150 env
->cp15
.c9_pmselr
= value
& 0x1f;
1153 static void pmccntr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1156 uint64_t total_ticks
;
1158 if (!arm_ccnt_enabled(env
)) {
1159 /* Counter is disabled, set the absolute value */
1160 env
->cp15
.c15_ccnt
= value
;
1164 total_ticks
= muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
1165 ARM_CPU_FREQ
, NANOSECONDS_PER_SECOND
);
1167 if (env
->cp15
.c9_pmcr
& PMCRD
) {
1168 /* Increment once every 64 processor clock cycles */
1171 env
->cp15
.c15_ccnt
= total_ticks
- value
;
1174 static void pmccntr_write32(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1177 uint64_t cur_val
= pmccntr_read(env
, NULL
);
1179 pmccntr_write(env
, ri
, deposit64(cur_val
, 0, 32, value
));
1182 #else /* CONFIG_USER_ONLY */
1184 void pmccntr_sync(CPUARMState
*env
)
1190 static void pmccfiltr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1194 env
->cp15
.pmccfiltr_el0
= value
& 0xfc000000;
1198 static void pmcntenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1201 value
&= pmu_counter_mask(env
);
1202 env
->cp15
.c9_pmcnten
|= value
;
1205 static void pmcntenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1208 value
&= pmu_counter_mask(env
);
1209 env
->cp15
.c9_pmcnten
&= ~value
;
1212 static void pmovsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1215 value
&= pmu_counter_mask(env
);
1216 env
->cp15
.c9_pmovsr
&= ~value
;
1219 static void pmxevtyper_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1222 /* Attempts to access PMXEVTYPER are CONSTRAINED UNPREDICTABLE when
1223 * PMSELR value is equal to or greater than the number of implemented
1224 * counters, but not equal to 0x1f. We opt to behave as a RAZ/WI.
1226 if (env
->cp15
.c9_pmselr
== 0x1f) {
1227 pmccfiltr_write(env
, ri
, value
);
1231 static uint64_t pmxevtyper_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1233 /* We opt to behave as a RAZ/WI when attempts to access PMXEVTYPER
1234 * are CONSTRAINED UNPREDICTABLE. See comments in pmxevtyper_write().
1236 if (env
->cp15
.c9_pmselr
== 0x1f) {
1237 return env
->cp15
.pmccfiltr_el0
;
1243 static void pmuserenr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1246 if (arm_feature(env
, ARM_FEATURE_V8
)) {
1247 env
->cp15
.c9_pmuserenr
= value
& 0xf;
1249 env
->cp15
.c9_pmuserenr
= value
& 1;
1253 static void pmintenset_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1256 /* We have no event counters so only the C bit can be changed */
1257 value
&= pmu_counter_mask(env
);
1258 env
->cp15
.c9_pminten
|= value
;
1261 static void pmintenclr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1264 value
&= pmu_counter_mask(env
);
1265 env
->cp15
.c9_pminten
&= ~value
;
1268 static void vbar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1271 /* Note that even though the AArch64 view of this register has bits
1272 * [10:0] all RES0 we can only mask the bottom 5, to comply with the
1273 * architectural requirements for bits which are RES0 only in some
1274 * contexts. (ARMv8 would permit us to do no masking at all, but ARMv7
1275 * requires the bottom five bits to be RAZ/WI because they're UNK/SBZP.)
1277 raw_write(env
, ri
, value
& ~0x1FULL
);
1280 static void scr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
1282 /* Begin with base v8.0 state. */
1283 uint32_t valid_mask
= 0x3fff;
1284 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1286 if (arm_el_is_aa64(env
, 3)) {
1287 value
|= SCR_FW
| SCR_AW
; /* these two bits are RES1. */
1288 valid_mask
&= ~SCR_NET
;
1290 valid_mask
&= ~(SCR_RW
| SCR_ST
);
1293 if (!arm_feature(env
, ARM_FEATURE_EL2
)) {
1294 valid_mask
&= ~SCR_HCE
;
1296 /* On ARMv7, SMD (or SCD as it is called in v7) is only
1297 * supported if EL2 exists. The bit is UNK/SBZP when
1298 * EL2 is unavailable. In QEMU ARMv7, we force it to always zero
1299 * when EL2 is unavailable.
1300 * On ARMv8, this bit is always available.
1302 if (arm_feature(env
, ARM_FEATURE_V7
) &&
1303 !arm_feature(env
, ARM_FEATURE_V8
)) {
1304 valid_mask
&= ~SCR_SMD
;
1307 if (cpu_isar_feature(aa64_lor
, cpu
)) {
1308 valid_mask
|= SCR_TLOR
;
1311 /* Clear all-context RES0 bits. */
1312 value
&= valid_mask
;
1313 raw_write(env
, ri
, value
);
1316 static uint64_t ccsidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1318 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1320 /* Acquire the CSSELR index from the bank corresponding to the CCSIDR
1323 uint32_t index
= A32_BANKED_REG_GET(env
, csselr
,
1324 ri
->secure
& ARM_CP_SECSTATE_S
);
1326 return cpu
->ccsidr
[index
];
1329 static void csselr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1332 raw_write(env
, ri
, value
& 0xf);
1335 static uint64_t isr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1337 CPUState
*cs
= ENV_GET_CPU(env
);
1338 uint64_t hcr_el2
= arm_hcr_el2_eff(env
);
1341 if (hcr_el2
& HCR_IMO
) {
1342 if (cs
->interrupt_request
& CPU_INTERRUPT_VIRQ
) {
1346 if (cs
->interrupt_request
& CPU_INTERRUPT_HARD
) {
1351 if (hcr_el2
& HCR_FMO
) {
1352 if (cs
->interrupt_request
& CPU_INTERRUPT_VFIQ
) {
1356 if (cs
->interrupt_request
& CPU_INTERRUPT_FIQ
) {
1361 /* External aborts are not possible in QEMU so A bit is always clear */
1365 static const ARMCPRegInfo v7_cp_reginfo
[] = {
1366 /* the old v6 WFI, UNPREDICTABLE in v7 but we choose to NOP */
1367 { .name
= "NOP", .cp
= 15, .crn
= 7, .crm
= 0, .opc1
= 0, .opc2
= 4,
1368 .access
= PL1_W
, .type
= ARM_CP_NOP
},
1369 /* Performance monitors are implementation defined in v7,
1370 * but with an ARM recommended set of registers, which we
1371 * follow (although we don't actually implement any counters)
1373 * Performance registers fall into three categories:
1374 * (a) always UNDEF in PL0, RW in PL1 (PMINTENSET, PMINTENCLR)
1375 * (b) RO in PL0 (ie UNDEF on write), RW in PL1 (PMUSERENR)
1376 * (c) UNDEF in PL0 if PMUSERENR.EN==0, otherwise accessible (all others)
1377 * For the cases controlled by PMUSERENR we must set .access to PL0_RW
1378 * or PL0_RO as appropriate and then check PMUSERENR in the helper fn.
1380 { .name
= "PMCNTENSET", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 1,
1381 .access
= PL0_RW
, .type
= ARM_CP_ALIAS
,
1382 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
1383 .writefn
= pmcntenset_write
,
1384 .accessfn
= pmreg_access
,
1385 .raw_writefn
= raw_write
},
1386 { .name
= "PMCNTENSET_EL0", .state
= ARM_CP_STATE_AA64
,
1387 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 1,
1388 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1389 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
), .resetvalue
= 0,
1390 .writefn
= pmcntenset_write
, .raw_writefn
= raw_write
},
1391 { .name
= "PMCNTENCLR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 2,
1393 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcnten
),
1394 .accessfn
= pmreg_access
,
1395 .writefn
= pmcntenclr_write
,
1396 .type
= ARM_CP_ALIAS
},
1397 { .name
= "PMCNTENCLR_EL0", .state
= ARM_CP_STATE_AA64
,
1398 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 2,
1399 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1400 .type
= ARM_CP_ALIAS
,
1401 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcnten
),
1402 .writefn
= pmcntenclr_write
},
1403 { .name
= "PMOVSR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 3,
1405 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmovsr
),
1406 .accessfn
= pmreg_access
,
1407 .writefn
= pmovsr_write
,
1408 .raw_writefn
= raw_write
},
1409 { .name
= "PMOVSCLR_EL0", .state
= ARM_CP_STATE_AA64
,
1410 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 3,
1411 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1412 .type
= ARM_CP_ALIAS
,
1413 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmovsr
),
1414 .writefn
= pmovsr_write
,
1415 .raw_writefn
= raw_write
},
1416 /* Unimplemented so WI. */
1417 { .name
= "PMSWINC", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 4,
1418 .access
= PL0_W
, .accessfn
= pmreg_access_swinc
, .type
= ARM_CP_NOP
},
1419 #ifndef CONFIG_USER_ONLY
1420 { .name
= "PMSELR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 5,
1421 .access
= PL0_RW
, .type
= ARM_CP_ALIAS
,
1422 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmselr
),
1423 .accessfn
= pmreg_access_selr
, .writefn
= pmselr_write
,
1424 .raw_writefn
= raw_write
},
1425 { .name
= "PMSELR_EL0", .state
= ARM_CP_STATE_AA64
,
1426 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 5,
1427 .access
= PL0_RW
, .accessfn
= pmreg_access_selr
,
1428 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmselr
),
1429 .writefn
= pmselr_write
, .raw_writefn
= raw_write
, },
1430 { .name
= "PMCCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 0,
1431 .access
= PL0_RW
, .resetvalue
= 0, .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
1432 .readfn
= pmccntr_read
, .writefn
= pmccntr_write32
,
1433 .accessfn
= pmreg_access_ccntr
},
1434 { .name
= "PMCCNTR_EL0", .state
= ARM_CP_STATE_AA64
,
1435 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 13, .opc2
= 0,
1436 .access
= PL0_RW
, .accessfn
= pmreg_access_ccntr
,
1438 .readfn
= pmccntr_read
, .writefn
= pmccntr_write
, },
1440 { .name
= "PMCCFILTR_EL0", .state
= ARM_CP_STATE_AA64
,
1441 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 15, .opc2
= 7,
1442 .writefn
= pmccfiltr_write
,
1443 .access
= PL0_RW
, .accessfn
= pmreg_access
,
1445 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmccfiltr_el0
),
1447 { .name
= "PMXEVTYPER", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 1,
1448 .access
= PL0_RW
, .type
= ARM_CP_NO_RAW
, .accessfn
= pmreg_access
,
1449 .writefn
= pmxevtyper_write
, .readfn
= pmxevtyper_read
},
1450 { .name
= "PMXEVTYPER_EL0", .state
= ARM_CP_STATE_AA64
,
1451 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 13, .opc2
= 1,
1452 .access
= PL0_RW
, .type
= ARM_CP_NO_RAW
, .accessfn
= pmreg_access
,
1453 .writefn
= pmxevtyper_write
, .readfn
= pmxevtyper_read
},
1454 /* Unimplemented, RAZ/WI. */
1455 { .name
= "PMXEVCNTR", .cp
= 15, .crn
= 9, .crm
= 13, .opc1
= 0, .opc2
= 2,
1456 .access
= PL0_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
1457 .accessfn
= pmreg_access_xevcntr
},
1458 { .name
= "PMUSERENR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 0,
1459 .access
= PL0_R
| PL1_RW
, .accessfn
= access_tpm
,
1460 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmuserenr
),
1462 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
1463 { .name
= "PMUSERENR_EL0", .state
= ARM_CP_STATE_AA64
,
1464 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 14, .opc2
= 0,
1465 .access
= PL0_R
| PL1_RW
, .accessfn
= access_tpm
, .type
= ARM_CP_ALIAS
,
1466 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmuserenr
),
1468 .writefn
= pmuserenr_write
, .raw_writefn
= raw_write
},
1469 { .name
= "PMINTENSET", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 1,
1470 .access
= PL1_RW
, .accessfn
= access_tpm
,
1471 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
1472 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pminten
),
1474 .writefn
= pmintenset_write
, .raw_writefn
= raw_write
},
1475 { .name
= "PMINTENSET_EL1", .state
= ARM_CP_STATE_AA64
,
1476 .opc0
= 3, .opc1
= 0, .crn
= 9, .crm
= 14, .opc2
= 1,
1477 .access
= PL1_RW
, .accessfn
= access_tpm
,
1479 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
1480 .writefn
= pmintenset_write
, .raw_writefn
= raw_write
,
1481 .resetvalue
= 0x0 },
1482 { .name
= "PMINTENCLR", .cp
= 15, .crn
= 9, .crm
= 14, .opc1
= 0, .opc2
= 2,
1483 .access
= PL1_RW
, .accessfn
= access_tpm
,
1484 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
1485 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
1486 .writefn
= pmintenclr_write
, },
1487 { .name
= "PMINTENCLR_EL1", .state
= ARM_CP_STATE_AA64
,
1488 .opc0
= 3, .opc1
= 0, .crn
= 9, .crm
= 14, .opc2
= 2,
1489 .access
= PL1_RW
, .accessfn
= access_tpm
,
1490 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
1491 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pminten
),
1492 .writefn
= pmintenclr_write
},
1493 { .name
= "CCSIDR", .state
= ARM_CP_STATE_BOTH
,
1494 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 0,
1495 .access
= PL1_R
, .readfn
= ccsidr_read
, .type
= ARM_CP_NO_RAW
},
1496 { .name
= "CSSELR", .state
= ARM_CP_STATE_BOTH
,
1497 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 2, .opc2
= 0,
1498 .access
= PL1_RW
, .writefn
= csselr_write
, .resetvalue
= 0,
1499 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.csselr_s
),
1500 offsetof(CPUARMState
, cp15
.csselr_ns
) } },
1501 /* Auxiliary ID register: this actually has an IMPDEF value but for now
1502 * just RAZ for all cores:
1504 { .name
= "AIDR", .state
= ARM_CP_STATE_BOTH
,
1505 .opc0
= 3, .opc1
= 1, .crn
= 0, .crm
= 0, .opc2
= 7,
1506 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1507 /* Auxiliary fault status registers: these also are IMPDEF, and we
1508 * choose to RAZ/WI for all cores.
1510 { .name
= "AFSR0_EL1", .state
= ARM_CP_STATE_BOTH
,
1511 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 0,
1512 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1513 { .name
= "AFSR1_EL1", .state
= ARM_CP_STATE_BOTH
,
1514 .opc0
= 3, .opc1
= 0, .crn
= 5, .crm
= 1, .opc2
= 1,
1515 .access
= PL1_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
1516 /* MAIR can just read-as-written because we don't implement caches
1517 * and so don't need to care about memory attributes.
1519 { .name
= "MAIR_EL1", .state
= ARM_CP_STATE_AA64
,
1520 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0,
1521 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[1]),
1523 { .name
= "MAIR_EL3", .state
= ARM_CP_STATE_AA64
,
1524 .opc0
= 3, .opc1
= 6, .crn
= 10, .crm
= 2, .opc2
= 0,
1525 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[3]),
1527 /* For non-long-descriptor page tables these are PRRR and NMRR;
1528 * regardless they still act as reads-as-written for QEMU.
1530 /* MAIR0/1 are defined separately from their 64-bit counterpart which
1531 * allows them to assign the correct fieldoffset based on the endianness
1532 * handled in the field definitions.
1534 { .name
= "MAIR0", .state
= ARM_CP_STATE_AA32
,
1535 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 0, .access
= PL1_RW
,
1536 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair0_s
),
1537 offsetof(CPUARMState
, cp15
.mair0_ns
) },
1538 .resetfn
= arm_cp_reset_ignore
},
1539 { .name
= "MAIR1", .state
= ARM_CP_STATE_AA32
,
1540 .cp
= 15, .opc1
= 0, .crn
= 10, .crm
= 2, .opc2
= 1, .access
= PL1_RW
,
1541 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.mair1_s
),
1542 offsetof(CPUARMState
, cp15
.mair1_ns
) },
1543 .resetfn
= arm_cp_reset_ignore
},
1544 { .name
= "ISR_EL1", .state
= ARM_CP_STATE_BOTH
,
1545 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 1, .opc2
= 0,
1546 .type
= ARM_CP_NO_RAW
, .access
= PL1_R
, .readfn
= isr_read
},
1547 /* 32 bit ITLB invalidates */
1548 { .name
= "ITLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 0,
1549 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1550 { .name
= "ITLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 1,
1551 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1552 { .name
= "ITLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 5, .opc2
= 2,
1553 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1554 /* 32 bit DTLB invalidates */
1555 { .name
= "DTLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 0,
1556 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1557 { .name
= "DTLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 1,
1558 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1559 { .name
= "DTLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 6, .opc2
= 2,
1560 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1561 /* 32 bit TLB invalidates */
1562 { .name
= "TLBIALL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
1563 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_write
},
1564 { .name
= "TLBIMVA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
1565 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
1566 { .name
= "TLBIASID", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
1567 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiasid_write
},
1568 { .name
= "TLBIMVAA", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
1569 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
1573 static const ARMCPRegInfo v7mp_cp_reginfo
[] = {
1574 /* 32 bit TLB invalidates, Inner Shareable */
1575 { .name
= "TLBIALLIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
1576 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbiall_is_write
},
1577 { .name
= "TLBIMVAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
1578 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
1579 { .name
= "TLBIASIDIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
1580 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
1581 .writefn
= tlbiasid_is_write
},
1582 { .name
= "TLBIMVAAIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
1583 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
1584 .writefn
= tlbimvaa_is_write
},
1588 static void teecr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1595 static CPAccessResult
teehbr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1598 if (arm_current_el(env
) == 0 && (env
->teecr
& 1)) {
1599 return CP_ACCESS_TRAP
;
1601 return CP_ACCESS_OK
;
1604 static const ARMCPRegInfo t2ee_cp_reginfo
[] = {
1605 { .name
= "TEECR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 6, .opc2
= 0,
1606 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, teecr
),
1608 .writefn
= teecr_write
},
1609 { .name
= "TEEHBR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 6, .opc2
= 0,
1610 .access
= PL0_RW
, .fieldoffset
= offsetof(CPUARMState
, teehbr
),
1611 .accessfn
= teehbr_access
, .resetvalue
= 0 },
1615 static const ARMCPRegInfo v6k_cp_reginfo
[] = {
1616 { .name
= "TPIDR_EL0", .state
= ARM_CP_STATE_AA64
,
1617 .opc0
= 3, .opc1
= 3, .opc2
= 2, .crn
= 13, .crm
= 0,
1619 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[0]), .resetvalue
= 0 },
1620 { .name
= "TPIDRURW", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 2,
1622 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrurw_s
),
1623 offsetoflow32(CPUARMState
, cp15
.tpidrurw_ns
) },
1624 .resetfn
= arm_cp_reset_ignore
},
1625 { .name
= "TPIDRRO_EL0", .state
= ARM_CP_STATE_AA64
,
1626 .opc0
= 3, .opc1
= 3, .opc2
= 3, .crn
= 13, .crm
= 0,
1627 .access
= PL0_R
|PL1_W
,
1628 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidrro_el
[0]),
1630 { .name
= "TPIDRURO", .cp
= 15, .crn
= 13, .crm
= 0, .opc1
= 0, .opc2
= 3,
1631 .access
= PL0_R
|PL1_W
,
1632 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidruro_s
),
1633 offsetoflow32(CPUARMState
, cp15
.tpidruro_ns
) },
1634 .resetfn
= arm_cp_reset_ignore
},
1635 { .name
= "TPIDR_EL1", .state
= ARM_CP_STATE_AA64
,
1636 .opc0
= 3, .opc1
= 0, .opc2
= 4, .crn
= 13, .crm
= 0,
1638 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[1]), .resetvalue
= 0 },
1639 { .name
= "TPIDRPRW", .opc1
= 0, .cp
= 15, .crn
= 13, .crm
= 0, .opc2
= 4,
1641 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tpidrprw_s
),
1642 offsetoflow32(CPUARMState
, cp15
.tpidrprw_ns
) },
1647 #ifndef CONFIG_USER_ONLY
1649 static CPAccessResult
gt_cntfrq_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1652 /* CNTFRQ: not visible from PL0 if both PL0PCTEN and PL0VCTEN are zero.
1653 * Writable only at the highest implemented exception level.
1655 int el
= arm_current_el(env
);
1659 if (!extract32(env
->cp15
.c14_cntkctl
, 0, 2)) {
1660 return CP_ACCESS_TRAP
;
1664 if (!isread
&& ri
->state
== ARM_CP_STATE_AA32
&&
1665 arm_is_secure_below_el3(env
)) {
1666 /* Accesses from 32-bit Secure EL1 UNDEF (*not* trap to EL3!) */
1667 return CP_ACCESS_TRAP_UNCATEGORIZED
;
1675 if (!isread
&& el
< arm_highest_el(env
)) {
1676 return CP_ACCESS_TRAP_UNCATEGORIZED
;
1679 return CP_ACCESS_OK
;
1682 static CPAccessResult
gt_counter_access(CPUARMState
*env
, int timeridx
,
1685 unsigned int cur_el
= arm_current_el(env
);
1686 bool secure
= arm_is_secure(env
);
1688 /* CNT[PV]CT: not visible from PL0 if ELO[PV]CTEN is zero */
1690 !extract32(env
->cp15
.c14_cntkctl
, timeridx
, 1)) {
1691 return CP_ACCESS_TRAP
;
1694 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
1695 timeridx
== GTIMER_PHYS
&& !secure
&& cur_el
< 2 &&
1696 !extract32(env
->cp15
.cnthctl_el2
, 0, 1)) {
1697 return CP_ACCESS_TRAP_EL2
;
1699 return CP_ACCESS_OK
;
1702 static CPAccessResult
gt_timer_access(CPUARMState
*env
, int timeridx
,
1705 unsigned int cur_el
= arm_current_el(env
);
1706 bool secure
= arm_is_secure(env
);
1708 /* CNT[PV]_CVAL, CNT[PV]_CTL, CNT[PV]_TVAL: not visible from PL0 if
1709 * EL0[PV]TEN is zero.
1712 !extract32(env
->cp15
.c14_cntkctl
, 9 - timeridx
, 1)) {
1713 return CP_ACCESS_TRAP
;
1716 if (arm_feature(env
, ARM_FEATURE_EL2
) &&
1717 timeridx
== GTIMER_PHYS
&& !secure
&& cur_el
< 2 &&
1718 !extract32(env
->cp15
.cnthctl_el2
, 1, 1)) {
1719 return CP_ACCESS_TRAP_EL2
;
1721 return CP_ACCESS_OK
;
1724 static CPAccessResult
gt_pct_access(CPUARMState
*env
,
1725 const ARMCPRegInfo
*ri
,
1728 return gt_counter_access(env
, GTIMER_PHYS
, isread
);
1731 static CPAccessResult
gt_vct_access(CPUARMState
*env
,
1732 const ARMCPRegInfo
*ri
,
1735 return gt_counter_access(env
, GTIMER_VIRT
, isread
);
1738 static CPAccessResult
gt_ptimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1741 return gt_timer_access(env
, GTIMER_PHYS
, isread
);
1744 static CPAccessResult
gt_vtimer_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1747 return gt_timer_access(env
, GTIMER_VIRT
, isread
);
1750 static CPAccessResult
gt_stimer_access(CPUARMState
*env
,
1751 const ARMCPRegInfo
*ri
,
1754 /* The AArch64 register view of the secure physical timer is
1755 * always accessible from EL3, and configurably accessible from
1758 switch (arm_current_el(env
)) {
1760 if (!arm_is_secure(env
)) {
1761 return CP_ACCESS_TRAP
;
1763 if (!(env
->cp15
.scr_el3
& SCR_ST
)) {
1764 return CP_ACCESS_TRAP_EL3
;
1766 return CP_ACCESS_OK
;
1769 return CP_ACCESS_TRAP
;
1771 return CP_ACCESS_OK
;
1773 g_assert_not_reached();
1777 static uint64_t gt_get_countervalue(CPUARMState
*env
)
1779 return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) / GTIMER_SCALE
;
1782 static void gt_recalc_timer(ARMCPU
*cpu
, int timeridx
)
1784 ARMGenericTimer
*gt
= &cpu
->env
.cp15
.c14_timer
[timeridx
];
1787 /* Timer enabled: calculate and set current ISTATUS, irq, and
1788 * reset timer to when ISTATUS next has to change
1790 uint64_t offset
= timeridx
== GTIMER_VIRT
?
1791 cpu
->env
.cp15
.cntvoff_el2
: 0;
1792 uint64_t count
= gt_get_countervalue(&cpu
->env
);
1793 /* Note that this must be unsigned 64 bit arithmetic: */
1794 int istatus
= count
- offset
>= gt
->cval
;
1798 gt
->ctl
= deposit32(gt
->ctl
, 2, 1, istatus
);
1800 irqstate
= (istatus
&& !(gt
->ctl
& 2));
1801 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], irqstate
);
1804 /* Next transition is when count rolls back over to zero */
1805 nexttick
= UINT64_MAX
;
1807 /* Next transition is when we hit cval */
1808 nexttick
= gt
->cval
+ offset
;
1810 /* Note that the desired next expiry time might be beyond the
1811 * signed-64-bit range of a QEMUTimer -- in this case we just
1812 * set the timer for as far in the future as possible. When the
1813 * timer expires we will reset the timer for any remaining period.
1815 if (nexttick
> INT64_MAX
/ GTIMER_SCALE
) {
1816 nexttick
= INT64_MAX
/ GTIMER_SCALE
;
1818 timer_mod(cpu
->gt_timer
[timeridx
], nexttick
);
1819 trace_arm_gt_recalc(timeridx
, irqstate
, nexttick
);
1821 /* Timer disabled: ISTATUS and timer output always clear */
1823 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], 0);
1824 timer_del(cpu
->gt_timer
[timeridx
]);
1825 trace_arm_gt_recalc_disabled(timeridx
);
1829 static void gt_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1832 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1834 timer_del(cpu
->gt_timer
[timeridx
]);
1837 static uint64_t gt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1839 return gt_get_countervalue(env
);
1842 static uint64_t gt_virt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1844 return gt_get_countervalue(env
) - env
->cp15
.cntvoff_el2
;
1847 static void gt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1851 trace_arm_gt_cval_write(timeridx
, value
);
1852 env
->cp15
.c14_timer
[timeridx
].cval
= value
;
1853 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1856 static uint64_t gt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1859 uint64_t offset
= timeridx
== GTIMER_VIRT
? env
->cp15
.cntvoff_el2
: 0;
1861 return (uint32_t)(env
->cp15
.c14_timer
[timeridx
].cval
-
1862 (gt_get_countervalue(env
) - offset
));
1865 static void gt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1869 uint64_t offset
= timeridx
== GTIMER_VIRT
? env
->cp15
.cntvoff_el2
: 0;
1871 trace_arm_gt_tval_write(timeridx
, value
);
1872 env
->cp15
.c14_timer
[timeridx
].cval
= gt_get_countervalue(env
) - offset
+
1873 sextract64(value
, 0, 32);
1874 gt_recalc_timer(arm_env_get_cpu(env
), timeridx
);
1877 static void gt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1881 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1882 uint32_t oldval
= env
->cp15
.c14_timer
[timeridx
].ctl
;
1884 trace_arm_gt_ctl_write(timeridx
, value
);
1885 env
->cp15
.c14_timer
[timeridx
].ctl
= deposit64(oldval
, 0, 2, value
);
1886 if ((oldval
^ value
) & 1) {
1887 /* Enable toggled */
1888 gt_recalc_timer(cpu
, timeridx
);
1889 } else if ((oldval
^ value
) & 2) {
1890 /* IMASK toggled: don't need to recalculate,
1891 * just set the interrupt line based on ISTATUS
1893 int irqstate
= (oldval
& 4) && !(value
& 2);
1895 trace_arm_gt_imask_toggle(timeridx
, irqstate
);
1896 qemu_set_irq(cpu
->gt_timer_outputs
[timeridx
], irqstate
);
1900 static void gt_phys_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1902 gt_timer_reset(env
, ri
, GTIMER_PHYS
);
1905 static void gt_phys_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1908 gt_cval_write(env
, ri
, GTIMER_PHYS
, value
);
1911 static uint64_t gt_phys_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1913 return gt_tval_read(env
, ri
, GTIMER_PHYS
);
1916 static void gt_phys_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1919 gt_tval_write(env
, ri
, GTIMER_PHYS
, value
);
1922 static void gt_phys_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1925 gt_ctl_write(env
, ri
, GTIMER_PHYS
, value
);
1928 static void gt_virt_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1930 gt_timer_reset(env
, ri
, GTIMER_VIRT
);
1933 static void gt_virt_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1936 gt_cval_write(env
, ri
, GTIMER_VIRT
, value
);
1939 static uint64_t gt_virt_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1941 return gt_tval_read(env
, ri
, GTIMER_VIRT
);
1944 static void gt_virt_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1947 gt_tval_write(env
, ri
, GTIMER_VIRT
, value
);
1950 static void gt_virt_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1953 gt_ctl_write(env
, ri
, GTIMER_VIRT
, value
);
1956 static void gt_cntvoff_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1959 ARMCPU
*cpu
= arm_env_get_cpu(env
);
1961 trace_arm_gt_cntvoff_write(value
);
1962 raw_write(env
, ri
, value
);
1963 gt_recalc_timer(cpu
, GTIMER_VIRT
);
1966 static void gt_hyp_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1968 gt_timer_reset(env
, ri
, GTIMER_HYP
);
1971 static void gt_hyp_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1974 gt_cval_write(env
, ri
, GTIMER_HYP
, value
);
1977 static uint64_t gt_hyp_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1979 return gt_tval_read(env
, ri
, GTIMER_HYP
);
1982 static void gt_hyp_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1985 gt_tval_write(env
, ri
, GTIMER_HYP
, value
);
1988 static void gt_hyp_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
1991 gt_ctl_write(env
, ri
, GTIMER_HYP
, value
);
1994 static void gt_sec_timer_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
1996 gt_timer_reset(env
, ri
, GTIMER_SEC
);
1999 static void gt_sec_cval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2002 gt_cval_write(env
, ri
, GTIMER_SEC
, value
);
2005 static uint64_t gt_sec_tval_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2007 return gt_tval_read(env
, ri
, GTIMER_SEC
);
2010 static void gt_sec_tval_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2013 gt_tval_write(env
, ri
, GTIMER_SEC
, value
);
2016 static void gt_sec_ctl_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2019 gt_ctl_write(env
, ri
, GTIMER_SEC
, value
);
2022 void arm_gt_ptimer_cb(void *opaque
)
2024 ARMCPU
*cpu
= opaque
;
2026 gt_recalc_timer(cpu
, GTIMER_PHYS
);
2029 void arm_gt_vtimer_cb(void *opaque
)
2031 ARMCPU
*cpu
= opaque
;
2033 gt_recalc_timer(cpu
, GTIMER_VIRT
);
2036 void arm_gt_htimer_cb(void *opaque
)
2038 ARMCPU
*cpu
= opaque
;
2040 gt_recalc_timer(cpu
, GTIMER_HYP
);
2043 void arm_gt_stimer_cb(void *opaque
)
2045 ARMCPU
*cpu
= opaque
;
2047 gt_recalc_timer(cpu
, GTIMER_SEC
);
2050 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
2051 /* Note that CNTFRQ is purely reads-as-written for the benefit
2052 * of software; writing it doesn't actually change the timer frequency.
2053 * Our reset value matches the fixed frequency we implement the timer at.
2055 { .name
= "CNTFRQ", .cp
= 15, .crn
= 14, .crm
= 0, .opc1
= 0, .opc2
= 0,
2056 .type
= ARM_CP_ALIAS
,
2057 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
2058 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c14_cntfrq
),
2060 { .name
= "CNTFRQ_EL0", .state
= ARM_CP_STATE_AA64
,
2061 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 0,
2062 .access
= PL1_RW
| PL0_R
, .accessfn
= gt_cntfrq_access
,
2063 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntfrq
),
2064 .resetvalue
= (1000 * 1000 * 1000) / GTIMER_SCALE
,
2066 /* overall control: mostly access permissions */
2067 { .name
= "CNTKCTL", .state
= ARM_CP_STATE_BOTH
,
2068 .opc0
= 3, .opc1
= 0, .crn
= 14, .crm
= 1, .opc2
= 0,
2070 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntkctl
),
2073 /* per-timer control */
2074 { .name
= "CNTP_CTL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
2075 .secure
= ARM_CP_SECSTATE_NS
,
2076 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
2077 .accessfn
= gt_ptimer_access
,
2078 .fieldoffset
= offsetoflow32(CPUARMState
,
2079 cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
2080 .writefn
= gt_phys_ctl_write
, .raw_writefn
= raw_write
,
2082 { .name
= "CNTP_CTL_S",
2083 .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 1,
2084 .secure
= ARM_CP_SECSTATE_S
,
2085 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
2086 .accessfn
= gt_ptimer_access
,
2087 .fieldoffset
= offsetoflow32(CPUARMState
,
2088 cp15
.c14_timer
[GTIMER_SEC
].ctl
),
2089 .writefn
= gt_sec_ctl_write
, .raw_writefn
= raw_write
,
2091 { .name
= "CNTP_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
2092 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 1,
2093 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
2094 .accessfn
= gt_ptimer_access
,
2095 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].ctl
),
2097 .writefn
= gt_phys_ctl_write
, .raw_writefn
= raw_write
,
2099 { .name
= "CNTV_CTL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 1,
2100 .type
= ARM_CP_IO
| ARM_CP_ALIAS
, .access
= PL1_RW
| PL0_R
,
2101 .accessfn
= gt_vtimer_access
,
2102 .fieldoffset
= offsetoflow32(CPUARMState
,
2103 cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
2104 .writefn
= gt_virt_ctl_write
, .raw_writefn
= raw_write
,
2106 { .name
= "CNTV_CTL_EL0", .state
= ARM_CP_STATE_AA64
,
2107 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 1,
2108 .type
= ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
2109 .accessfn
= gt_vtimer_access
,
2110 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].ctl
),
2112 .writefn
= gt_virt_ctl_write
, .raw_writefn
= raw_write
,
2114 /* TimerValue views: a 32 bit downcounting view of the underlying state */
2115 { .name
= "CNTP_TVAL", .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
2116 .secure
= ARM_CP_SECSTATE_NS
,
2117 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
2118 .accessfn
= gt_ptimer_access
,
2119 .readfn
= gt_phys_tval_read
, .writefn
= gt_phys_tval_write
,
2121 { .name
= "CNTP_TVAL_S",
2122 .cp
= 15, .crn
= 14, .crm
= 2, .opc1
= 0, .opc2
= 0,
2123 .secure
= ARM_CP_SECSTATE_S
,
2124 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
2125 .accessfn
= gt_ptimer_access
,
2126 .readfn
= gt_sec_tval_read
, .writefn
= gt_sec_tval_write
,
2128 { .name
= "CNTP_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
2129 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 0,
2130 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
2131 .accessfn
= gt_ptimer_access
, .resetfn
= gt_phys_timer_reset
,
2132 .readfn
= gt_phys_tval_read
, .writefn
= gt_phys_tval_write
,
2134 { .name
= "CNTV_TVAL", .cp
= 15, .crn
= 14, .crm
= 3, .opc1
= 0, .opc2
= 0,
2135 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
2136 .accessfn
= gt_vtimer_access
,
2137 .readfn
= gt_virt_tval_read
, .writefn
= gt_virt_tval_write
,
2139 { .name
= "CNTV_TVAL_EL0", .state
= ARM_CP_STATE_AA64
,
2140 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 0,
2141 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
| PL0_R
,
2142 .accessfn
= gt_vtimer_access
, .resetfn
= gt_virt_timer_reset
,
2143 .readfn
= gt_virt_tval_read
, .writefn
= gt_virt_tval_write
,
2145 /* The counter itself */
2146 { .name
= "CNTPCT", .cp
= 15, .crm
= 14, .opc1
= 0,
2147 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_RAW
| ARM_CP_IO
,
2148 .accessfn
= gt_pct_access
,
2149 .readfn
= gt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
2151 { .name
= "CNTPCT_EL0", .state
= ARM_CP_STATE_AA64
,
2152 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 1,
2153 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
2154 .accessfn
= gt_pct_access
, .readfn
= gt_cnt_read
,
2156 { .name
= "CNTVCT", .cp
= 15, .crm
= 14, .opc1
= 1,
2157 .access
= PL0_R
, .type
= ARM_CP_64BIT
| ARM_CP_NO_RAW
| ARM_CP_IO
,
2158 .accessfn
= gt_vct_access
,
2159 .readfn
= gt_virt_cnt_read
, .resetfn
= arm_cp_reset_ignore
,
2161 { .name
= "CNTVCT_EL0", .state
= ARM_CP_STATE_AA64
,
2162 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 2,
2163 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
2164 .accessfn
= gt_vct_access
, .readfn
= gt_virt_cnt_read
,
2166 /* Comparison value, indicating when the timer goes off */
2167 { .name
= "CNTP_CVAL", .cp
= 15, .crm
= 14, .opc1
= 2,
2168 .secure
= ARM_CP_SECSTATE_NS
,
2169 .access
= PL1_RW
| PL0_R
,
2170 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
2171 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
2172 .accessfn
= gt_ptimer_access
,
2173 .writefn
= gt_phys_cval_write
, .raw_writefn
= raw_write
,
2175 { .name
= "CNTP_CVAL_S", .cp
= 15, .crm
= 14, .opc1
= 2,
2176 .secure
= ARM_CP_SECSTATE_S
,
2177 .access
= PL1_RW
| PL0_R
,
2178 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
2179 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].cval
),
2180 .accessfn
= gt_ptimer_access
,
2181 .writefn
= gt_sec_cval_write
, .raw_writefn
= raw_write
,
2183 { .name
= "CNTP_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
2184 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 2, .opc2
= 2,
2185 .access
= PL1_RW
| PL0_R
,
2187 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_PHYS
].cval
),
2188 .resetvalue
= 0, .accessfn
= gt_ptimer_access
,
2189 .writefn
= gt_phys_cval_write
, .raw_writefn
= raw_write
,
2191 { .name
= "CNTV_CVAL", .cp
= 15, .crm
= 14, .opc1
= 3,
2192 .access
= PL1_RW
| PL0_R
,
2193 .type
= ARM_CP_64BIT
| ARM_CP_IO
| ARM_CP_ALIAS
,
2194 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
2195 .accessfn
= gt_vtimer_access
,
2196 .writefn
= gt_virt_cval_write
, .raw_writefn
= raw_write
,
2198 { .name
= "CNTV_CVAL_EL0", .state
= ARM_CP_STATE_AA64
,
2199 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 3, .opc2
= 2,
2200 .access
= PL1_RW
| PL0_R
,
2202 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_VIRT
].cval
),
2203 .resetvalue
= 0, .accessfn
= gt_vtimer_access
,
2204 .writefn
= gt_virt_cval_write
, .raw_writefn
= raw_write
,
2206 /* Secure timer -- this is actually restricted to only EL3
2207 * and configurably Secure-EL1 via the accessfn.
2209 { .name
= "CNTPS_TVAL_EL1", .state
= ARM_CP_STATE_AA64
,
2210 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 0,
2211 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL1_RW
,
2212 .accessfn
= gt_stimer_access
,
2213 .readfn
= gt_sec_tval_read
,
2214 .writefn
= gt_sec_tval_write
,
2215 .resetfn
= gt_sec_timer_reset
,
2217 { .name
= "CNTPS_CTL_EL1", .state
= ARM_CP_STATE_AA64
,
2218 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 1,
2219 .type
= ARM_CP_IO
, .access
= PL1_RW
,
2220 .accessfn
= gt_stimer_access
,
2221 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].ctl
),
2223 .writefn
= gt_sec_ctl_write
, .raw_writefn
= raw_write
,
2225 { .name
= "CNTPS_CVAL_EL1", .state
= ARM_CP_STATE_AA64
,
2226 .opc0
= 3, .opc1
= 7, .crn
= 14, .crm
= 2, .opc2
= 2,
2227 .type
= ARM_CP_IO
, .access
= PL1_RW
,
2228 .accessfn
= gt_stimer_access
,
2229 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_SEC
].cval
),
2230 .writefn
= gt_sec_cval_write
, .raw_writefn
= raw_write
,
2237 /* In user-mode most of the generic timer registers are inaccessible
2238 * however modern kernels (4.12+) allow access to cntvct_el0
2241 static uint64_t gt_virt_cnt_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2243 /* Currently we have no support for QEMUTimer in linux-user so we
2244 * can't call gt_get_countervalue(env), instead we directly
2245 * call the lower level functions.
2247 return cpu_get_clock() / GTIMER_SCALE
;
2250 static const ARMCPRegInfo generic_timer_cp_reginfo
[] = {
2251 { .name
= "CNTFRQ_EL0", .state
= ARM_CP_STATE_AA64
,
2252 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 0,
2253 .type
= ARM_CP_CONST
, .access
= PL0_R
/* no PL1_RW in linux-user */,
2254 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_cntfrq
),
2255 .resetvalue
= NANOSECONDS_PER_SECOND
/ GTIMER_SCALE
,
2257 { .name
= "CNTVCT_EL0", .state
= ARM_CP_STATE_AA64
,
2258 .opc0
= 3, .opc1
= 3, .crn
= 14, .crm
= 0, .opc2
= 2,
2259 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
| ARM_CP_IO
,
2260 .readfn
= gt_virt_cnt_read
,
2267 static void par_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
2269 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
2270 raw_write(env
, ri
, value
);
2271 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
2272 raw_write(env
, ri
, value
& 0xfffff6ff);
2274 raw_write(env
, ri
, value
& 0xfffff1ff);
2278 #ifndef CONFIG_USER_ONLY
2279 /* get_phys_addr() isn't present for user-mode-only targets */
2281 static CPAccessResult
ats_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2285 /* The ATS12NSO* operations must trap to EL3 if executed in
2286 * Secure EL1 (which can only happen if EL3 is AArch64).
2287 * They are simply UNDEF if executed from NS EL1.
2288 * They function normally from EL2 or EL3.
2290 if (arm_current_el(env
) == 1) {
2291 if (arm_is_secure_below_el3(env
)) {
2292 return CP_ACCESS_TRAP_UNCATEGORIZED_EL3
;
2294 return CP_ACCESS_TRAP_UNCATEGORIZED
;
2297 return CP_ACCESS_OK
;
2300 static uint64_t do_ats_write(CPUARMState
*env
, uint64_t value
,
2301 MMUAccessType access_type
, ARMMMUIdx mmu_idx
)
2304 target_ulong page_size
;
2308 bool format64
= false;
2309 MemTxAttrs attrs
= {};
2310 ARMMMUFaultInfo fi
= {};
2311 ARMCacheAttrs cacheattrs
= {};
2313 ret
= get_phys_addr(env
, value
, access_type
, mmu_idx
, &phys_addr
, &attrs
,
2314 &prot
, &page_size
, &fi
, &cacheattrs
);
2318 } else if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
2321 * * TTBCR.EAE determines whether the result is returned using the
2322 * 32-bit or the 64-bit PAR format
2323 * * Instructions executed in Hyp mode always use the 64bit format
2325 * ATS1S2NSOxx uses the 64bit format if any of the following is true:
2326 * * The Non-secure TTBCR.EAE bit is set to 1
2327 * * The implementation includes EL2, and the value of HCR.VM is 1
2329 * (Note that HCR.DC makes HCR.VM behave as if it is 1.)
2331 * ATS1Hx always uses the 64bit format.
2333 format64
= arm_s1_regime_using_lpae_format(env
, mmu_idx
);
2335 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
2336 if (mmu_idx
== ARMMMUIdx_S12NSE0
|| mmu_idx
== ARMMMUIdx_S12NSE1
) {
2337 format64
|= env
->cp15
.hcr_el2
& (HCR_VM
| HCR_DC
);
2339 format64
|= arm_current_el(env
) == 2;
2345 /* Create a 64-bit PAR */
2346 par64
= (1 << 11); /* LPAE bit always set */
2348 par64
|= phys_addr
& ~0xfffULL
;
2349 if (!attrs
.secure
) {
2350 par64
|= (1 << 9); /* NS */
2352 par64
|= (uint64_t)cacheattrs
.attrs
<< 56; /* ATTR */
2353 par64
|= cacheattrs
.shareability
<< 7; /* SH */
2355 uint32_t fsr
= arm_fi_to_lfsc(&fi
);
2358 par64
|= (fsr
& 0x3f) << 1; /* FS */
2360 par64
|= (1 << 9); /* S */
2363 par64
|= (1 << 8); /* PTW */
2367 /* fsr is a DFSR/IFSR value for the short descriptor
2368 * translation table format (with WnR always clear).
2369 * Convert it to a 32-bit PAR.
2372 /* We do not set any attribute bits in the PAR */
2373 if (page_size
== (1 << 24)
2374 && arm_feature(env
, ARM_FEATURE_V7
)) {
2375 par64
= (phys_addr
& 0xff000000) | (1 << 1);
2377 par64
= phys_addr
& 0xfffff000;
2379 if (!attrs
.secure
) {
2380 par64
|= (1 << 9); /* NS */
2383 uint32_t fsr
= arm_fi_to_sfsc(&fi
);
2385 par64
= ((fsr
& (1 << 10)) >> 5) | ((fsr
& (1 << 12)) >> 6) |
2386 ((fsr
& 0xf) << 1) | 1;
2392 static void ats_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
2394 MMUAccessType access_type
= ri
->opc2
& 1 ? MMU_DATA_STORE
: MMU_DATA_LOAD
;
2397 int el
= arm_current_el(env
);
2398 bool secure
= arm_is_secure_below_el3(env
);
2400 switch (ri
->opc2
& 6) {
2402 /* stage 1 current state PL1: ATS1CPR, ATS1CPW */
2405 mmu_idx
= ARMMMUIdx_S1E3
;
2408 mmu_idx
= ARMMMUIdx_S1NSE1
;
2411 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S1NSE1
;
2414 g_assert_not_reached();
2418 /* stage 1 current state PL0: ATS1CUR, ATS1CUW */
2421 mmu_idx
= ARMMMUIdx_S1SE0
;
2424 mmu_idx
= ARMMMUIdx_S1NSE0
;
2427 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S1NSE0
;
2430 g_assert_not_reached();
2434 /* stage 1+2 NonSecure PL1: ATS12NSOPR, ATS12NSOPW */
2435 mmu_idx
= ARMMMUIdx_S12NSE1
;
2438 /* stage 1+2 NonSecure PL0: ATS12NSOUR, ATS12NSOUW */
2439 mmu_idx
= ARMMMUIdx_S12NSE0
;
2442 g_assert_not_reached();
2445 par64
= do_ats_write(env
, value
, access_type
, mmu_idx
);
2447 A32_BANKED_CURRENT_REG_SET(env
, par
, par64
);
2450 static void ats1h_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2453 MMUAccessType access_type
= ri
->opc2
& 1 ? MMU_DATA_STORE
: MMU_DATA_LOAD
;
2456 par64
= do_ats_write(env
, value
, access_type
, ARMMMUIdx_S1E2
);
2458 A32_BANKED_CURRENT_REG_SET(env
, par
, par64
);
2461 static CPAccessResult
at_s1e2_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2464 if (arm_current_el(env
) == 3 && !(env
->cp15
.scr_el3
& SCR_NS
)) {
2465 return CP_ACCESS_TRAP
;
2467 return CP_ACCESS_OK
;
2470 static void ats_write64(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2473 MMUAccessType access_type
= ri
->opc2
& 1 ? MMU_DATA_STORE
: MMU_DATA_LOAD
;
2475 int secure
= arm_is_secure_below_el3(env
);
2477 switch (ri
->opc2
& 6) {
2480 case 0: /* AT S1E1R, AT S1E1W */
2481 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S1NSE1
;
2483 case 4: /* AT S1E2R, AT S1E2W */
2484 mmu_idx
= ARMMMUIdx_S1E2
;
2486 case 6: /* AT S1E3R, AT S1E3W */
2487 mmu_idx
= ARMMMUIdx_S1E3
;
2490 g_assert_not_reached();
2493 case 2: /* AT S1E0R, AT S1E0W */
2494 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S1NSE0
;
2496 case 4: /* AT S12E1R, AT S12E1W */
2497 mmu_idx
= secure
? ARMMMUIdx_S1SE1
: ARMMMUIdx_S12NSE1
;
2499 case 6: /* AT S12E0R, AT S12E0W */
2500 mmu_idx
= secure
? ARMMMUIdx_S1SE0
: ARMMMUIdx_S12NSE0
;
2503 g_assert_not_reached();
2506 env
->cp15
.par_el
[1] = do_ats_write(env
, value
, access_type
, mmu_idx
);
2510 static const ARMCPRegInfo vapa_cp_reginfo
[] = {
2511 { .name
= "PAR", .cp
= 15, .crn
= 7, .crm
= 4, .opc1
= 0, .opc2
= 0,
2512 .access
= PL1_RW
, .resetvalue
= 0,
2513 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.par_s
),
2514 offsetoflow32(CPUARMState
, cp15
.par_ns
) },
2515 .writefn
= par_write
},
2516 #ifndef CONFIG_USER_ONLY
2517 /* This underdecoding is safe because the reginfo is NO_RAW. */
2518 { .name
= "ATS", .cp
= 15, .crn
= 7, .crm
= 8, .opc1
= 0, .opc2
= CP_ANY
,
2519 .access
= PL1_W
, .accessfn
= ats_access
,
2520 .writefn
= ats_write
, .type
= ARM_CP_NO_RAW
},
2525 /* Return basic MPU access permission bits. */
2526 static uint32_t simple_mpu_ap_bits(uint32_t val
)
2533 for (i
= 0; i
< 16; i
+= 2) {
2534 ret
|= (val
>> i
) & mask
;
2540 /* Pad basic MPU access permission bits to extended format. */
2541 static uint32_t extended_mpu_ap_bits(uint32_t val
)
2548 for (i
= 0; i
< 16; i
+= 2) {
2549 ret
|= (val
& mask
) << i
;
2555 static void pmsav5_data_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2558 env
->cp15
.pmsav5_data_ap
= extended_mpu_ap_bits(value
);
2561 static uint64_t pmsav5_data_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2563 return simple_mpu_ap_bits(env
->cp15
.pmsav5_data_ap
);
2566 static void pmsav5_insn_ap_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2569 env
->cp15
.pmsav5_insn_ap
= extended_mpu_ap_bits(value
);
2572 static uint64_t pmsav5_insn_ap_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2574 return simple_mpu_ap_bits(env
->cp15
.pmsav5_insn_ap
);
2577 static uint64_t pmsav7_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2579 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
2585 u32p
+= env
->pmsav7
.rnr
[M_REG_NS
];
2589 static void pmsav7_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2592 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2593 uint32_t *u32p
= *(uint32_t **)raw_ptr(env
, ri
);
2599 u32p
+= env
->pmsav7
.rnr
[M_REG_NS
];
2600 tlb_flush(CPU(cpu
)); /* Mappings may have changed - purge! */
2604 static void pmsav7_rgnr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2607 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2608 uint32_t nrgs
= cpu
->pmsav7_dregion
;
2610 if (value
>= nrgs
) {
2611 qemu_log_mask(LOG_GUEST_ERROR
,
2612 "PMSAv7 RGNR write >= # supported regions, %" PRIu32
2613 " > %" PRIu32
"\n", (uint32_t)value
, nrgs
);
2617 raw_write(env
, ri
, value
);
2620 static const ARMCPRegInfo pmsav7_cp_reginfo
[] = {
2621 /* Reset for all these registers is handled in arm_cpu_reset(),
2622 * because the PMSAv7 is also used by M-profile CPUs, which do
2623 * not register cpregs but still need the state to be reset.
2625 { .name
= "DRBAR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 0,
2626 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
2627 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.drbar
),
2628 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
,
2629 .resetfn
= arm_cp_reset_ignore
},
2630 { .name
= "DRSR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 2,
2631 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
2632 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.drsr
),
2633 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
,
2634 .resetfn
= arm_cp_reset_ignore
},
2635 { .name
= "DRACR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 1, .opc2
= 4,
2636 .access
= PL1_RW
, .type
= ARM_CP_NO_RAW
,
2637 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.dracr
),
2638 .readfn
= pmsav7_read
, .writefn
= pmsav7_write
,
2639 .resetfn
= arm_cp_reset_ignore
},
2640 { .name
= "RGNR", .cp
= 15, .crn
= 6, .opc1
= 0, .crm
= 2, .opc2
= 0,
2642 .fieldoffset
= offsetof(CPUARMState
, pmsav7
.rnr
[M_REG_NS
]),
2643 .writefn
= pmsav7_rgnr_write
,
2644 .resetfn
= arm_cp_reset_ignore
},
2648 static const ARMCPRegInfo pmsav5_cp_reginfo
[] = {
2649 { .name
= "DATA_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
2650 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
2651 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
2652 .readfn
= pmsav5_data_ap_read
, .writefn
= pmsav5_data_ap_write
, },
2653 { .name
= "INSN_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
2654 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
2655 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
2656 .readfn
= pmsav5_insn_ap_read
, .writefn
= pmsav5_insn_ap_write
, },
2657 { .name
= "DATA_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 2,
2659 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_data_ap
),
2661 { .name
= "INSN_EXT_AP", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 3,
2663 .fieldoffset
= offsetof(CPUARMState
, cp15
.pmsav5_insn_ap
),
2665 { .name
= "DCACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
2667 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_data
), .resetvalue
= 0, },
2668 { .name
= "ICACHE_CFG", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 1,
2670 .fieldoffset
= offsetof(CPUARMState
, cp15
.c2_insn
), .resetvalue
= 0, },
2671 /* Protection region base and size registers */
2672 { .name
= "946_PRBS0", .cp
= 15, .crn
= 6, .crm
= 0, .opc1
= 0,
2673 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2674 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[0]) },
2675 { .name
= "946_PRBS1", .cp
= 15, .crn
= 6, .crm
= 1, .opc1
= 0,
2676 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2677 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[1]) },
2678 { .name
= "946_PRBS2", .cp
= 15, .crn
= 6, .crm
= 2, .opc1
= 0,
2679 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2680 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[2]) },
2681 { .name
= "946_PRBS3", .cp
= 15, .crn
= 6, .crm
= 3, .opc1
= 0,
2682 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2683 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[3]) },
2684 { .name
= "946_PRBS4", .cp
= 15, .crn
= 6, .crm
= 4, .opc1
= 0,
2685 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2686 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[4]) },
2687 { .name
= "946_PRBS5", .cp
= 15, .crn
= 6, .crm
= 5, .opc1
= 0,
2688 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2689 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[5]) },
2690 { .name
= "946_PRBS6", .cp
= 15, .crn
= 6, .crm
= 6, .opc1
= 0,
2691 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2692 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[6]) },
2693 { .name
= "946_PRBS7", .cp
= 15, .crn
= 6, .crm
= 7, .opc1
= 0,
2694 .opc2
= CP_ANY
, .access
= PL1_RW
, .resetvalue
= 0,
2695 .fieldoffset
= offsetof(CPUARMState
, cp15
.c6_region
[7]) },
2699 static void vmsa_ttbcr_raw_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2702 TCR
*tcr
= raw_ptr(env
, ri
);
2703 int maskshift
= extract32(value
, 0, 3);
2705 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
2706 if (arm_feature(env
, ARM_FEATURE_LPAE
) && (value
& TTBCR_EAE
)) {
2707 /* Pre ARMv8 bits [21:19], [15:14] and [6:3] are UNK/SBZP when
2708 * using Long-desciptor translation table format */
2709 value
&= ~((7 << 19) | (3 << 14) | (0xf << 3));
2710 } else if (arm_feature(env
, ARM_FEATURE_EL3
)) {
2711 /* In an implementation that includes the Security Extensions
2712 * TTBCR has additional fields PD0 [4] and PD1 [5] for
2713 * Short-descriptor translation table format.
2715 value
&= TTBCR_PD1
| TTBCR_PD0
| TTBCR_N
;
2721 /* Update the masks corresponding to the TCR bank being written
2722 * Note that we always calculate mask and base_mask, but
2723 * they are only used for short-descriptor tables (ie if EAE is 0);
2724 * for long-descriptor tables the TCR fields are used differently
2725 * and the mask and base_mask values are meaningless.
2727 tcr
->raw_tcr
= value
;
2728 tcr
->mask
= ~(((uint32_t)0xffffffffu
) >> maskshift
);
2729 tcr
->base_mask
= ~((uint32_t)0x3fffu
>> maskshift
);
2732 static void vmsa_ttbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2735 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2736 TCR
*tcr
= raw_ptr(env
, ri
);
2738 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
2739 /* With LPAE the TTBCR could result in a change of ASID
2740 * via the TTBCR.A1 bit, so do a TLB flush.
2742 tlb_flush(CPU(cpu
));
2744 /* Preserve the high half of TCR_EL1, set via TTBCR2. */
2745 value
= deposit64(tcr
->raw_tcr
, 0, 32, value
);
2746 vmsa_ttbcr_raw_write(env
, ri
, value
);
2749 static void vmsa_ttbcr_reset(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
2751 TCR
*tcr
= raw_ptr(env
, ri
);
2753 /* Reset both the TCR as well as the masks corresponding to the bank of
2754 * the TCR being reset.
2758 tcr
->base_mask
= 0xffffc000u
;
2761 static void vmsa_tcr_el1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2764 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2765 TCR
*tcr
= raw_ptr(env
, ri
);
2767 /* For AArch64 the A1 bit could result in a change of ASID, so TLB flush. */
2768 tlb_flush(CPU(cpu
));
2769 tcr
->raw_tcr
= value
;
2772 static void vmsa_ttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2775 /* If the ASID changes (with a 64-bit write), we must flush the TLB. */
2776 if (cpreg_field_is_64bit(ri
) &&
2777 extract64(raw_read(env
, ri
) ^ value
, 48, 16) != 0) {
2778 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2779 tlb_flush(CPU(cpu
));
2781 raw_write(env
, ri
, value
);
2784 static void vttbr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2787 ARMCPU
*cpu
= arm_env_get_cpu(env
);
2788 CPUState
*cs
= CPU(cpu
);
2790 /* Accesses to VTTBR may change the VMID so we must flush the TLB. */
2791 if (raw_read(env
, ri
) != value
) {
2792 tlb_flush_by_mmuidx(cs
,
2793 ARMMMUIdxBit_S12NSE1
|
2794 ARMMMUIdxBit_S12NSE0
|
2796 raw_write(env
, ri
, value
);
2800 static const ARMCPRegInfo vmsa_pmsa_cp_reginfo
[] = {
2801 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 0,
2802 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
2803 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dfsr_s
),
2804 offsetoflow32(CPUARMState
, cp15
.dfsr_ns
) }, },
2805 { .name
= "IFSR", .cp
= 15, .crn
= 5, .crm
= 0, .opc1
= 0, .opc2
= 1,
2806 .access
= PL1_RW
, .resetvalue
= 0,
2807 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.ifsr_s
),
2808 offsetoflow32(CPUARMState
, cp15
.ifsr_ns
) } },
2809 { .name
= "DFAR", .cp
= 15, .opc1
= 0, .crn
= 6, .crm
= 0, .opc2
= 0,
2810 .access
= PL1_RW
, .resetvalue
= 0,
2811 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.dfar_s
),
2812 offsetof(CPUARMState
, cp15
.dfar_ns
) } },
2813 { .name
= "FAR_EL1", .state
= ARM_CP_STATE_AA64
,
2814 .opc0
= 3, .crn
= 6, .crm
= 0, .opc1
= 0, .opc2
= 0,
2815 .access
= PL1_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[1]),
2820 static const ARMCPRegInfo vmsa_cp_reginfo
[] = {
2821 { .name
= "ESR_EL1", .state
= ARM_CP_STATE_AA64
,
2822 .opc0
= 3, .crn
= 5, .crm
= 2, .opc1
= 0, .opc2
= 0,
2824 .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[1]), .resetvalue
= 0, },
2825 { .name
= "TTBR0_EL1", .state
= ARM_CP_STATE_BOTH
,
2826 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 0,
2827 .access
= PL1_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
2828 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
2829 offsetof(CPUARMState
, cp15
.ttbr0_ns
) } },
2830 { .name
= "TTBR1_EL1", .state
= ARM_CP_STATE_BOTH
,
2831 .opc0
= 3, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 1,
2832 .access
= PL1_RW
, .writefn
= vmsa_ttbr_write
, .resetvalue
= 0,
2833 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
2834 offsetof(CPUARMState
, cp15
.ttbr1_ns
) } },
2835 { .name
= "TCR_EL1", .state
= ARM_CP_STATE_AA64
,
2836 .opc0
= 3, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
2837 .access
= PL1_RW
, .writefn
= vmsa_tcr_el1_write
,
2838 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= raw_write
,
2839 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[1]) },
2840 { .name
= "TTBCR", .cp
= 15, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 2,
2841 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
, .writefn
= vmsa_ttbcr_write
,
2842 .raw_writefn
= vmsa_ttbcr_raw_write
,
2843 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.tcr_el
[3]),
2844 offsetoflow32(CPUARMState
, cp15
.tcr_el
[1])} },
2848 /* Note that unlike TTBCR, writing to TTBCR2 does not require flushing
2849 * qemu tlbs nor adjusting cached masks.
2851 static const ARMCPRegInfo ttbcr2_reginfo
= {
2852 .name
= "TTBCR2", .cp
= 15, .opc1
= 0, .crn
= 2, .crm
= 0, .opc2
= 3,
2853 .access
= PL1_RW
, .type
= ARM_CP_ALIAS
,
2854 .bank_fieldoffsets
= { offsetofhigh32(CPUARMState
, cp15
.tcr_el
[3]),
2855 offsetofhigh32(CPUARMState
, cp15
.tcr_el
[1]) },
2858 static void omap_ticonfig_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2861 env
->cp15
.c15_ticonfig
= value
& 0xe7;
2862 /* The OS_TYPE bit in this register changes the reported CPUID! */
2863 env
->cp15
.c0_cpuid
= (value
& (1 << 5)) ?
2864 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
2867 static void omap_threadid_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2870 env
->cp15
.c15_threadid
= value
& 0xffff;
2873 static void omap_wfi_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2876 /* Wait-for-interrupt (deprecated) */
2877 cpu_interrupt(CPU(arm_env_get_cpu(env
)), CPU_INTERRUPT_HALT
);
2880 static void omap_cachemaint_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2883 /* On OMAP there are registers indicating the max/min index of dcache lines
2884 * containing a dirty line; cache flush operations have to reset these.
2886 env
->cp15
.c15_i_max
= 0x000;
2887 env
->cp15
.c15_i_min
= 0xff0;
2890 static const ARMCPRegInfo omap_cp_reginfo
[] = {
2891 { .name
= "DFSR", .cp
= 15, .crn
= 5, .crm
= CP_ANY
,
2892 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
, .type
= ARM_CP_OVERRIDE
,
2893 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.esr_el
[1]),
2895 { .name
= "", .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 0, .opc2
= 0,
2896 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
2897 { .name
= "TICONFIG", .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0,
2899 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_ticonfig
), .resetvalue
= 0,
2900 .writefn
= omap_ticonfig_write
},
2901 { .name
= "IMAX", .cp
= 15, .crn
= 15, .crm
= 2, .opc1
= 0, .opc2
= 0,
2903 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_max
), .resetvalue
= 0, },
2904 { .name
= "IMIN", .cp
= 15, .crn
= 15, .crm
= 3, .opc1
= 0, .opc2
= 0,
2905 .access
= PL1_RW
, .resetvalue
= 0xff0,
2906 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_i_min
) },
2907 { .name
= "THREADID", .cp
= 15, .crn
= 15, .crm
= 4, .opc1
= 0, .opc2
= 0,
2909 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_threadid
), .resetvalue
= 0,
2910 .writefn
= omap_threadid_write
},
2911 { .name
= "TI925T_STATUS", .cp
= 15, .crn
= 15,
2912 .crm
= 8, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
2913 .type
= ARM_CP_NO_RAW
,
2914 .readfn
= arm_cp_read_zero
, .writefn
= omap_wfi_write
, },
2915 /* TODO: Peripheral port remap register:
2916 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt controller
2917 * base address at $rn & ~0xfff and map size of 0x200 << ($rn & 0xfff),
2920 { .name
= "OMAP_CACHEMAINT", .cp
= 15, .crn
= 7, .crm
= CP_ANY
,
2921 .opc1
= 0, .opc2
= CP_ANY
, .access
= PL1_W
,
2922 .type
= ARM_CP_OVERRIDE
| ARM_CP_NO_RAW
,
2923 .writefn
= omap_cachemaint_write
},
2924 { .name
= "C9", .cp
= 15, .crn
= 9,
2925 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_RW
,
2926 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
, .resetvalue
= 0 },
2930 static void xscale_cpar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
2933 env
->cp15
.c15_cpar
= value
& 0x3fff;
2936 static const ARMCPRegInfo xscale_cp_reginfo
[] = {
2937 { .name
= "XSCALE_CPAR",
2938 .cp
= 15, .crn
= 15, .crm
= 1, .opc1
= 0, .opc2
= 0, .access
= PL1_RW
,
2939 .fieldoffset
= offsetof(CPUARMState
, cp15
.c15_cpar
), .resetvalue
= 0,
2940 .writefn
= xscale_cpar_write
, },
2941 { .name
= "XSCALE_AUXCR",
2942 .cp
= 15, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 1, .access
= PL1_RW
,
2943 .fieldoffset
= offsetof(CPUARMState
, cp15
.c1_xscaleauxcr
),
2945 /* XScale specific cache-lockdown: since we have no cache we NOP these
2946 * and hope the guest does not really rely on cache behaviour.
2948 { .name
= "XSCALE_LOCK_ICACHE_LINE",
2949 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 0,
2950 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2951 { .name
= "XSCALE_UNLOCK_ICACHE",
2952 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 1, .opc2
= 1,
2953 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2954 { .name
= "XSCALE_DCACHE_LOCK",
2955 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 0,
2956 .access
= PL1_RW
, .type
= ARM_CP_NOP
},
2957 { .name
= "XSCALE_UNLOCK_DCACHE",
2958 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 2, .opc2
= 1,
2959 .access
= PL1_W
, .type
= ARM_CP_NOP
},
2963 static const ARMCPRegInfo dummy_c15_cp_reginfo
[] = {
2964 /* RAZ/WI the whole crn=15 space, when we don't have a more specific
2965 * implementation of this implementation-defined space.
2966 * Ideally this should eventually disappear in favour of actually
2967 * implementing the correct behaviour for all cores.
2969 { .name
= "C15_IMPDEF", .cp
= 15, .crn
= 15,
2970 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
2972 .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
| ARM_CP_OVERRIDE
,
2977 static const ARMCPRegInfo cache_dirty_status_cp_reginfo
[] = {
2978 /* Cache status: RAZ because we have no cache so it's always clean */
2979 { .name
= "CDSR", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 6,
2980 .access
= PL1_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2985 static const ARMCPRegInfo cache_block_ops_cp_reginfo
[] = {
2986 /* We never have a a block transfer operation in progress */
2987 { .name
= "BXSR", .cp
= 15, .crn
= 7, .crm
= 12, .opc1
= 0, .opc2
= 4,
2988 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
2990 /* The cache ops themselves: these all NOP for QEMU */
2991 { .name
= "IICR", .cp
= 15, .crm
= 5, .opc1
= 0,
2992 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2993 { .name
= "IDCR", .cp
= 15, .crm
= 6, .opc1
= 0,
2994 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2995 { .name
= "CDCR", .cp
= 15, .crm
= 12, .opc1
= 0,
2996 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2997 { .name
= "PIR", .cp
= 15, .crm
= 12, .opc1
= 1,
2998 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
2999 { .name
= "PDR", .cp
= 15, .crm
= 12, .opc1
= 2,
3000 .access
= PL0_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
3001 { .name
= "CIDCR", .cp
= 15, .crm
= 14, .opc1
= 0,
3002 .access
= PL1_W
, .type
= ARM_CP_NOP
|ARM_CP_64BIT
},
3006 static const ARMCPRegInfo cache_test_clean_cp_reginfo
[] = {
3007 /* The cache test-and-clean instructions always return (1 << 30)
3008 * to indicate that there are no dirty cache lines.
3010 { .name
= "TC_DCACHE", .cp
= 15, .crn
= 7, .crm
= 10, .opc1
= 0, .opc2
= 3,
3011 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
3012 .resetvalue
= (1 << 30) },
3013 { .name
= "TCI_DCACHE", .cp
= 15, .crn
= 7, .crm
= 14, .opc1
= 0, .opc2
= 3,
3014 .access
= PL0_R
, .type
= ARM_CP_CONST
| ARM_CP_NO_RAW
,
3015 .resetvalue
= (1 << 30) },
3019 static const ARMCPRegInfo strongarm_cp_reginfo
[] = {
3020 /* Ignore ReadBuffer accesses */
3021 { .name
= "C9_READBUFFER", .cp
= 15, .crn
= 9,
3022 .crm
= CP_ANY
, .opc1
= CP_ANY
, .opc2
= CP_ANY
,
3023 .access
= PL1_RW
, .resetvalue
= 0,
3024 .type
= ARM_CP_CONST
| ARM_CP_OVERRIDE
| ARM_CP_NO_RAW
},
3028 static uint64_t midr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3030 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3031 unsigned int cur_el
= arm_current_el(env
);
3032 bool secure
= arm_is_secure(env
);
3034 if (arm_feature(&cpu
->env
, ARM_FEATURE_EL2
) && !secure
&& cur_el
== 1) {
3035 return env
->cp15
.vpidr_el2
;
3037 return raw_read(env
, ri
);
3040 static uint64_t mpidr_read_val(CPUARMState
*env
)
3042 ARMCPU
*cpu
= ARM_CPU(arm_env_get_cpu(env
));
3043 uint64_t mpidr
= cpu
->mp_affinity
;
3045 if (arm_feature(env
, ARM_FEATURE_V7MP
)) {
3046 mpidr
|= (1U << 31);
3047 /* Cores which are uniprocessor (non-coherent)
3048 * but still implement the MP extensions set
3049 * bit 30. (For instance, Cortex-R5).
3051 if (cpu
->mp_is_up
) {
3052 mpidr
|= (1u << 30);
3058 static uint64_t mpidr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3060 unsigned int cur_el
= arm_current_el(env
);
3061 bool secure
= arm_is_secure(env
);
3063 if (arm_feature(env
, ARM_FEATURE_EL2
) && !secure
&& cur_el
== 1) {
3064 return env
->cp15
.vmpidr_el2
;
3066 return mpidr_read_val(env
);
3069 static const ARMCPRegInfo mpidr_cp_reginfo
[] = {
3070 { .name
= "MPIDR", .state
= ARM_CP_STATE_BOTH
,
3071 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 5,
3072 .access
= PL1_R
, .readfn
= mpidr_read
, .type
= ARM_CP_NO_RAW
},
3076 static const ARMCPRegInfo lpae_cp_reginfo
[] = {
3078 { .name
= "AMAIR0", .state
= ARM_CP_STATE_BOTH
,
3079 .opc0
= 3, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 0,
3080 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
3082 /* AMAIR1 is mapped to AMAIR_EL1[63:32] */
3083 { .name
= "AMAIR1", .cp
= 15, .crn
= 10, .crm
= 3, .opc1
= 0, .opc2
= 1,
3084 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
3086 { .name
= "PAR", .cp
= 15, .crm
= 7, .opc1
= 0,
3087 .access
= PL1_RW
, .type
= ARM_CP_64BIT
, .resetvalue
= 0,
3088 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.par_s
),
3089 offsetof(CPUARMState
, cp15
.par_ns
)} },
3090 { .name
= "TTBR0", .cp
= 15, .crm
= 2, .opc1
= 0,
3091 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
3092 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr0_s
),
3093 offsetof(CPUARMState
, cp15
.ttbr0_ns
) },
3094 .writefn
= vmsa_ttbr_write
, },
3095 { .name
= "TTBR1", .cp
= 15, .crm
= 2, .opc1
= 1,
3096 .access
= PL1_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
3097 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.ttbr1_s
),
3098 offsetof(CPUARMState
, cp15
.ttbr1_ns
) },
3099 .writefn
= vmsa_ttbr_write
, },
3103 static uint64_t aa64_fpcr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3105 return vfp_get_fpcr(env
);
3108 static void aa64_fpcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3111 vfp_set_fpcr(env
, value
);
3114 static uint64_t aa64_fpsr_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3116 return vfp_get_fpsr(env
);
3119 static void aa64_fpsr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3122 vfp_set_fpsr(env
, value
);
3125 static CPAccessResult
aa64_daif_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3128 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UMA
)) {
3129 return CP_ACCESS_TRAP
;
3131 return CP_ACCESS_OK
;
3134 static void aa64_daif_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3137 env
->daif
= value
& PSTATE_DAIF
;
3140 static CPAccessResult
aa64_cacheop_access(CPUARMState
*env
,
3141 const ARMCPRegInfo
*ri
,
3144 /* Cache invalidate/clean: NOP, but EL0 must UNDEF unless
3145 * SCTLR_EL1.UCI is set.
3147 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UCI
)) {
3148 return CP_ACCESS_TRAP
;
3150 return CP_ACCESS_OK
;
3153 /* See: D4.7.2 TLB maintenance requirements and the TLB maintenance instructions
3154 * Page D4-1736 (DDI0487A.b)
3157 static void tlbi_aa64_vmalle1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3160 CPUState
*cs
= ENV_GET_CPU(env
);
3161 bool sec
= arm_is_secure_below_el3(env
);
3164 tlb_flush_by_mmuidx_all_cpus_synced(cs
,
3165 ARMMMUIdxBit_S1SE1
|
3166 ARMMMUIdxBit_S1SE0
);
3168 tlb_flush_by_mmuidx_all_cpus_synced(cs
,
3169 ARMMMUIdxBit_S12NSE1
|
3170 ARMMMUIdxBit_S12NSE0
);
3174 static void tlbi_aa64_vmalle1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3177 CPUState
*cs
= ENV_GET_CPU(env
);
3179 if (tlb_force_broadcast(env
)) {
3180 tlbi_aa64_vmalle1is_write(env
, NULL
, value
);
3184 if (arm_is_secure_below_el3(env
)) {
3185 tlb_flush_by_mmuidx(cs
,
3186 ARMMMUIdxBit_S1SE1
|
3187 ARMMMUIdxBit_S1SE0
);
3189 tlb_flush_by_mmuidx(cs
,
3190 ARMMMUIdxBit_S12NSE1
|
3191 ARMMMUIdxBit_S12NSE0
);
3195 static void tlbi_aa64_alle1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3198 /* Note that the 'ALL' scope must invalidate both stage 1 and
3199 * stage 2 translations, whereas most other scopes only invalidate
3200 * stage 1 translations.
3202 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3203 CPUState
*cs
= CPU(cpu
);
3205 if (arm_is_secure_below_el3(env
)) {
3206 tlb_flush_by_mmuidx(cs
,
3207 ARMMMUIdxBit_S1SE1
|
3208 ARMMMUIdxBit_S1SE0
);
3210 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
3211 tlb_flush_by_mmuidx(cs
,
3212 ARMMMUIdxBit_S12NSE1
|
3213 ARMMMUIdxBit_S12NSE0
|
3216 tlb_flush_by_mmuidx(cs
,
3217 ARMMMUIdxBit_S12NSE1
|
3218 ARMMMUIdxBit_S12NSE0
);
3223 static void tlbi_aa64_alle2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3226 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3227 CPUState
*cs
= CPU(cpu
);
3229 tlb_flush_by_mmuidx(cs
, ARMMMUIdxBit_S1E2
);
3232 static void tlbi_aa64_alle3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3235 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3236 CPUState
*cs
= CPU(cpu
);
3238 tlb_flush_by_mmuidx(cs
, ARMMMUIdxBit_S1E3
);
3241 static void tlbi_aa64_alle1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3244 /* Note that the 'ALL' scope must invalidate both stage 1 and
3245 * stage 2 translations, whereas most other scopes only invalidate
3246 * stage 1 translations.
3248 CPUState
*cs
= ENV_GET_CPU(env
);
3249 bool sec
= arm_is_secure_below_el3(env
);
3250 bool has_el2
= arm_feature(env
, ARM_FEATURE_EL2
);
3253 tlb_flush_by_mmuidx_all_cpus_synced(cs
,
3254 ARMMMUIdxBit_S1SE1
|
3255 ARMMMUIdxBit_S1SE0
);
3256 } else if (has_el2
) {
3257 tlb_flush_by_mmuidx_all_cpus_synced(cs
,
3258 ARMMMUIdxBit_S12NSE1
|
3259 ARMMMUIdxBit_S12NSE0
|
3262 tlb_flush_by_mmuidx_all_cpus_synced(cs
,
3263 ARMMMUIdxBit_S12NSE1
|
3264 ARMMMUIdxBit_S12NSE0
);
3268 static void tlbi_aa64_alle2is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3271 CPUState
*cs
= ENV_GET_CPU(env
);
3273 tlb_flush_by_mmuidx_all_cpus_synced(cs
, ARMMMUIdxBit_S1E2
);
3276 static void tlbi_aa64_alle3is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3279 CPUState
*cs
= ENV_GET_CPU(env
);
3281 tlb_flush_by_mmuidx_all_cpus_synced(cs
, ARMMMUIdxBit_S1E3
);
3284 static void tlbi_aa64_vae2_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3287 /* Invalidate by VA, EL2
3288 * Currently handles both VAE2 and VALE2, since we don't support
3289 * flush-last-level-only.
3291 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3292 CPUState
*cs
= CPU(cpu
);
3293 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
3295 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdxBit_S1E2
);
3298 static void tlbi_aa64_vae3_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3301 /* Invalidate by VA, EL3
3302 * Currently handles both VAE3 and VALE3, since we don't support
3303 * flush-last-level-only.
3305 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3306 CPUState
*cs
= CPU(cpu
);
3307 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
3309 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdxBit_S1E3
);
3312 static void tlbi_aa64_vae1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3315 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3316 CPUState
*cs
= CPU(cpu
);
3317 bool sec
= arm_is_secure_below_el3(env
);
3318 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
3321 tlb_flush_page_by_mmuidx_all_cpus_synced(cs
, pageaddr
,
3322 ARMMMUIdxBit_S1SE1
|
3323 ARMMMUIdxBit_S1SE0
);
3325 tlb_flush_page_by_mmuidx_all_cpus_synced(cs
, pageaddr
,
3326 ARMMMUIdxBit_S12NSE1
|
3327 ARMMMUIdxBit_S12NSE0
);
3331 static void tlbi_aa64_vae1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3334 /* Invalidate by VA, EL1&0 (AArch64 version).
3335 * Currently handles all of VAE1, VAAE1, VAALE1 and VALE1,
3336 * since we don't support flush-for-specific-ASID-only or
3337 * flush-last-level-only.
3339 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3340 CPUState
*cs
= CPU(cpu
);
3341 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
3343 if (tlb_force_broadcast(env
)) {
3344 tlbi_aa64_vae1is_write(env
, NULL
, value
);
3348 if (arm_is_secure_below_el3(env
)) {
3349 tlb_flush_page_by_mmuidx(cs
, pageaddr
,
3350 ARMMMUIdxBit_S1SE1
|
3351 ARMMMUIdxBit_S1SE0
);
3353 tlb_flush_page_by_mmuidx(cs
, pageaddr
,
3354 ARMMMUIdxBit_S12NSE1
|
3355 ARMMMUIdxBit_S12NSE0
);
3359 static void tlbi_aa64_vae2is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3362 CPUState
*cs
= ENV_GET_CPU(env
);
3363 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
3365 tlb_flush_page_by_mmuidx_all_cpus_synced(cs
, pageaddr
,
3369 static void tlbi_aa64_vae3is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3372 CPUState
*cs
= ENV_GET_CPU(env
);
3373 uint64_t pageaddr
= sextract64(value
<< 12, 0, 56);
3375 tlb_flush_page_by_mmuidx_all_cpus_synced(cs
, pageaddr
,
3379 static void tlbi_aa64_ipas2e1_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3382 /* Invalidate by IPA. This has to invalidate any structures that
3383 * contain only stage 2 translation information, but does not need
3384 * to apply to structures that contain combined stage 1 and stage 2
3385 * translation information.
3386 * This must NOP if EL2 isn't implemented or SCR_EL3.NS is zero.
3388 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3389 CPUState
*cs
= CPU(cpu
);
3392 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
3396 pageaddr
= sextract64(value
<< 12, 0, 48);
3398 tlb_flush_page_by_mmuidx(cs
, pageaddr
, ARMMMUIdxBit_S2NS
);
3401 static void tlbi_aa64_ipas2e1is_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3404 CPUState
*cs
= ENV_GET_CPU(env
);
3407 if (!arm_feature(env
, ARM_FEATURE_EL2
) || !(env
->cp15
.scr_el3
& SCR_NS
)) {
3411 pageaddr
= sextract64(value
<< 12, 0, 48);
3413 tlb_flush_page_by_mmuidx_all_cpus_synced(cs
, pageaddr
,
3417 static CPAccessResult
aa64_zva_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3420 /* We don't implement EL2, so the only control on DC ZVA is the
3421 * bit in the SCTLR which can prohibit access for EL0.
3423 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_DZE
)) {
3424 return CP_ACCESS_TRAP
;
3426 return CP_ACCESS_OK
;
3429 static uint64_t aa64_dczid_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3431 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3432 int dzp_bit
= 1 << 4;
3434 /* DZP indicates whether DC ZVA access is allowed */
3435 if (aa64_zva_access(env
, NULL
, false) == CP_ACCESS_OK
) {
3438 return cpu
->dcz_blocksize
| dzp_bit
;
3441 static CPAccessResult
sp_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3444 if (!(env
->pstate
& PSTATE_SP
)) {
3445 /* Access to SP_EL0 is undefined if it's being used as
3446 * the stack pointer.
3448 return CP_ACCESS_TRAP_UNCATEGORIZED
;
3450 return CP_ACCESS_OK
;
3453 static uint64_t spsel_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
3455 return env
->pstate
& PSTATE_SP
;
3458 static void spsel_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t val
)
3460 update_spsel(env
, val
);
3463 static void sctlr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3466 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3468 if (raw_read(env
, ri
) == value
) {
3469 /* Skip the TLB flush if nothing actually changed; Linux likes
3470 * to do a lot of pointless SCTLR writes.
3475 if (arm_feature(env
, ARM_FEATURE_PMSA
) && !cpu
->has_mpu
) {
3476 /* M bit is RAZ/WI for PMSA with no MPU implemented */
3480 raw_write(env
, ri
, value
);
3481 /* ??? Lots of these bits are not implemented. */
3482 /* This may enable/disable the MMU, so do a TLB flush. */
3483 tlb_flush(CPU(cpu
));
3486 static CPAccessResult
fpexc32_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3489 if ((env
->cp15
.cptr_el
[2] & CPTR_TFP
) && arm_current_el(env
) == 2) {
3490 return CP_ACCESS_TRAP_FP_EL2
;
3492 if (env
->cp15
.cptr_el
[3] & CPTR_TFP
) {
3493 return CP_ACCESS_TRAP_FP_EL3
;
3495 return CP_ACCESS_OK
;
3498 static void sdcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
3501 env
->cp15
.mdcr_el3
= value
& SDCR_VALID_MASK
;
3504 static const ARMCPRegInfo v8_cp_reginfo
[] = {
3505 /* Minimal set of EL0-visible registers. This will need to be expanded
3506 * significantly for system emulation of AArch64 CPUs.
3508 { .name
= "NZCV", .state
= ARM_CP_STATE_AA64
,
3509 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 2,
3510 .access
= PL0_RW
, .type
= ARM_CP_NZCV
},
3511 { .name
= "DAIF", .state
= ARM_CP_STATE_AA64
,
3512 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 2,
3513 .type
= ARM_CP_NO_RAW
,
3514 .access
= PL0_RW
, .accessfn
= aa64_daif_access
,
3515 .fieldoffset
= offsetof(CPUARMState
, daif
),
3516 .writefn
= aa64_daif_write
, .resetfn
= arm_cp_reset_ignore
},
3517 { .name
= "FPCR", .state
= ARM_CP_STATE_AA64
,
3518 .opc0
= 3, .opc1
= 3, .opc2
= 0, .crn
= 4, .crm
= 4,
3519 .access
= PL0_RW
, .type
= ARM_CP_FPU
| ARM_CP_SUPPRESS_TB_END
,
3520 .readfn
= aa64_fpcr_read
, .writefn
= aa64_fpcr_write
},
3521 { .name
= "FPSR", .state
= ARM_CP_STATE_AA64
,
3522 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 4, .crm
= 4,
3523 .access
= PL0_RW
, .type
= ARM_CP_FPU
| ARM_CP_SUPPRESS_TB_END
,
3524 .readfn
= aa64_fpsr_read
, .writefn
= aa64_fpsr_write
},
3525 { .name
= "DCZID_EL0", .state
= ARM_CP_STATE_AA64
,
3526 .opc0
= 3, .opc1
= 3, .opc2
= 7, .crn
= 0, .crm
= 0,
3527 .access
= PL0_R
, .type
= ARM_CP_NO_RAW
,
3528 .readfn
= aa64_dczid_read
},
3529 { .name
= "DC_ZVA", .state
= ARM_CP_STATE_AA64
,
3530 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 4, .opc2
= 1,
3531 .access
= PL0_W
, .type
= ARM_CP_DC_ZVA
,
3532 #ifndef CONFIG_USER_ONLY
3533 /* Avoid overhead of an access check that always passes in user-mode */
3534 .accessfn
= aa64_zva_access
,
3537 { .name
= "CURRENTEL", .state
= ARM_CP_STATE_AA64
,
3538 .opc0
= 3, .opc1
= 0, .opc2
= 2, .crn
= 4, .crm
= 2,
3539 .access
= PL1_R
, .type
= ARM_CP_CURRENTEL
},
3540 /* Cache ops: all NOPs since we don't emulate caches */
3541 { .name
= "IC_IALLUIS", .state
= ARM_CP_STATE_AA64
,
3542 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
3543 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3544 { .name
= "IC_IALLU", .state
= ARM_CP_STATE_AA64
,
3545 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
3546 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3547 { .name
= "IC_IVAU", .state
= ARM_CP_STATE_AA64
,
3548 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 5, .opc2
= 1,
3549 .access
= PL0_W
, .type
= ARM_CP_NOP
,
3550 .accessfn
= aa64_cacheop_access
},
3551 { .name
= "DC_IVAC", .state
= ARM_CP_STATE_AA64
,
3552 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
3553 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3554 { .name
= "DC_ISW", .state
= ARM_CP_STATE_AA64
,
3555 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
3556 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3557 { .name
= "DC_CVAC", .state
= ARM_CP_STATE_AA64
,
3558 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 10, .opc2
= 1,
3559 .access
= PL0_W
, .type
= ARM_CP_NOP
,
3560 .accessfn
= aa64_cacheop_access
},
3561 { .name
= "DC_CSW", .state
= ARM_CP_STATE_AA64
,
3562 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
3563 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3564 { .name
= "DC_CVAU", .state
= ARM_CP_STATE_AA64
,
3565 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 11, .opc2
= 1,
3566 .access
= PL0_W
, .type
= ARM_CP_NOP
,
3567 .accessfn
= aa64_cacheop_access
},
3568 { .name
= "DC_CIVAC", .state
= ARM_CP_STATE_AA64
,
3569 .opc0
= 1, .opc1
= 3, .crn
= 7, .crm
= 14, .opc2
= 1,
3570 .access
= PL0_W
, .type
= ARM_CP_NOP
,
3571 .accessfn
= aa64_cacheop_access
},
3572 { .name
= "DC_CISW", .state
= ARM_CP_STATE_AA64
,
3573 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
3574 .access
= PL1_W
, .type
= ARM_CP_NOP
},
3575 /* TLBI operations */
3576 { .name
= "TLBI_VMALLE1IS", .state
= ARM_CP_STATE_AA64
,
3577 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 0,
3578 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3579 .writefn
= tlbi_aa64_vmalle1is_write
},
3580 { .name
= "TLBI_VAE1IS", .state
= ARM_CP_STATE_AA64
,
3581 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 1,
3582 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3583 .writefn
= tlbi_aa64_vae1is_write
},
3584 { .name
= "TLBI_ASIDE1IS", .state
= ARM_CP_STATE_AA64
,
3585 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 2,
3586 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3587 .writefn
= tlbi_aa64_vmalle1is_write
},
3588 { .name
= "TLBI_VAAE1IS", .state
= ARM_CP_STATE_AA64
,
3589 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 3,
3590 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3591 .writefn
= tlbi_aa64_vae1is_write
},
3592 { .name
= "TLBI_VALE1IS", .state
= ARM_CP_STATE_AA64
,
3593 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
3594 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3595 .writefn
= tlbi_aa64_vae1is_write
},
3596 { .name
= "TLBI_VAALE1IS", .state
= ARM_CP_STATE_AA64
,
3597 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
3598 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3599 .writefn
= tlbi_aa64_vae1is_write
},
3600 { .name
= "TLBI_VMALLE1", .state
= ARM_CP_STATE_AA64
,
3601 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 0,
3602 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3603 .writefn
= tlbi_aa64_vmalle1_write
},
3604 { .name
= "TLBI_VAE1", .state
= ARM_CP_STATE_AA64
,
3605 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 1,
3606 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3607 .writefn
= tlbi_aa64_vae1_write
},
3608 { .name
= "TLBI_ASIDE1", .state
= ARM_CP_STATE_AA64
,
3609 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 2,
3610 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3611 .writefn
= tlbi_aa64_vmalle1_write
},
3612 { .name
= "TLBI_VAAE1", .state
= ARM_CP_STATE_AA64
,
3613 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 3,
3614 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3615 .writefn
= tlbi_aa64_vae1_write
},
3616 { .name
= "TLBI_VALE1", .state
= ARM_CP_STATE_AA64
,
3617 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
3618 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3619 .writefn
= tlbi_aa64_vae1_write
},
3620 { .name
= "TLBI_VAALE1", .state
= ARM_CP_STATE_AA64
,
3621 .opc0
= 1, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
3622 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
3623 .writefn
= tlbi_aa64_vae1_write
},
3624 { .name
= "TLBI_IPAS2E1IS", .state
= ARM_CP_STATE_AA64
,
3625 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 1,
3626 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3627 .writefn
= tlbi_aa64_ipas2e1is_write
},
3628 { .name
= "TLBI_IPAS2LE1IS", .state
= ARM_CP_STATE_AA64
,
3629 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 5,
3630 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3631 .writefn
= tlbi_aa64_ipas2e1is_write
},
3632 { .name
= "TLBI_ALLE1IS", .state
= ARM_CP_STATE_AA64
,
3633 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 4,
3634 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3635 .writefn
= tlbi_aa64_alle1is_write
},
3636 { .name
= "TLBI_VMALLS12E1IS", .state
= ARM_CP_STATE_AA64
,
3637 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 6,
3638 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3639 .writefn
= tlbi_aa64_alle1is_write
},
3640 { .name
= "TLBI_IPAS2E1", .state
= ARM_CP_STATE_AA64
,
3641 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 1,
3642 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3643 .writefn
= tlbi_aa64_ipas2e1_write
},
3644 { .name
= "TLBI_IPAS2LE1", .state
= ARM_CP_STATE_AA64
,
3645 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 5,
3646 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3647 .writefn
= tlbi_aa64_ipas2e1_write
},
3648 { .name
= "TLBI_ALLE1", .state
= ARM_CP_STATE_AA64
,
3649 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 4,
3650 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3651 .writefn
= tlbi_aa64_alle1_write
},
3652 { .name
= "TLBI_VMALLS12E1", .state
= ARM_CP_STATE_AA64
,
3653 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 6,
3654 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
3655 .writefn
= tlbi_aa64_alle1is_write
},
3656 #ifndef CONFIG_USER_ONLY
3657 /* 64 bit address translation operations */
3658 { .name
= "AT_S1E1R", .state
= ARM_CP_STATE_AA64
,
3659 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 0,
3660 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3661 { .name
= "AT_S1E1W", .state
= ARM_CP_STATE_AA64
,
3662 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 1,
3663 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3664 { .name
= "AT_S1E0R", .state
= ARM_CP_STATE_AA64
,
3665 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 2,
3666 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3667 { .name
= "AT_S1E0W", .state
= ARM_CP_STATE_AA64
,
3668 .opc0
= 1, .opc1
= 0, .crn
= 7, .crm
= 8, .opc2
= 3,
3669 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3670 { .name
= "AT_S12E1R", .state
= ARM_CP_STATE_AA64
,
3671 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 4,
3672 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3673 { .name
= "AT_S12E1W", .state
= ARM_CP_STATE_AA64
,
3674 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 5,
3675 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3676 { .name
= "AT_S12E0R", .state
= ARM_CP_STATE_AA64
,
3677 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 6,
3678 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3679 { .name
= "AT_S12E0W", .state
= ARM_CP_STATE_AA64
,
3680 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 7,
3681 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3682 /* AT S1E2* are elsewhere as they UNDEF from EL3 if EL2 is not present */
3683 { .name
= "AT_S1E3R", .state
= ARM_CP_STATE_AA64
,
3684 .opc0
= 1, .opc1
= 6, .crn
= 7, .crm
= 8, .opc2
= 0,
3685 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3686 { .name
= "AT_S1E3W", .state
= ARM_CP_STATE_AA64
,
3687 .opc0
= 1, .opc1
= 6, .crn
= 7, .crm
= 8, .opc2
= 1,
3688 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
3689 { .name
= "PAR_EL1", .state
= ARM_CP_STATE_AA64
,
3690 .type
= ARM_CP_ALIAS
,
3691 .opc0
= 3, .opc1
= 0, .crn
= 7, .crm
= 4, .opc2
= 0,
3692 .access
= PL1_RW
, .resetvalue
= 0,
3693 .fieldoffset
= offsetof(CPUARMState
, cp15
.par_el
[1]),
3694 .writefn
= par_write
},
3696 /* TLB invalidate last level of translation table walk */
3697 { .name
= "TLBIMVALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 5,
3698 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_is_write
},
3699 { .name
= "TLBIMVAALIS", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 3, .opc2
= 7,
3700 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
,
3701 .writefn
= tlbimvaa_is_write
},
3702 { .name
= "TLBIMVAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 5,
3703 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimva_write
},
3704 { .name
= "TLBIMVAAL", .cp
= 15, .opc1
= 0, .crn
= 8, .crm
= 7, .opc2
= 7,
3705 .type
= ARM_CP_NO_RAW
, .access
= PL1_W
, .writefn
= tlbimvaa_write
},
3706 { .name
= "TLBIMVALH", .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 5,
3707 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3708 .writefn
= tlbimva_hyp_write
},
3709 { .name
= "TLBIMVALHIS",
3710 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 5,
3711 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3712 .writefn
= tlbimva_hyp_is_write
},
3713 { .name
= "TLBIIPAS2",
3714 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 1,
3715 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3716 .writefn
= tlbiipas2_write
},
3717 { .name
= "TLBIIPAS2IS",
3718 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 1,
3719 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3720 .writefn
= tlbiipas2_is_write
},
3721 { .name
= "TLBIIPAS2L",
3722 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 4, .opc2
= 5,
3723 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3724 .writefn
= tlbiipas2_write
},
3725 { .name
= "TLBIIPAS2LIS",
3726 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 0, .opc2
= 5,
3727 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
3728 .writefn
= tlbiipas2_is_write
},
3729 /* 32 bit cache operations */
3730 { .name
= "ICIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 0,
3731 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3732 { .name
= "BPIALLUIS", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 1, .opc2
= 6,
3733 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3734 { .name
= "ICIALLU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 0,
3735 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3736 { .name
= "ICIMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 1,
3737 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3738 { .name
= "BPIALL", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 6,
3739 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3740 { .name
= "BPIMVA", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 5, .opc2
= 7,
3741 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3742 { .name
= "DCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 1,
3743 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3744 { .name
= "DCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 6, .opc2
= 2,
3745 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3746 { .name
= "DCCMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 1,
3747 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3748 { .name
= "DCCSW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 10, .opc2
= 2,
3749 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3750 { .name
= "DCCMVAU", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 11, .opc2
= 1,
3751 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3752 { .name
= "DCCIMVAC", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 1,
3753 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3754 { .name
= "DCCISW", .cp
= 15, .opc1
= 0, .crn
= 7, .crm
= 14, .opc2
= 2,
3755 .type
= ARM_CP_NOP
, .access
= PL1_W
},
3756 /* MMU Domain access control / MPU write buffer control */
3757 { .name
= "DACR", .cp
= 15, .opc1
= 0, .crn
= 3, .crm
= 0, .opc2
= 0,
3758 .access
= PL1_RW
, .resetvalue
= 0,
3759 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
3760 .bank_fieldoffsets
= { offsetoflow32(CPUARMState
, cp15
.dacr_s
),
3761 offsetoflow32(CPUARMState
, cp15
.dacr_ns
) } },
3762 { .name
= "ELR_EL1", .state
= ARM_CP_STATE_AA64
,
3763 .type
= ARM_CP_ALIAS
,
3764 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 1,
3766 .fieldoffset
= offsetof(CPUARMState
, elr_el
[1]) },
3767 { .name
= "SPSR_EL1", .state
= ARM_CP_STATE_AA64
,
3768 .type
= ARM_CP_ALIAS
,
3769 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 0, .opc2
= 0,
3771 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_SVC
]) },
3772 /* We rely on the access checks not allowing the guest to write to the
3773 * state field when SPSel indicates that it's being used as the stack
3776 { .name
= "SP_EL0", .state
= ARM_CP_STATE_AA64
,
3777 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 1, .opc2
= 0,
3778 .access
= PL1_RW
, .accessfn
= sp_el0_access
,
3779 .type
= ARM_CP_ALIAS
,
3780 .fieldoffset
= offsetof(CPUARMState
, sp_el
[0]) },
3781 { .name
= "SP_EL1", .state
= ARM_CP_STATE_AA64
,
3782 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 1, .opc2
= 0,
3783 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
3784 .fieldoffset
= offsetof(CPUARMState
, sp_el
[1]) },
3785 { .name
= "SPSel", .state
= ARM_CP_STATE_AA64
,
3786 .opc0
= 3, .opc1
= 0, .crn
= 4, .crm
= 2, .opc2
= 0,
3787 .type
= ARM_CP_NO_RAW
,
3788 .access
= PL1_RW
, .readfn
= spsel_read
, .writefn
= spsel_write
},
3789 { .name
= "FPEXC32_EL2", .state
= ARM_CP_STATE_AA64
,
3790 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 3, .opc2
= 0,
3791 .type
= ARM_CP_ALIAS
,
3792 .fieldoffset
= offsetof(CPUARMState
, vfp
.xregs
[ARM_VFP_FPEXC
]),
3793 .access
= PL2_RW
, .accessfn
= fpexc32_access
},
3794 { .name
= "DACR32_EL2", .state
= ARM_CP_STATE_AA64
,
3795 .opc0
= 3, .opc1
= 4, .crn
= 3, .crm
= 0, .opc2
= 0,
3796 .access
= PL2_RW
, .resetvalue
= 0,
3797 .writefn
= dacr_write
, .raw_writefn
= raw_write
,
3798 .fieldoffset
= offsetof(CPUARMState
, cp15
.dacr32_el2
) },
3799 { .name
= "IFSR32_EL2", .state
= ARM_CP_STATE_AA64
,
3800 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 0, .opc2
= 1,
3801 .access
= PL2_RW
, .resetvalue
= 0,
3802 .fieldoffset
= offsetof(CPUARMState
, cp15
.ifsr32_el2
) },
3803 { .name
= "SPSR_IRQ", .state
= ARM_CP_STATE_AA64
,
3804 .type
= ARM_CP_ALIAS
,
3805 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 0,
3807 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_IRQ
]) },
3808 { .name
= "SPSR_ABT", .state
= ARM_CP_STATE_AA64
,
3809 .type
= ARM_CP_ALIAS
,
3810 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 1,
3812 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_ABT
]) },
3813 { .name
= "SPSR_UND", .state
= ARM_CP_STATE_AA64
,
3814 .type
= ARM_CP_ALIAS
,
3815 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 2,
3817 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_UND
]) },
3818 { .name
= "SPSR_FIQ", .state
= ARM_CP_STATE_AA64
,
3819 .type
= ARM_CP_ALIAS
,
3820 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 3, .opc2
= 3,
3822 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_FIQ
]) },
3823 { .name
= "MDCR_EL3", .state
= ARM_CP_STATE_AA64
,
3824 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 3, .opc2
= 1,
3826 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mdcr_el3
) },
3827 { .name
= "SDCR", .type
= ARM_CP_ALIAS
,
3828 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 3, .opc2
= 1,
3829 .access
= PL1_RW
, .accessfn
= access_trap_aa32s_el1
,
3830 .writefn
= sdcr_write
,
3831 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.mdcr_el3
) },
3835 /* Used to describe the behaviour of EL2 regs when EL2 does not exist. */
3836 static const ARMCPRegInfo el3_no_el2_cp_reginfo
[] = {
3837 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_BOTH
,
3838 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
3840 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
},
3841 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3842 .type
= ARM_CP_NO_RAW
,
3843 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
3845 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3846 { .name
= "ESR_EL2", .state
= ARM_CP_STATE_BOTH
,
3847 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 2, .opc2
= 0,
3849 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3850 { .name
= "CPTR_EL2", .state
= ARM_CP_STATE_BOTH
,
3851 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 2,
3852 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3853 { .name
= "MAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3854 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 0,
3855 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3857 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
3858 .cp
= 15, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 1,
3859 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3860 { .name
= "AMAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
3861 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 0,
3862 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3864 { .name
= "HAMAIR1", .state
= ARM_CP_STATE_AA32
,
3865 .cp
= 15, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 1,
3866 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3868 { .name
= "AFSR0_EL2", .state
= ARM_CP_STATE_BOTH
,
3869 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 0,
3870 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3872 { .name
= "AFSR1_EL2", .state
= ARM_CP_STATE_BOTH
,
3873 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 1,
3874 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
3876 { .name
= "TCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3877 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 2,
3878 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3879 { .name
= "VTCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3880 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
3881 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
3882 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3883 { .name
= "VTTBR", .state
= ARM_CP_STATE_AA32
,
3884 .cp
= 15, .opc1
= 6, .crm
= 2,
3885 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
3886 .type
= ARM_CP_CONST
| ARM_CP_64BIT
, .resetvalue
= 0 },
3887 { .name
= "VTTBR_EL2", .state
= ARM_CP_STATE_AA64
,
3888 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 0,
3889 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3890 { .name
= "SCTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
3891 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 0,
3892 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3893 { .name
= "TPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
3894 .opc0
= 3, .opc1
= 4, .crn
= 13, .crm
= 0, .opc2
= 2,
3895 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3896 { .name
= "TTBR0_EL2", .state
= ARM_CP_STATE_AA64
,
3897 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 0,
3898 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3899 { .name
= "HTTBR", .cp
= 15, .opc1
= 4, .crm
= 2,
3900 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
3902 { .name
= "CNTHCTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3903 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 1, .opc2
= 0,
3904 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3905 { .name
= "CNTVOFF_EL2", .state
= ARM_CP_STATE_AA64
,
3906 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 0, .opc2
= 3,
3907 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3908 { .name
= "CNTVOFF", .cp
= 15, .opc1
= 4, .crm
= 14,
3909 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
3911 { .name
= "CNTHP_CVAL_EL2", .state
= ARM_CP_STATE_AA64
,
3912 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 2,
3913 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3914 { .name
= "CNTHP_CVAL", .cp
= 15, .opc1
= 6, .crm
= 14,
3915 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_CONST
,
3917 { .name
= "CNTHP_TVAL_EL2", .state
= ARM_CP_STATE_BOTH
,
3918 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 0,
3919 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3920 { .name
= "CNTHP_CTL_EL2", .state
= ARM_CP_STATE_BOTH
,
3921 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 1,
3922 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3923 { .name
= "MDCR_EL2", .state
= ARM_CP_STATE_BOTH
,
3924 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 1,
3925 .access
= PL2_RW
, .accessfn
= access_tda
,
3926 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3927 { .name
= "HPFAR_EL2", .state
= ARM_CP_STATE_BOTH
,
3928 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
3929 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
3930 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3931 { .name
= "HSTR_EL2", .state
= ARM_CP_STATE_BOTH
,
3932 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 3,
3933 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3934 { .name
= "FAR_EL2", .state
= ARM_CP_STATE_BOTH
,
3935 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 0,
3936 .access
= PL2_RW
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3937 { .name
= "HIFAR", .state
= ARM_CP_STATE_AA32
,
3938 .type
= ARM_CP_CONST
,
3939 .cp
= 15, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 2,
3940 .access
= PL2_RW
, .resetvalue
= 0 },
3944 /* Ditto, but for registers which exist in ARMv8 but not v7 */
3945 static const ARMCPRegInfo el3_no_el2_v8_cp_reginfo
[] = {
3946 { .name
= "HCR2", .state
= ARM_CP_STATE_AA32
,
3947 .cp
= 15, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 4,
3949 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
3953 static void hcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
, uint64_t value
)
3955 ARMCPU
*cpu
= arm_env_get_cpu(env
);
3956 uint64_t valid_mask
= HCR_MASK
;
3958 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
3959 valid_mask
&= ~HCR_HCD
;
3960 } else if (cpu
->psci_conduit
!= QEMU_PSCI_CONDUIT_SMC
) {
3961 /* Architecturally HCR.TSC is RES0 if EL3 is not implemented.
3962 * However, if we're using the SMC PSCI conduit then QEMU is
3963 * effectively acting like EL3 firmware and so the guest at
3964 * EL2 should retain the ability to prevent EL1 from being
3965 * able to make SMC calls into the ersatz firmware, so in
3966 * that case HCR.TSC should be read/write.
3968 valid_mask
&= ~HCR_TSC
;
3970 if (cpu_isar_feature(aa64_lor
, cpu
)) {
3971 valid_mask
|= HCR_TLOR
;
3974 /* Clear RES0 bits. */
3975 value
&= valid_mask
;
3977 /* These bits change the MMU setup:
3978 * HCR_VM enables stage 2 translation
3979 * HCR_PTW forbids certain page-table setups
3980 * HCR_DC Disables stage1 and enables stage2 translation
3982 if ((env
->cp15
.hcr_el2
^ value
) & (HCR_VM
| HCR_PTW
| HCR_DC
)) {
3983 tlb_flush(CPU(cpu
));
3985 env
->cp15
.hcr_el2
= value
;
3988 * Updates to VI and VF require us to update the status of
3989 * virtual interrupts, which are the logical OR of these bits
3990 * and the state of the input lines from the GIC. (This requires
3991 * that we have the iothread lock, which is done by marking the
3992 * reginfo structs as ARM_CP_IO.)
3993 * Note that if a write to HCR pends a VIRQ or VFIQ it is never
3994 * possible for it to be taken immediately, because VIRQ and
3995 * VFIQ are masked unless running at EL0 or EL1, and HCR
3996 * can only be written at EL2.
3998 g_assert(qemu_mutex_iothread_locked());
3999 arm_cpu_update_virq(cpu
);
4000 arm_cpu_update_vfiq(cpu
);
4003 static void hcr_writehigh(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4006 /* Handle HCR2 write, i.e. write to high half of HCR_EL2 */
4007 value
= deposit64(env
->cp15
.hcr_el2
, 32, 32, value
);
4008 hcr_write(env
, NULL
, value
);
4011 static void hcr_writelow(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4014 /* Handle HCR write, i.e. write to low half of HCR_EL2 */
4015 value
= deposit64(env
->cp15
.hcr_el2
, 0, 32, value
);
4016 hcr_write(env
, NULL
, value
);
4020 * Return the effective value of HCR_EL2.
4021 * Bits that are not included here:
4022 * RW (read from SCR_EL3.RW as needed)
4024 uint64_t arm_hcr_el2_eff(CPUARMState
*env
)
4026 uint64_t ret
= env
->cp15
.hcr_el2
;
4028 if (arm_is_secure_below_el3(env
)) {
4030 * "This register has no effect if EL2 is not enabled in the
4031 * current Security state". This is ARMv8.4-SecEL2 speak for
4032 * !(SCR_EL3.NS==1 || SCR_EL3.EEL2==1).
4034 * Prior to that, the language was "In an implementation that
4035 * includes EL3, when the value of SCR_EL3.NS is 0 the PE behaves
4036 * as if this field is 0 for all purposes other than a direct
4037 * read or write access of HCR_EL2". With lots of enumeration
4038 * on a per-field basis. In current QEMU, this is condition
4039 * is arm_is_secure_below_el3.
4041 * Since the v8.4 language applies to the entire register, and
4042 * appears to be backward compatible, use that.
4045 } else if (ret
& HCR_TGE
) {
4046 /* These bits are up-to-date as of ARMv8.4. */
4047 if (ret
& HCR_E2H
) {
4048 ret
&= ~(HCR_VM
| HCR_FMO
| HCR_IMO
| HCR_AMO
|
4049 HCR_BSU_MASK
| HCR_DC
| HCR_TWI
| HCR_TWE
|
4050 HCR_TID0
| HCR_TID2
| HCR_TPCP
| HCR_TPU
|
4051 HCR_TDZ
| HCR_CD
| HCR_ID
| HCR_MIOCNCE
);
4053 ret
|= HCR_FMO
| HCR_IMO
| HCR_AMO
;
4055 ret
&= ~(HCR_SWIO
| HCR_PTW
| HCR_VF
| HCR_VI
| HCR_VSE
|
4056 HCR_FB
| HCR_TID1
| HCR_TID3
| HCR_TSC
| HCR_TACR
|
4057 HCR_TSW
| HCR_TTLB
| HCR_TVM
| HCR_HCD
| HCR_TRVM
|
4064 static const ARMCPRegInfo el2_cp_reginfo
[] = {
4065 { .name
= "HCR_EL2", .state
= ARM_CP_STATE_AA64
,
4067 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
4068 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.hcr_el2
),
4069 .writefn
= hcr_write
},
4070 { .name
= "HCR", .state
= ARM_CP_STATE_AA32
,
4071 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
4072 .cp
= 15, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 0,
4073 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.hcr_el2
),
4074 .writefn
= hcr_writelow
},
4075 { .name
= "ELR_EL2", .state
= ARM_CP_STATE_AA64
,
4076 .type
= ARM_CP_ALIAS
,
4077 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 1,
4079 .fieldoffset
= offsetof(CPUARMState
, elr_el
[2]) },
4080 { .name
= "ESR_EL2", .state
= ARM_CP_STATE_BOTH
,
4081 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 2, .opc2
= 0,
4082 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[2]) },
4083 { .name
= "FAR_EL2", .state
= ARM_CP_STATE_BOTH
,
4084 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 0,
4085 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[2]) },
4086 { .name
= "HIFAR", .state
= ARM_CP_STATE_AA32
,
4087 .type
= ARM_CP_ALIAS
,
4088 .cp
= 15, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 2,
4090 .fieldoffset
= offsetofhigh32(CPUARMState
, cp15
.far_el
[2]) },
4091 { .name
= "SPSR_EL2", .state
= ARM_CP_STATE_AA64
,
4092 .type
= ARM_CP_ALIAS
,
4093 .opc0
= 3, .opc1
= 4, .crn
= 4, .crm
= 0, .opc2
= 0,
4095 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_HYP
]) },
4096 { .name
= "VBAR_EL2", .state
= ARM_CP_STATE_BOTH
,
4097 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 0,
4098 .access
= PL2_RW
, .writefn
= vbar_write
,
4099 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[2]),
4101 { .name
= "SP_EL2", .state
= ARM_CP_STATE_AA64
,
4102 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 1, .opc2
= 0,
4103 .access
= PL3_RW
, .type
= ARM_CP_ALIAS
,
4104 .fieldoffset
= offsetof(CPUARMState
, sp_el
[2]) },
4105 { .name
= "CPTR_EL2", .state
= ARM_CP_STATE_BOTH
,
4106 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 2,
4107 .access
= PL2_RW
, .accessfn
= cptr_access
, .resetvalue
= 0,
4108 .fieldoffset
= offsetof(CPUARMState
, cp15
.cptr_el
[2]) },
4109 { .name
= "MAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
4110 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 0,
4111 .access
= PL2_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.mair_el
[2]),
4113 { .name
= "HMAIR1", .state
= ARM_CP_STATE_AA32
,
4114 .cp
= 15, .opc1
= 4, .crn
= 10, .crm
= 2, .opc2
= 1,
4115 .access
= PL2_RW
, .type
= ARM_CP_ALIAS
,
4116 .fieldoffset
= offsetofhigh32(CPUARMState
, cp15
.mair_el
[2]) },
4117 { .name
= "AMAIR_EL2", .state
= ARM_CP_STATE_BOTH
,
4118 .opc0
= 3, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 0,
4119 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4121 /* HAMAIR1 is mapped to AMAIR_EL2[63:32] */
4122 { .name
= "HAMAIR1", .state
= ARM_CP_STATE_AA32
,
4123 .cp
= 15, .opc1
= 4, .crn
= 10, .crm
= 3, .opc2
= 1,
4124 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4126 { .name
= "AFSR0_EL2", .state
= ARM_CP_STATE_BOTH
,
4127 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 0,
4128 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4130 { .name
= "AFSR1_EL2", .state
= ARM_CP_STATE_BOTH
,
4131 .opc0
= 3, .opc1
= 4, .crn
= 5, .crm
= 1, .opc2
= 1,
4132 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
4134 { .name
= "TCR_EL2", .state
= ARM_CP_STATE_BOTH
,
4135 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 2,
4137 /* no .writefn needed as this can't cause an ASID change;
4138 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4140 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[2]) },
4141 { .name
= "VTCR", .state
= ARM_CP_STATE_AA32
,
4142 .cp
= 15, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
4143 .type
= ARM_CP_ALIAS
,
4144 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
4145 .fieldoffset
= offsetof(CPUARMState
, cp15
.vtcr_el2
) },
4146 { .name
= "VTCR_EL2", .state
= ARM_CP_STATE_AA64
,
4147 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 2,
4149 /* no .writefn needed as this can't cause an ASID change;
4150 * no .raw_writefn or .resetfn needed as we never use mask/base_mask
4152 .fieldoffset
= offsetof(CPUARMState
, cp15
.vtcr_el2
) },
4153 { .name
= "VTTBR", .state
= ARM_CP_STATE_AA32
,
4154 .cp
= 15, .opc1
= 6, .crm
= 2,
4155 .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
4156 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
4157 .fieldoffset
= offsetof(CPUARMState
, cp15
.vttbr_el2
),
4158 .writefn
= vttbr_write
},
4159 { .name
= "VTTBR_EL2", .state
= ARM_CP_STATE_AA64
,
4160 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 1, .opc2
= 0,
4161 .access
= PL2_RW
, .writefn
= vttbr_write
,
4162 .fieldoffset
= offsetof(CPUARMState
, cp15
.vttbr_el2
) },
4163 { .name
= "SCTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
4164 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 0,
4165 .access
= PL2_RW
, .raw_writefn
= raw_write
, .writefn
= sctlr_write
,
4166 .fieldoffset
= offsetof(CPUARMState
, cp15
.sctlr_el
[2]) },
4167 { .name
= "TPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
4168 .opc0
= 3, .opc1
= 4, .crn
= 13, .crm
= 0, .opc2
= 2,
4169 .access
= PL2_RW
, .resetvalue
= 0,
4170 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[2]) },
4171 { .name
= "TTBR0_EL2", .state
= ARM_CP_STATE_AA64
,
4172 .opc0
= 3, .opc1
= 4, .crn
= 2, .crm
= 0, .opc2
= 0,
4173 .access
= PL2_RW
, .resetvalue
= 0,
4174 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[2]) },
4175 { .name
= "HTTBR", .cp
= 15, .opc1
= 4, .crm
= 2,
4176 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
,
4177 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[2]) },
4178 { .name
= "TLBIALLNSNH",
4179 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 4,
4180 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4181 .writefn
= tlbiall_nsnh_write
},
4182 { .name
= "TLBIALLNSNHIS",
4183 .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 4,
4184 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4185 .writefn
= tlbiall_nsnh_is_write
},
4186 { .name
= "TLBIALLH", .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 0,
4187 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4188 .writefn
= tlbiall_hyp_write
},
4189 { .name
= "TLBIALLHIS", .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 0,
4190 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4191 .writefn
= tlbiall_hyp_is_write
},
4192 { .name
= "TLBIMVAH", .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 1,
4193 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4194 .writefn
= tlbimva_hyp_write
},
4195 { .name
= "TLBIMVAHIS", .cp
= 15, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 1,
4196 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4197 .writefn
= tlbimva_hyp_is_write
},
4198 { .name
= "TLBI_ALLE2", .state
= ARM_CP_STATE_AA64
,
4199 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 0,
4200 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4201 .writefn
= tlbi_aa64_alle2_write
},
4202 { .name
= "TLBI_VAE2", .state
= ARM_CP_STATE_AA64
,
4203 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 1,
4204 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4205 .writefn
= tlbi_aa64_vae2_write
},
4206 { .name
= "TLBI_VALE2", .state
= ARM_CP_STATE_AA64
,
4207 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 7, .opc2
= 5,
4208 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
4209 .writefn
= tlbi_aa64_vae2_write
},
4210 { .name
= "TLBI_ALLE2IS", .state
= ARM_CP_STATE_AA64
,
4211 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 0,
4212 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
4213 .writefn
= tlbi_aa64_alle2is_write
},
4214 { .name
= "TLBI_VAE2IS", .state
= ARM_CP_STATE_AA64
,
4215 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 1,
4216 .type
= ARM_CP_NO_RAW
, .access
= PL2_W
,
4217 .writefn
= tlbi_aa64_vae2is_write
},
4218 { .name
= "TLBI_VALE2IS", .state
= ARM_CP_STATE_AA64
,
4219 .opc0
= 1, .opc1
= 4, .crn
= 8, .crm
= 3, .opc2
= 5,
4220 .access
= PL2_W
, .type
= ARM_CP_NO_RAW
,
4221 .writefn
= tlbi_aa64_vae2is_write
},
4222 #ifndef CONFIG_USER_ONLY
4223 /* Unlike the other EL2-related AT operations, these must
4224 * UNDEF from EL3 if EL2 is not implemented, which is why we
4225 * define them here rather than with the rest of the AT ops.
4227 { .name
= "AT_S1E2R", .state
= ARM_CP_STATE_AA64
,
4228 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 0,
4229 .access
= PL2_W
, .accessfn
= at_s1e2_access
,
4230 .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
4231 { .name
= "AT_S1E2W", .state
= ARM_CP_STATE_AA64
,
4232 .opc0
= 1, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 1,
4233 .access
= PL2_W
, .accessfn
= at_s1e2_access
,
4234 .type
= ARM_CP_NO_RAW
, .writefn
= ats_write64
},
4235 /* The AArch32 ATS1H* operations are CONSTRAINED UNPREDICTABLE
4236 * if EL2 is not implemented; we choose to UNDEF. Behaviour at EL3
4237 * with SCR.NS == 0 outside Monitor mode is UNPREDICTABLE; we choose
4238 * to behave as if SCR.NS was 1.
4240 { .name
= "ATS1HR", .cp
= 15, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 0,
4242 .writefn
= ats1h_write
, .type
= ARM_CP_NO_RAW
},
4243 { .name
= "ATS1HW", .cp
= 15, .opc1
= 4, .crn
= 7, .crm
= 8, .opc2
= 1,
4245 .writefn
= ats1h_write
, .type
= ARM_CP_NO_RAW
},
4246 { .name
= "CNTHCTL_EL2", .state
= ARM_CP_STATE_BOTH
,
4247 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 1, .opc2
= 0,
4248 /* ARMv7 requires bit 0 and 1 to reset to 1. ARMv8 defines the
4249 * reset values as IMPDEF. We choose to reset to 3 to comply with
4250 * both ARMv7 and ARMv8.
4252 .access
= PL2_RW
, .resetvalue
= 3,
4253 .fieldoffset
= offsetof(CPUARMState
, cp15
.cnthctl_el2
) },
4254 { .name
= "CNTVOFF_EL2", .state
= ARM_CP_STATE_AA64
,
4255 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 0, .opc2
= 3,
4256 .access
= PL2_RW
, .type
= ARM_CP_IO
, .resetvalue
= 0,
4257 .writefn
= gt_cntvoff_write
,
4258 .fieldoffset
= offsetof(CPUARMState
, cp15
.cntvoff_el2
) },
4259 { .name
= "CNTVOFF", .cp
= 15, .opc1
= 4, .crm
= 14,
4260 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_ALIAS
| ARM_CP_IO
,
4261 .writefn
= gt_cntvoff_write
,
4262 .fieldoffset
= offsetof(CPUARMState
, cp15
.cntvoff_el2
) },
4263 { .name
= "CNTHP_CVAL_EL2", .state
= ARM_CP_STATE_AA64
,
4264 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 2,
4265 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].cval
),
4266 .type
= ARM_CP_IO
, .access
= PL2_RW
,
4267 .writefn
= gt_hyp_cval_write
, .raw_writefn
= raw_write
},
4268 { .name
= "CNTHP_CVAL", .cp
= 15, .opc1
= 6, .crm
= 14,
4269 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].cval
),
4270 .access
= PL2_RW
, .type
= ARM_CP_64BIT
| ARM_CP_IO
,
4271 .writefn
= gt_hyp_cval_write
, .raw_writefn
= raw_write
},
4272 { .name
= "CNTHP_TVAL_EL2", .state
= ARM_CP_STATE_BOTH
,
4273 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 0,
4274 .type
= ARM_CP_NO_RAW
| ARM_CP_IO
, .access
= PL2_RW
,
4275 .resetfn
= gt_hyp_timer_reset
,
4276 .readfn
= gt_hyp_tval_read
, .writefn
= gt_hyp_tval_write
},
4277 { .name
= "CNTHP_CTL_EL2", .state
= ARM_CP_STATE_BOTH
,
4279 .opc0
= 3, .opc1
= 4, .crn
= 14, .crm
= 2, .opc2
= 1,
4281 .fieldoffset
= offsetof(CPUARMState
, cp15
.c14_timer
[GTIMER_HYP
].ctl
),
4283 .writefn
= gt_hyp_ctl_write
, .raw_writefn
= raw_write
},
4285 /* The only field of MDCR_EL2 that has a defined architectural reset value
4286 * is MDCR_EL2.HPMN which should reset to the value of PMCR_EL0.N; but we
4287 * don't impelment any PMU event counters, so using zero as a reset
4288 * value for MDCR_EL2 is okay
4290 { .name
= "MDCR_EL2", .state
= ARM_CP_STATE_BOTH
,
4291 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 1,
4292 .access
= PL2_RW
, .resetvalue
= 0,
4293 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdcr_el2
), },
4294 { .name
= "HPFAR", .state
= ARM_CP_STATE_AA32
,
4295 .cp
= 15, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
4296 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
4297 .fieldoffset
= offsetof(CPUARMState
, cp15
.hpfar_el2
) },
4298 { .name
= "HPFAR_EL2", .state
= ARM_CP_STATE_AA64
,
4299 .opc0
= 3, .opc1
= 4, .crn
= 6, .crm
= 0, .opc2
= 4,
4301 .fieldoffset
= offsetof(CPUARMState
, cp15
.hpfar_el2
) },
4302 { .name
= "HSTR_EL2", .state
= ARM_CP_STATE_BOTH
,
4303 .cp
= 15, .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 3,
4305 .fieldoffset
= offsetof(CPUARMState
, cp15
.hstr_el2
) },
4309 static const ARMCPRegInfo el2_v8_cp_reginfo
[] = {
4310 { .name
= "HCR2", .state
= ARM_CP_STATE_AA32
,
4311 .type
= ARM_CP_ALIAS
| ARM_CP_IO
,
4312 .cp
= 15, .opc1
= 4, .crn
= 1, .crm
= 1, .opc2
= 4,
4314 .fieldoffset
= offsetofhigh32(CPUARMState
, cp15
.hcr_el2
),
4315 .writefn
= hcr_writehigh
},
4319 static CPAccessResult
nsacr_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4322 /* The NSACR is RW at EL3, and RO for NS EL1 and NS EL2.
4323 * At Secure EL1 it traps to EL3.
4325 if (arm_current_el(env
) == 3) {
4326 return CP_ACCESS_OK
;
4328 if (arm_is_secure_below_el3(env
)) {
4329 return CP_ACCESS_TRAP_EL3
;
4331 /* Accesses from EL1 NS and EL2 NS are UNDEF for write but allow reads. */
4333 return CP_ACCESS_OK
;
4335 return CP_ACCESS_TRAP_UNCATEGORIZED
;
4338 static const ARMCPRegInfo el3_cp_reginfo
[] = {
4339 { .name
= "SCR_EL3", .state
= ARM_CP_STATE_AA64
,
4340 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 0,
4341 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.scr_el3
),
4342 .resetvalue
= 0, .writefn
= scr_write
},
4343 { .name
= "SCR", .type
= ARM_CP_ALIAS
,
4344 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 0,
4345 .access
= PL1_RW
, .accessfn
= access_trap_aa32s_el1
,
4346 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.scr_el3
),
4347 .writefn
= scr_write
},
4348 { .name
= "SDER32_EL3", .state
= ARM_CP_STATE_AA64
,
4349 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 1,
4350 .access
= PL3_RW
, .resetvalue
= 0,
4351 .fieldoffset
= offsetof(CPUARMState
, cp15
.sder
) },
4353 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 1,
4354 .access
= PL3_RW
, .resetvalue
= 0,
4355 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.sder
) },
4356 { .name
= "MVBAR", .cp
= 15, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
4357 .access
= PL1_RW
, .accessfn
= access_trap_aa32s_el1
,
4358 .writefn
= vbar_write
, .resetvalue
= 0,
4359 .fieldoffset
= offsetof(CPUARMState
, cp15
.mvbar
) },
4360 { .name
= "TTBR0_EL3", .state
= ARM_CP_STATE_AA64
,
4361 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 0,
4362 .access
= PL3_RW
, .resetvalue
= 0,
4363 .fieldoffset
= offsetof(CPUARMState
, cp15
.ttbr0_el
[3]) },
4364 { .name
= "TCR_EL3", .state
= ARM_CP_STATE_AA64
,
4365 .opc0
= 3, .opc1
= 6, .crn
= 2, .crm
= 0, .opc2
= 2,
4367 /* no .writefn needed as this can't cause an ASID change;
4368 * we must provide a .raw_writefn and .resetfn because we handle
4369 * reset and migration for the AArch32 TTBCR(S), which might be
4370 * using mask and base_mask.
4372 .resetfn
= vmsa_ttbcr_reset
, .raw_writefn
= vmsa_ttbcr_raw_write
,
4373 .fieldoffset
= offsetof(CPUARMState
, cp15
.tcr_el
[3]) },
4374 { .name
= "ELR_EL3", .state
= ARM_CP_STATE_AA64
,
4375 .type
= ARM_CP_ALIAS
,
4376 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 1,
4378 .fieldoffset
= offsetof(CPUARMState
, elr_el
[3]) },
4379 { .name
= "ESR_EL3", .state
= ARM_CP_STATE_AA64
,
4380 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 2, .opc2
= 0,
4381 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.esr_el
[3]) },
4382 { .name
= "FAR_EL3", .state
= ARM_CP_STATE_AA64
,
4383 .opc0
= 3, .opc1
= 6, .crn
= 6, .crm
= 0, .opc2
= 0,
4384 .access
= PL3_RW
, .fieldoffset
= offsetof(CPUARMState
, cp15
.far_el
[3]) },
4385 { .name
= "SPSR_EL3", .state
= ARM_CP_STATE_AA64
,
4386 .type
= ARM_CP_ALIAS
,
4387 .opc0
= 3, .opc1
= 6, .crn
= 4, .crm
= 0, .opc2
= 0,
4389 .fieldoffset
= offsetof(CPUARMState
, banked_spsr
[BANK_MON
]) },
4390 { .name
= "VBAR_EL3", .state
= ARM_CP_STATE_AA64
,
4391 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 0,
4392 .access
= PL3_RW
, .writefn
= vbar_write
,
4393 .fieldoffset
= offsetof(CPUARMState
, cp15
.vbar_el
[3]),
4395 { .name
= "CPTR_EL3", .state
= ARM_CP_STATE_AA64
,
4396 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 1, .opc2
= 2,
4397 .access
= PL3_RW
, .accessfn
= cptr_access
, .resetvalue
= 0,
4398 .fieldoffset
= offsetof(CPUARMState
, cp15
.cptr_el
[3]) },
4399 { .name
= "TPIDR_EL3", .state
= ARM_CP_STATE_AA64
,
4400 .opc0
= 3, .opc1
= 6, .crn
= 13, .crm
= 0, .opc2
= 2,
4401 .access
= PL3_RW
, .resetvalue
= 0,
4402 .fieldoffset
= offsetof(CPUARMState
, cp15
.tpidr_el
[3]) },
4403 { .name
= "AMAIR_EL3", .state
= ARM_CP_STATE_AA64
,
4404 .opc0
= 3, .opc1
= 6, .crn
= 10, .crm
= 3, .opc2
= 0,
4405 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
4407 { .name
= "AFSR0_EL3", .state
= ARM_CP_STATE_BOTH
,
4408 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 1, .opc2
= 0,
4409 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
4411 { .name
= "AFSR1_EL3", .state
= ARM_CP_STATE_BOTH
,
4412 .opc0
= 3, .opc1
= 6, .crn
= 5, .crm
= 1, .opc2
= 1,
4413 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
4415 { .name
= "TLBI_ALLE3IS", .state
= ARM_CP_STATE_AA64
,
4416 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 0,
4417 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
4418 .writefn
= tlbi_aa64_alle3is_write
},
4419 { .name
= "TLBI_VAE3IS", .state
= ARM_CP_STATE_AA64
,
4420 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 1,
4421 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
4422 .writefn
= tlbi_aa64_vae3is_write
},
4423 { .name
= "TLBI_VALE3IS", .state
= ARM_CP_STATE_AA64
,
4424 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 3, .opc2
= 5,
4425 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
4426 .writefn
= tlbi_aa64_vae3is_write
},
4427 { .name
= "TLBI_ALLE3", .state
= ARM_CP_STATE_AA64
,
4428 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 0,
4429 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
4430 .writefn
= tlbi_aa64_alle3_write
},
4431 { .name
= "TLBI_VAE3", .state
= ARM_CP_STATE_AA64
,
4432 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 1,
4433 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
4434 .writefn
= tlbi_aa64_vae3_write
},
4435 { .name
= "TLBI_VALE3", .state
= ARM_CP_STATE_AA64
,
4436 .opc0
= 1, .opc1
= 6, .crn
= 8, .crm
= 7, .opc2
= 5,
4437 .access
= PL3_W
, .type
= ARM_CP_NO_RAW
,
4438 .writefn
= tlbi_aa64_vae3_write
},
4442 static CPAccessResult
ctr_el0_access(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4445 /* Only accessible in EL0 if SCTLR.UCT is set (and only in AArch64,
4446 * but the AArch32 CTR has its own reginfo struct)
4448 if (arm_current_el(env
) == 0 && !(env
->cp15
.sctlr_el
[1] & SCTLR_UCT
)) {
4449 return CP_ACCESS_TRAP
;
4451 return CP_ACCESS_OK
;
4454 static void oslar_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4457 /* Writes to OSLAR_EL1 may update the OS lock status, which can be
4458 * read via a bit in OSLSR_EL1.
4462 if (ri
->state
== ARM_CP_STATE_AA32
) {
4463 oslock
= (value
== 0xC5ACCE55);
4468 env
->cp15
.oslsr_el1
= deposit32(env
->cp15
.oslsr_el1
, 1, 1, oslock
);
4471 static const ARMCPRegInfo debug_cp_reginfo
[] = {
4472 /* DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
4473 * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
4474 * unlike DBGDRAR it is never accessible from EL0.
4475 * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
4478 { .name
= "DBGDRAR", .cp
= 14, .crn
= 1, .crm
= 0, .opc1
= 0, .opc2
= 0,
4479 .access
= PL0_R
, .accessfn
= access_tdra
,
4480 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4481 { .name
= "MDRAR_EL1", .state
= ARM_CP_STATE_AA64
,
4482 .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
4483 .access
= PL1_R
, .accessfn
= access_tdra
,
4484 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4485 { .name
= "DBGDSAR", .cp
= 14, .crn
= 2, .crm
= 0, .opc1
= 0, .opc2
= 0,
4486 .access
= PL0_R
, .accessfn
= access_tdra
,
4487 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
4488 /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
4489 { .name
= "MDSCR_EL1", .state
= ARM_CP_STATE_BOTH
,
4490 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
4491 .access
= PL1_RW
, .accessfn
= access_tda
,
4492 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
),
4494 /* MDCCSR_EL0, aka DBGDSCRint. This is a read-only mirror of MDSCR_EL1.
4495 * We don't implement the configurable EL0 access.
4497 { .name
= "MDCCSR_EL0", .state
= ARM_CP_STATE_BOTH
,
4498 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
4499 .type
= ARM_CP_ALIAS
,
4500 .access
= PL1_R
, .accessfn
= access_tda
,
4501 .fieldoffset
= offsetof(CPUARMState
, cp15
.mdscr_el1
), },
4502 { .name
= "OSLAR_EL1", .state
= ARM_CP_STATE_BOTH
,
4503 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 4,
4504 .access
= PL1_W
, .type
= ARM_CP_NO_RAW
,
4505 .accessfn
= access_tdosa
,
4506 .writefn
= oslar_write
},
4507 { .name
= "OSLSR_EL1", .state
= ARM_CP_STATE_BOTH
,
4508 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 4,
4509 .access
= PL1_R
, .resetvalue
= 10,
4510 .accessfn
= access_tdosa
,
4511 .fieldoffset
= offsetof(CPUARMState
, cp15
.oslsr_el1
) },
4512 /* Dummy OSDLR_EL1: 32-bit Linux will read this */
4513 { .name
= "OSDLR_EL1", .state
= ARM_CP_STATE_BOTH
,
4514 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 1, .crm
= 3, .opc2
= 4,
4515 .access
= PL1_RW
, .accessfn
= access_tdosa
,
4516 .type
= ARM_CP_NOP
},
4517 /* Dummy DBGVCR: Linux wants to clear this on startup, but we don't
4518 * implement vector catch debug events yet.
4521 .cp
= 14, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
4522 .access
= PL1_RW
, .accessfn
= access_tda
,
4523 .type
= ARM_CP_NOP
},
4524 /* Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
4525 * to save and restore a 32-bit guest's DBGVCR)
4527 { .name
= "DBGVCR32_EL2", .state
= ARM_CP_STATE_AA64
,
4528 .opc0
= 2, .opc1
= 4, .crn
= 0, .crm
= 7, .opc2
= 0,
4529 .access
= PL2_RW
, .accessfn
= access_tda
,
4530 .type
= ARM_CP_NOP
},
4531 /* Dummy MDCCINT_EL1, since we don't implement the Debug Communications
4532 * Channel but Linux may try to access this register. The 32-bit
4533 * alias is DBGDCCINT.
4535 { .name
= "MDCCINT_EL1", .state
= ARM_CP_STATE_BOTH
,
4536 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 0,
4537 .access
= PL1_RW
, .accessfn
= access_tda
,
4538 .type
= ARM_CP_NOP
},
4542 static const ARMCPRegInfo debug_lpae_cp_reginfo
[] = {
4543 /* 64 bit access versions of the (dummy) debug registers */
4544 { .name
= "DBGDRAR", .cp
= 14, .crm
= 1, .opc1
= 0,
4545 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
4546 { .name
= "DBGDSAR", .cp
= 14, .crm
= 2, .opc1
= 0,
4547 .access
= PL0_R
, .type
= ARM_CP_CONST
|ARM_CP_64BIT
, .resetvalue
= 0 },
4551 /* Return the exception level to which exceptions should be taken
4552 * via SVEAccessTrap. If an exception should be routed through
4553 * AArch64.AdvSIMDFPAccessTrap, return 0; fp_exception_el should
4554 * take care of raising that exception.
4555 * C.f. the ARM pseudocode function CheckSVEEnabled.
4557 int sve_exception_el(CPUARMState
*env
, int el
)
4559 #ifndef CONFIG_USER_ONLY
4561 bool disabled
= false;
4563 /* The CPACR.ZEN controls traps to EL1:
4564 * 0, 2 : trap EL0 and EL1 accesses
4565 * 1 : trap only EL0 accesses
4566 * 3 : trap no accesses
4568 if (!extract32(env
->cp15
.cpacr_el1
, 16, 1)) {
4570 } else if (!extract32(env
->cp15
.cpacr_el1
, 17, 1)) {
4575 return (arm_feature(env
, ARM_FEATURE_EL2
)
4576 && (arm_hcr_el2_eff(env
) & HCR_TGE
) ? 2 : 1);
4579 /* Check CPACR.FPEN. */
4580 if (!extract32(env
->cp15
.cpacr_el1
, 20, 1)) {
4582 } else if (!extract32(env
->cp15
.cpacr_el1
, 21, 1)) {
4590 /* CPTR_EL2. Since TZ and TFP are positive,
4591 * they will be zero when EL2 is not present.
4593 if (el
<= 2 && !arm_is_secure_below_el3(env
)) {
4594 if (env
->cp15
.cptr_el
[2] & CPTR_TZ
) {
4597 if (env
->cp15
.cptr_el
[2] & CPTR_TFP
) {
4602 /* CPTR_EL3. Since EZ is negative we must check for EL3. */
4603 if (arm_feature(env
, ARM_FEATURE_EL3
)
4604 && !(env
->cp15
.cptr_el
[3] & CPTR_EZ
)) {
4612 * Given that SVE is enabled, return the vector length for EL.
4614 uint32_t sve_zcr_len_for_el(CPUARMState
*env
, int el
)
4616 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4617 uint32_t zcr_len
= cpu
->sve_max_vq
- 1;
4620 zcr_len
= MIN(zcr_len
, 0xf & (uint32_t)env
->vfp
.zcr_el
[1]);
4622 if (el
< 2 && arm_feature(env
, ARM_FEATURE_EL2
)) {
4623 zcr_len
= MIN(zcr_len
, 0xf & (uint32_t)env
->vfp
.zcr_el
[2]);
4625 if (el
< 3 && arm_feature(env
, ARM_FEATURE_EL3
)) {
4626 zcr_len
= MIN(zcr_len
, 0xf & (uint32_t)env
->vfp
.zcr_el
[3]);
4631 static void zcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4634 int cur_el
= arm_current_el(env
);
4635 int old_len
= sve_zcr_len_for_el(env
, cur_el
);
4638 /* Bits other than [3:0] are RAZ/WI. */
4639 raw_write(env
, ri
, value
& 0xf);
4642 * Because we arrived here, we know both FP and SVE are enabled;
4643 * otherwise we would have trapped access to the ZCR_ELn register.
4645 new_len
= sve_zcr_len_for_el(env
, cur_el
);
4646 if (new_len
< old_len
) {
4647 aarch64_sve_narrow_vq(env
, new_len
+ 1);
4651 static const ARMCPRegInfo zcr_el1_reginfo
= {
4652 .name
= "ZCR_EL1", .state
= ARM_CP_STATE_AA64
,
4653 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 2, .opc2
= 0,
4654 .access
= PL1_RW
, .type
= ARM_CP_SVE
,
4655 .fieldoffset
= offsetof(CPUARMState
, vfp
.zcr_el
[1]),
4656 .writefn
= zcr_write
, .raw_writefn
= raw_write
4659 static const ARMCPRegInfo zcr_el2_reginfo
= {
4660 .name
= "ZCR_EL2", .state
= ARM_CP_STATE_AA64
,
4661 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 2, .opc2
= 0,
4662 .access
= PL2_RW
, .type
= ARM_CP_SVE
,
4663 .fieldoffset
= offsetof(CPUARMState
, vfp
.zcr_el
[2]),
4664 .writefn
= zcr_write
, .raw_writefn
= raw_write
4667 static const ARMCPRegInfo zcr_no_el2_reginfo
= {
4668 .name
= "ZCR_EL2", .state
= ARM_CP_STATE_AA64
,
4669 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 2, .opc2
= 0,
4670 .access
= PL2_RW
, .type
= ARM_CP_SVE
,
4671 .readfn
= arm_cp_read_zero
, .writefn
= arm_cp_write_ignore
4674 static const ARMCPRegInfo zcr_el3_reginfo
= {
4675 .name
= "ZCR_EL3", .state
= ARM_CP_STATE_AA64
,
4676 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 2, .opc2
= 0,
4677 .access
= PL3_RW
, .type
= ARM_CP_SVE
,
4678 .fieldoffset
= offsetof(CPUARMState
, vfp
.zcr_el
[3]),
4679 .writefn
= zcr_write
, .raw_writefn
= raw_write
4682 void hw_watchpoint_update(ARMCPU
*cpu
, int n
)
4684 CPUARMState
*env
= &cpu
->env
;
4686 vaddr wvr
= env
->cp15
.dbgwvr
[n
];
4687 uint64_t wcr
= env
->cp15
.dbgwcr
[n
];
4689 int flags
= BP_CPU
| BP_STOP_BEFORE_ACCESS
;
4691 if (env
->cpu_watchpoint
[n
]) {
4692 cpu_watchpoint_remove_by_ref(CPU(cpu
), env
->cpu_watchpoint
[n
]);
4693 env
->cpu_watchpoint
[n
] = NULL
;
4696 if (!extract64(wcr
, 0, 1)) {
4697 /* E bit clear : watchpoint disabled */
4701 switch (extract64(wcr
, 3, 2)) {
4703 /* LSC 00 is reserved and must behave as if the wp is disabled */
4706 flags
|= BP_MEM_READ
;
4709 flags
|= BP_MEM_WRITE
;
4712 flags
|= BP_MEM_ACCESS
;
4716 /* Attempts to use both MASK and BAS fields simultaneously are
4717 * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
4718 * thus generating a watchpoint for every byte in the masked region.
4720 mask
= extract64(wcr
, 24, 4);
4721 if (mask
== 1 || mask
== 2) {
4722 /* Reserved values of MASK; we must act as if the mask value was
4723 * some non-reserved value, or as if the watchpoint were disabled.
4724 * We choose the latter.
4728 /* Watchpoint covers an aligned area up to 2GB in size */
4730 /* If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
4731 * whether the watchpoint fires when the unmasked bits match; we opt
4732 * to generate the exceptions.
4736 /* Watchpoint covers bytes defined by the byte address select bits */
4737 int bas
= extract64(wcr
, 5, 8);
4741 /* This must act as if the watchpoint is disabled */
4745 if (extract64(wvr
, 2, 1)) {
4746 /* Deprecated case of an only 4-aligned address. BAS[7:4] are
4747 * ignored, and BAS[3:0] define which bytes to watch.
4751 /* The BAS bits are supposed to be programmed to indicate a contiguous
4752 * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
4753 * we fire for each byte in the word/doubleword addressed by the WVR.
4754 * We choose to ignore any non-zero bits after the first range of 1s.
4756 basstart
= ctz32(bas
);
4757 len
= cto32(bas
>> basstart
);
4761 cpu_watchpoint_insert(CPU(cpu
), wvr
, len
, flags
,
4762 &env
->cpu_watchpoint
[n
]);
4765 void hw_watchpoint_update_all(ARMCPU
*cpu
)
4768 CPUARMState
*env
= &cpu
->env
;
4770 /* Completely clear out existing QEMU watchpoints and our array, to
4771 * avoid possible stale entries following migration load.
4773 cpu_watchpoint_remove_all(CPU(cpu
), BP_CPU
);
4774 memset(env
->cpu_watchpoint
, 0, sizeof(env
->cpu_watchpoint
));
4776 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_watchpoint
); i
++) {
4777 hw_watchpoint_update(cpu
, i
);
4781 static void dbgwvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4784 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4787 /* Bits [63:49] are hardwired to the value of bit [48]; that is, the
4788 * register reads and behaves as if values written are sign extended.
4789 * Bits [1:0] are RES0.
4791 value
= sextract64(value
, 0, 49) & ~3ULL;
4793 raw_write(env
, ri
, value
);
4794 hw_watchpoint_update(cpu
, i
);
4797 static void dbgwcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4800 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4803 raw_write(env
, ri
, value
);
4804 hw_watchpoint_update(cpu
, i
);
4807 void hw_breakpoint_update(ARMCPU
*cpu
, int n
)
4809 CPUARMState
*env
= &cpu
->env
;
4810 uint64_t bvr
= env
->cp15
.dbgbvr
[n
];
4811 uint64_t bcr
= env
->cp15
.dbgbcr
[n
];
4816 if (env
->cpu_breakpoint
[n
]) {
4817 cpu_breakpoint_remove_by_ref(CPU(cpu
), env
->cpu_breakpoint
[n
]);
4818 env
->cpu_breakpoint
[n
] = NULL
;
4821 if (!extract64(bcr
, 0, 1)) {
4822 /* E bit clear : watchpoint disabled */
4826 bt
= extract64(bcr
, 20, 4);
4829 case 4: /* unlinked address mismatch (reserved if AArch64) */
4830 case 5: /* linked address mismatch (reserved if AArch64) */
4831 qemu_log_mask(LOG_UNIMP
,
4832 "arm: address mismatch breakpoint types not implemented\n");
4834 case 0: /* unlinked address match */
4835 case 1: /* linked address match */
4837 /* Bits [63:49] are hardwired to the value of bit [48]; that is,
4838 * we behave as if the register was sign extended. Bits [1:0] are
4839 * RES0. The BAS field is used to allow setting breakpoints on 16
4840 * bit wide instructions; it is CONSTRAINED UNPREDICTABLE whether
4841 * a bp will fire if the addresses covered by the bp and the addresses
4842 * covered by the insn overlap but the insn doesn't start at the
4843 * start of the bp address range. We choose to require the insn and
4844 * the bp to have the same address. The constraints on writing to
4845 * BAS enforced in dbgbcr_write mean we have only four cases:
4846 * 0b0000 => no breakpoint
4847 * 0b0011 => breakpoint on addr
4848 * 0b1100 => breakpoint on addr + 2
4849 * 0b1111 => breakpoint on addr
4850 * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
4852 int bas
= extract64(bcr
, 5, 4);
4853 addr
= sextract64(bvr
, 0, 49) & ~3ULL;
4862 case 2: /* unlinked context ID match */
4863 case 8: /* unlinked VMID match (reserved if no EL2) */
4864 case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
4865 qemu_log_mask(LOG_UNIMP
,
4866 "arm: unlinked context breakpoint types not implemented\n");
4868 case 9: /* linked VMID match (reserved if no EL2) */
4869 case 11: /* linked context ID and VMID match (reserved if no EL2) */
4870 case 3: /* linked context ID match */
4872 /* We must generate no events for Linked context matches (unless
4873 * they are linked to by some other bp/wp, which is handled in
4874 * updates for the linking bp/wp). We choose to also generate no events
4875 * for reserved values.
4880 cpu_breakpoint_insert(CPU(cpu
), addr
, flags
, &env
->cpu_breakpoint
[n
]);
4883 void hw_breakpoint_update_all(ARMCPU
*cpu
)
4886 CPUARMState
*env
= &cpu
->env
;
4888 /* Completely clear out existing QEMU breakpoints and our array, to
4889 * avoid possible stale entries following migration load.
4891 cpu_breakpoint_remove_all(CPU(cpu
), BP_CPU
);
4892 memset(env
->cpu_breakpoint
, 0, sizeof(env
->cpu_breakpoint
));
4894 for (i
= 0; i
< ARRAY_SIZE(cpu
->env
.cpu_breakpoint
); i
++) {
4895 hw_breakpoint_update(cpu
, i
);
4899 static void dbgbvr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4902 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4905 raw_write(env
, ri
, value
);
4906 hw_breakpoint_update(cpu
, i
);
4909 static void dbgbcr_write(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
4912 ARMCPU
*cpu
= arm_env_get_cpu(env
);
4915 /* BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
4918 value
= deposit64(value
, 6, 1, extract64(value
, 5, 1));
4919 value
= deposit64(value
, 8, 1, extract64(value
, 7, 1));
4921 raw_write(env
, ri
, value
);
4922 hw_breakpoint_update(cpu
, i
);
4925 static void define_debug_regs(ARMCPU
*cpu
)
4927 /* Define v7 and v8 architectural debug registers.
4928 * These are just dummy implementations for now.
4931 int wrps
, brps
, ctx_cmps
;
4932 ARMCPRegInfo dbgdidr
= {
4933 .name
= "DBGDIDR", .cp
= 14, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 0,
4934 .access
= PL0_R
, .accessfn
= access_tda
,
4935 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->dbgdidr
,
4938 /* Note that all these register fields hold "number of Xs minus 1". */
4939 brps
= extract32(cpu
->dbgdidr
, 24, 4);
4940 wrps
= extract32(cpu
->dbgdidr
, 28, 4);
4941 ctx_cmps
= extract32(cpu
->dbgdidr
, 20, 4);
4943 assert(ctx_cmps
<= brps
);
4945 /* The DBGDIDR and ID_AA64DFR0_EL1 define various properties
4946 * of the debug registers such as number of breakpoints;
4947 * check that if they both exist then they agree.
4949 if (arm_feature(&cpu
->env
, ARM_FEATURE_AARCH64
)) {
4950 assert(extract32(cpu
->id_aa64dfr0
, 12, 4) == brps
);
4951 assert(extract32(cpu
->id_aa64dfr0
, 20, 4) == wrps
);
4952 assert(extract32(cpu
->id_aa64dfr0
, 28, 4) == ctx_cmps
);
4955 define_one_arm_cp_reg(cpu
, &dbgdidr
);
4956 define_arm_cp_regs(cpu
, debug_cp_reginfo
);
4958 if (arm_feature(&cpu
->env
, ARM_FEATURE_LPAE
)) {
4959 define_arm_cp_regs(cpu
, debug_lpae_cp_reginfo
);
4962 for (i
= 0; i
< brps
+ 1; i
++) {
4963 ARMCPRegInfo dbgregs
[] = {
4964 { .name
= "DBGBVR", .state
= ARM_CP_STATE_BOTH
,
4965 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 4,
4966 .access
= PL1_RW
, .accessfn
= access_tda
,
4967 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbvr
[i
]),
4968 .writefn
= dbgbvr_write
, .raw_writefn
= raw_write
4970 { .name
= "DBGBCR", .state
= ARM_CP_STATE_BOTH
,
4971 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 5,
4972 .access
= PL1_RW
, .accessfn
= access_tda
,
4973 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgbcr
[i
]),
4974 .writefn
= dbgbcr_write
, .raw_writefn
= raw_write
4978 define_arm_cp_regs(cpu
, dbgregs
);
4981 for (i
= 0; i
< wrps
+ 1; i
++) {
4982 ARMCPRegInfo dbgregs
[] = {
4983 { .name
= "DBGWVR", .state
= ARM_CP_STATE_BOTH
,
4984 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 6,
4985 .access
= PL1_RW
, .accessfn
= access_tda
,
4986 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwvr
[i
]),
4987 .writefn
= dbgwvr_write
, .raw_writefn
= raw_write
4989 { .name
= "DBGWCR", .state
= ARM_CP_STATE_BOTH
,
4990 .cp
= 14, .opc0
= 2, .opc1
= 0, .crn
= 0, .crm
= i
, .opc2
= 7,
4991 .access
= PL1_RW
, .accessfn
= access_tda
,
4992 .fieldoffset
= offsetof(CPUARMState
, cp15
.dbgwcr
[i
]),
4993 .writefn
= dbgwcr_write
, .raw_writefn
= raw_write
4997 define_arm_cp_regs(cpu
, dbgregs
);
5001 /* We don't know until after realize whether there's a GICv3
5002 * attached, and that is what registers the gicv3 sysregs.
5003 * So we have to fill in the GIC fields in ID_PFR/ID_PFR1_EL1/ID_AA64PFR0_EL1
5006 static uint64_t id_pfr1_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
5008 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5009 uint64_t pfr1
= cpu
->id_pfr1
;
5011 if (env
->gicv3state
) {
5017 static uint64_t id_aa64pfr0_read(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
5019 ARMCPU
*cpu
= arm_env_get_cpu(env
);
5020 uint64_t pfr0
= cpu
->isar
.id_aa64pfr0
;
5022 if (env
->gicv3state
) {
5028 /* Shared logic between LORID and the rest of the LOR* registers.
5029 * Secure state has already been delt with.
5031 static CPAccessResult
access_lor_ns(CPUARMState
*env
)
5033 int el
= arm_current_el(env
);
5035 if (el
< 2 && (arm_hcr_el2_eff(env
) & HCR_TLOR
)) {
5036 return CP_ACCESS_TRAP_EL2
;
5038 if (el
< 3 && (env
->cp15
.scr_el3
& SCR_TLOR
)) {
5039 return CP_ACCESS_TRAP_EL3
;
5041 return CP_ACCESS_OK
;
5044 static CPAccessResult
access_lorid(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
5047 if (arm_is_secure_below_el3(env
)) {
5048 /* Access ok in secure mode. */
5049 return CP_ACCESS_OK
;
5051 return access_lor_ns(env
);
5054 static CPAccessResult
access_lor_other(CPUARMState
*env
,
5055 const ARMCPRegInfo
*ri
, bool isread
)
5057 if (arm_is_secure_below_el3(env
)) {
5058 /* Access denied in secure mode. */
5059 return CP_ACCESS_TRAP
;
5061 return access_lor_ns(env
);
5064 void register_cp_regs_for_features(ARMCPU
*cpu
)
5066 /* Register all the coprocessor registers based on feature bits */
5067 CPUARMState
*env
= &cpu
->env
;
5068 if (arm_feature(env
, ARM_FEATURE_M
)) {
5069 /* M profile has no coprocessor registers */
5073 define_arm_cp_regs(cpu
, cp_reginfo
);
5074 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
5075 /* Must go early as it is full of wildcards that may be
5076 * overridden by later definitions.
5078 define_arm_cp_regs(cpu
, not_v8_cp_reginfo
);
5081 if (arm_feature(env
, ARM_FEATURE_V6
)) {
5082 /* The ID registers all have impdef reset values */
5083 ARMCPRegInfo v6_idregs
[] = {
5084 { .name
= "ID_PFR0", .state
= ARM_CP_STATE_BOTH
,
5085 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 0,
5086 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5087 .resetvalue
= cpu
->id_pfr0
},
5088 /* ID_PFR1 is not a plain ARM_CP_CONST because we don't know
5089 * the value of the GIC field until after we define these regs.
5091 { .name
= "ID_PFR1", .state
= ARM_CP_STATE_BOTH
,
5092 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 1,
5093 .access
= PL1_R
, .type
= ARM_CP_NO_RAW
,
5094 .readfn
= id_pfr1_read
,
5095 .writefn
= arm_cp_write_ignore
},
5096 { .name
= "ID_DFR0", .state
= ARM_CP_STATE_BOTH
,
5097 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 2,
5098 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5099 .resetvalue
= cpu
->id_dfr0
},
5100 { .name
= "ID_AFR0", .state
= ARM_CP_STATE_BOTH
,
5101 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 3,
5102 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5103 .resetvalue
= cpu
->id_afr0
},
5104 { .name
= "ID_MMFR0", .state
= ARM_CP_STATE_BOTH
,
5105 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 4,
5106 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5107 .resetvalue
= cpu
->id_mmfr0
},
5108 { .name
= "ID_MMFR1", .state
= ARM_CP_STATE_BOTH
,
5109 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 5,
5110 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5111 .resetvalue
= cpu
->id_mmfr1
},
5112 { .name
= "ID_MMFR2", .state
= ARM_CP_STATE_BOTH
,
5113 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 6,
5114 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5115 .resetvalue
= cpu
->id_mmfr2
},
5116 { .name
= "ID_MMFR3", .state
= ARM_CP_STATE_BOTH
,
5117 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 1, .opc2
= 7,
5118 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5119 .resetvalue
= cpu
->id_mmfr3
},
5120 { .name
= "ID_ISAR0", .state
= ARM_CP_STATE_BOTH
,
5121 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 0,
5122 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5123 .resetvalue
= cpu
->isar
.id_isar0
},
5124 { .name
= "ID_ISAR1", .state
= ARM_CP_STATE_BOTH
,
5125 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 1,
5126 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5127 .resetvalue
= cpu
->isar
.id_isar1
},
5128 { .name
= "ID_ISAR2", .state
= ARM_CP_STATE_BOTH
,
5129 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 2,
5130 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5131 .resetvalue
= cpu
->isar
.id_isar2
},
5132 { .name
= "ID_ISAR3", .state
= ARM_CP_STATE_BOTH
,
5133 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 3,
5134 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5135 .resetvalue
= cpu
->isar
.id_isar3
},
5136 { .name
= "ID_ISAR4", .state
= ARM_CP_STATE_BOTH
,
5137 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 4,
5138 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5139 .resetvalue
= cpu
->isar
.id_isar4
},
5140 { .name
= "ID_ISAR5", .state
= ARM_CP_STATE_BOTH
,
5141 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 5,
5142 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5143 .resetvalue
= cpu
->isar
.id_isar5
},
5144 { .name
= "ID_MMFR4", .state
= ARM_CP_STATE_BOTH
,
5145 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 6,
5146 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5147 .resetvalue
= cpu
->id_mmfr4
},
5148 { .name
= "ID_ISAR6", .state
= ARM_CP_STATE_BOTH
,
5149 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 2, .opc2
= 7,
5150 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5151 .resetvalue
= cpu
->isar
.id_isar6
},
5154 define_arm_cp_regs(cpu
, v6_idregs
);
5155 define_arm_cp_regs(cpu
, v6_cp_reginfo
);
5157 define_arm_cp_regs(cpu
, not_v6_cp_reginfo
);
5159 if (arm_feature(env
, ARM_FEATURE_V6K
)) {
5160 define_arm_cp_regs(cpu
, v6k_cp_reginfo
);
5162 if (arm_feature(env
, ARM_FEATURE_V7MP
) &&
5163 !arm_feature(env
, ARM_FEATURE_PMSA
)) {
5164 define_arm_cp_regs(cpu
, v7mp_cp_reginfo
);
5166 if (arm_feature(env
, ARM_FEATURE_V7
)) {
5167 /* v7 performance monitor control register: same implementor
5168 * field as main ID register, and we implement only the cycle
5171 #ifndef CONFIG_USER_ONLY
5172 ARMCPRegInfo pmcr
= {
5173 .name
= "PMCR", .cp
= 15, .crn
= 9, .crm
= 12, .opc1
= 0, .opc2
= 0,
5175 .type
= ARM_CP_IO
| ARM_CP_ALIAS
,
5176 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.c9_pmcr
),
5177 .accessfn
= pmreg_access
, .writefn
= pmcr_write
,
5178 .raw_writefn
= raw_write
,
5180 ARMCPRegInfo pmcr64
= {
5181 .name
= "PMCR_EL0", .state
= ARM_CP_STATE_AA64
,
5182 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 0,
5183 .access
= PL0_RW
, .accessfn
= pmreg_access
,
5185 .fieldoffset
= offsetof(CPUARMState
, cp15
.c9_pmcr
),
5186 .resetvalue
= cpu
->midr
& 0xff000000,
5187 .writefn
= pmcr_write
, .raw_writefn
= raw_write
,
5189 define_one_arm_cp_reg(cpu
, &pmcr
);
5190 define_one_arm_cp_reg(cpu
, &pmcr64
);
5192 ARMCPRegInfo clidr
= {
5193 .name
= "CLIDR", .state
= ARM_CP_STATE_BOTH
,
5194 .opc0
= 3, .crn
= 0, .crm
= 0, .opc1
= 1, .opc2
= 1,
5195 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->clidr
5197 define_one_arm_cp_reg(cpu
, &clidr
);
5198 define_arm_cp_regs(cpu
, v7_cp_reginfo
);
5199 define_debug_regs(cpu
);
5201 define_arm_cp_regs(cpu
, not_v7_cp_reginfo
);
5203 if (arm_feature(env
, ARM_FEATURE_V8
)) {
5204 /* AArch64 ID registers, which all have impdef reset values.
5205 * Note that within the ID register ranges the unused slots
5206 * must all RAZ, not UNDEF; future architecture versions may
5207 * define new registers here.
5209 ARMCPRegInfo v8_idregs
[] = {
5210 /* ID_AA64PFR0_EL1 is not a plain ARM_CP_CONST because we don't
5211 * know the right value for the GIC field until after we
5212 * define these regs.
5214 { .name
= "ID_AA64PFR0_EL1", .state
= ARM_CP_STATE_AA64
,
5215 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 0,
5216 .access
= PL1_R
, .type
= ARM_CP_NO_RAW
,
5217 .readfn
= id_aa64pfr0_read
,
5218 .writefn
= arm_cp_write_ignore
},
5219 { .name
= "ID_AA64PFR1_EL1", .state
= ARM_CP_STATE_AA64
,
5220 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 1,
5221 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5222 .resetvalue
= cpu
->isar
.id_aa64pfr1
},
5223 { .name
= "ID_AA64PFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
5224 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 2,
5225 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5227 { .name
= "ID_AA64PFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
5228 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 3,
5229 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5231 { .name
= "ID_AA64ZFR0_EL1", .state
= ARM_CP_STATE_AA64
,
5232 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 4,
5233 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5234 /* At present, only SVEver == 0 is defined anyway. */
5236 { .name
= "ID_AA64PFR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
5237 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 5,
5238 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5240 { .name
= "ID_AA64PFR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
5241 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 6,
5242 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5244 { .name
= "ID_AA64PFR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
5245 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 4, .opc2
= 7,
5246 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5248 { .name
= "ID_AA64DFR0_EL1", .state
= ARM_CP_STATE_AA64
,
5249 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 0,
5250 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5251 .resetvalue
= cpu
->id_aa64dfr0
},
5252 { .name
= "ID_AA64DFR1_EL1", .state
= ARM_CP_STATE_AA64
,
5253 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 1,
5254 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5255 .resetvalue
= cpu
->id_aa64dfr1
},
5256 { .name
= "ID_AA64DFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
5257 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 2,
5258 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5260 { .name
= "ID_AA64DFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
5261 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 3,
5262 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5264 { .name
= "ID_AA64AFR0_EL1", .state
= ARM_CP_STATE_AA64
,
5265 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 4,
5266 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5267 .resetvalue
= cpu
->id_aa64afr0
},
5268 { .name
= "ID_AA64AFR1_EL1", .state
= ARM_CP_STATE_AA64
,
5269 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 5,
5270 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5271 .resetvalue
= cpu
->id_aa64afr1
},
5272 { .name
= "ID_AA64AFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
5273 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 6,
5274 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5276 { .name
= "ID_AA64AFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
5277 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 5, .opc2
= 7,
5278 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5280 { .name
= "ID_AA64ISAR0_EL1", .state
= ARM_CP_STATE_AA64
,
5281 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 0,
5282 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5283 .resetvalue
= cpu
->isar
.id_aa64isar0
},
5284 { .name
= "ID_AA64ISAR1_EL1", .state
= ARM_CP_STATE_AA64
,
5285 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 1,
5286 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5287 .resetvalue
= cpu
->isar
.id_aa64isar1
},
5288 { .name
= "ID_AA64ISAR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
5289 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 2,
5290 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5292 { .name
= "ID_AA64ISAR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
5293 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 3,
5294 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5296 { .name
= "ID_AA64ISAR4_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
5297 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 4,
5298 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5300 { .name
= "ID_AA64ISAR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
5301 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 5,
5302 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5304 { .name
= "ID_AA64ISAR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
5305 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 6,
5306 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5308 { .name
= "ID_AA64ISAR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
5309 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 6, .opc2
= 7,
5310 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5312 { .name
= "ID_AA64MMFR0_EL1", .state
= ARM_CP_STATE_AA64
,
5313 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 0,
5314 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5315 .resetvalue
= cpu
->isar
.id_aa64mmfr0
},
5316 { .name
= "ID_AA64MMFR1_EL1", .state
= ARM_CP_STATE_AA64
,
5317 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 1,
5318 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5319 .resetvalue
= cpu
->isar
.id_aa64mmfr1
},
5320 { .name
= "ID_AA64MMFR2_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
5321 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 2,
5322 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5324 { .name
= "ID_AA64MMFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
5325 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 3,
5326 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5328 { .name
= "ID_AA64MMFR4_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
5329 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 4,
5330 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5332 { .name
= "ID_AA64MMFR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
5333 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 5,
5334 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5336 { .name
= "ID_AA64MMFR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
5337 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 6,
5338 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5340 { .name
= "ID_AA64MMFR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
5341 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 7, .opc2
= 7,
5342 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5344 { .name
= "MVFR0_EL1", .state
= ARM_CP_STATE_AA64
,
5345 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 0,
5346 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5347 .resetvalue
= cpu
->isar
.mvfr0
},
5348 { .name
= "MVFR1_EL1", .state
= ARM_CP_STATE_AA64
,
5349 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 1,
5350 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5351 .resetvalue
= cpu
->isar
.mvfr1
},
5352 { .name
= "MVFR2_EL1", .state
= ARM_CP_STATE_AA64
,
5353 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 2,
5354 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5355 .resetvalue
= cpu
->isar
.mvfr2
},
5356 { .name
= "MVFR3_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
5357 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 3,
5358 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5360 { .name
= "MVFR4_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
5361 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 4,
5362 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5364 { .name
= "MVFR5_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
5365 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 5,
5366 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5368 { .name
= "MVFR6_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
5369 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 6,
5370 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5372 { .name
= "MVFR7_EL1_RESERVED", .state
= ARM_CP_STATE_AA64
,
5373 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 3, .opc2
= 7,
5374 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5376 { .name
= "PMCEID0", .state
= ARM_CP_STATE_AA32
,
5377 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 12, .opc2
= 6,
5378 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
5379 .resetvalue
= cpu
->pmceid0
},
5380 { .name
= "PMCEID0_EL0", .state
= ARM_CP_STATE_AA64
,
5381 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 6,
5382 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
5383 .resetvalue
= cpu
->pmceid0
},
5384 { .name
= "PMCEID1", .state
= ARM_CP_STATE_AA32
,
5385 .cp
= 15, .opc1
= 0, .crn
= 9, .crm
= 12, .opc2
= 7,
5386 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
5387 .resetvalue
= cpu
->pmceid1
},
5388 { .name
= "PMCEID1_EL0", .state
= ARM_CP_STATE_AA64
,
5389 .opc0
= 3, .opc1
= 3, .crn
= 9, .crm
= 12, .opc2
= 7,
5390 .access
= PL0_R
, .accessfn
= pmreg_access
, .type
= ARM_CP_CONST
,
5391 .resetvalue
= cpu
->pmceid1
},
5394 /* RVBAR_EL1 is only implemented if EL1 is the highest EL */
5395 if (!arm_feature(env
, ARM_FEATURE_EL3
) &&
5396 !arm_feature(env
, ARM_FEATURE_EL2
)) {
5397 ARMCPRegInfo rvbar
= {
5398 .name
= "RVBAR_EL1", .state
= ARM_CP_STATE_AA64
,
5399 .opc0
= 3, .opc1
= 0, .crn
= 12, .crm
= 0, .opc2
= 1,
5400 .type
= ARM_CP_CONST
, .access
= PL1_R
, .resetvalue
= cpu
->rvbar
5402 define_one_arm_cp_reg(cpu
, &rvbar
);
5404 define_arm_cp_regs(cpu
, v8_idregs
);
5405 define_arm_cp_regs(cpu
, v8_cp_reginfo
);
5407 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
5408 uint64_t vmpidr_def
= mpidr_read_val(env
);
5409 ARMCPRegInfo vpidr_regs
[] = {
5410 { .name
= "VPIDR", .state
= ARM_CP_STATE_AA32
,
5411 .cp
= 15, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
5412 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
5413 .resetvalue
= cpu
->midr
, .type
= ARM_CP_ALIAS
,
5414 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.vpidr_el2
) },
5415 { .name
= "VPIDR_EL2", .state
= ARM_CP_STATE_AA64
,
5416 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
5417 .access
= PL2_RW
, .resetvalue
= cpu
->midr
,
5418 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
5419 { .name
= "VMPIDR", .state
= ARM_CP_STATE_AA32
,
5420 .cp
= 15, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
5421 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns
,
5422 .resetvalue
= vmpidr_def
, .type
= ARM_CP_ALIAS
,
5423 .fieldoffset
= offsetoflow32(CPUARMState
, cp15
.vmpidr_el2
) },
5424 { .name
= "VMPIDR_EL2", .state
= ARM_CP_STATE_AA64
,
5425 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
5427 .resetvalue
= vmpidr_def
,
5428 .fieldoffset
= offsetof(CPUARMState
, cp15
.vmpidr_el2
) },
5431 define_arm_cp_regs(cpu
, vpidr_regs
);
5432 define_arm_cp_regs(cpu
, el2_cp_reginfo
);
5433 if (arm_feature(env
, ARM_FEATURE_V8
)) {
5434 define_arm_cp_regs(cpu
, el2_v8_cp_reginfo
);
5436 /* RVBAR_EL2 is only implemented if EL2 is the highest EL */
5437 if (!arm_feature(env
, ARM_FEATURE_EL3
)) {
5438 ARMCPRegInfo rvbar
= {
5439 .name
= "RVBAR_EL2", .state
= ARM_CP_STATE_AA64
,
5440 .opc0
= 3, .opc1
= 4, .crn
= 12, .crm
= 0, .opc2
= 1,
5441 .type
= ARM_CP_CONST
, .access
= PL2_R
, .resetvalue
= cpu
->rvbar
5443 define_one_arm_cp_reg(cpu
, &rvbar
);
5446 /* If EL2 is missing but higher ELs are enabled, we need to
5447 * register the no_el2 reginfos.
5449 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
5450 /* When EL3 exists but not EL2, VPIDR and VMPIDR take the value
5451 * of MIDR_EL1 and MPIDR_EL1.
5453 ARMCPRegInfo vpidr_regs
[] = {
5454 { .name
= "VPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
5455 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 0,
5456 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
5457 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->midr
,
5458 .fieldoffset
= offsetof(CPUARMState
, cp15
.vpidr_el2
) },
5459 { .name
= "VMPIDR_EL2", .state
= ARM_CP_STATE_BOTH
,
5460 .opc0
= 3, .opc1
= 4, .crn
= 0, .crm
= 0, .opc2
= 5,
5461 .access
= PL2_RW
, .accessfn
= access_el3_aa32ns_aa64any
,
5462 .type
= ARM_CP_NO_RAW
,
5463 .writefn
= arm_cp_write_ignore
, .readfn
= mpidr_read
},
5466 define_arm_cp_regs(cpu
, vpidr_regs
);
5467 define_arm_cp_regs(cpu
, el3_no_el2_cp_reginfo
);
5468 if (arm_feature(env
, ARM_FEATURE_V8
)) {
5469 define_arm_cp_regs(cpu
, el3_no_el2_v8_cp_reginfo
);
5473 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
5474 define_arm_cp_regs(cpu
, el3_cp_reginfo
);
5475 ARMCPRegInfo el3_regs
[] = {
5476 { .name
= "RVBAR_EL3", .state
= ARM_CP_STATE_AA64
,
5477 .opc0
= 3, .opc1
= 6, .crn
= 12, .crm
= 0, .opc2
= 1,
5478 .type
= ARM_CP_CONST
, .access
= PL3_R
, .resetvalue
= cpu
->rvbar
},
5479 { .name
= "SCTLR_EL3", .state
= ARM_CP_STATE_AA64
,
5480 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 0, .opc2
= 0,
5482 .raw_writefn
= raw_write
, .writefn
= sctlr_write
,
5483 .fieldoffset
= offsetof(CPUARMState
, cp15
.sctlr_el
[3]),
5484 .resetvalue
= cpu
->reset_sctlr
},
5488 define_arm_cp_regs(cpu
, el3_regs
);
5490 /* The behaviour of NSACR is sufficiently various that we don't
5491 * try to describe it in a single reginfo:
5492 * if EL3 is 64 bit, then trap to EL3 from S EL1,
5493 * reads as constant 0xc00 from NS EL1 and NS EL2
5494 * if EL3 is 32 bit, then RW at EL3, RO at NS EL1 and NS EL2
5495 * if v7 without EL3, register doesn't exist
5496 * if v8 without EL3, reads as constant 0xc00 from NS EL1 and NS EL2
5498 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
5499 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
5500 ARMCPRegInfo nsacr
= {
5501 .name
= "NSACR", .type
= ARM_CP_CONST
,
5502 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
5503 .access
= PL1_RW
, .accessfn
= nsacr_access
,
5506 define_one_arm_cp_reg(cpu
, &nsacr
);
5508 ARMCPRegInfo nsacr
= {
5510 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
5511 .access
= PL3_RW
| PL1_R
,
5513 .fieldoffset
= offsetof(CPUARMState
, cp15
.nsacr
)
5515 define_one_arm_cp_reg(cpu
, &nsacr
);
5518 if (arm_feature(env
, ARM_FEATURE_V8
)) {
5519 ARMCPRegInfo nsacr
= {
5520 .name
= "NSACR", .type
= ARM_CP_CONST
,
5521 .cp
= 15, .opc1
= 0, .crn
= 1, .crm
= 1, .opc2
= 2,
5525 define_one_arm_cp_reg(cpu
, &nsacr
);
5529 if (arm_feature(env
, ARM_FEATURE_PMSA
)) {
5530 if (arm_feature(env
, ARM_FEATURE_V6
)) {
5531 /* PMSAv6 not implemented */
5532 assert(arm_feature(env
, ARM_FEATURE_V7
));
5533 define_arm_cp_regs(cpu
, vmsa_pmsa_cp_reginfo
);
5534 define_arm_cp_regs(cpu
, pmsav7_cp_reginfo
);
5536 define_arm_cp_regs(cpu
, pmsav5_cp_reginfo
);
5539 define_arm_cp_regs(cpu
, vmsa_pmsa_cp_reginfo
);
5540 define_arm_cp_regs(cpu
, vmsa_cp_reginfo
);
5541 /* TTCBR2 is introduced with ARMv8.2-A32HPD. */
5542 if (FIELD_EX32(cpu
->id_mmfr4
, ID_MMFR4
, HPDS
) != 0) {
5543 define_one_arm_cp_reg(cpu
, &ttbcr2_reginfo
);
5546 if (arm_feature(env
, ARM_FEATURE_THUMB2EE
)) {
5547 define_arm_cp_regs(cpu
, t2ee_cp_reginfo
);
5549 if (arm_feature(env
, ARM_FEATURE_GENERIC_TIMER
)) {
5550 define_arm_cp_regs(cpu
, generic_timer_cp_reginfo
);
5552 if (arm_feature(env
, ARM_FEATURE_VAPA
)) {
5553 define_arm_cp_regs(cpu
, vapa_cp_reginfo
);
5555 if (arm_feature(env
, ARM_FEATURE_CACHE_TEST_CLEAN
)) {
5556 define_arm_cp_regs(cpu
, cache_test_clean_cp_reginfo
);
5558 if (arm_feature(env
, ARM_FEATURE_CACHE_DIRTY_REG
)) {
5559 define_arm_cp_regs(cpu
, cache_dirty_status_cp_reginfo
);
5561 if (arm_feature(env
, ARM_FEATURE_CACHE_BLOCK_OPS
)) {
5562 define_arm_cp_regs(cpu
, cache_block_ops_cp_reginfo
);
5564 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
5565 define_arm_cp_regs(cpu
, omap_cp_reginfo
);
5567 if (arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
5568 define_arm_cp_regs(cpu
, strongarm_cp_reginfo
);
5570 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
5571 define_arm_cp_regs(cpu
, xscale_cp_reginfo
);
5573 if (arm_feature(env
, ARM_FEATURE_DUMMY_C15_REGS
)) {
5574 define_arm_cp_regs(cpu
, dummy_c15_cp_reginfo
);
5576 if (arm_feature(env
, ARM_FEATURE_LPAE
)) {
5577 define_arm_cp_regs(cpu
, lpae_cp_reginfo
);
5579 /* Slightly awkwardly, the OMAP and StrongARM cores need all of
5580 * cp15 crn=0 to be writes-ignored, whereas for other cores they should
5581 * be read-only (ie write causes UNDEF exception).
5584 ARMCPRegInfo id_pre_v8_midr_cp_reginfo
[] = {
5585 /* Pre-v8 MIDR space.
5586 * Note that the MIDR isn't a simple constant register because
5587 * of the TI925 behaviour where writes to another register can
5588 * cause the MIDR value to change.
5590 * Unimplemented registers in the c15 0 0 0 space default to
5591 * MIDR. Define MIDR first as this entire space, then CTR, TCMTR
5592 * and friends override accordingly.
5595 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= CP_ANY
,
5596 .access
= PL1_R
, .resetvalue
= cpu
->midr
,
5597 .writefn
= arm_cp_write_ignore
, .raw_writefn
= raw_write
,
5598 .readfn
= midr_read
,
5599 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
5600 .type
= ARM_CP_OVERRIDE
},
5601 /* crn = 0 op1 = 0 crm = 3..7 : currently unassigned; we RAZ. */
5603 .cp
= 15, .crn
= 0, .crm
= 3, .opc1
= 0, .opc2
= CP_ANY
,
5604 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5606 .cp
= 15, .crn
= 0, .crm
= 4, .opc1
= 0, .opc2
= CP_ANY
,
5607 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5609 .cp
= 15, .crn
= 0, .crm
= 5, .opc1
= 0, .opc2
= CP_ANY
,
5610 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5612 .cp
= 15, .crn
= 0, .crm
= 6, .opc1
= 0, .opc2
= CP_ANY
,
5613 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5615 .cp
= 15, .crn
= 0, .crm
= 7, .opc1
= 0, .opc2
= CP_ANY
,
5616 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5619 ARMCPRegInfo id_v8_midr_cp_reginfo
[] = {
5620 { .name
= "MIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
5621 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 0,
5622 .access
= PL1_R
, .type
= ARM_CP_NO_RAW
, .resetvalue
= cpu
->midr
,
5623 .fieldoffset
= offsetof(CPUARMState
, cp15
.c0_cpuid
),
5624 .readfn
= midr_read
},
5625 /* crn = 0 op1 = 0 crm = 0 op2 = 4,7 : AArch32 aliases of MIDR */
5626 { .name
= "MIDR", .type
= ARM_CP_ALIAS
| ARM_CP_CONST
,
5627 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 4,
5628 .access
= PL1_R
, .resetvalue
= cpu
->midr
},
5629 { .name
= "MIDR", .type
= ARM_CP_ALIAS
| ARM_CP_CONST
,
5630 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 7,
5631 .access
= PL1_R
, .resetvalue
= cpu
->midr
},
5632 { .name
= "REVIDR_EL1", .state
= ARM_CP_STATE_BOTH
,
5633 .opc0
= 3, .opc1
= 0, .crn
= 0, .crm
= 0, .opc2
= 6,
5634 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->revidr
},
5637 ARMCPRegInfo id_cp_reginfo
[] = {
5638 /* These are common to v8 and pre-v8 */
5640 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 1,
5641 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
5642 { .name
= "CTR_EL0", .state
= ARM_CP_STATE_AA64
,
5643 .opc0
= 3, .opc1
= 3, .opc2
= 1, .crn
= 0, .crm
= 0,
5644 .access
= PL0_R
, .accessfn
= ctr_el0_access
,
5645 .type
= ARM_CP_CONST
, .resetvalue
= cpu
->ctr
},
5646 /* TCMTR and TLBTR exist in v8 but have no 64-bit versions */
5648 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 2,
5649 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5652 /* TLBTR is specific to VMSA */
5653 ARMCPRegInfo id_tlbtr_reginfo
= {
5655 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 3,
5656 .access
= PL1_R
, .type
= ARM_CP_CONST
, .resetvalue
= 0,
5658 /* MPUIR is specific to PMSA V6+ */
5659 ARMCPRegInfo id_mpuir_reginfo
= {
5661 .cp
= 15, .crn
= 0, .crm
= 0, .opc1
= 0, .opc2
= 4,
5662 .access
= PL1_R
, .type
= ARM_CP_CONST
,
5663 .resetvalue
= cpu
->pmsav7_dregion
<< 8
5665 ARMCPRegInfo crn0_wi_reginfo
= {
5666 .name
= "CRN0_WI", .cp
= 15, .crn
= 0, .crm
= CP_ANY
,
5667 .opc1
= CP_ANY
, .opc2
= CP_ANY
, .access
= PL1_W
,
5668 .type
= ARM_CP_NOP
| ARM_CP_OVERRIDE
5670 if (arm_feature(env
, ARM_FEATURE_OMAPCP
) ||
5671 arm_feature(env
, ARM_FEATURE_STRONGARM
)) {
5673 /* Register the blanket "writes ignored" value first to cover the
5674 * whole space. Then update the specific ID registers to allow write
5675 * access, so that they ignore writes rather than causing them to
5678 define_one_arm_cp_reg(cpu
, &crn0_wi_reginfo
);
5679 for (r
= id_pre_v8_midr_cp_reginfo
;
5680 r
->type
!= ARM_CP_SENTINEL
; r
++) {
5683 for (r
= id_cp_reginfo
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
5686 id_mpuir_reginfo
.access
= PL1_RW
;
5687 id_tlbtr_reginfo
.access
= PL1_RW
;
5689 if (arm_feature(env
, ARM_FEATURE_V8
)) {
5690 define_arm_cp_regs(cpu
, id_v8_midr_cp_reginfo
);
5692 define_arm_cp_regs(cpu
, id_pre_v8_midr_cp_reginfo
);
5694 define_arm_cp_regs(cpu
, id_cp_reginfo
);
5695 if (!arm_feature(env
, ARM_FEATURE_PMSA
)) {
5696 define_one_arm_cp_reg(cpu
, &id_tlbtr_reginfo
);
5697 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
5698 define_one_arm_cp_reg(cpu
, &id_mpuir_reginfo
);
5702 if (arm_feature(env
, ARM_FEATURE_MPIDR
)) {
5703 define_arm_cp_regs(cpu
, mpidr_cp_reginfo
);
5706 if (arm_feature(env
, ARM_FEATURE_AUXCR
)) {
5707 ARMCPRegInfo auxcr_reginfo
[] = {
5708 { .name
= "ACTLR_EL1", .state
= ARM_CP_STATE_BOTH
,
5709 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 1,
5710 .access
= PL1_RW
, .type
= ARM_CP_CONST
,
5711 .resetvalue
= cpu
->reset_auxcr
},
5712 { .name
= "ACTLR_EL2", .state
= ARM_CP_STATE_BOTH
,
5713 .opc0
= 3, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 1,
5714 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
5716 { .name
= "ACTLR_EL3", .state
= ARM_CP_STATE_AA64
,
5717 .opc0
= 3, .opc1
= 6, .crn
= 1, .crm
= 0, .opc2
= 1,
5718 .access
= PL3_RW
, .type
= ARM_CP_CONST
,
5722 define_arm_cp_regs(cpu
, auxcr_reginfo
);
5723 if (arm_feature(env
, ARM_FEATURE_V8
)) {
5724 /* HACTLR2 maps to ACTLR_EL2[63:32] and is not in ARMv7 */
5725 ARMCPRegInfo hactlr2_reginfo
= {
5726 .name
= "HACTLR2", .state
= ARM_CP_STATE_AA32
,
5727 .cp
= 15, .opc1
= 4, .crn
= 1, .crm
= 0, .opc2
= 3,
5728 .access
= PL2_RW
, .type
= ARM_CP_CONST
,
5731 define_one_arm_cp_reg(cpu
, &hactlr2_reginfo
);
5735 if (arm_feature(env
, ARM_FEATURE_CBAR
)) {
5736 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
5737 /* 32 bit view is [31:18] 0...0 [43:32]. */
5738 uint32_t cbar32
= (extract64(cpu
->reset_cbar
, 18, 14) << 18)
5739 | extract64(cpu
->reset_cbar
, 32, 12);
5740 ARMCPRegInfo cbar_reginfo
[] = {
5742 .type
= ARM_CP_CONST
,
5743 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
5744 .access
= PL1_R
, .resetvalue
= cpu
->reset_cbar
},
5745 { .name
= "CBAR_EL1", .state
= ARM_CP_STATE_AA64
,
5746 .type
= ARM_CP_CONST
,
5747 .opc0
= 3, .opc1
= 1, .crn
= 15, .crm
= 3, .opc2
= 0,
5748 .access
= PL1_R
, .resetvalue
= cbar32
},
5751 /* We don't implement a r/w 64 bit CBAR currently */
5752 assert(arm_feature(env
, ARM_FEATURE_CBAR_RO
));
5753 define_arm_cp_regs(cpu
, cbar_reginfo
);
5755 ARMCPRegInfo cbar
= {
5757 .cp
= 15, .crn
= 15, .crm
= 0, .opc1
= 4, .opc2
= 0,
5758 .access
= PL1_R
|PL3_W
, .resetvalue
= cpu
->reset_cbar
,
5759 .fieldoffset
= offsetof(CPUARMState
,
5760 cp15
.c15_config_base_address
)
5762 if (arm_feature(env
, ARM_FEATURE_CBAR_RO
)) {
5763 cbar
.access
= PL1_R
;
5764 cbar
.fieldoffset
= 0;
5765 cbar
.type
= ARM_CP_CONST
;
5767 define_one_arm_cp_reg(cpu
, &cbar
);
5771 if (arm_feature(env
, ARM_FEATURE_VBAR
)) {
5772 ARMCPRegInfo vbar_cp_reginfo
[] = {
5773 { .name
= "VBAR", .state
= ARM_CP_STATE_BOTH
,
5774 .opc0
= 3, .crn
= 12, .crm
= 0, .opc1
= 0, .opc2
= 0,
5775 .access
= PL1_RW
, .writefn
= vbar_write
,
5776 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.vbar_s
),
5777 offsetof(CPUARMState
, cp15
.vbar_ns
) },
5781 define_arm_cp_regs(cpu
, vbar_cp_reginfo
);
5784 /* Generic registers whose values depend on the implementation */
5786 ARMCPRegInfo sctlr
= {
5787 .name
= "SCTLR", .state
= ARM_CP_STATE_BOTH
,
5788 .opc0
= 3, .opc1
= 0, .crn
= 1, .crm
= 0, .opc2
= 0,
5790 .bank_fieldoffsets
= { offsetof(CPUARMState
, cp15
.sctlr_s
),
5791 offsetof(CPUARMState
, cp15
.sctlr_ns
) },
5792 .writefn
= sctlr_write
, .resetvalue
= cpu
->reset_sctlr
,
5793 .raw_writefn
= raw_write
,
5795 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
5796 /* Normally we would always end the TB on an SCTLR write, but Linux
5797 * arch/arm/mach-pxa/sleep.S expects two instructions following
5798 * an MMU enable to execute from cache. Imitate this behaviour.
5800 sctlr
.type
|= ARM_CP_SUPPRESS_TB_END
;
5802 define_one_arm_cp_reg(cpu
, &sctlr
);
5805 if (cpu_isar_feature(aa64_lor
, cpu
)) {
5807 * A trivial implementation of ARMv8.1-LOR leaves all of these
5808 * registers fixed at 0, which indicates that there are zero
5809 * supported Limited Ordering regions.
5811 static const ARMCPRegInfo lor_reginfo
[] = {
5812 { .name
= "LORSA_EL1", .state
= ARM_CP_STATE_AA64
,
5813 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 4, .opc2
= 0,
5814 .access
= PL1_RW
, .accessfn
= access_lor_other
,
5815 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5816 { .name
= "LOREA_EL1", .state
= ARM_CP_STATE_AA64
,
5817 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 4, .opc2
= 1,
5818 .access
= PL1_RW
, .accessfn
= access_lor_other
,
5819 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5820 { .name
= "LORN_EL1", .state
= ARM_CP_STATE_AA64
,
5821 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 4, .opc2
= 2,
5822 .access
= PL1_RW
, .accessfn
= access_lor_other
,
5823 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5824 { .name
= "LORC_EL1", .state
= ARM_CP_STATE_AA64
,
5825 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 4, .opc2
= 3,
5826 .access
= PL1_RW
, .accessfn
= access_lor_other
,
5827 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5828 { .name
= "LORID_EL1", .state
= ARM_CP_STATE_AA64
,
5829 .opc0
= 3, .opc1
= 0, .crn
= 10, .crm
= 4, .opc2
= 7,
5830 .access
= PL1_R
, .accessfn
= access_lorid
,
5831 .type
= ARM_CP_CONST
, .resetvalue
= 0 },
5834 define_arm_cp_regs(cpu
, lor_reginfo
);
5837 if (cpu_isar_feature(aa64_sve
, cpu
)) {
5838 define_one_arm_cp_reg(cpu
, &zcr_el1_reginfo
);
5839 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
5840 define_one_arm_cp_reg(cpu
, &zcr_el2_reginfo
);
5842 define_one_arm_cp_reg(cpu
, &zcr_no_el2_reginfo
);
5844 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
5845 define_one_arm_cp_reg(cpu
, &zcr_el3_reginfo
);
5850 void arm_cpu_register_gdb_regs_for_features(ARMCPU
*cpu
)
5852 CPUState
*cs
= CPU(cpu
);
5853 CPUARMState
*env
= &cpu
->env
;
5855 if (arm_feature(env
, ARM_FEATURE_AARCH64
)) {
5856 gdb_register_coprocessor(cs
, aarch64_fpu_gdb_get_reg
,
5857 aarch64_fpu_gdb_set_reg
,
5858 34, "aarch64-fpu.xml", 0);
5859 } else if (arm_feature(env
, ARM_FEATURE_NEON
)) {
5860 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
5861 51, "arm-neon.xml", 0);
5862 } else if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
5863 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
5864 35, "arm-vfp3.xml", 0);
5865 } else if (arm_feature(env
, ARM_FEATURE_VFP
)) {
5866 gdb_register_coprocessor(cs
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
5867 19, "arm-vfp.xml", 0);
5869 gdb_register_coprocessor(cs
, arm_gdb_get_sysreg
, arm_gdb_set_sysreg
,
5870 arm_gen_dynamic_xml(cs
),
5871 "system-registers.xml", 0);
5874 /* Sort alphabetically by type name, except for "any". */
5875 static gint
arm_cpu_list_compare(gconstpointer a
, gconstpointer b
)
5877 ObjectClass
*class_a
= (ObjectClass
*)a
;
5878 ObjectClass
*class_b
= (ObjectClass
*)b
;
5879 const char *name_a
, *name_b
;
5881 name_a
= object_class_get_name(class_a
);
5882 name_b
= object_class_get_name(class_b
);
5883 if (strcmp(name_a
, "any-" TYPE_ARM_CPU
) == 0) {
5885 } else if (strcmp(name_b
, "any-" TYPE_ARM_CPU
) == 0) {
5888 return strcmp(name_a
, name_b
);
5892 static void arm_cpu_list_entry(gpointer data
, gpointer user_data
)
5894 ObjectClass
*oc
= data
;
5895 CPUListState
*s
= user_data
;
5896 const char *typename
;
5899 typename
= object_class_get_name(oc
);
5900 name
= g_strndup(typename
, strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
5901 (*s
->cpu_fprintf
)(s
->file
, " %s\n",
5906 void arm_cpu_list(FILE *f
, fprintf_function cpu_fprintf
)
5910 .cpu_fprintf
= cpu_fprintf
,
5914 list
= object_class_get_list(TYPE_ARM_CPU
, false);
5915 list
= g_slist_sort(list
, arm_cpu_list_compare
);
5916 (*cpu_fprintf
)(f
, "Available CPUs:\n");
5917 g_slist_foreach(list
, arm_cpu_list_entry
, &s
);
5921 static void arm_cpu_add_definition(gpointer data
, gpointer user_data
)
5923 ObjectClass
*oc
= data
;
5924 CpuDefinitionInfoList
**cpu_list
= user_data
;
5925 CpuDefinitionInfoList
*entry
;
5926 CpuDefinitionInfo
*info
;
5927 const char *typename
;
5929 typename
= object_class_get_name(oc
);
5930 info
= g_malloc0(sizeof(*info
));
5931 info
->name
= g_strndup(typename
,
5932 strlen(typename
) - strlen("-" TYPE_ARM_CPU
));
5933 info
->q_typename
= g_strdup(typename
);
5935 entry
= g_malloc0(sizeof(*entry
));
5936 entry
->value
= info
;
5937 entry
->next
= *cpu_list
;
5941 CpuDefinitionInfoList
*arch_query_cpu_definitions(Error
**errp
)
5943 CpuDefinitionInfoList
*cpu_list
= NULL
;
5946 list
= object_class_get_list(TYPE_ARM_CPU
, false);
5947 g_slist_foreach(list
, arm_cpu_add_definition
, &cpu_list
);
5953 static void add_cpreg_to_hashtable(ARMCPU
*cpu
, const ARMCPRegInfo
*r
,
5954 void *opaque
, int state
, int secstate
,
5955 int crm
, int opc1
, int opc2
,
5958 /* Private utility function for define_one_arm_cp_reg_with_opaque():
5959 * add a single reginfo struct to the hash table.
5961 uint32_t *key
= g_new(uint32_t, 1);
5962 ARMCPRegInfo
*r2
= g_memdup(r
, sizeof(ARMCPRegInfo
));
5963 int is64
= (r
->type
& ARM_CP_64BIT
) ? 1 : 0;
5964 int ns
= (secstate
& ARM_CP_SECSTATE_NS
) ? 1 : 0;
5966 r2
->name
= g_strdup(name
);
5967 /* Reset the secure state to the specific incoming state. This is
5968 * necessary as the register may have been defined with both states.
5970 r2
->secure
= secstate
;
5972 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
5973 /* Register is banked (using both entries in array).
5974 * Overwriting fieldoffset as the array is only used to define
5975 * banked registers but later only fieldoffset is used.
5977 r2
->fieldoffset
= r
->bank_fieldoffsets
[ns
];
5980 if (state
== ARM_CP_STATE_AA32
) {
5981 if (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1]) {
5982 /* If the register is banked then we don't need to migrate or
5983 * reset the 32-bit instance in certain cases:
5985 * 1) If the register has both 32-bit and 64-bit instances then we
5986 * can count on the 64-bit instance taking care of the
5988 * 2) If ARMv8 is enabled then we can count on a 64-bit version
5989 * taking care of the secure bank. This requires that separate
5990 * 32 and 64-bit definitions are provided.
5992 if ((r
->state
== ARM_CP_STATE_BOTH
&& ns
) ||
5993 (arm_feature(&cpu
->env
, ARM_FEATURE_V8
) && !ns
)) {
5994 r2
->type
|= ARM_CP_ALIAS
;
5996 } else if ((secstate
!= r
->secure
) && !ns
) {
5997 /* The register is not banked so we only want to allow migration of
5998 * the non-secure instance.
6000 r2
->type
|= ARM_CP_ALIAS
;
6003 if (r
->state
== ARM_CP_STATE_BOTH
) {
6004 /* We assume it is a cp15 register if the .cp field is left unset.
6010 #ifdef HOST_WORDS_BIGENDIAN
6011 if (r2
->fieldoffset
) {
6012 r2
->fieldoffset
+= sizeof(uint32_t);
6017 if (state
== ARM_CP_STATE_AA64
) {
6018 /* To allow abbreviation of ARMCPRegInfo
6019 * definitions, we treat cp == 0 as equivalent to
6020 * the value for "standard guest-visible sysreg".
6021 * STATE_BOTH definitions are also always "standard
6022 * sysreg" in their AArch64 view (the .cp value may
6023 * be non-zero for the benefit of the AArch32 view).
6025 if (r
->cp
== 0 || r
->state
== ARM_CP_STATE_BOTH
) {
6026 r2
->cp
= CP_REG_ARM64_SYSREG_CP
;
6028 *key
= ENCODE_AA64_CP_REG(r2
->cp
, r2
->crn
, crm
,
6029 r2
->opc0
, opc1
, opc2
);
6031 *key
= ENCODE_CP_REG(r2
->cp
, is64
, ns
, r2
->crn
, crm
, opc1
, opc2
);
6034 r2
->opaque
= opaque
;
6036 /* reginfo passed to helpers is correct for the actual access,
6037 * and is never ARM_CP_STATE_BOTH:
6040 /* Make sure reginfo passed to helpers for wildcarded regs
6041 * has the correct crm/opc1/opc2 for this reg, not CP_ANY:
6046 /* By convention, for wildcarded registers only the first
6047 * entry is used for migration; the others are marked as
6048 * ALIAS so we don't try to transfer the register
6049 * multiple times. Special registers (ie NOP/WFI) are
6050 * never migratable and not even raw-accessible.
6052 if ((r
->type
& ARM_CP_SPECIAL
)) {
6053 r2
->type
|= ARM_CP_NO_RAW
;
6055 if (((r
->crm
== CP_ANY
) && crm
!= 0) ||
6056 ((r
->opc1
== CP_ANY
) && opc1
!= 0) ||
6057 ((r
->opc2
== CP_ANY
) && opc2
!= 0)) {
6058 r2
->type
|= ARM_CP_ALIAS
| ARM_CP_NO_GDB
;
6061 /* Check that raw accesses are either forbidden or handled. Note that
6062 * we can't assert this earlier because the setup of fieldoffset for
6063 * banked registers has to be done first.
6065 if (!(r2
->type
& ARM_CP_NO_RAW
)) {
6066 assert(!raw_accessors_invalid(r2
));
6069 /* Overriding of an existing definition must be explicitly
6072 if (!(r
->type
& ARM_CP_OVERRIDE
)) {
6073 ARMCPRegInfo
*oldreg
;
6074 oldreg
= g_hash_table_lookup(cpu
->cp_regs
, key
);
6075 if (oldreg
&& !(oldreg
->type
& ARM_CP_OVERRIDE
)) {
6076 fprintf(stderr
, "Register redefined: cp=%d %d bit "
6077 "crn=%d crm=%d opc1=%d opc2=%d, "
6078 "was %s, now %s\n", r2
->cp
, 32 + 32 * is64
,
6079 r2
->crn
, r2
->crm
, r2
->opc1
, r2
->opc2
,
6080 oldreg
->name
, r2
->name
);
6081 g_assert_not_reached();
6084 g_hash_table_insert(cpu
->cp_regs
, key
, r2
);
6088 void define_one_arm_cp_reg_with_opaque(ARMCPU
*cpu
,
6089 const ARMCPRegInfo
*r
, void *opaque
)
6091 /* Define implementations of coprocessor registers.
6092 * We store these in a hashtable because typically
6093 * there are less than 150 registers in a space which
6094 * is 16*16*16*8*8 = 262144 in size.
6095 * Wildcarding is supported for the crm, opc1 and opc2 fields.
6096 * If a register is defined twice then the second definition is
6097 * used, so this can be used to define some generic registers and
6098 * then override them with implementation specific variations.
6099 * At least one of the original and the second definition should
6100 * include ARM_CP_OVERRIDE in its type bits -- this is just a guard
6101 * against accidental use.
6103 * The state field defines whether the register is to be
6104 * visible in the AArch32 or AArch64 execution state. If the
6105 * state is set to ARM_CP_STATE_BOTH then we synthesise a
6106 * reginfo structure for the AArch32 view, which sees the lower
6107 * 32 bits of the 64 bit register.
6109 * Only registers visible in AArch64 may set r->opc0; opc0 cannot
6110 * be wildcarded. AArch64 registers are always considered to be 64
6111 * bits; the ARM_CP_64BIT* flag applies only to the AArch32 view of
6112 * the register, if any.
6114 int crm
, opc1
, opc2
, state
;
6115 int crmmin
= (r
->crm
== CP_ANY
) ? 0 : r
->crm
;
6116 int crmmax
= (r
->crm
== CP_ANY
) ? 15 : r
->crm
;
6117 int opc1min
= (r
->opc1
== CP_ANY
) ? 0 : r
->opc1
;
6118 int opc1max
= (r
->opc1
== CP_ANY
) ? 7 : r
->opc1
;
6119 int opc2min
= (r
->opc2
== CP_ANY
) ? 0 : r
->opc2
;
6120 int opc2max
= (r
->opc2
== CP_ANY
) ? 7 : r
->opc2
;
6121 /* 64 bit registers have only CRm and Opc1 fields */
6122 assert(!((r
->type
& ARM_CP_64BIT
) && (r
->opc2
|| r
->crn
)));
6123 /* op0 only exists in the AArch64 encodings */
6124 assert((r
->state
!= ARM_CP_STATE_AA32
) || (r
->opc0
== 0));
6125 /* AArch64 regs are all 64 bit so ARM_CP_64BIT is meaningless */
6126 assert((r
->state
!= ARM_CP_STATE_AA64
) || !(r
->type
& ARM_CP_64BIT
));
6127 /* The AArch64 pseudocode CheckSystemAccess() specifies that op1
6128 * encodes a minimum access level for the register. We roll this
6129 * runtime check into our general permission check code, so check
6130 * here that the reginfo's specified permissions are strict enough
6131 * to encompass the generic architectural permission check.
6133 if (r
->state
!= ARM_CP_STATE_AA32
) {
6136 case 0: case 1: case 2:
6149 /* unallocated encoding, so not possible */
6157 /* min_EL EL1, secure mode only (we don't check the latter) */
6161 /* broken reginfo with out-of-range opc1 */
6165 /* assert our permissions are not too lax (stricter is fine) */
6166 assert((r
->access
& ~mask
) == 0);
6169 /* Check that the register definition has enough info to handle
6170 * reads and writes if they are permitted.
6172 if (!(r
->type
& (ARM_CP_SPECIAL
|ARM_CP_CONST
))) {
6173 if (r
->access
& PL3_R
) {
6174 assert((r
->fieldoffset
||
6175 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
6178 if (r
->access
& PL3_W
) {
6179 assert((r
->fieldoffset
||
6180 (r
->bank_fieldoffsets
[0] && r
->bank_fieldoffsets
[1])) ||
6184 /* Bad type field probably means missing sentinel at end of reg list */
6185 assert(cptype_valid(r
->type
));
6186 for (crm
= crmmin
; crm
<= crmmax
; crm
++) {
6187 for (opc1
= opc1min
; opc1
<= opc1max
; opc1
++) {
6188 for (opc2
= opc2min
; opc2
<= opc2max
; opc2
++) {
6189 for (state
= ARM_CP_STATE_AA32
;
6190 state
<= ARM_CP_STATE_AA64
; state
++) {
6191 if (r
->state
!= state
&& r
->state
!= ARM_CP_STATE_BOTH
) {
6194 if (state
== ARM_CP_STATE_AA32
) {
6195 /* Under AArch32 CP registers can be common
6196 * (same for secure and non-secure world) or banked.
6200 switch (r
->secure
) {
6201 case ARM_CP_SECSTATE_S
:
6202 case ARM_CP_SECSTATE_NS
:
6203 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
6204 r
->secure
, crm
, opc1
, opc2
,
6208 name
= g_strdup_printf("%s_S", r
->name
);
6209 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
6211 crm
, opc1
, opc2
, name
);
6213 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
6215 crm
, opc1
, opc2
, r
->name
);
6219 /* AArch64 registers get mapped to non-secure instance
6221 add_cpreg_to_hashtable(cpu
, r
, opaque
, state
,
6223 crm
, opc1
, opc2
, r
->name
);
6231 void define_arm_cp_regs_with_opaque(ARMCPU
*cpu
,
6232 const ARMCPRegInfo
*regs
, void *opaque
)
6234 /* Define a whole list of registers */
6235 const ARMCPRegInfo
*r
;
6236 for (r
= regs
; r
->type
!= ARM_CP_SENTINEL
; r
++) {
6237 define_one_arm_cp_reg_with_opaque(cpu
, r
, opaque
);
6241 const ARMCPRegInfo
*get_arm_cp_reginfo(GHashTable
*cpregs
, uint32_t encoded_cp
)
6243 return g_hash_table_lookup(cpregs
, &encoded_cp
);
6246 void arm_cp_write_ignore(CPUARMState
*env
, const ARMCPRegInfo
*ri
,
6249 /* Helper coprocessor write function for write-ignore registers */
6252 uint64_t arm_cp_read_zero(CPUARMState
*env
, const ARMCPRegInfo
*ri
)
6254 /* Helper coprocessor write function for read-as-zero registers */
6258 void arm_cp_reset_ignore(CPUARMState
*env
, const ARMCPRegInfo
*opaque
)
6260 /* Helper coprocessor reset function for do-nothing-on-reset registers */
6263 static int bad_mode_switch(CPUARMState
*env
, int mode
, CPSRWriteType write_type
)
6265 /* Return true if it is not valid for us to switch to
6266 * this CPU mode (ie all the UNPREDICTABLE cases in
6267 * the ARM ARM CPSRWriteByInstr pseudocode).
6270 /* Changes to or from Hyp via MSR and CPS are illegal. */
6271 if (write_type
== CPSRWriteByInstr
&&
6272 ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_HYP
||
6273 mode
== ARM_CPU_MODE_HYP
)) {
6278 case ARM_CPU_MODE_USR
:
6280 case ARM_CPU_MODE_SYS
:
6281 case ARM_CPU_MODE_SVC
:
6282 case ARM_CPU_MODE_ABT
:
6283 case ARM_CPU_MODE_UND
:
6284 case ARM_CPU_MODE_IRQ
:
6285 case ARM_CPU_MODE_FIQ
:
6286 /* Note that we don't implement the IMPDEF NSACR.RFR which in v7
6287 * allows FIQ mode to be Secure-only. (In v8 this doesn't exist.)
6289 /* If HCR.TGE is set then changes from Monitor to NS PL1 via MSR
6290 * and CPS are treated as illegal mode changes.
6292 if (write_type
== CPSRWriteByInstr
&&
6293 (env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_MON
&&
6294 (arm_hcr_el2_eff(env
) & HCR_TGE
)) {
6298 case ARM_CPU_MODE_HYP
:
6299 return !arm_feature(env
, ARM_FEATURE_EL2
)
6300 || arm_current_el(env
) < 2 || arm_is_secure(env
);
6301 case ARM_CPU_MODE_MON
:
6302 return arm_current_el(env
) < 3;
6308 uint32_t cpsr_read(CPUARMState
*env
)
6311 ZF
= (env
->ZF
== 0);
6312 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
6313 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
6314 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
6315 | ((env
->condexec_bits
& 0xfc) << 8)
6316 | (env
->GE
<< 16) | (env
->daif
& CPSR_AIF
);
6319 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
,
6320 CPSRWriteType write_type
)
6322 uint32_t changed_daif
;
6324 if (mask
& CPSR_NZCV
) {
6325 env
->ZF
= (~val
) & CPSR_Z
;
6327 env
->CF
= (val
>> 29) & 1;
6328 env
->VF
= (val
<< 3) & 0x80000000;
6331 env
->QF
= ((val
& CPSR_Q
) != 0);
6333 env
->thumb
= ((val
& CPSR_T
) != 0);
6334 if (mask
& CPSR_IT_0_1
) {
6335 env
->condexec_bits
&= ~3;
6336 env
->condexec_bits
|= (val
>> 25) & 3;
6338 if (mask
& CPSR_IT_2_7
) {
6339 env
->condexec_bits
&= 3;
6340 env
->condexec_bits
|= (val
>> 8) & 0xfc;
6342 if (mask
& CPSR_GE
) {
6343 env
->GE
= (val
>> 16) & 0xf;
6346 /* In a V7 implementation that includes the security extensions but does
6347 * not include Virtualization Extensions the SCR.FW and SCR.AW bits control
6348 * whether non-secure software is allowed to change the CPSR_F and CPSR_A
6349 * bits respectively.
6351 * In a V8 implementation, it is permitted for privileged software to
6352 * change the CPSR A/F bits regardless of the SCR.AW/FW bits.
6354 if (write_type
!= CPSRWriteRaw
&& !arm_feature(env
, ARM_FEATURE_V8
) &&
6355 arm_feature(env
, ARM_FEATURE_EL3
) &&
6356 !arm_feature(env
, ARM_FEATURE_EL2
) &&
6357 !arm_is_secure(env
)) {
6359 changed_daif
= (env
->daif
^ val
) & mask
;
6361 if (changed_daif
& CPSR_A
) {
6362 /* Check to see if we are allowed to change the masking of async
6363 * abort exceptions from a non-secure state.
6365 if (!(env
->cp15
.scr_el3
& SCR_AW
)) {
6366 qemu_log_mask(LOG_GUEST_ERROR
,
6367 "Ignoring attempt to switch CPSR_A flag from "
6368 "non-secure world with SCR.AW bit clear\n");
6373 if (changed_daif
& CPSR_F
) {
6374 /* Check to see if we are allowed to change the masking of FIQ
6375 * exceptions from a non-secure state.
6377 if (!(env
->cp15
.scr_el3
& SCR_FW
)) {
6378 qemu_log_mask(LOG_GUEST_ERROR
,
6379 "Ignoring attempt to switch CPSR_F flag from "
6380 "non-secure world with SCR.FW bit clear\n");
6384 /* Check whether non-maskable FIQ (NMFI) support is enabled.
6385 * If this bit is set software is not allowed to mask
6386 * FIQs, but is allowed to set CPSR_F to 0.
6388 if ((A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_NMFI
) &&
6390 qemu_log_mask(LOG_GUEST_ERROR
,
6391 "Ignoring attempt to enable CPSR_F flag "
6392 "(non-maskable FIQ [NMFI] support enabled)\n");
6398 env
->daif
&= ~(CPSR_AIF
& mask
);
6399 env
->daif
|= val
& CPSR_AIF
& mask
;
6401 if (write_type
!= CPSRWriteRaw
&&
6402 ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
)) {
6403 if ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_USR
) {
6404 /* Note that we can only get here in USR mode if this is a
6405 * gdb stub write; for this case we follow the architectural
6406 * behaviour for guest writes in USR mode of ignoring an attempt
6407 * to switch mode. (Those are caught by translate.c for writes
6408 * triggered by guest instructions.)
6411 } else if (bad_mode_switch(env
, val
& CPSR_M
, write_type
)) {
6412 /* Attempt to switch to an invalid mode: this is UNPREDICTABLE in
6413 * v7, and has defined behaviour in v8:
6414 * + leave CPSR.M untouched
6415 * + allow changes to the other CPSR fields
6417 * For user changes via the GDB stub, we don't set PSTATE.IL,
6418 * as this would be unnecessarily harsh for a user error.
6421 if (write_type
!= CPSRWriteByGDBStub
&&
6422 arm_feature(env
, ARM_FEATURE_V8
)) {
6426 qemu_log_mask(LOG_GUEST_ERROR
,
6427 "Illegal AArch32 mode switch attempt from %s to %s\n",
6428 aarch32_mode_name(env
->uncached_cpsr
),
6429 aarch32_mode_name(val
));
6431 qemu_log_mask(CPU_LOG_INT
, "%s %s to %s PC 0x%" PRIx32
"\n",
6432 write_type
== CPSRWriteExceptionReturn
?
6433 "Exception return from AArch32" :
6434 "AArch32 mode switch from",
6435 aarch32_mode_name(env
->uncached_cpsr
),
6436 aarch32_mode_name(val
), env
->regs
[15]);
6437 switch_mode(env
, val
& CPSR_M
);
6440 mask
&= ~CACHED_CPSR_BITS
;
6441 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
6444 /* Sign/zero extend */
6445 uint32_t HELPER(sxtb16
)(uint32_t x
)
6448 res
= (uint16_t)(int8_t)x
;
6449 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
6453 uint32_t HELPER(uxtb16
)(uint32_t x
)
6456 res
= (uint16_t)(uint8_t)x
;
6457 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
6461 int32_t HELPER(sdiv
)(int32_t num
, int32_t den
)
6465 if (num
== INT_MIN
&& den
== -1)
6470 uint32_t HELPER(udiv
)(uint32_t num
, uint32_t den
)
6477 uint32_t HELPER(rbit
)(uint32_t x
)
6482 #if defined(CONFIG_USER_ONLY)
6484 /* These should probably raise undefined insn exceptions. */
6485 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t reg
, uint32_t val
)
6487 ARMCPU
*cpu
= arm_env_get_cpu(env
);
6489 cpu_abort(CPU(cpu
), "v7m_msr %d\n", reg
);
6492 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
6494 ARMCPU
*cpu
= arm_env_get_cpu(env
);
6496 cpu_abort(CPU(cpu
), "v7m_mrs %d\n", reg
);
6500 void HELPER(v7m_bxns
)(CPUARMState
*env
, uint32_t dest
)
6502 /* translate.c should never generate calls here in user-only mode */
6503 g_assert_not_reached();
6506 void HELPER(v7m_blxns
)(CPUARMState
*env
, uint32_t dest
)
6508 /* translate.c should never generate calls here in user-only mode */
6509 g_assert_not_reached();
6512 uint32_t HELPER(v7m_tt
)(CPUARMState
*env
, uint32_t addr
, uint32_t op
)
6514 /* The TT instructions can be used by unprivileged code, but in
6515 * user-only emulation we don't have the MPU.
6516 * Luckily since we know we are NonSecure unprivileged (and that in
6517 * turn means that the A flag wasn't specified), all the bits in the
6518 * register must be zero:
6519 * IREGION: 0 because IRVALID is 0
6520 * IRVALID: 0 because NS
6522 * NSRW: 0 because NS
6524 * RW: 0 because unpriv and A flag not set
6525 * R: 0 because unpriv and A flag not set
6526 * SRVALID: 0 because NS
6527 * MRVALID: 0 because unpriv and A flag not set
6528 * SREGION: 0 becaus SRVALID is 0
6529 * MREGION: 0 because MRVALID is 0
6534 static void switch_mode(CPUARMState
*env
, int mode
)
6536 ARMCPU
*cpu
= arm_env_get_cpu(env
);
6538 if (mode
!= ARM_CPU_MODE_USR
) {
6539 cpu_abort(CPU(cpu
), "Tried to switch out of user mode\n");
6543 uint32_t arm_phys_excp_target_el(CPUState
*cs
, uint32_t excp_idx
,
6544 uint32_t cur_el
, bool secure
)
6549 void aarch64_sync_64_to_32(CPUARMState
*env
)
6551 g_assert_not_reached();
6556 static void switch_mode(CPUARMState
*env
, int mode
)
6561 old_mode
= env
->uncached_cpsr
& CPSR_M
;
6562 if (mode
== old_mode
)
6565 if (old_mode
== ARM_CPU_MODE_FIQ
) {
6566 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
6567 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
6568 } else if (mode
== ARM_CPU_MODE_FIQ
) {
6569 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
6570 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
6573 i
= bank_number(old_mode
);
6574 env
->banked_r13
[i
] = env
->regs
[13];
6575 env
->banked_spsr
[i
] = env
->spsr
;
6577 i
= bank_number(mode
);
6578 env
->regs
[13] = env
->banked_r13
[i
];
6579 env
->spsr
= env
->banked_spsr
[i
];
6581 env
->banked_r14
[r14_bank_number(old_mode
)] = env
->regs
[14];
6582 env
->regs
[14] = env
->banked_r14
[r14_bank_number(mode
)];
6585 /* Physical Interrupt Target EL Lookup Table
6587 * [ From ARM ARM section G1.13.4 (Table G1-15) ]
6589 * The below multi-dimensional table is used for looking up the target
6590 * exception level given numerous condition criteria. Specifically, the
6591 * target EL is based on SCR and HCR routing controls as well as the
6592 * currently executing EL and secure state.
6595 * target_el_table[2][2][2][2][2][4]
6596 * | | | | | +--- Current EL
6597 * | | | | +------ Non-secure(0)/Secure(1)
6598 * | | | +--------- HCR mask override
6599 * | | +------------ SCR exec state control
6600 * | +--------------- SCR mask override
6601 * +------------------ 32-bit(0)/64-bit(1) EL3
6603 * The table values are as such:
6607 * The ARM ARM target EL table includes entries indicating that an "exception
6608 * is not taken". The two cases where this is applicable are:
6609 * 1) An exception is taken from EL3 but the SCR does not have the exception
6611 * 2) An exception is taken from EL2 but the HCR does not have the exception
6613 * In these two cases, the below table contain a target of EL1. This value is
6614 * returned as it is expected that the consumer of the table data will check
6615 * for "target EL >= current EL" to ensure the exception is not taken.
6619 * BIT IRQ IMO Non-secure Secure
6620 * EL3 FIQ RW FMO EL0 EL1 EL2 EL3 EL0 EL1 EL2 EL3
6622 static const int8_t target_el_table
[2][2][2][2][2][4] = {
6623 {{{{/* 0 0 0 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
6624 {/* 0 0 0 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},
6625 {{/* 0 0 1 0 */{ 1, 1, 2, -1 },{ 3, -1, -1, 3 },},
6626 {/* 0 0 1 1 */{ 2, 2, 2, -1 },{ 3, -1, -1, 3 },},},},
6627 {{{/* 0 1 0 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
6628 {/* 0 1 0 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},
6629 {{/* 0 1 1 0 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},
6630 {/* 0 1 1 1 */{ 3, 3, 3, -1 },{ 3, -1, -1, 3 },},},},},
6631 {{{{/* 1 0 0 0 */{ 1, 1, 2, -1 },{ 1, 1, -1, 1 },},
6632 {/* 1 0 0 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},
6633 {{/* 1 0 1 0 */{ 1, 1, 1, -1 },{ 1, 1, -1, 1 },},
6634 {/* 1 0 1 1 */{ 2, 2, 2, -1 },{ 1, 1, -1, 1 },},},},
6635 {{{/* 1 1 0 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
6636 {/* 1 1 0 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},
6637 {{/* 1 1 1 0 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},
6638 {/* 1 1 1 1 */{ 3, 3, 3, -1 },{ 3, 3, -1, 3 },},},},},
6642 * Determine the target EL for physical exceptions
6644 uint32_t arm_phys_excp_target_el(CPUState
*cs
, uint32_t excp_idx
,
6645 uint32_t cur_el
, bool secure
)
6647 CPUARMState
*env
= cs
->env_ptr
;
6652 /* Is the highest EL AArch64? */
6653 bool is64
= arm_feature(env
, ARM_FEATURE_AARCH64
);
6656 if (arm_feature(env
, ARM_FEATURE_EL3
)) {
6657 rw
= ((env
->cp15
.scr_el3
& SCR_RW
) == SCR_RW
);
6659 /* Either EL2 is the highest EL (and so the EL2 register width
6660 * is given by is64); or there is no EL2 or EL3, in which case
6661 * the value of 'rw' does not affect the table lookup anyway.
6666 hcr_el2
= arm_hcr_el2_eff(env
);
6669 scr
= ((env
->cp15
.scr_el3
& SCR_IRQ
) == SCR_IRQ
);
6670 hcr
= hcr_el2
& HCR_IMO
;
6673 scr
= ((env
->cp15
.scr_el3
& SCR_FIQ
) == SCR_FIQ
);
6674 hcr
= hcr_el2
& HCR_FMO
;
6677 scr
= ((env
->cp15
.scr_el3
& SCR_EA
) == SCR_EA
);
6678 hcr
= hcr_el2
& HCR_AMO
;
6682 /* Perform a table-lookup for the target EL given the current state */
6683 target_el
= target_el_table
[is64
][scr
][rw
][hcr
][secure
][cur_el
];
6685 assert(target_el
> 0);
6690 static bool v7m_stack_write(ARMCPU
*cpu
, uint32_t addr
, uint32_t value
,
6691 ARMMMUIdx mmu_idx
, bool ignfault
)
6693 CPUState
*cs
= CPU(cpu
);
6694 CPUARMState
*env
= &cpu
->env
;
6695 MemTxAttrs attrs
= {};
6697 target_ulong page_size
;
6700 ARMMMUFaultInfo fi
= {};
6701 bool secure
= mmu_idx
& ARM_MMU_IDX_M_S
;
6705 if (get_phys_addr(env
, addr
, MMU_DATA_STORE
, mmu_idx
, &physaddr
,
6706 &attrs
, &prot
, &page_size
, &fi
, NULL
)) {
6707 /* MPU/SAU lookup failed */
6708 if (fi
.type
== ARMFault_QEMU_SFault
) {
6709 qemu_log_mask(CPU_LOG_INT
,
6710 "...SecureFault with SFSR.AUVIOL during stacking\n");
6711 env
->v7m
.sfsr
|= R_V7M_SFSR_AUVIOL_MASK
| R_V7M_SFSR_SFARVALID_MASK
;
6712 env
->v7m
.sfar
= addr
;
6713 exc
= ARMV7M_EXCP_SECURE
;
6716 qemu_log_mask(CPU_LOG_INT
, "...MemManageFault with CFSR.MSTKERR\n");
6717 env
->v7m
.cfsr
[secure
] |= R_V7M_CFSR_MSTKERR_MASK
;
6718 exc
= ARMV7M_EXCP_MEM
;
6719 exc_secure
= secure
;
6723 address_space_stl_le(arm_addressspace(cs
, attrs
), physaddr
, value
,
6725 if (txres
!= MEMTX_OK
) {
6726 /* BusFault trying to write the data */
6727 qemu_log_mask(CPU_LOG_INT
, "...BusFault with BFSR.STKERR\n");
6728 env
->v7m
.cfsr
[M_REG_NS
] |= R_V7M_CFSR_STKERR_MASK
;
6729 exc
= ARMV7M_EXCP_BUS
;
6736 /* By pending the exception at this point we are making
6737 * the IMPDEF choice "overridden exceptions pended" (see the
6738 * MergeExcInfo() pseudocode). The other choice would be to not
6739 * pend them now and then make a choice about which to throw away
6740 * later if we have two derived exceptions.
6741 * The only case when we must not pend the exception but instead
6742 * throw it away is if we are doing the push of the callee registers
6743 * and we've already generated a derived exception. Even in this
6744 * case we will still update the fault status registers.
6747 armv7m_nvic_set_pending_derived(env
->nvic
, exc
, exc_secure
);
6752 static bool v7m_stack_read(ARMCPU
*cpu
, uint32_t *dest
, uint32_t addr
,
6755 CPUState
*cs
= CPU(cpu
);
6756 CPUARMState
*env
= &cpu
->env
;
6757 MemTxAttrs attrs
= {};
6759 target_ulong page_size
;
6762 ARMMMUFaultInfo fi
= {};
6763 bool secure
= mmu_idx
& ARM_MMU_IDX_M_S
;
6768 if (get_phys_addr(env
, addr
, MMU_DATA_LOAD
, mmu_idx
, &physaddr
,
6769 &attrs
, &prot
, &page_size
, &fi
, NULL
)) {
6770 /* MPU/SAU lookup failed */
6771 if (fi
.type
== ARMFault_QEMU_SFault
) {
6772 qemu_log_mask(CPU_LOG_INT
,
6773 "...SecureFault with SFSR.AUVIOL during unstack\n");
6774 env
->v7m
.sfsr
|= R_V7M_SFSR_AUVIOL_MASK
| R_V7M_SFSR_SFARVALID_MASK
;
6775 env
->v7m
.sfar
= addr
;
6776 exc
= ARMV7M_EXCP_SECURE
;
6779 qemu_log_mask(CPU_LOG_INT
,
6780 "...MemManageFault with CFSR.MUNSTKERR\n");
6781 env
->v7m
.cfsr
[secure
] |= R_V7M_CFSR_MUNSTKERR_MASK
;
6782 exc
= ARMV7M_EXCP_MEM
;
6783 exc_secure
= secure
;
6788 value
= address_space_ldl(arm_addressspace(cs
, attrs
), physaddr
,
6790 if (txres
!= MEMTX_OK
) {
6791 /* BusFault trying to read the data */
6792 qemu_log_mask(CPU_LOG_INT
, "...BusFault with BFSR.UNSTKERR\n");
6793 env
->v7m
.cfsr
[M_REG_NS
] |= R_V7M_CFSR_UNSTKERR_MASK
;
6794 exc
= ARMV7M_EXCP_BUS
;
6803 /* By pending the exception at this point we are making
6804 * the IMPDEF choice "overridden exceptions pended" (see the
6805 * MergeExcInfo() pseudocode). The other choice would be to not
6806 * pend them now and then make a choice about which to throw away
6807 * later if we have two derived exceptions.
6809 armv7m_nvic_set_pending(env
->nvic
, exc
, exc_secure
);
6813 /* Write to v7M CONTROL.SPSEL bit for the specified security bank.
6814 * This may change the current stack pointer between Main and Process
6815 * stack pointers if it is done for the CONTROL register for the current
6818 static void write_v7m_control_spsel_for_secstate(CPUARMState
*env
,
6822 bool old_is_psp
= v7m_using_psp(env
);
6824 env
->v7m
.control
[secstate
] =
6825 deposit32(env
->v7m
.control
[secstate
],
6826 R_V7M_CONTROL_SPSEL_SHIFT
,
6827 R_V7M_CONTROL_SPSEL_LENGTH
, new_spsel
);
6829 if (secstate
== env
->v7m
.secure
) {
6830 bool new_is_psp
= v7m_using_psp(env
);
6833 if (old_is_psp
!= new_is_psp
) {
6834 tmp
= env
->v7m
.other_sp
;
6835 env
->v7m
.other_sp
= env
->regs
[13];
6836 env
->regs
[13] = tmp
;
6841 /* Write to v7M CONTROL.SPSEL bit. This may change the current
6842 * stack pointer between Main and Process stack pointers.
6844 static void write_v7m_control_spsel(CPUARMState
*env
, bool new_spsel
)
6846 write_v7m_control_spsel_for_secstate(env
, new_spsel
, env
->v7m
.secure
);
6849 void write_v7m_exception(CPUARMState
*env
, uint32_t new_exc
)
6851 /* Write a new value to v7m.exception, thus transitioning into or out
6852 * of Handler mode; this may result in a change of active stack pointer.
6854 bool new_is_psp
, old_is_psp
= v7m_using_psp(env
);
6857 env
->v7m
.exception
= new_exc
;
6859 new_is_psp
= v7m_using_psp(env
);
6861 if (old_is_psp
!= new_is_psp
) {
6862 tmp
= env
->v7m
.other_sp
;
6863 env
->v7m
.other_sp
= env
->regs
[13];
6864 env
->regs
[13] = tmp
;
6868 /* Switch M profile security state between NS and S */
6869 static void switch_v7m_security_state(CPUARMState
*env
, bool new_secstate
)
6871 uint32_t new_ss_msp
, new_ss_psp
;
6873 if (env
->v7m
.secure
== new_secstate
) {
6877 /* All the banked state is accessed by looking at env->v7m.secure
6878 * except for the stack pointer; rearrange the SP appropriately.
6880 new_ss_msp
= env
->v7m
.other_ss_msp
;
6881 new_ss_psp
= env
->v7m
.other_ss_psp
;
6883 if (v7m_using_psp(env
)) {
6884 env
->v7m
.other_ss_psp
= env
->regs
[13];
6885 env
->v7m
.other_ss_msp
= env
->v7m
.other_sp
;
6887 env
->v7m
.other_ss_msp
= env
->regs
[13];
6888 env
->v7m
.other_ss_psp
= env
->v7m
.other_sp
;
6891 env
->v7m
.secure
= new_secstate
;
6893 if (v7m_using_psp(env
)) {
6894 env
->regs
[13] = new_ss_psp
;
6895 env
->v7m
.other_sp
= new_ss_msp
;
6897 env
->regs
[13] = new_ss_msp
;
6898 env
->v7m
.other_sp
= new_ss_psp
;
6902 void HELPER(v7m_bxns
)(CPUARMState
*env
, uint32_t dest
)
6905 * - if the return value is a magic value, do exception return (like BX)
6906 * - otherwise bit 0 of the return value is the target security state
6910 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
6911 /* Covers FNC_RETURN and EXC_RETURN magic */
6912 min_magic
= FNC_RETURN_MIN_MAGIC
;
6914 /* EXC_RETURN magic only */
6915 min_magic
= EXC_RETURN_MIN_MAGIC
;
6918 if (dest
>= min_magic
) {
6919 /* This is an exception return magic value; put it where
6920 * do_v7m_exception_exit() expects and raise EXCEPTION_EXIT.
6921 * Note that if we ever add gen_ss_advance() singlestep support to
6922 * M profile this should count as an "instruction execution complete"
6923 * event (compare gen_bx_excret_final_code()).
6925 env
->regs
[15] = dest
& ~1;
6926 env
->thumb
= dest
& 1;
6927 HELPER(exception_internal
)(env
, EXCP_EXCEPTION_EXIT
);
6931 /* translate.c should have made BXNS UNDEF unless we're secure */
6932 assert(env
->v7m
.secure
);
6934 switch_v7m_security_state(env
, dest
& 1);
6936 env
->regs
[15] = dest
& ~1;
6939 void HELPER(v7m_blxns
)(CPUARMState
*env
, uint32_t dest
)
6941 /* Handle v7M BLXNS:
6942 * - bit 0 of the destination address is the target security state
6945 /* At this point regs[15] is the address just after the BLXNS */
6946 uint32_t nextinst
= env
->regs
[15] | 1;
6947 uint32_t sp
= env
->regs
[13] - 8;
6950 /* translate.c will have made BLXNS UNDEF unless we're secure */
6951 assert(env
->v7m
.secure
);
6954 /* target is Secure, so this is just a normal BLX,
6955 * except that the low bit doesn't indicate Thumb/not.
6957 env
->regs
[14] = nextinst
;
6959 env
->regs
[15] = dest
& ~1;
6963 /* Target is non-secure: first push a stack frame */
6964 if (!QEMU_IS_ALIGNED(sp
, 8)) {
6965 qemu_log_mask(LOG_GUEST_ERROR
,
6966 "BLXNS with misaligned SP is UNPREDICTABLE\n");
6969 if (sp
< v7m_sp_limit(env
)) {
6970 raise_exception(env
, EXCP_STKOF
, 0, 1);
6973 saved_psr
= env
->v7m
.exception
;
6974 if (env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_SFPA_MASK
) {
6975 saved_psr
|= XPSR_SFPA
;
6978 /* Note that these stores can throw exceptions on MPU faults */
6979 cpu_stl_data(env
, sp
, nextinst
);
6980 cpu_stl_data(env
, sp
+ 4, saved_psr
);
6983 env
->regs
[14] = 0xfeffffff;
6984 if (arm_v7m_is_handler_mode(env
)) {
6985 /* Write a dummy value to IPSR, to avoid leaking the current secure
6986 * exception number to non-secure code. This is guaranteed not
6987 * to cause write_v7m_exception() to actually change stacks.
6989 write_v7m_exception(env
, 1);
6991 switch_v7m_security_state(env
, 0);
6993 env
->regs
[15] = dest
;
6996 static uint32_t *get_v7m_sp_ptr(CPUARMState
*env
, bool secure
, bool threadmode
,
6999 /* Return a pointer to the location where we currently store the
7000 * stack pointer for the requested security state and thread mode.
7001 * This pointer will become invalid if the CPU state is updated
7002 * such that the stack pointers are switched around (eg changing
7003 * the SPSEL control bit).
7004 * Compare the v8M ARM ARM pseudocode LookUpSP_with_security_mode().
7005 * Unlike that pseudocode, we require the caller to pass us in the
7006 * SPSEL control bit value; this is because we also use this
7007 * function in handling of pushing of the callee-saves registers
7008 * part of the v8M stack frame (pseudocode PushCalleeStack()),
7009 * and in the tailchain codepath the SPSEL bit comes from the exception
7010 * return magic LR value from the previous exception. The pseudocode
7011 * opencodes the stack-selection in PushCalleeStack(), but we prefer
7012 * to make this utility function generic enough to do the job.
7014 bool want_psp
= threadmode
&& spsel
;
7016 if (secure
== env
->v7m
.secure
) {
7017 if (want_psp
== v7m_using_psp(env
)) {
7018 return &env
->regs
[13];
7020 return &env
->v7m
.other_sp
;
7024 return &env
->v7m
.other_ss_psp
;
7026 return &env
->v7m
.other_ss_msp
;
7031 static bool arm_v7m_load_vector(ARMCPU
*cpu
, int exc
, bool targets_secure
,
7034 CPUState
*cs
= CPU(cpu
);
7035 CPUARMState
*env
= &cpu
->env
;
7037 uint32_t addr
= env
->v7m
.vecbase
[targets_secure
] + exc
* 4;
7038 uint32_t vector_entry
;
7039 MemTxAttrs attrs
= {};
7043 mmu_idx
= arm_v7m_mmu_idx_for_secstate_and_priv(env
, targets_secure
, true);
7045 /* We don't do a get_phys_addr() here because the rules for vector
7046 * loads are special: they always use the default memory map, and
7047 * the default memory map permits reads from all addresses.
7048 * Since there's no easy way to pass through to pmsav8_mpu_lookup()
7049 * that we want this special case which would always say "yes",
7050 * we just do the SAU lookup here followed by a direct physical load.
7052 attrs
.secure
= targets_secure
;
7055 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
7056 V8M_SAttributes sattrs
= {};
7058 v8m_security_lookup(env
, addr
, MMU_DATA_LOAD
, mmu_idx
, &sattrs
);
7060 attrs
.secure
= false;
7061 } else if (!targets_secure
) {
7062 /* NS access to S memory */
7067 vector_entry
= address_space_ldl(arm_addressspace(cs
, attrs
), addr
,
7069 if (result
!= MEMTX_OK
) {
7072 *pvec
= vector_entry
;
7076 /* All vector table fetch fails are reported as HardFault, with
7077 * HFSR.VECTTBL and .FORCED set. (FORCED is set because
7078 * technically the underlying exception is a MemManage or BusFault
7079 * that is escalated to HardFault.) This is a terminal exception,
7080 * so we will either take the HardFault immediately or else enter
7081 * lockup (the latter case is handled in armv7m_nvic_set_pending_derived()).
7083 exc_secure
= targets_secure
||
7084 !(cpu
->env
.v7m
.aircr
& R_V7M_AIRCR_BFHFNMINS_MASK
);
7085 env
->v7m
.hfsr
|= R_V7M_HFSR_VECTTBL_MASK
| R_V7M_HFSR_FORCED_MASK
;
7086 armv7m_nvic_set_pending_derived(env
->nvic
, ARMV7M_EXCP_HARD
, exc_secure
);
7090 static bool v7m_push_callee_stack(ARMCPU
*cpu
, uint32_t lr
, bool dotailchain
,
7093 /* For v8M, push the callee-saves register part of the stack frame.
7094 * Compare the v8M pseudocode PushCalleeStack().
7095 * In the tailchaining case this may not be the current stack.
7097 CPUARMState
*env
= &cpu
->env
;
7098 uint32_t *frame_sp_p
;
7106 bool mode
= lr
& R_V7M_EXCRET_MODE_MASK
;
7107 bool priv
= !(env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_NPRIV_MASK
) ||
7110 mmu_idx
= arm_v7m_mmu_idx_for_secstate_and_priv(env
, M_REG_S
, priv
);
7111 frame_sp_p
= get_v7m_sp_ptr(env
, M_REG_S
, mode
,
7112 lr
& R_V7M_EXCRET_SPSEL_MASK
);
7113 want_psp
= mode
&& (lr
& R_V7M_EXCRET_SPSEL_MASK
);
7115 limit
= env
->v7m
.psplim
[M_REG_S
];
7117 limit
= env
->v7m
.msplim
[M_REG_S
];
7120 mmu_idx
= core_to_arm_mmu_idx(env
, cpu_mmu_index(env
, false));
7121 frame_sp_p
= &env
->regs
[13];
7122 limit
= v7m_sp_limit(env
);
7125 frameptr
= *frame_sp_p
- 0x28;
7126 if (frameptr
< limit
) {
7128 * Stack limit failure: set SP to the limit value, and generate
7129 * STKOF UsageFault. Stack pushes below the limit must not be
7130 * performed. It is IMPDEF whether pushes above the limit are
7131 * performed; we choose not to.
7133 qemu_log_mask(CPU_LOG_INT
,
7134 "...STKOF during callee-saves register stacking\n");
7135 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_STKOF_MASK
;
7136 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
,
7138 *frame_sp_p
= limit
;
7142 /* Write as much of the stack frame as we can. A write failure may
7143 * cause us to pend a derived exception.
7146 v7m_stack_write(cpu
, frameptr
, 0xfefa125b, mmu_idx
, ignore_faults
) &&
7147 v7m_stack_write(cpu
, frameptr
+ 0x8, env
->regs
[4], mmu_idx
,
7149 v7m_stack_write(cpu
, frameptr
+ 0xc, env
->regs
[5], mmu_idx
,
7151 v7m_stack_write(cpu
, frameptr
+ 0x10, env
->regs
[6], mmu_idx
,
7153 v7m_stack_write(cpu
, frameptr
+ 0x14, env
->regs
[7], mmu_idx
,
7155 v7m_stack_write(cpu
, frameptr
+ 0x18, env
->regs
[8], mmu_idx
,
7157 v7m_stack_write(cpu
, frameptr
+ 0x1c, env
->regs
[9], mmu_idx
,
7159 v7m_stack_write(cpu
, frameptr
+ 0x20, env
->regs
[10], mmu_idx
,
7161 v7m_stack_write(cpu
, frameptr
+ 0x24, env
->regs
[11], mmu_idx
,
7164 /* Update SP regardless of whether any of the stack accesses failed. */
7165 *frame_sp_p
= frameptr
;
7170 static void v7m_exception_taken(ARMCPU
*cpu
, uint32_t lr
, bool dotailchain
,
7171 bool ignore_stackfaults
)
7173 /* Do the "take the exception" parts of exception entry,
7174 * but not the pushing of state to the stack. This is
7175 * similar to the pseudocode ExceptionTaken() function.
7177 CPUARMState
*env
= &cpu
->env
;
7179 bool targets_secure
;
7181 bool push_failed
= false;
7183 armv7m_nvic_get_pending_irq_info(env
->nvic
, &exc
, &targets_secure
);
7184 qemu_log_mask(CPU_LOG_INT
, "...taking pending %s exception %d\n",
7185 targets_secure
? "secure" : "nonsecure", exc
);
7187 if (arm_feature(env
, ARM_FEATURE_V8
)) {
7188 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
) &&
7189 (lr
& R_V7M_EXCRET_S_MASK
)) {
7190 /* The background code (the owner of the registers in the
7191 * exception frame) is Secure. This means it may either already
7192 * have or now needs to push callee-saves registers.
7194 if (targets_secure
) {
7195 if (dotailchain
&& !(lr
& R_V7M_EXCRET_ES_MASK
)) {
7196 /* We took an exception from Secure to NonSecure
7197 * (which means the callee-saved registers got stacked)
7198 * and are now tailchaining to a Secure exception.
7199 * Clear DCRS so eventual return from this Secure
7200 * exception unstacks the callee-saved registers.
7202 lr
&= ~R_V7M_EXCRET_DCRS_MASK
;
7205 /* We're going to a non-secure exception; push the
7206 * callee-saves registers to the stack now, if they're
7207 * not already saved.
7209 if (lr
& R_V7M_EXCRET_DCRS_MASK
&&
7210 !(dotailchain
&& !(lr
& R_V7M_EXCRET_ES_MASK
))) {
7211 push_failed
= v7m_push_callee_stack(cpu
, lr
, dotailchain
,
7212 ignore_stackfaults
);
7214 lr
|= R_V7M_EXCRET_DCRS_MASK
;
7218 lr
&= ~R_V7M_EXCRET_ES_MASK
;
7219 if (targets_secure
|| !arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
7220 lr
|= R_V7M_EXCRET_ES_MASK
;
7222 lr
&= ~R_V7M_EXCRET_SPSEL_MASK
;
7223 if (env
->v7m
.control
[targets_secure
] & R_V7M_CONTROL_SPSEL_MASK
) {
7224 lr
|= R_V7M_EXCRET_SPSEL_MASK
;
7227 /* Clear registers if necessary to prevent non-secure exception
7228 * code being able to see register values from secure code.
7229 * Where register values become architecturally UNKNOWN we leave
7230 * them with their previous values.
7232 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
7233 if (!targets_secure
) {
7234 /* Always clear the caller-saved registers (they have been
7235 * pushed to the stack earlier in v7m_push_stack()).
7236 * Clear callee-saved registers if the background code is
7237 * Secure (in which case these regs were saved in
7238 * v7m_push_callee_stack()).
7242 for (i
= 0; i
< 13; i
++) {
7243 /* r4..r11 are callee-saves, zero only if EXCRET.S == 1 */
7244 if (i
< 4 || i
> 11 || (lr
& R_V7M_EXCRET_S_MASK
)) {
7249 xpsr_write(env
, 0, XPSR_NZCV
| XPSR_Q
| XPSR_GE
| XPSR_IT
);
7254 if (push_failed
&& !ignore_stackfaults
) {
7255 /* Derived exception on callee-saves register stacking:
7256 * we might now want to take a different exception which
7257 * targets a different security state, so try again from the top.
7259 qemu_log_mask(CPU_LOG_INT
,
7260 "...derived exception on callee-saves register stacking");
7261 v7m_exception_taken(cpu
, lr
, true, true);
7265 if (!arm_v7m_load_vector(cpu
, exc
, targets_secure
, &addr
)) {
7266 /* Vector load failed: derived exception */
7267 qemu_log_mask(CPU_LOG_INT
, "...derived exception on vector table load");
7268 v7m_exception_taken(cpu
, lr
, true, true);
7272 /* Now we've done everything that might cause a derived exception
7273 * we can go ahead and activate whichever exception we're going to
7274 * take (which might now be the derived exception).
7276 armv7m_nvic_acknowledge_irq(env
->nvic
);
7278 /* Switch to target security state -- must do this before writing SPSEL */
7279 switch_v7m_security_state(env
, targets_secure
);
7280 write_v7m_control_spsel(env
, 0);
7281 arm_clear_exclusive(env
);
7283 env
->condexec_bits
= 0;
7285 env
->regs
[15] = addr
& 0xfffffffe;
7286 env
->thumb
= addr
& 1;
7289 static bool v7m_push_stack(ARMCPU
*cpu
)
7291 /* Do the "set up stack frame" part of exception entry,
7292 * similar to pseudocode PushStack().
7293 * Return true if we generate a derived exception (and so
7294 * should ignore further stack faults trying to process
7295 * that derived exception.)
7298 CPUARMState
*env
= &cpu
->env
;
7299 uint32_t xpsr
= xpsr_read(env
);
7300 uint32_t frameptr
= env
->regs
[13];
7301 ARMMMUIdx mmu_idx
= core_to_arm_mmu_idx(env
, cpu_mmu_index(env
, false));
7303 /* Align stack pointer if the guest wants that */
7304 if ((frameptr
& 4) &&
7305 (env
->v7m
.ccr
[env
->v7m
.secure
] & R_V7M_CCR_STKALIGN_MASK
)) {
7307 xpsr
|= XPSR_SPREALIGN
;
7312 if (arm_feature(env
, ARM_FEATURE_V8
)) {
7313 uint32_t limit
= v7m_sp_limit(env
);
7315 if (frameptr
< limit
) {
7317 * Stack limit failure: set SP to the limit value, and generate
7318 * STKOF UsageFault. Stack pushes below the limit must not be
7319 * performed. It is IMPDEF whether pushes above the limit are
7320 * performed; we choose not to.
7322 qemu_log_mask(CPU_LOG_INT
,
7323 "...STKOF during stacking\n");
7324 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_STKOF_MASK
;
7325 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
,
7327 env
->regs
[13] = limit
;
7332 /* Write as much of the stack frame as we can. If we fail a stack
7333 * write this will result in a derived exception being pended
7334 * (which may be taken in preference to the one we started with
7335 * if it has higher priority).
7338 v7m_stack_write(cpu
, frameptr
, env
->regs
[0], mmu_idx
, false) &&
7339 v7m_stack_write(cpu
, frameptr
+ 4, env
->regs
[1], mmu_idx
, false) &&
7340 v7m_stack_write(cpu
, frameptr
+ 8, env
->regs
[2], mmu_idx
, false) &&
7341 v7m_stack_write(cpu
, frameptr
+ 12, env
->regs
[3], mmu_idx
, false) &&
7342 v7m_stack_write(cpu
, frameptr
+ 16, env
->regs
[12], mmu_idx
, false) &&
7343 v7m_stack_write(cpu
, frameptr
+ 20, env
->regs
[14], mmu_idx
, false) &&
7344 v7m_stack_write(cpu
, frameptr
+ 24, env
->regs
[15], mmu_idx
, false) &&
7345 v7m_stack_write(cpu
, frameptr
+ 28, xpsr
, mmu_idx
, false);
7347 /* Update SP regardless of whether any of the stack accesses failed. */
7348 env
->regs
[13] = frameptr
;
7353 static void do_v7m_exception_exit(ARMCPU
*cpu
)
7355 CPUARMState
*env
= &cpu
->env
;
7358 bool ufault
= false;
7359 bool sfault
= false;
7360 bool return_to_sp_process
;
7361 bool return_to_handler
;
7362 bool rettobase
= false;
7363 bool exc_secure
= false;
7364 bool return_to_secure
;
7366 /* If we're not in Handler mode then jumps to magic exception-exit
7367 * addresses don't have magic behaviour. However for the v8M
7368 * security extensions the magic secure-function-return has to
7369 * work in thread mode too, so to avoid doing an extra check in
7370 * the generated code we allow exception-exit magic to also cause the
7371 * internal exception and bring us here in thread mode. Correct code
7372 * will never try to do this (the following insn fetch will always
7373 * fault) so we the overhead of having taken an unnecessary exception
7376 if (!arm_v7m_is_handler_mode(env
)) {
7380 /* In the spec pseudocode ExceptionReturn() is called directly
7381 * from BXWritePC() and gets the full target PC value including
7382 * bit zero. In QEMU's implementation we treat it as a normal
7383 * jump-to-register (which is then caught later on), and so split
7384 * the target value up between env->regs[15] and env->thumb in
7385 * gen_bx(). Reconstitute it.
7387 excret
= env
->regs
[15];
7392 qemu_log_mask(CPU_LOG_INT
, "Exception return: magic PC %" PRIx32
7393 " previous exception %d\n",
7394 excret
, env
->v7m
.exception
);
7396 if ((excret
& R_V7M_EXCRET_RES1_MASK
) != R_V7M_EXCRET_RES1_MASK
) {
7397 qemu_log_mask(LOG_GUEST_ERROR
, "M profile: zero high bits in exception "
7398 "exit PC value 0x%" PRIx32
" are UNPREDICTABLE\n",
7402 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
7403 /* EXC_RETURN.ES validation check (R_SMFL). We must do this before
7404 * we pick which FAULTMASK to clear.
7406 if (!env
->v7m
.secure
&&
7407 ((excret
& R_V7M_EXCRET_ES_MASK
) ||
7408 !(excret
& R_V7M_EXCRET_DCRS_MASK
))) {
7410 /* For all other purposes, treat ES as 0 (R_HXSR) */
7411 excret
&= ~R_V7M_EXCRET_ES_MASK
;
7413 exc_secure
= excret
& R_V7M_EXCRET_ES_MASK
;
7416 if (env
->v7m
.exception
!= ARMV7M_EXCP_NMI
) {
7417 /* Auto-clear FAULTMASK on return from other than NMI.
7418 * If the security extension is implemented then this only
7419 * happens if the raw execution priority is >= 0; the
7420 * value of the ES bit in the exception return value indicates
7421 * which security state's faultmask to clear. (v8M ARM ARM R_KBNF.)
7423 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
7424 if (armv7m_nvic_raw_execution_priority(env
->nvic
) >= 0) {
7425 env
->v7m
.faultmask
[exc_secure
] = 0;
7428 env
->v7m
.faultmask
[M_REG_NS
] = 0;
7432 switch (armv7m_nvic_complete_irq(env
->nvic
, env
->v7m
.exception
,
7435 /* attempt to exit an exception that isn't active */
7439 /* still an irq active now */
7442 /* we returned to base exception level, no nesting.
7443 * (In the pseudocode this is written using "NestedActivation != 1"
7444 * where we have 'rettobase == false'.)
7449 g_assert_not_reached();
7452 return_to_handler
= !(excret
& R_V7M_EXCRET_MODE_MASK
);
7453 return_to_sp_process
= excret
& R_V7M_EXCRET_SPSEL_MASK
;
7454 return_to_secure
= arm_feature(env
, ARM_FEATURE_M_SECURITY
) &&
7455 (excret
& R_V7M_EXCRET_S_MASK
);
7457 if (arm_feature(env
, ARM_FEATURE_V8
)) {
7458 if (!arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
7459 /* UNPREDICTABLE if S == 1 or DCRS == 0 or ES == 1 (R_XLCP);
7460 * we choose to take the UsageFault.
7462 if ((excret
& R_V7M_EXCRET_S_MASK
) ||
7463 (excret
& R_V7M_EXCRET_ES_MASK
) ||
7464 !(excret
& R_V7M_EXCRET_DCRS_MASK
)) {
7468 if (excret
& R_V7M_EXCRET_RES0_MASK
) {
7472 /* For v7M we only recognize certain combinations of the low bits */
7473 switch (excret
& 0xf) {
7474 case 1: /* Return to Handler */
7476 case 13: /* Return to Thread using Process stack */
7477 case 9: /* Return to Thread using Main stack */
7478 /* We only need to check NONBASETHRDENA for v7M, because in
7479 * v8M this bit does not exist (it is RES1).
7482 !(env
->v7m
.ccr
[env
->v7m
.secure
] &
7483 R_V7M_CCR_NONBASETHRDENA_MASK
)) {
7493 * Set CONTROL.SPSEL from excret.SPSEL. Since we're still in
7494 * Handler mode (and will be until we write the new XPSR.Interrupt
7495 * field) this does not switch around the current stack pointer.
7496 * We must do this before we do any kind of tailchaining, including
7497 * for the derived exceptions on integrity check failures, or we will
7498 * give the guest an incorrect EXCRET.SPSEL value on exception entry.
7500 write_v7m_control_spsel_for_secstate(env
, return_to_sp_process
, exc_secure
);
7503 env
->v7m
.sfsr
|= R_V7M_SFSR_INVER_MASK
;
7504 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SECURE
, false);
7505 qemu_log_mask(CPU_LOG_INT
, "...taking SecureFault on existing "
7506 "stackframe: failed EXC_RETURN.ES validity check\n");
7507 v7m_exception_taken(cpu
, excret
, true, false);
7512 /* Bad exception return: instead of popping the exception
7513 * stack, directly take a usage fault on the current stack.
7515 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_INVPC_MASK
;
7516 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, env
->v7m
.secure
);
7517 qemu_log_mask(CPU_LOG_INT
, "...taking UsageFault on existing "
7518 "stackframe: failed exception return integrity check\n");
7519 v7m_exception_taken(cpu
, excret
, true, false);
7524 * Tailchaining: if there is currently a pending exception that
7525 * is high enough priority to preempt execution at the level we're
7526 * about to return to, then just directly take that exception now,
7527 * avoiding an unstack-and-then-stack. Note that now we have
7528 * deactivated the previous exception by calling armv7m_nvic_complete_irq()
7529 * our current execution priority is already the execution priority we are
7530 * returning to -- none of the state we would unstack or set based on
7531 * the EXCRET value affects it.
7533 if (armv7m_nvic_can_take_pending_exception(env
->nvic
)) {
7534 qemu_log_mask(CPU_LOG_INT
, "...tailchaining to pending exception\n");
7535 v7m_exception_taken(cpu
, excret
, true, false);
7539 switch_v7m_security_state(env
, return_to_secure
);
7542 /* The stack pointer we should be reading the exception frame from
7543 * depends on bits in the magic exception return type value (and
7544 * for v8M isn't necessarily the stack pointer we will eventually
7545 * end up resuming execution with). Get a pointer to the location
7546 * in the CPU state struct where the SP we need is currently being
7547 * stored; we will use and modify it in place.
7548 * We use this limited C variable scope so we don't accidentally
7549 * use 'frame_sp_p' after we do something that makes it invalid.
7551 uint32_t *frame_sp_p
= get_v7m_sp_ptr(env
,
7554 return_to_sp_process
);
7555 uint32_t frameptr
= *frame_sp_p
;
7558 bool return_to_priv
= return_to_handler
||
7559 !(env
->v7m
.control
[return_to_secure
] & R_V7M_CONTROL_NPRIV_MASK
);
7561 mmu_idx
= arm_v7m_mmu_idx_for_secstate_and_priv(env
, return_to_secure
,
7564 if (!QEMU_IS_ALIGNED(frameptr
, 8) &&
7565 arm_feature(env
, ARM_FEATURE_V8
)) {
7566 qemu_log_mask(LOG_GUEST_ERROR
,
7567 "M profile exception return with non-8-aligned SP "
7568 "for destination state is UNPREDICTABLE\n");
7571 /* Do we need to pop callee-saved registers? */
7572 if (return_to_secure
&&
7573 ((excret
& R_V7M_EXCRET_ES_MASK
) == 0 ||
7574 (excret
& R_V7M_EXCRET_DCRS_MASK
) == 0)) {
7575 uint32_t expected_sig
= 0xfefa125b;
7576 uint32_t actual_sig
;
7578 pop_ok
= v7m_stack_read(cpu
, &actual_sig
, frameptr
, mmu_idx
);
7580 if (pop_ok
&& expected_sig
!= actual_sig
) {
7581 /* Take a SecureFault on the current stack */
7582 env
->v7m
.sfsr
|= R_V7M_SFSR_INVIS_MASK
;
7583 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SECURE
, false);
7584 qemu_log_mask(CPU_LOG_INT
, "...taking SecureFault on existing "
7585 "stackframe: failed exception return integrity "
7586 "signature check\n");
7587 v7m_exception_taken(cpu
, excret
, true, false);
7592 v7m_stack_read(cpu
, &env
->regs
[4], frameptr
+ 0x8, mmu_idx
) &&
7593 v7m_stack_read(cpu
, &env
->regs
[5], frameptr
+ 0xc, mmu_idx
) &&
7594 v7m_stack_read(cpu
, &env
->regs
[6], frameptr
+ 0x10, mmu_idx
) &&
7595 v7m_stack_read(cpu
, &env
->regs
[7], frameptr
+ 0x14, mmu_idx
) &&
7596 v7m_stack_read(cpu
, &env
->regs
[8], frameptr
+ 0x18, mmu_idx
) &&
7597 v7m_stack_read(cpu
, &env
->regs
[9], frameptr
+ 0x1c, mmu_idx
) &&
7598 v7m_stack_read(cpu
, &env
->regs
[10], frameptr
+ 0x20, mmu_idx
) &&
7599 v7m_stack_read(cpu
, &env
->regs
[11], frameptr
+ 0x24, mmu_idx
);
7606 v7m_stack_read(cpu
, &env
->regs
[0], frameptr
, mmu_idx
) &&
7607 v7m_stack_read(cpu
, &env
->regs
[1], frameptr
+ 0x4, mmu_idx
) &&
7608 v7m_stack_read(cpu
, &env
->regs
[2], frameptr
+ 0x8, mmu_idx
) &&
7609 v7m_stack_read(cpu
, &env
->regs
[3], frameptr
+ 0xc, mmu_idx
) &&
7610 v7m_stack_read(cpu
, &env
->regs
[12], frameptr
+ 0x10, mmu_idx
) &&
7611 v7m_stack_read(cpu
, &env
->regs
[14], frameptr
+ 0x14, mmu_idx
) &&
7612 v7m_stack_read(cpu
, &env
->regs
[15], frameptr
+ 0x18, mmu_idx
) &&
7613 v7m_stack_read(cpu
, &xpsr
, frameptr
+ 0x1c, mmu_idx
);
7616 /* v7m_stack_read() pended a fault, so take it (as a tail
7617 * chained exception on the same stack frame)
7619 qemu_log_mask(CPU_LOG_INT
, "...derived exception on unstacking\n");
7620 v7m_exception_taken(cpu
, excret
, true, false);
7624 /* Returning from an exception with a PC with bit 0 set is defined
7625 * behaviour on v8M (bit 0 is ignored), but for v7M it was specified
7626 * to be UNPREDICTABLE. In practice actual v7M hardware seems to ignore
7627 * the lsbit, and there are several RTOSes out there which incorrectly
7628 * assume the r15 in the stack frame should be a Thumb-style "lsbit
7629 * indicates ARM/Thumb" value, so ignore the bit on v7M as well, but
7630 * complain about the badly behaved guest.
7632 if (env
->regs
[15] & 1) {
7633 env
->regs
[15] &= ~1U;
7634 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
7635 qemu_log_mask(LOG_GUEST_ERROR
,
7636 "M profile return from interrupt with misaligned "
7637 "PC is UNPREDICTABLE on v7M\n");
7641 if (arm_feature(env
, ARM_FEATURE_V8
)) {
7642 /* For v8M we have to check whether the xPSR exception field
7643 * matches the EXCRET value for return to handler/thread
7644 * before we commit to changing the SP and xPSR.
7646 bool will_be_handler
= (xpsr
& XPSR_EXCP
) != 0;
7647 if (return_to_handler
!= will_be_handler
) {
7648 /* Take an INVPC UsageFault on the current stack.
7649 * By this point we will have switched to the security state
7650 * for the background state, so this UsageFault will target
7653 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
,
7655 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_INVPC_MASK
;
7656 qemu_log_mask(CPU_LOG_INT
, "...taking UsageFault on existing "
7657 "stackframe: failed exception return integrity "
7659 v7m_exception_taken(cpu
, excret
, true, false);
7664 /* Commit to consuming the stack frame */
7666 /* Undo stack alignment (the SPREALIGN bit indicates that the original
7667 * pre-exception SP was not 8-aligned and we added a padding word to
7668 * align it, so we undo this by ORing in the bit that increases it
7669 * from the current 8-aligned value to the 8-unaligned value. (Adding 4
7670 * would work too but a logical OR is how the pseudocode specifies it.)
7672 if (xpsr
& XPSR_SPREALIGN
) {
7675 *frame_sp_p
= frameptr
;
7677 /* This xpsr_write() will invalidate frame_sp_p as it may switch stack */
7678 xpsr_write(env
, xpsr
, ~XPSR_SPREALIGN
);
7680 /* The restored xPSR exception field will be zero if we're
7681 * resuming in Thread mode. If that doesn't match what the
7682 * exception return excret specified then this is a UsageFault.
7683 * v7M requires we make this check here; v8M did it earlier.
7685 if (return_to_handler
!= arm_v7m_is_handler_mode(env
)) {
7686 /* Take an INVPC UsageFault by pushing the stack again;
7687 * we know we're v7M so this is never a Secure UsageFault.
7689 bool ignore_stackfaults
;
7691 assert(!arm_feature(env
, ARM_FEATURE_V8
));
7692 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, false);
7693 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_INVPC_MASK
;
7694 ignore_stackfaults
= v7m_push_stack(cpu
);
7695 qemu_log_mask(CPU_LOG_INT
, "...taking UsageFault on new stackframe: "
7696 "failed exception return integrity check\n");
7697 v7m_exception_taken(cpu
, excret
, false, ignore_stackfaults
);
7701 /* Otherwise, we have a successful exception exit. */
7702 arm_clear_exclusive(env
);
7703 qemu_log_mask(CPU_LOG_INT
, "...successful exception return\n");
7706 static bool do_v7m_function_return(ARMCPU
*cpu
)
7708 /* v8M security extensions magic function return.
7710 * (1) throw an exception (longjump)
7711 * (2) return true if we successfully handled the function return
7712 * (3) return false if we failed a consistency check and have
7713 * pended a UsageFault that needs to be taken now
7715 * At this point the magic return value is split between env->regs[15]
7716 * and env->thumb. We don't bother to reconstitute it because we don't
7717 * need it (all values are handled the same way).
7719 CPUARMState
*env
= &cpu
->env
;
7720 uint32_t newpc
, newpsr
, newpsr_exc
;
7722 qemu_log_mask(CPU_LOG_INT
, "...really v7M secure function return\n");
7725 bool threadmode
, spsel
;
7728 uint32_t *frame_sp_p
;
7731 /* Pull the return address and IPSR from the Secure stack */
7732 threadmode
= !arm_v7m_is_handler_mode(env
);
7733 spsel
= env
->v7m
.control
[M_REG_S
] & R_V7M_CONTROL_SPSEL_MASK
;
7735 frame_sp_p
= get_v7m_sp_ptr(env
, true, threadmode
, spsel
);
7736 frameptr
= *frame_sp_p
;
7738 /* These loads may throw an exception (for MPU faults). We want to
7739 * do them as secure, so work out what MMU index that is.
7741 mmu_idx
= arm_v7m_mmu_idx_for_secstate(env
, true);
7742 oi
= make_memop_idx(MO_LE
, arm_to_core_mmu_idx(mmu_idx
));
7743 newpc
= helper_le_ldul_mmu(env
, frameptr
, oi
, 0);
7744 newpsr
= helper_le_ldul_mmu(env
, frameptr
+ 4, oi
, 0);
7746 /* Consistency checks on new IPSR */
7747 newpsr_exc
= newpsr
& XPSR_EXCP
;
7748 if (!((env
->v7m
.exception
== 0 && newpsr_exc
== 0) ||
7749 (env
->v7m
.exception
== 1 && newpsr_exc
!= 0))) {
7750 /* Pend the fault and tell our caller to take it */
7751 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_INVPC_MASK
;
7752 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
,
7754 qemu_log_mask(CPU_LOG_INT
,
7755 "...taking INVPC UsageFault: "
7756 "IPSR consistency check failed\n");
7760 *frame_sp_p
= frameptr
+ 8;
7763 /* This invalidates frame_sp_p */
7764 switch_v7m_security_state(env
, true);
7765 env
->v7m
.exception
= newpsr_exc
;
7766 env
->v7m
.control
[M_REG_S
] &= ~R_V7M_CONTROL_SFPA_MASK
;
7767 if (newpsr
& XPSR_SFPA
) {
7768 env
->v7m
.control
[M_REG_S
] |= R_V7M_CONTROL_SFPA_MASK
;
7770 xpsr_write(env
, 0, XPSR_IT
);
7771 env
->thumb
= newpc
& 1;
7772 env
->regs
[15] = newpc
& ~1;
7774 qemu_log_mask(CPU_LOG_INT
, "...function return successful\n");
7778 static void arm_log_exception(int idx
)
7780 if (qemu_loglevel_mask(CPU_LOG_INT
)) {
7781 const char *exc
= NULL
;
7782 static const char * const excnames
[] = {
7783 [EXCP_UDEF
] = "Undefined Instruction",
7785 [EXCP_PREFETCH_ABORT
] = "Prefetch Abort",
7786 [EXCP_DATA_ABORT
] = "Data Abort",
7789 [EXCP_BKPT
] = "Breakpoint",
7790 [EXCP_EXCEPTION_EXIT
] = "QEMU v7M exception exit",
7791 [EXCP_KERNEL_TRAP
] = "QEMU intercept of kernel commpage",
7792 [EXCP_HVC
] = "Hypervisor Call",
7793 [EXCP_HYP_TRAP
] = "Hypervisor Trap",
7794 [EXCP_SMC
] = "Secure Monitor Call",
7795 [EXCP_VIRQ
] = "Virtual IRQ",
7796 [EXCP_VFIQ
] = "Virtual FIQ",
7797 [EXCP_SEMIHOST
] = "Semihosting call",
7798 [EXCP_NOCP
] = "v7M NOCP UsageFault",
7799 [EXCP_INVSTATE
] = "v7M INVSTATE UsageFault",
7800 [EXCP_STKOF
] = "v8M STKOF UsageFault",
7803 if (idx
>= 0 && idx
< ARRAY_SIZE(excnames
)) {
7804 exc
= excnames
[idx
];
7809 qemu_log_mask(CPU_LOG_INT
, "Taking exception %d [%s]\n", idx
, exc
);
7813 static bool v7m_read_half_insn(ARMCPU
*cpu
, ARMMMUIdx mmu_idx
,
7814 uint32_t addr
, uint16_t *insn
)
7816 /* Load a 16-bit portion of a v7M instruction, returning true on success,
7817 * or false on failure (in which case we will have pended the appropriate
7819 * We need to do the instruction fetch's MPU and SAU checks
7820 * like this because there is no MMU index that would allow
7821 * doing the load with a single function call. Instead we must
7822 * first check that the security attributes permit the load
7823 * and that they don't mismatch on the two halves of the instruction,
7824 * and then we do the load as a secure load (ie using the security
7825 * attributes of the address, not the CPU, as architecturally required).
7827 CPUState
*cs
= CPU(cpu
);
7828 CPUARMState
*env
= &cpu
->env
;
7829 V8M_SAttributes sattrs
= {};
7830 MemTxAttrs attrs
= {};
7831 ARMMMUFaultInfo fi
= {};
7833 target_ulong page_size
;
7837 v8m_security_lookup(env
, addr
, MMU_INST_FETCH
, mmu_idx
, &sattrs
);
7838 if (!sattrs
.nsc
|| sattrs
.ns
) {
7839 /* This must be the second half of the insn, and it straddles a
7840 * region boundary with the second half not being S&NSC.
7842 env
->v7m
.sfsr
|= R_V7M_SFSR_INVEP_MASK
;
7843 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SECURE
, false);
7844 qemu_log_mask(CPU_LOG_INT
,
7845 "...really SecureFault with SFSR.INVEP\n");
7848 if (get_phys_addr(env
, addr
, MMU_INST_FETCH
, mmu_idx
,
7849 &physaddr
, &attrs
, &prot
, &page_size
, &fi
, NULL
)) {
7850 /* the MPU lookup failed */
7851 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_IACCVIOL_MASK
;
7852 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
, env
->v7m
.secure
);
7853 qemu_log_mask(CPU_LOG_INT
, "...really MemManage with CFSR.IACCVIOL\n");
7856 *insn
= address_space_lduw_le(arm_addressspace(cs
, attrs
), physaddr
,
7858 if (txres
!= MEMTX_OK
) {
7859 env
->v7m
.cfsr
[M_REG_NS
] |= R_V7M_CFSR_IBUSERR_MASK
;
7860 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_BUS
, false);
7861 qemu_log_mask(CPU_LOG_INT
, "...really BusFault with CFSR.IBUSERR\n");
7867 static bool v7m_handle_execute_nsc(ARMCPU
*cpu
)
7869 /* Check whether this attempt to execute code in a Secure & NS-Callable
7870 * memory region is for an SG instruction; if so, then emulate the
7871 * effect of the SG instruction and return true. Otherwise pend
7872 * the correct kind of exception and return false.
7874 CPUARMState
*env
= &cpu
->env
;
7878 /* We should never get here unless get_phys_addr_pmsav8() caused
7879 * an exception for NS executing in S&NSC memory.
7881 assert(!env
->v7m
.secure
);
7882 assert(arm_feature(env
, ARM_FEATURE_M_SECURITY
));
7884 /* We want to do the MPU lookup as secure; work out what mmu_idx that is */
7885 mmu_idx
= arm_v7m_mmu_idx_for_secstate(env
, true);
7887 if (!v7m_read_half_insn(cpu
, mmu_idx
, env
->regs
[15], &insn
)) {
7895 if (insn
!= 0xe97f) {
7896 /* Not an SG instruction first half (we choose the IMPDEF
7897 * early-SG-check option).
7902 if (!v7m_read_half_insn(cpu
, mmu_idx
, env
->regs
[15] + 2, &insn
)) {
7906 if (insn
!= 0xe97f) {
7907 /* Not an SG instruction second half (yes, both halves of the SG
7908 * insn have the same hex value)
7913 /* OK, we have confirmed that we really have an SG instruction.
7914 * We know we're NS in S memory so don't need to repeat those checks.
7916 qemu_log_mask(CPU_LOG_INT
, "...really an SG instruction at 0x%08" PRIx32
7917 ", executing it\n", env
->regs
[15]);
7918 env
->regs
[14] &= ~1;
7919 switch_v7m_security_state(env
, true);
7920 xpsr_write(env
, 0, XPSR_IT
);
7925 env
->v7m
.sfsr
|= R_V7M_SFSR_INVEP_MASK
;
7926 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SECURE
, false);
7927 qemu_log_mask(CPU_LOG_INT
,
7928 "...really SecureFault with SFSR.INVEP\n");
7932 void arm_v7m_cpu_do_interrupt(CPUState
*cs
)
7934 ARMCPU
*cpu
= ARM_CPU(cs
);
7935 CPUARMState
*env
= &cpu
->env
;
7937 bool ignore_stackfaults
;
7939 arm_log_exception(cs
->exception_index
);
7941 /* For exceptions we just mark as pending on the NVIC, and let that
7943 switch (cs
->exception_index
) {
7945 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, env
->v7m
.secure
);
7946 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_UNDEFINSTR_MASK
;
7949 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, env
->v7m
.secure
);
7950 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_NOCP_MASK
;
7953 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, env
->v7m
.secure
);
7954 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_INVSTATE_MASK
;
7957 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_USAGE
, env
->v7m
.secure
);
7958 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_STKOF_MASK
;
7961 /* The PC already points to the next instruction. */
7962 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SVC
, env
->v7m
.secure
);
7964 case EXCP_PREFETCH_ABORT
:
7965 case EXCP_DATA_ABORT
:
7966 /* Note that for M profile we don't have a guest facing FSR, but
7967 * the env->exception.fsr will be populated by the code that
7968 * raises the fault, in the A profile short-descriptor format.
7970 switch (env
->exception
.fsr
& 0xf) {
7971 case M_FAKE_FSR_NSC_EXEC
:
7972 /* Exception generated when we try to execute code at an address
7973 * which is marked as Secure & Non-Secure Callable and the CPU
7974 * is in the Non-Secure state. The only instruction which can
7975 * be executed like this is SG (and that only if both halves of
7976 * the SG instruction have the same security attributes.)
7977 * Everything else must generate an INVEP SecureFault, so we
7978 * emulate the SG instruction here.
7980 if (v7m_handle_execute_nsc(cpu
)) {
7984 case M_FAKE_FSR_SFAULT
:
7985 /* Various flavours of SecureFault for attempts to execute or
7986 * access data in the wrong security state.
7988 switch (cs
->exception_index
) {
7989 case EXCP_PREFETCH_ABORT
:
7990 if (env
->v7m
.secure
) {
7991 env
->v7m
.sfsr
|= R_V7M_SFSR_INVTRAN_MASK
;
7992 qemu_log_mask(CPU_LOG_INT
,
7993 "...really SecureFault with SFSR.INVTRAN\n");
7995 env
->v7m
.sfsr
|= R_V7M_SFSR_INVEP_MASK
;
7996 qemu_log_mask(CPU_LOG_INT
,
7997 "...really SecureFault with SFSR.INVEP\n");
8000 case EXCP_DATA_ABORT
:
8001 /* This must be an NS access to S memory */
8002 env
->v7m
.sfsr
|= R_V7M_SFSR_AUVIOL_MASK
;
8003 qemu_log_mask(CPU_LOG_INT
,
8004 "...really SecureFault with SFSR.AUVIOL\n");
8007 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_SECURE
, false);
8009 case 0x8: /* External Abort */
8010 switch (cs
->exception_index
) {
8011 case EXCP_PREFETCH_ABORT
:
8012 env
->v7m
.cfsr
[M_REG_NS
] |= R_V7M_CFSR_IBUSERR_MASK
;
8013 qemu_log_mask(CPU_LOG_INT
, "...with CFSR.IBUSERR\n");
8015 case EXCP_DATA_ABORT
:
8016 env
->v7m
.cfsr
[M_REG_NS
] |=
8017 (R_V7M_CFSR_PRECISERR_MASK
| R_V7M_CFSR_BFARVALID_MASK
);
8018 env
->v7m
.bfar
= env
->exception
.vaddress
;
8019 qemu_log_mask(CPU_LOG_INT
,
8020 "...with CFSR.PRECISERR and BFAR 0x%x\n",
8024 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_BUS
, false);
8027 /* All other FSR values are either MPU faults or "can't happen
8028 * for M profile" cases.
8030 switch (cs
->exception_index
) {
8031 case EXCP_PREFETCH_ABORT
:
8032 env
->v7m
.cfsr
[env
->v7m
.secure
] |= R_V7M_CFSR_IACCVIOL_MASK
;
8033 qemu_log_mask(CPU_LOG_INT
, "...with CFSR.IACCVIOL\n");
8035 case EXCP_DATA_ABORT
:
8036 env
->v7m
.cfsr
[env
->v7m
.secure
] |=
8037 (R_V7M_CFSR_DACCVIOL_MASK
| R_V7M_CFSR_MMARVALID_MASK
);
8038 env
->v7m
.mmfar
[env
->v7m
.secure
] = env
->exception
.vaddress
;
8039 qemu_log_mask(CPU_LOG_INT
,
8040 "...with CFSR.DACCVIOL and MMFAR 0x%x\n",
8041 env
->v7m
.mmfar
[env
->v7m
.secure
]);
8044 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_MEM
,
8050 if (semihosting_enabled()) {
8052 nr
= arm_lduw_code(env
, env
->regs
[15], arm_sctlr_b(env
)) & 0xff;
8055 qemu_log_mask(CPU_LOG_INT
,
8056 "...handling as semihosting call 0x%x\n",
8058 env
->regs
[0] = do_arm_semihosting(env
);
8062 armv7m_nvic_set_pending(env
->nvic
, ARMV7M_EXCP_DEBUG
, false);
8066 case EXCP_EXCEPTION_EXIT
:
8067 if (env
->regs
[15] < EXC_RETURN_MIN_MAGIC
) {
8068 /* Must be v8M security extension function return */
8069 assert(env
->regs
[15] >= FNC_RETURN_MIN_MAGIC
);
8070 assert(arm_feature(env
, ARM_FEATURE_M_SECURITY
));
8071 if (do_v7m_function_return(cpu
)) {
8075 do_v7m_exception_exit(cpu
);
8080 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
8081 return; /* Never happens. Keep compiler happy. */
8084 if (arm_feature(env
, ARM_FEATURE_V8
)) {
8085 lr
= R_V7M_EXCRET_RES1_MASK
|
8086 R_V7M_EXCRET_DCRS_MASK
|
8087 R_V7M_EXCRET_FTYPE_MASK
;
8088 /* The S bit indicates whether we should return to Secure
8089 * or NonSecure (ie our current state).
8090 * The ES bit indicates whether we're taking this exception
8091 * to Secure or NonSecure (ie our target state). We set it
8092 * later, in v7m_exception_taken().
8093 * The SPSEL bit is also set in v7m_exception_taken() for v8M.
8094 * This corresponds to the ARM ARM pseudocode for v8M setting
8095 * some LR bits in PushStack() and some in ExceptionTaken();
8096 * the distinction matters for the tailchain cases where we
8097 * can take an exception without pushing the stack.
8099 if (env
->v7m
.secure
) {
8100 lr
|= R_V7M_EXCRET_S_MASK
;
8103 lr
= R_V7M_EXCRET_RES1_MASK
|
8104 R_V7M_EXCRET_S_MASK
|
8105 R_V7M_EXCRET_DCRS_MASK
|
8106 R_V7M_EXCRET_FTYPE_MASK
|
8107 R_V7M_EXCRET_ES_MASK
;
8108 if (env
->v7m
.control
[M_REG_NS
] & R_V7M_CONTROL_SPSEL_MASK
) {
8109 lr
|= R_V7M_EXCRET_SPSEL_MASK
;
8112 if (!arm_v7m_is_handler_mode(env
)) {
8113 lr
|= R_V7M_EXCRET_MODE_MASK
;
8116 ignore_stackfaults
= v7m_push_stack(cpu
);
8117 v7m_exception_taken(cpu
, lr
, false, ignore_stackfaults
);
8120 /* Function used to synchronize QEMU's AArch64 register set with AArch32
8121 * register set. This is necessary when switching between AArch32 and AArch64
8124 void aarch64_sync_32_to_64(CPUARMState
*env
)
8127 uint32_t mode
= env
->uncached_cpsr
& CPSR_M
;
8129 /* We can blanket copy R[0:7] to X[0:7] */
8130 for (i
= 0; i
< 8; i
++) {
8131 env
->xregs
[i
] = env
->regs
[i
];
8134 /* Unless we are in FIQ mode, x8-x12 come from the user registers r8-r12.
8135 * Otherwise, they come from the banked user regs.
8137 if (mode
== ARM_CPU_MODE_FIQ
) {
8138 for (i
= 8; i
< 13; i
++) {
8139 env
->xregs
[i
] = env
->usr_regs
[i
- 8];
8142 for (i
= 8; i
< 13; i
++) {
8143 env
->xregs
[i
] = env
->regs
[i
];
8147 /* Registers x13-x23 are the various mode SP and FP registers. Registers
8148 * r13 and r14 are only copied if we are in that mode, otherwise we copy
8149 * from the mode banked register.
8151 if (mode
== ARM_CPU_MODE_USR
|| mode
== ARM_CPU_MODE_SYS
) {
8152 env
->xregs
[13] = env
->regs
[13];
8153 env
->xregs
[14] = env
->regs
[14];
8155 env
->xregs
[13] = env
->banked_r13
[bank_number(ARM_CPU_MODE_USR
)];
8156 /* HYP is an exception in that it is copied from r14 */
8157 if (mode
== ARM_CPU_MODE_HYP
) {
8158 env
->xregs
[14] = env
->regs
[14];
8160 env
->xregs
[14] = env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_USR
)];
8164 if (mode
== ARM_CPU_MODE_HYP
) {
8165 env
->xregs
[15] = env
->regs
[13];
8167 env
->xregs
[15] = env
->banked_r13
[bank_number(ARM_CPU_MODE_HYP
)];
8170 if (mode
== ARM_CPU_MODE_IRQ
) {
8171 env
->xregs
[16] = env
->regs
[14];
8172 env
->xregs
[17] = env
->regs
[13];
8174 env
->xregs
[16] = env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_IRQ
)];
8175 env
->xregs
[17] = env
->banked_r13
[bank_number(ARM_CPU_MODE_IRQ
)];
8178 if (mode
== ARM_CPU_MODE_SVC
) {
8179 env
->xregs
[18] = env
->regs
[14];
8180 env
->xregs
[19] = env
->regs
[13];
8182 env
->xregs
[18] = env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_SVC
)];
8183 env
->xregs
[19] = env
->banked_r13
[bank_number(ARM_CPU_MODE_SVC
)];
8186 if (mode
== ARM_CPU_MODE_ABT
) {
8187 env
->xregs
[20] = env
->regs
[14];
8188 env
->xregs
[21] = env
->regs
[13];
8190 env
->xregs
[20] = env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_ABT
)];
8191 env
->xregs
[21] = env
->banked_r13
[bank_number(ARM_CPU_MODE_ABT
)];
8194 if (mode
== ARM_CPU_MODE_UND
) {
8195 env
->xregs
[22] = env
->regs
[14];
8196 env
->xregs
[23] = env
->regs
[13];
8198 env
->xregs
[22] = env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_UND
)];
8199 env
->xregs
[23] = env
->banked_r13
[bank_number(ARM_CPU_MODE_UND
)];
8202 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
8203 * mode, then we can copy from r8-r14. Otherwise, we copy from the
8204 * FIQ bank for r8-r14.
8206 if (mode
== ARM_CPU_MODE_FIQ
) {
8207 for (i
= 24; i
< 31; i
++) {
8208 env
->xregs
[i
] = env
->regs
[i
- 16]; /* X[24:30] <- R[8:14] */
8211 for (i
= 24; i
< 29; i
++) {
8212 env
->xregs
[i
] = env
->fiq_regs
[i
- 24];
8214 env
->xregs
[29] = env
->banked_r13
[bank_number(ARM_CPU_MODE_FIQ
)];
8215 env
->xregs
[30] = env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_FIQ
)];
8218 env
->pc
= env
->regs
[15];
8221 /* Function used to synchronize QEMU's AArch32 register set with AArch64
8222 * register set. This is necessary when switching between AArch32 and AArch64
8225 void aarch64_sync_64_to_32(CPUARMState
*env
)
8228 uint32_t mode
= env
->uncached_cpsr
& CPSR_M
;
8230 /* We can blanket copy X[0:7] to R[0:7] */
8231 for (i
= 0; i
< 8; i
++) {
8232 env
->regs
[i
] = env
->xregs
[i
];
8235 /* Unless we are in FIQ mode, r8-r12 come from the user registers x8-x12.
8236 * Otherwise, we copy x8-x12 into the banked user regs.
8238 if (mode
== ARM_CPU_MODE_FIQ
) {
8239 for (i
= 8; i
< 13; i
++) {
8240 env
->usr_regs
[i
- 8] = env
->xregs
[i
];
8243 for (i
= 8; i
< 13; i
++) {
8244 env
->regs
[i
] = env
->xregs
[i
];
8248 /* Registers r13 & r14 depend on the current mode.
8249 * If we are in a given mode, we copy the corresponding x registers to r13
8250 * and r14. Otherwise, we copy the x register to the banked r13 and r14
8253 if (mode
== ARM_CPU_MODE_USR
|| mode
== ARM_CPU_MODE_SYS
) {
8254 env
->regs
[13] = env
->xregs
[13];
8255 env
->regs
[14] = env
->xregs
[14];
8257 env
->banked_r13
[bank_number(ARM_CPU_MODE_USR
)] = env
->xregs
[13];
8259 /* HYP is an exception in that it does not have its own banked r14 but
8260 * shares the USR r14
8262 if (mode
== ARM_CPU_MODE_HYP
) {
8263 env
->regs
[14] = env
->xregs
[14];
8265 env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_USR
)] = env
->xregs
[14];
8269 if (mode
== ARM_CPU_MODE_HYP
) {
8270 env
->regs
[13] = env
->xregs
[15];
8272 env
->banked_r13
[bank_number(ARM_CPU_MODE_HYP
)] = env
->xregs
[15];
8275 if (mode
== ARM_CPU_MODE_IRQ
) {
8276 env
->regs
[14] = env
->xregs
[16];
8277 env
->regs
[13] = env
->xregs
[17];
8279 env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_IRQ
)] = env
->xregs
[16];
8280 env
->banked_r13
[bank_number(ARM_CPU_MODE_IRQ
)] = env
->xregs
[17];
8283 if (mode
== ARM_CPU_MODE_SVC
) {
8284 env
->regs
[14] = env
->xregs
[18];
8285 env
->regs
[13] = env
->xregs
[19];
8287 env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_SVC
)] = env
->xregs
[18];
8288 env
->banked_r13
[bank_number(ARM_CPU_MODE_SVC
)] = env
->xregs
[19];
8291 if (mode
== ARM_CPU_MODE_ABT
) {
8292 env
->regs
[14] = env
->xregs
[20];
8293 env
->regs
[13] = env
->xregs
[21];
8295 env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_ABT
)] = env
->xregs
[20];
8296 env
->banked_r13
[bank_number(ARM_CPU_MODE_ABT
)] = env
->xregs
[21];
8299 if (mode
== ARM_CPU_MODE_UND
) {
8300 env
->regs
[14] = env
->xregs
[22];
8301 env
->regs
[13] = env
->xregs
[23];
8303 env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_UND
)] = env
->xregs
[22];
8304 env
->banked_r13
[bank_number(ARM_CPU_MODE_UND
)] = env
->xregs
[23];
8307 /* Registers x24-x30 are mapped to r8-r14 in FIQ mode. If we are in FIQ
8308 * mode, then we can copy to r8-r14. Otherwise, we copy to the
8309 * FIQ bank for r8-r14.
8311 if (mode
== ARM_CPU_MODE_FIQ
) {
8312 for (i
= 24; i
< 31; i
++) {
8313 env
->regs
[i
- 16] = env
->xregs
[i
]; /* X[24:30] -> R[8:14] */
8316 for (i
= 24; i
< 29; i
++) {
8317 env
->fiq_regs
[i
- 24] = env
->xregs
[i
];
8319 env
->banked_r13
[bank_number(ARM_CPU_MODE_FIQ
)] = env
->xregs
[29];
8320 env
->banked_r14
[r14_bank_number(ARM_CPU_MODE_FIQ
)] = env
->xregs
[30];
8323 env
->regs
[15] = env
->pc
;
8326 static void take_aarch32_exception(CPUARMState
*env
, int new_mode
,
8327 uint32_t mask
, uint32_t offset
,
8330 /* Change the CPU state so as to actually take the exception. */
8331 switch_mode(env
, new_mode
);
8333 * For exceptions taken to AArch32 we must clear the SS bit in both
8334 * PSTATE and in the old-state value we save to SPSR_<mode>, so zero it now.
8336 env
->uncached_cpsr
&= ~PSTATE_SS
;
8337 env
->spsr
= cpsr_read(env
);
8338 /* Clear IT bits. */
8339 env
->condexec_bits
= 0;
8340 /* Switch to the new mode, and to the correct instruction set. */
8341 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
8342 /* Set new mode endianness */
8343 env
->uncached_cpsr
&= ~CPSR_E
;
8344 if (env
->cp15
.sctlr_el
[arm_current_el(env
)] & SCTLR_EE
) {
8345 env
->uncached_cpsr
|= CPSR_E
;
8347 /* J and IL must always be cleared for exception entry */
8348 env
->uncached_cpsr
&= ~(CPSR_IL
| CPSR_J
);
8351 if (new_mode
== ARM_CPU_MODE_HYP
) {
8352 env
->thumb
= (env
->cp15
.sctlr_el
[2] & SCTLR_TE
) != 0;
8353 env
->elr_el
[2] = env
->regs
[15];
8356 * this is a lie, as there was no c1_sys on V4T/V5, but who cares
8357 * and we should just guard the thumb mode on V4
8359 if (arm_feature(env
, ARM_FEATURE_V4T
)) {
8361 (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_TE
) != 0;
8363 env
->regs
[14] = env
->regs
[15] + offset
;
8365 env
->regs
[15] = newpc
;
8368 static void arm_cpu_do_interrupt_aarch32_hyp(CPUState
*cs
)
8371 * Handle exception entry to Hyp mode; this is sufficiently
8372 * different to entry to other AArch32 modes that we handle it
8375 * The vector table entry used is always the 0x14 Hyp mode entry point,
8376 * unless this is an UNDEF/HVC/abort taken from Hyp to Hyp.
8377 * The offset applied to the preferred return address is always zero
8378 * (see DDI0487C.a section G1.12.3).
8379 * PSTATE A/I/F masks are set based only on the SCR.EA/IRQ/FIQ values.
8381 uint32_t addr
, mask
;
8382 ARMCPU
*cpu
= ARM_CPU(cs
);
8383 CPUARMState
*env
= &cpu
->env
;
8385 switch (cs
->exception_index
) {
8393 /* Fall through to prefetch abort. */
8394 case EXCP_PREFETCH_ABORT
:
8395 env
->cp15
.ifar_s
= env
->exception
.vaddress
;
8396 qemu_log_mask(CPU_LOG_INT
, "...with HIFAR 0x%x\n",
8397 (uint32_t)env
->exception
.vaddress
);
8400 case EXCP_DATA_ABORT
:
8401 env
->cp15
.dfar_s
= env
->exception
.vaddress
;
8402 qemu_log_mask(CPU_LOG_INT
, "...with HDFAR 0x%x\n",
8403 (uint32_t)env
->exception
.vaddress
);
8418 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
8421 if (cs
->exception_index
!= EXCP_IRQ
&& cs
->exception_index
!= EXCP_FIQ
) {
8422 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
8424 * QEMU syndrome values are v8-style. v7 has the IL bit
8425 * UNK/SBZP for "field not valid" cases, where v8 uses RES1.
8426 * If this is a v7 CPU, squash the IL bit in those cases.
8428 if (cs
->exception_index
== EXCP_PREFETCH_ABORT
||
8429 (cs
->exception_index
== EXCP_DATA_ABORT
&&
8430 !(env
->exception
.syndrome
& ARM_EL_ISV
)) ||
8431 syn_get_ec(env
->exception
.syndrome
) == EC_UNCATEGORIZED
) {
8432 env
->exception
.syndrome
&= ~ARM_EL_IL
;
8435 env
->cp15
.esr_el
[2] = env
->exception
.syndrome
;
8438 if (arm_current_el(env
) != 2 && addr
< 0x14) {
8443 if (!(env
->cp15
.scr_el3
& SCR_EA
)) {
8446 if (!(env
->cp15
.scr_el3
& SCR_IRQ
)) {
8449 if (!(env
->cp15
.scr_el3
& SCR_FIQ
)) {
8453 addr
+= env
->cp15
.hvbar
;
8455 take_aarch32_exception(env
, ARM_CPU_MODE_HYP
, mask
, 0, addr
);
8458 static void arm_cpu_do_interrupt_aarch32(CPUState
*cs
)
8460 ARMCPU
*cpu
= ARM_CPU(cs
);
8461 CPUARMState
*env
= &cpu
->env
;
8468 /* If this is a debug exception we must update the DBGDSCR.MOE bits */
8469 switch (syn_get_ec(env
->exception
.syndrome
)) {
8471 case EC_BREAKPOINT_SAME_EL
:
8475 case EC_WATCHPOINT_SAME_EL
:
8481 case EC_VECTORCATCH
:
8490 env
->cp15
.mdscr_el1
= deposit64(env
->cp15
.mdscr_el1
, 2, 4, moe
);
8493 if (env
->exception
.target_el
== 2) {
8494 arm_cpu_do_interrupt_aarch32_hyp(cs
);
8498 switch (cs
->exception_index
) {
8500 new_mode
= ARM_CPU_MODE_UND
;
8509 new_mode
= ARM_CPU_MODE_SVC
;
8512 /* The PC already points to the next instruction. */
8516 /* Fall through to prefetch abort. */
8517 case EXCP_PREFETCH_ABORT
:
8518 A32_BANKED_CURRENT_REG_SET(env
, ifsr
, env
->exception
.fsr
);
8519 A32_BANKED_CURRENT_REG_SET(env
, ifar
, env
->exception
.vaddress
);
8520 qemu_log_mask(CPU_LOG_INT
, "...with IFSR 0x%x IFAR 0x%x\n",
8521 env
->exception
.fsr
, (uint32_t)env
->exception
.vaddress
);
8522 new_mode
= ARM_CPU_MODE_ABT
;
8524 mask
= CPSR_A
| CPSR_I
;
8527 case EXCP_DATA_ABORT
:
8528 A32_BANKED_CURRENT_REG_SET(env
, dfsr
, env
->exception
.fsr
);
8529 A32_BANKED_CURRENT_REG_SET(env
, dfar
, env
->exception
.vaddress
);
8530 qemu_log_mask(CPU_LOG_INT
, "...with DFSR 0x%x DFAR 0x%x\n",
8532 (uint32_t)env
->exception
.vaddress
);
8533 new_mode
= ARM_CPU_MODE_ABT
;
8535 mask
= CPSR_A
| CPSR_I
;
8539 new_mode
= ARM_CPU_MODE_IRQ
;
8541 /* Disable IRQ and imprecise data aborts. */
8542 mask
= CPSR_A
| CPSR_I
;
8544 if (env
->cp15
.scr_el3
& SCR_IRQ
) {
8545 /* IRQ routed to monitor mode */
8546 new_mode
= ARM_CPU_MODE_MON
;
8551 new_mode
= ARM_CPU_MODE_FIQ
;
8553 /* Disable FIQ, IRQ and imprecise data aborts. */
8554 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
8555 if (env
->cp15
.scr_el3
& SCR_FIQ
) {
8556 /* FIQ routed to monitor mode */
8557 new_mode
= ARM_CPU_MODE_MON
;
8562 new_mode
= ARM_CPU_MODE_IRQ
;
8564 /* Disable IRQ and imprecise data aborts. */
8565 mask
= CPSR_A
| CPSR_I
;
8569 new_mode
= ARM_CPU_MODE_FIQ
;
8571 /* Disable FIQ, IRQ and imprecise data aborts. */
8572 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
8576 new_mode
= ARM_CPU_MODE_MON
;
8578 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
8582 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
8583 return; /* Never happens. Keep compiler happy. */
8586 if (new_mode
== ARM_CPU_MODE_MON
) {
8587 addr
+= env
->cp15
.mvbar
;
8588 } else if (A32_BANKED_CURRENT_REG_GET(env
, sctlr
) & SCTLR_V
) {
8589 /* High vectors. When enabled, base address cannot be remapped. */
8592 /* ARM v7 architectures provide a vector base address register to remap
8593 * the interrupt vector table.
8594 * This register is only followed in non-monitor mode, and is banked.
8595 * Note: only bits 31:5 are valid.
8597 addr
+= A32_BANKED_CURRENT_REG_GET(env
, vbar
);
8600 if ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_MON
) {
8601 env
->cp15
.scr_el3
&= ~SCR_NS
;
8604 take_aarch32_exception(env
, new_mode
, mask
, offset
, addr
);
8607 /* Handle exception entry to a target EL which is using AArch64 */
8608 static void arm_cpu_do_interrupt_aarch64(CPUState
*cs
)
8610 ARMCPU
*cpu
= ARM_CPU(cs
);
8611 CPUARMState
*env
= &cpu
->env
;
8612 unsigned int new_el
= env
->exception
.target_el
;
8613 target_ulong addr
= env
->cp15
.vbar_el
[new_el
];
8614 unsigned int new_mode
= aarch64_pstate_mode(new_el
, true);
8615 unsigned int cur_el
= arm_current_el(env
);
8618 * Note that new_el can never be 0. If cur_el is 0, then
8619 * el0_a64 is is_a64(), else el0_a64 is ignored.
8621 aarch64_sve_change_el(env
, cur_el
, new_el
, is_a64(env
));
8623 if (cur_el
< new_el
) {
8624 /* Entry vector offset depends on whether the implemented EL
8625 * immediately lower than the target level is using AArch32 or AArch64
8631 is_aa64
= (env
->cp15
.scr_el3
& SCR_RW
) != 0;
8634 is_aa64
= (env
->cp15
.hcr_el2
& HCR_RW
) != 0;
8637 is_aa64
= is_a64(env
);
8640 g_assert_not_reached();
8648 } else if (pstate_read(env
) & PSTATE_SP
) {
8652 switch (cs
->exception_index
) {
8653 case EXCP_PREFETCH_ABORT
:
8654 case EXCP_DATA_ABORT
:
8655 env
->cp15
.far_el
[new_el
] = env
->exception
.vaddress
;
8656 qemu_log_mask(CPU_LOG_INT
, "...with FAR 0x%" PRIx64
"\n",
8657 env
->cp15
.far_el
[new_el
]);
8665 if (syn_get_ec(env
->exception
.syndrome
) == EC_ADVSIMDFPACCESSTRAP
) {
8667 * QEMU internal FP/SIMD syndromes from AArch32 include the
8668 * TA and coproc fields which are only exposed if the exception
8669 * is taken to AArch32 Hyp mode. Mask them out to get a valid
8670 * AArch64 format syndrome.
8672 env
->exception
.syndrome
&= ~MAKE_64BIT_MASK(0, 20);
8674 env
->cp15
.esr_el
[new_el
] = env
->exception
.syndrome
;
8685 qemu_log_mask(CPU_LOG_INT
,
8686 "...handling as semihosting call 0x%" PRIx64
"\n",
8688 env
->xregs
[0] = do_arm_semihosting(env
);
8691 cpu_abort(cs
, "Unhandled exception 0x%x\n", cs
->exception_index
);
8695 env
->banked_spsr
[aarch64_banked_spsr_index(new_el
)] = pstate_read(env
);
8696 aarch64_save_sp(env
, arm_current_el(env
));
8697 env
->elr_el
[new_el
] = env
->pc
;
8699 env
->banked_spsr
[aarch64_banked_spsr_index(new_el
)] = cpsr_read(env
);
8700 env
->elr_el
[new_el
] = env
->regs
[15];
8702 aarch64_sync_32_to_64(env
);
8704 env
->condexec_bits
= 0;
8706 qemu_log_mask(CPU_LOG_INT
, "...with ELR 0x%" PRIx64
"\n",
8707 env
->elr_el
[new_el
]);
8709 pstate_write(env
, PSTATE_DAIF
| new_mode
);
8711 aarch64_restore_sp(env
, new_el
);
8715 qemu_log_mask(CPU_LOG_INT
, "...to EL%d PC 0x%" PRIx64
" PSTATE 0x%x\n",
8716 new_el
, env
->pc
, pstate_read(env
));
8719 static inline bool check_for_semihosting(CPUState
*cs
)
8721 /* Check whether this exception is a semihosting call; if so
8722 * then handle it and return true; otherwise return false.
8724 ARMCPU
*cpu
= ARM_CPU(cs
);
8725 CPUARMState
*env
= &cpu
->env
;
8728 if (cs
->exception_index
== EXCP_SEMIHOST
) {
8729 /* This is always the 64-bit semihosting exception.
8730 * The "is this usermode" and "is semihosting enabled"
8731 * checks have been done at translate time.
8733 qemu_log_mask(CPU_LOG_INT
,
8734 "...handling as semihosting call 0x%" PRIx64
"\n",
8736 env
->xregs
[0] = do_arm_semihosting(env
);
8743 /* Only intercept calls from privileged modes, to provide some
8744 * semblance of security.
8746 if (cs
->exception_index
!= EXCP_SEMIHOST
&&
8747 (!semihosting_enabled() ||
8748 ((env
->uncached_cpsr
& CPSR_M
) == ARM_CPU_MODE_USR
))) {
8752 switch (cs
->exception_index
) {
8754 /* This is always a semihosting call; the "is this usermode"
8755 * and "is semihosting enabled" checks have been done at
8760 /* Check for semihosting interrupt. */
8762 imm
= arm_lduw_code(env
, env
->regs
[15] - 2, arm_sctlr_b(env
))
8768 imm
= arm_ldl_code(env
, env
->regs
[15] - 4, arm_sctlr_b(env
))
8770 if (imm
== 0x123456) {
8776 /* See if this is a semihosting syscall. */
8778 imm
= arm_lduw_code(env
, env
->regs
[15], arm_sctlr_b(env
))
8790 qemu_log_mask(CPU_LOG_INT
,
8791 "...handling as semihosting call 0x%x\n",
8793 env
->regs
[0] = do_arm_semihosting(env
);
8798 /* Handle a CPU exception for A and R profile CPUs.
8799 * Do any appropriate logging, handle PSCI calls, and then hand off
8800 * to the AArch64-entry or AArch32-entry function depending on the
8801 * target exception level's register width.
8803 void arm_cpu_do_interrupt(CPUState
*cs
)
8805 ARMCPU
*cpu
= ARM_CPU(cs
);
8806 CPUARMState
*env
= &cpu
->env
;
8807 unsigned int new_el
= env
->exception
.target_el
;
8809 assert(!arm_feature(env
, ARM_FEATURE_M
));
8811 arm_log_exception(cs
->exception_index
);
8812 qemu_log_mask(CPU_LOG_INT
, "...from EL%d to EL%d\n", arm_current_el(env
),
8814 if (qemu_loglevel_mask(CPU_LOG_INT
)
8815 && !excp_is_internal(cs
->exception_index
)) {
8816 qemu_log_mask(CPU_LOG_INT
, "...with ESR 0x%x/0x%" PRIx32
"\n",
8817 syn_get_ec(env
->exception
.syndrome
),
8818 env
->exception
.syndrome
);
8821 if (arm_is_psci_call(cpu
, cs
->exception_index
)) {
8822 arm_handle_psci_call(cpu
);
8823 qemu_log_mask(CPU_LOG_INT
, "...handled as PSCI call\n");
8827 /* Semihosting semantics depend on the register width of the
8828 * code that caused the exception, not the target exception level,
8829 * so must be handled here.
8831 if (check_for_semihosting(cs
)) {
8835 /* Hooks may change global state so BQL should be held, also the
8836 * BQL needs to be held for any modification of
8837 * cs->interrupt_request.
8839 g_assert(qemu_mutex_iothread_locked());
8841 arm_call_pre_el_change_hook(cpu
);
8843 assert(!excp_is_internal(cs
->exception_index
));
8844 if (arm_el_is_aa64(env
, new_el
)) {
8845 arm_cpu_do_interrupt_aarch64(cs
);
8847 arm_cpu_do_interrupt_aarch32(cs
);
8850 arm_call_el_change_hook(cpu
);
8852 if (!kvm_enabled()) {
8853 cs
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
8857 /* Return the exception level which controls this address translation regime */
8858 static inline uint32_t regime_el(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
8861 case ARMMMUIdx_S2NS
:
8862 case ARMMMUIdx_S1E2
:
8864 case ARMMMUIdx_S1E3
:
8866 case ARMMMUIdx_S1SE0
:
8867 return arm_el_is_aa64(env
, 3) ? 1 : 3;
8868 case ARMMMUIdx_S1SE1
:
8869 case ARMMMUIdx_S1NSE0
:
8870 case ARMMMUIdx_S1NSE1
:
8871 case ARMMMUIdx_MPrivNegPri
:
8872 case ARMMMUIdx_MUserNegPri
:
8873 case ARMMMUIdx_MPriv
:
8874 case ARMMMUIdx_MUser
:
8875 case ARMMMUIdx_MSPrivNegPri
:
8876 case ARMMMUIdx_MSUserNegPri
:
8877 case ARMMMUIdx_MSPriv
:
8878 case ARMMMUIdx_MSUser
:
8881 g_assert_not_reached();
8885 /* Return the SCTLR value which controls this address translation regime */
8886 static inline uint32_t regime_sctlr(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
8888 return env
->cp15
.sctlr_el
[regime_el(env
, mmu_idx
)];
8891 /* Return true if the specified stage of address translation is disabled */
8892 static inline bool regime_translation_disabled(CPUARMState
*env
,
8895 if (arm_feature(env
, ARM_FEATURE_M
)) {
8896 switch (env
->v7m
.mpu_ctrl
[regime_is_secure(env
, mmu_idx
)] &
8897 (R_V7M_MPU_CTRL_ENABLE_MASK
| R_V7M_MPU_CTRL_HFNMIENA_MASK
)) {
8898 case R_V7M_MPU_CTRL_ENABLE_MASK
:
8899 /* Enabled, but not for HardFault and NMI */
8900 return mmu_idx
& ARM_MMU_IDX_M_NEGPRI
;
8901 case R_V7M_MPU_CTRL_ENABLE_MASK
| R_V7M_MPU_CTRL_HFNMIENA_MASK
:
8902 /* Enabled for all cases */
8906 /* HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
8907 * we warned about that in armv7m_nvic.c when the guest set it.
8913 if (mmu_idx
== ARMMMUIdx_S2NS
) {
8914 /* HCR.DC means HCR.VM behaves as 1 */
8915 return (env
->cp15
.hcr_el2
& (HCR_DC
| HCR_VM
)) == 0;
8918 if (env
->cp15
.hcr_el2
& HCR_TGE
) {
8919 /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
8920 if (!regime_is_secure(env
, mmu_idx
) && regime_el(env
, mmu_idx
) == 1) {
8925 if ((env
->cp15
.hcr_el2
& HCR_DC
) &&
8926 (mmu_idx
== ARMMMUIdx_S1NSE0
|| mmu_idx
== ARMMMUIdx_S1NSE1
)) {
8927 /* HCR.DC means SCTLR_EL1.M behaves as 0 */
8931 return (regime_sctlr(env
, mmu_idx
) & SCTLR_M
) == 0;
8934 static inline bool regime_translation_big_endian(CPUARMState
*env
,
8937 return (regime_sctlr(env
, mmu_idx
) & SCTLR_EE
) != 0;
8940 /* Return the TCR controlling this translation regime */
8941 static inline TCR
*regime_tcr(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
8943 if (mmu_idx
== ARMMMUIdx_S2NS
) {
8944 return &env
->cp15
.vtcr_el2
;
8946 return &env
->cp15
.tcr_el
[regime_el(env
, mmu_idx
)];
8949 /* Convert a possible stage1+2 MMU index into the appropriate
8952 static inline ARMMMUIdx
stage_1_mmu_idx(ARMMMUIdx mmu_idx
)
8954 if (mmu_idx
== ARMMMUIdx_S12NSE0
|| mmu_idx
== ARMMMUIdx_S12NSE1
) {
8955 mmu_idx
+= (ARMMMUIdx_S1NSE0
- ARMMMUIdx_S12NSE0
);
8960 /* Returns TBI0 value for current regime el */
8961 uint32_t arm_regime_tbi0(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
8966 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8967 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
8969 mmu_idx
= stage_1_mmu_idx(mmu_idx
);
8971 tcr
= regime_tcr(env
, mmu_idx
);
8972 el
= regime_el(env
, mmu_idx
);
8975 return extract64(tcr
->raw_tcr
, 20, 1);
8977 return extract64(tcr
->raw_tcr
, 37, 1);
8981 /* Returns TBI1 value for current regime el */
8982 uint32_t arm_regime_tbi1(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
8987 /* For EL0 and EL1, TBI is controlled by stage 1's TCR, so convert
8988 * a stage 1+2 mmu index into the appropriate stage 1 mmu index.
8990 mmu_idx
= stage_1_mmu_idx(mmu_idx
);
8992 tcr
= regime_tcr(env
, mmu_idx
);
8993 el
= regime_el(env
, mmu_idx
);
8998 return extract64(tcr
->raw_tcr
, 38, 1);
9002 /* Return the TTBR associated with this translation regime */
9003 static inline uint64_t regime_ttbr(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
9006 if (mmu_idx
== ARMMMUIdx_S2NS
) {
9007 return env
->cp15
.vttbr_el2
;
9010 return env
->cp15
.ttbr0_el
[regime_el(env
, mmu_idx
)];
9012 return env
->cp15
.ttbr1_el
[regime_el(env
, mmu_idx
)];
9016 /* Return true if the translation regime is using LPAE format page tables */
9017 static inline bool regime_using_lpae_format(CPUARMState
*env
,
9020 int el
= regime_el(env
, mmu_idx
);
9021 if (el
== 2 || arm_el_is_aa64(env
, el
)) {
9024 if (arm_feature(env
, ARM_FEATURE_LPAE
)
9025 && (regime_tcr(env
, mmu_idx
)->raw_tcr
& TTBCR_EAE
)) {
9031 /* Returns true if the stage 1 translation regime is using LPAE format page
9032 * tables. Used when raising alignment exceptions, whose FSR changes depending
9033 * on whether the long or short descriptor format is in use. */
9034 bool arm_s1_regime_using_lpae_format(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
9036 mmu_idx
= stage_1_mmu_idx(mmu_idx
);
9038 return regime_using_lpae_format(env
, mmu_idx
);
9041 static inline bool regime_is_user(CPUARMState
*env
, ARMMMUIdx mmu_idx
)
9044 case ARMMMUIdx_S1SE0
:
9045 case ARMMMUIdx_S1NSE0
:
9046 case ARMMMUIdx_MUser
:
9047 case ARMMMUIdx_MSUser
:
9048 case ARMMMUIdx_MUserNegPri
:
9049 case ARMMMUIdx_MSUserNegPri
:
9053 case ARMMMUIdx_S12NSE0
:
9054 case ARMMMUIdx_S12NSE1
:
9055 g_assert_not_reached();
9059 /* Translate section/page access permissions to page
9060 * R/W protection flags
9063 * @mmu_idx: MMU index indicating required translation regime
9064 * @ap: The 3-bit access permissions (AP[2:0])
9065 * @domain_prot: The 2-bit domain access permissions
9067 static inline int ap_to_rw_prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
9068 int ap
, int domain_prot
)
9070 bool is_user
= regime_is_user(env
, mmu_idx
);
9072 if (domain_prot
== 3) {
9073 return PAGE_READ
| PAGE_WRITE
;
9078 if (arm_feature(env
, ARM_FEATURE_V7
)) {
9081 switch (regime_sctlr(env
, mmu_idx
) & (SCTLR_S
| SCTLR_R
)) {
9083 return is_user
? 0 : PAGE_READ
;
9090 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
9095 return PAGE_READ
| PAGE_WRITE
;
9098 return PAGE_READ
| PAGE_WRITE
;
9099 case 4: /* Reserved. */
9102 return is_user
? 0 : PAGE_READ
;
9106 if (!arm_feature(env
, ARM_FEATURE_V6K
)) {
9111 g_assert_not_reached();
9115 /* Translate section/page access permissions to page
9116 * R/W protection flags.
9118 * @ap: The 2-bit simple AP (AP[2:1])
9119 * @is_user: TRUE if accessing from PL0
9121 static inline int simple_ap_to_rw_prot_is_user(int ap
, bool is_user
)
9125 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
9127 return PAGE_READ
| PAGE_WRITE
;
9129 return is_user
? 0 : PAGE_READ
;
9133 g_assert_not_reached();
9138 simple_ap_to_rw_prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
, int ap
)
9140 return simple_ap_to_rw_prot_is_user(ap
, regime_is_user(env
, mmu_idx
));
9143 /* Translate S2 section/page access permissions to protection flags
9146 * @s2ap: The 2-bit stage2 access permissions (S2AP)
9147 * @xn: XN (execute-never) bit
9149 static int get_S2prot(CPUARMState
*env
, int s2ap
, int xn
)
9160 if (arm_el_is_aa64(env
, 2) || prot
& PAGE_READ
) {
9167 /* Translate section/page access permissions to protection flags
9170 * @mmu_idx: MMU index indicating required translation regime
9171 * @is_aa64: TRUE if AArch64
9172 * @ap: The 2-bit simple AP (AP[2:1])
9173 * @ns: NS (non-secure) bit
9174 * @xn: XN (execute-never) bit
9175 * @pxn: PXN (privileged execute-never) bit
9177 static int get_S1prot(CPUARMState
*env
, ARMMMUIdx mmu_idx
, bool is_aa64
,
9178 int ap
, int ns
, int xn
, int pxn
)
9180 bool is_user
= regime_is_user(env
, mmu_idx
);
9181 int prot_rw
, user_rw
;
9185 assert(mmu_idx
!= ARMMMUIdx_S2NS
);
9187 user_rw
= simple_ap_to_rw_prot_is_user(ap
, true);
9191 prot_rw
= simple_ap_to_rw_prot_is_user(ap
, false);
9194 if (ns
&& arm_is_secure(env
) && (env
->cp15
.scr_el3
& SCR_SIF
)) {
9198 /* TODO have_wxn should be replaced with
9199 * ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
9200 * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
9201 * compatible processors have EL2, which is required for [U]WXN.
9203 have_wxn
= arm_feature(env
, ARM_FEATURE_LPAE
);
9206 wxn
= regime_sctlr(env
, mmu_idx
) & SCTLR_WXN
;
9210 switch (regime_el(env
, mmu_idx
)) {
9213 xn
= pxn
|| (user_rw
& PAGE_WRITE
);
9220 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
9221 switch (regime_el(env
, mmu_idx
)) {
9225 xn
= xn
|| !(user_rw
& PAGE_READ
);
9229 uwxn
= regime_sctlr(env
, mmu_idx
) & SCTLR_UWXN
;
9231 xn
= xn
|| !(prot_rw
& PAGE_READ
) || pxn
||
9232 (uwxn
&& (user_rw
& PAGE_WRITE
));
9242 if (xn
|| (wxn
&& (prot_rw
& PAGE_WRITE
))) {
9245 return prot_rw
| PAGE_EXEC
;
9248 static bool get_level1_table_address(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
9249 uint32_t *table
, uint32_t address
)
9251 /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
9252 TCR
*tcr
= regime_tcr(env
, mmu_idx
);
9254 if (address
& tcr
->mask
) {
9255 if (tcr
->raw_tcr
& TTBCR_PD1
) {
9256 /* Translation table walk disabled for TTBR1 */
9259 *table
= regime_ttbr(env
, mmu_idx
, 1) & 0xffffc000;
9261 if (tcr
->raw_tcr
& TTBCR_PD0
) {
9262 /* Translation table walk disabled for TTBR0 */
9265 *table
= regime_ttbr(env
, mmu_idx
, 0) & tcr
->base_mask
;
9267 *table
|= (address
>> 18) & 0x3ffc;
9271 /* Translate a S1 pagetable walk through S2 if needed. */
9272 static hwaddr
S1_ptw_translate(CPUARMState
*env
, ARMMMUIdx mmu_idx
,
9273 hwaddr addr
, MemTxAttrs txattrs
,
9274 ARMMMUFaultInfo
*fi
)
9276 if ((mmu_idx
== ARMMMUIdx_S1NSE0
|| mmu_idx
== ARMMMUIdx_S1NSE1
) &&
9277 !regime_translation_disabled(env
, ARMMMUIdx_S2NS
)) {
9278 target_ulong s2size
;
9282 ARMCacheAttrs cacheattrs
= {};
9283 ARMCacheAttrs
*pcacheattrs
= NULL
;
9285 if (env
->cp15
.hcr_el2
& HCR_PTW
) {
9287 * PTW means we must fault if this S1 walk touches S2 Device
9288 * memory; otherwise we don't care about the attributes and can
9289 * save the S2 translation the effort of computing them.
9291 pcacheattrs
= &cacheattrs
;
9294 ret
= get_phys_addr_lpae(env
, addr
, 0, ARMMMUIdx_S2NS
, &s2pa
,
9295 &txattrs
, &s2prot
, &s2size
, fi
, pcacheattrs
);
9297 assert(fi
->type
!= ARMFault_None
);
9303 if (pcacheattrs
&& (pcacheattrs
->attrs
& 0xf0) == 0) {
9304 /* Access was to Device memory: generate Permission fault */
9305 fi
->type
= ARMFault_Permission
;
9316 /* All loads done in the course of a page table walk go through here. */
9317 static uint32_t arm_ldl_ptw(CPUState
*cs
, hwaddr addr
, bool is_secure
,
9318 ARMMMUIdx mmu_idx
, ARMMMUFaultInfo
*fi
)
9320 ARMCPU
*cpu
= ARM_CPU(cs
);
9321 CPUARMState
*env
= &cpu
->env
;
9322 MemTxAttrs attrs
= {};
9323 MemTxResult result
= MEMTX_OK
;
9327 attrs
.secure
= is_secure
;
9328 as
= arm_addressspace(cs
, attrs
);
9329 addr
= S1_ptw_translate(env
, mmu_idx
, addr
, attrs
, fi
);
9333 if (regime_translation_big_endian(env
, mmu_idx
)) {
9334 data
= address_space_ldl_be(as
, addr
, attrs
, &result
);
9336 data
= address_space_ldl_le(as
, addr
, attrs
, &result
);
9338 if (result
== MEMTX_OK
) {
9341 fi
->type
= ARMFault_SyncExternalOnWalk
;
9342 fi
->ea
= arm_extabort_type(result
);
9346 static uint64_t arm_ldq_ptw(CPUState
*cs
, hwaddr addr
, bool is_secure
,
9347 ARMMMUIdx mmu_idx
, ARMMMUFaultInfo
*fi
)
9349 ARMCPU
*cpu
= ARM_CPU(cs
);
9350 CPUARMState
*env
= &cpu
->env
;
9351 MemTxAttrs attrs
= {};
9352 MemTxResult result
= MEMTX_OK
;
9356 attrs
.secure
= is_secure
;
9357 as
= arm_addressspace(cs
, attrs
);
9358 addr
= S1_ptw_translate(env
, mmu_idx
, addr
, attrs
, fi
);
9362 if (regime_translation_big_endian(env
, mmu_idx
)) {
9363 data
= address_space_ldq_be(as
, addr
, attrs
, &result
);
9365 data
= address_space_ldq_le(as
, addr
, attrs
, &result
);
9367 if (result
== MEMTX_OK
) {
9370 fi
->type
= ARMFault_SyncExternalOnWalk
;
9371 fi
->ea
= arm_extabort_type(result
);
9375 static bool get_phys_addr_v5(CPUARMState
*env
, uint32_t address
,
9376 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
9377 hwaddr
*phys_ptr
, int *prot
,
9378 target_ulong
*page_size
,
9379 ARMMMUFaultInfo
*fi
)
9381 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
9392 /* Pagetable walk. */
9393 /* Lookup l1 descriptor. */
9394 if (!get_level1_table_address(env
, mmu_idx
, &table
, address
)) {
9395 /* Section translation fault if page walk is disabled by PD0 or PD1 */
9396 fi
->type
= ARMFault_Translation
;
9399 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
9401 if (fi
->type
!= ARMFault_None
) {
9405 domain
= (desc
>> 5) & 0x0f;
9406 if (regime_el(env
, mmu_idx
) == 1) {
9407 dacr
= env
->cp15
.dacr_ns
;
9409 dacr
= env
->cp15
.dacr_s
;
9411 domain_prot
= (dacr
>> (domain
* 2)) & 3;
9413 /* Section translation fault. */
9414 fi
->type
= ARMFault_Translation
;
9420 if (domain_prot
== 0 || domain_prot
== 2) {
9421 fi
->type
= ARMFault_Domain
;
9426 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
9427 ap
= (desc
>> 10) & 3;
9428 *page_size
= 1024 * 1024;
9430 /* Lookup l2 entry. */
9432 /* Coarse pagetable. */
9433 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
9435 /* Fine pagetable. */
9436 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
9438 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
9440 if (fi
->type
!= ARMFault_None
) {
9444 case 0: /* Page translation fault. */
9445 fi
->type
= ARMFault_Translation
;
9447 case 1: /* 64k page. */
9448 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
9449 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
9450 *page_size
= 0x10000;
9452 case 2: /* 4k page. */
9453 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
9454 ap
= (desc
>> (4 + ((address
>> 9) & 6))) & 3;
9455 *page_size
= 0x1000;
9457 case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
9459 /* ARMv6/XScale extended small page format */
9460 if (arm_feature(env
, ARM_FEATURE_XSCALE
)
9461 || arm_feature(env
, ARM_FEATURE_V6
)) {
9462 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
9463 *page_size
= 0x1000;
9465 /* UNPREDICTABLE in ARMv5; we choose to take a
9466 * page translation fault.
9468 fi
->type
= ARMFault_Translation
;
9472 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
9475 ap
= (desc
>> 4) & 3;
9478 /* Never happens, but compiler isn't smart enough to tell. */
9482 *prot
= ap_to_rw_prot(env
, mmu_idx
, ap
, domain_prot
);
9483 *prot
|= *prot
? PAGE_EXEC
: 0;
9484 if (!(*prot
& (1 << access_type
))) {
9485 /* Access permission fault. */
9486 fi
->type
= ARMFault_Permission
;
9489 *phys_ptr
= phys_addr
;
9492 fi
->domain
= domain
;
9497 static bool get_phys_addr_v6(CPUARMState
*env
, uint32_t address
,
9498 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
9499 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
9500 target_ulong
*page_size
, ARMMMUFaultInfo
*fi
)
9502 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
9516 /* Pagetable walk. */
9517 /* Lookup l1 descriptor. */
9518 if (!get_level1_table_address(env
, mmu_idx
, &table
, address
)) {
9519 /* Section translation fault if page walk is disabled by PD0 or PD1 */
9520 fi
->type
= ARMFault_Translation
;
9523 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
9525 if (fi
->type
!= ARMFault_None
) {
9529 if (type
== 0 || (type
== 3 && !arm_feature(env
, ARM_FEATURE_PXN
))) {
9530 /* Section translation fault, or attempt to use the encoding
9531 * which is Reserved on implementations without PXN.
9533 fi
->type
= ARMFault_Translation
;
9536 if ((type
== 1) || !(desc
& (1 << 18))) {
9537 /* Page or Section. */
9538 domain
= (desc
>> 5) & 0x0f;
9540 if (regime_el(env
, mmu_idx
) == 1) {
9541 dacr
= env
->cp15
.dacr_ns
;
9543 dacr
= env
->cp15
.dacr_s
;
9548 domain_prot
= (dacr
>> (domain
* 2)) & 3;
9549 if (domain_prot
== 0 || domain_prot
== 2) {
9550 /* Section or Page domain fault */
9551 fi
->type
= ARMFault_Domain
;
9555 if (desc
& (1 << 18)) {
9557 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
9558 phys_addr
|= (uint64_t)extract32(desc
, 20, 4) << 32;
9559 phys_addr
|= (uint64_t)extract32(desc
, 5, 4) << 36;
9560 *page_size
= 0x1000000;
9563 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
9564 *page_size
= 0x100000;
9566 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
9567 xn
= desc
& (1 << 4);
9569 ns
= extract32(desc
, 19, 1);
9571 if (arm_feature(env
, ARM_FEATURE_PXN
)) {
9572 pxn
= (desc
>> 2) & 1;
9574 ns
= extract32(desc
, 3, 1);
9575 /* Lookup l2 entry. */
9576 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
9577 desc
= arm_ldl_ptw(cs
, table
, regime_is_secure(env
, mmu_idx
),
9579 if (fi
->type
!= ARMFault_None
) {
9582 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
9584 case 0: /* Page translation fault. */
9585 fi
->type
= ARMFault_Translation
;
9587 case 1: /* 64k page. */
9588 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
9589 xn
= desc
& (1 << 15);
9590 *page_size
= 0x10000;
9592 case 2: case 3: /* 4k page. */
9593 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
9595 *page_size
= 0x1000;
9598 /* Never happens, but compiler isn't smart enough to tell. */
9602 if (domain_prot
== 3) {
9603 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
9605 if (pxn
&& !regime_is_user(env
, mmu_idx
)) {
9608 if (xn
&& access_type
== MMU_INST_FETCH
) {
9609 fi
->type
= ARMFault_Permission
;
9613 if (arm_feature(env
, ARM_FEATURE_V6K
) &&
9614 (regime_sctlr(env
, mmu_idx
) & SCTLR_AFE
)) {
9615 /* The simplified model uses AP[0] as an access control bit. */
9616 if ((ap
& 1) == 0) {
9617 /* Access flag fault. */
9618 fi
->type
= ARMFault_AccessFlag
;
9621 *prot
= simple_ap_to_rw_prot(env
, mmu_idx
, ap
>> 1);
9623 *prot
= ap_to_rw_prot(env
, mmu_idx
, ap
, domain_prot
);
9628 if (!(*prot
& (1 << access_type
))) {
9629 /* Access permission fault. */
9630 fi
->type
= ARMFault_Permission
;
9635 /* The NS bit will (as required by the architecture) have no effect if
9636 * the CPU doesn't support TZ or this is a non-secure translation
9637 * regime, because the attribute will already be non-secure.
9639 attrs
->secure
= false;
9641 *phys_ptr
= phys_addr
;
9644 fi
->domain
= domain
;
9650 * check_s2_mmu_setup
9652 * @is_aa64: True if the translation regime is in AArch64 state
9653 * @startlevel: Suggested starting level
9654 * @inputsize: Bitsize of IPAs
9655 * @stride: Page-table stride (See the ARM ARM)
9657 * Returns true if the suggested S2 translation parameters are OK and
9660 static bool check_s2_mmu_setup(ARMCPU
*cpu
, bool is_aa64
, int level
,
9661 int inputsize
, int stride
)
9663 const int grainsize
= stride
+ 3;
9666 /* Negative levels are never allowed. */
9671 startsizecheck
= inputsize
- ((3 - level
) * stride
+ grainsize
);
9672 if (startsizecheck
< 1 || startsizecheck
> stride
+ 4) {
9677 CPUARMState
*env
= &cpu
->env
;
9678 unsigned int pamax
= arm_pamax(cpu
);
9681 case 13: /* 64KB Pages. */
9682 if (level
== 0 || (level
== 1 && pamax
<= 42)) {
9686 case 11: /* 16KB Pages. */
9687 if (level
== 0 || (level
== 1 && pamax
<= 40)) {
9691 case 9: /* 4KB Pages. */
9692 if (level
== 0 && pamax
<= 42) {
9697 g_assert_not_reached();
9700 /* Inputsize checks. */
9701 if (inputsize
> pamax
&&
9702 (arm_el_is_aa64(env
, 1) || inputsize
> 40)) {
9703 /* This is CONSTRAINED UNPREDICTABLE and we choose to fault. */
9707 /* AArch32 only supports 4KB pages. Assert on that. */
9708 assert(stride
== 9);
9717 /* Translate from the 4-bit stage 2 representation of
9718 * memory attributes (without cache-allocation hints) to
9719 * the 8-bit representation of the stage 1 MAIR registers
9720 * (which includes allocation hints).
9722 * ref: shared/translation/attrs/S2AttrDecode()
9723 * .../S2ConvertAttrsHints()
9725 static uint8_t convert_stage2_attrs(CPUARMState
*env
, uint8_t s2attrs
)
9727 uint8_t hiattr
= extract32(s2attrs
, 2, 2);
9728 uint8_t loattr
= extract32(s2attrs
, 0, 2);
9729 uint8_t hihint
= 0, lohint
= 0;
9731 if (hiattr
!= 0) { /* normal memory */
9732 if ((env
->cp15
.hcr_el2
& HCR_CD
) != 0) { /* cache disabled */
9733 hiattr
= loattr
= 1; /* non-cacheable */
9735 if (hiattr
!= 1) { /* Write-through or write-back */
9736 hihint
= 3; /* RW allocate */
9738 if (loattr
!= 1) { /* Write-through or write-back */
9739 lohint
= 3; /* RW allocate */
9744 return (hiattr
<< 6) | (hihint
<< 4) | (loattr
<< 2) | lohint
;
9747 static bool get_phys_addr_lpae(CPUARMState
*env
, target_ulong address
,
9748 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
9749 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
, int *prot
,
9750 target_ulong
*page_size_ptr
,
9751 ARMMMUFaultInfo
*fi
, ARMCacheAttrs
*cacheattrs
)
9753 ARMCPU
*cpu
= arm_env_get_cpu(env
);
9754 CPUState
*cs
= CPU(cpu
);
9755 /* Read an LPAE long-descriptor translation table. */
9756 ARMFaultType fault_type
= ARMFault_Translation
;
9763 hwaddr descaddr
, indexmask
, indexmask_grainsize
;
9764 uint32_t tableattrs
;
9765 target_ulong page_size
;
9771 TCR
*tcr
= regime_tcr(env
, mmu_idx
);
9772 int ap
, ns
, xn
, pxn
;
9773 uint32_t el
= regime_el(env
, mmu_idx
);
9774 bool ttbr1_valid
= true;
9775 uint64_t descaddrmask
;
9776 bool aarch64
= arm_el_is_aa64(env
, el
);
9780 * This code does not handle the different format TCR for VTCR_EL2.
9781 * This code also does not support shareability levels.
9782 * Attribute and permission bit handling should also be checked when adding
9783 * support for those page table walks.
9789 if (mmu_idx
!= ARMMMUIdx_S2NS
) {
9790 tbi
= extract64(tcr
->raw_tcr
, 20, 1);
9793 if (extract64(address
, 55, 1)) {
9794 tbi
= extract64(tcr
->raw_tcr
, 38, 1);
9796 tbi
= extract64(tcr
->raw_tcr
, 37, 1);
9801 /* If we are in 64-bit EL2 or EL3 then there is no TTBR1, so mark it
9805 ttbr1_valid
= false;
9810 /* There is no TTBR1 for EL2 */
9812 ttbr1_valid
= false;
9816 /* Determine whether this address is in the region controlled by
9817 * TTBR0 or TTBR1 (or if it is in neither region and should fault).
9818 * This is a Non-secure PL0/1 stage 1 translation, so controlled by
9819 * TTBCR/TTBR0/TTBR1 in accordance with ARM ARM DDI0406C table B-32:
9822 /* AArch64 translation. */
9823 t0sz
= extract32(tcr
->raw_tcr
, 0, 6);
9824 t0sz
= MIN(t0sz
, 39);
9825 t0sz
= MAX(t0sz
, 16);
9826 } else if (mmu_idx
!= ARMMMUIdx_S2NS
) {
9827 /* AArch32 stage 1 translation. */
9828 t0sz
= extract32(tcr
->raw_tcr
, 0, 3);
9830 /* AArch32 stage 2 translation. */
9831 bool sext
= extract32(tcr
->raw_tcr
, 4, 1);
9832 bool sign
= extract32(tcr
->raw_tcr
, 3, 1);
9833 /* Address size is 40-bit for a stage 2 translation,
9834 * and t0sz can be negative (from -8 to 7),
9835 * so we need to adjust it to use the TTBR selecting logic below.
9838 t0sz
= sextract32(tcr
->raw_tcr
, 0, 4) + 8;
9840 /* If the sign-extend bit is not the same as t0sz[3], the result
9841 * is unpredictable. Flag this as a guest error. */
9843 qemu_log_mask(LOG_GUEST_ERROR
,
9844 "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
9847 t1sz
= extract32(tcr
->raw_tcr
, 16, 6);
9849 t1sz
= MIN(t1sz
, 39);
9850 t1sz
= MAX(t1sz
, 16);
9852 if (t0sz
&& !extract64(address
, addrsize
- t0sz
, t0sz
- tbi
)) {
9853 /* there is a ttbr0 region and we are in it (high bits all zero) */
9855 } else if (ttbr1_valid
&& t1sz
&&
9856 !extract64(~address
, addrsize
- t1sz
, t1sz
- tbi
)) {
9857 /* there is a ttbr1 region and we are in it (high bits all one) */
9860 /* ttbr0 region is "everything not in the ttbr1 region" */
9862 } else if (!t1sz
&& ttbr1_valid
) {
9863 /* ttbr1 region is "everything not in the ttbr0 region" */
9866 /* in the gap between the two regions, this is a Translation fault */
9867 fault_type
= ARMFault_Translation
;
9871 /* Note that QEMU ignores shareability and cacheability attributes,
9872 * so we don't need to do anything with the SH, ORGN, IRGN fields
9873 * in the TTBCR. Similarly, TTBCR:A1 selects whether we get the
9874 * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
9875 * implement any ASID-like capability so we can ignore it (instead
9876 * we will always flush the TLB any time the ASID is changed).
9878 if (ttbr_select
== 0) {
9879 ttbr
= regime_ttbr(env
, mmu_idx
, 0);
9881 epd
= extract32(tcr
->raw_tcr
, 7, 1);
9883 inputsize
= addrsize
- t0sz
;
9885 tg
= extract32(tcr
->raw_tcr
, 14, 2);
9886 if (tg
== 1) { /* 64KB pages */
9889 if (tg
== 2) { /* 16KB pages */
9892 if (aarch64
&& el
> 1) {
9893 hpd
= extract64(tcr
->raw_tcr
, 24, 1);
9895 hpd
= extract64(tcr
->raw_tcr
, 41, 1);
9898 /* For aarch32, hpd0 is not enabled without t2e as well. */
9899 hpd
&= extract64(tcr
->raw_tcr
, 6, 1);
9902 /* We should only be here if TTBR1 is valid */
9903 assert(ttbr1_valid
);
9905 ttbr
= regime_ttbr(env
, mmu_idx
, 1);
9906 epd
= extract32(tcr
->raw_tcr
, 23, 1);
9907 inputsize
= addrsize
- t1sz
;
9909 tg
= extract32(tcr
->raw_tcr
, 30, 2);
9910 if (tg
== 3) { /* 64KB pages */
9913 if (tg
== 1) { /* 16KB pages */
9916 hpd
= extract64(tcr
->raw_tcr
, 42, 1);
9918 /* For aarch32, hpd1 is not enabled without t2e as well. */
9919 hpd
&= extract64(tcr
->raw_tcr
, 6, 1);
9923 /* Here we should have set up all the parameters for the translation:
9924 * inputsize, ttbr, epd, stride, tbi
9928 /* Translation table walk disabled => Translation fault on TLB miss
9929 * Note: This is always 0 on 64-bit EL2 and EL3.
9934 if (mmu_idx
!= ARMMMUIdx_S2NS
) {
9935 /* The starting level depends on the virtual address size (which can
9936 * be up to 48 bits) and the translation granule size. It indicates
9937 * the number of strides (stride bits at a time) needed to
9938 * consume the bits of the input address. In the pseudocode this is:
9939 * level = 4 - RoundUp((inputsize - grainsize) / stride)
9940 * where their 'inputsize' is our 'inputsize', 'grainsize' is
9941 * our 'stride + 3' and 'stride' is our 'stride'.
9942 * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
9943 * = 4 - (inputsize - stride - 3 + stride - 1) / stride
9944 * = 4 - (inputsize - 4) / stride;
9946 level
= 4 - (inputsize
- 4) / stride
;
9948 /* For stage 2 translations the starting level is specified by the
9949 * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
9951 uint32_t sl0
= extract32(tcr
->raw_tcr
, 6, 2);
9952 uint32_t startlevel
;
9955 if (!aarch64
|| stride
== 9) {
9956 /* AArch32 or 4KB pages */
9957 startlevel
= 2 - sl0
;
9959 /* 16KB or 64KB pages */
9960 startlevel
= 3 - sl0
;
9963 /* Check that the starting level is valid. */
9964 ok
= check_s2_mmu_setup(cpu
, aarch64
, startlevel
,
9967 fault_type
= ARMFault_Translation
;
9973 indexmask_grainsize
= (1ULL << (stride
+ 3)) - 1;
9974 indexmask
= (1ULL << (inputsize
- (stride
* (4 - level
)))) - 1;
9976 /* Now we can extract the actual base address from the TTBR */
9977 descaddr
= extract64(ttbr
, 0, 48);
9978 descaddr
&= ~indexmask
;
9980 /* The address field in the descriptor goes up to bit 39 for ARMv7
9981 * but up to bit 47 for ARMv8, but we use the descaddrmask
9982 * up to bit 39 for AArch32, because we don't need other bits in that case
9983 * to construct next descriptor address (anyway they should be all zeroes).
9985 descaddrmask
= ((1ull << (aarch64
? 48 : 40)) - 1) &
9986 ~indexmask_grainsize
;
9988 /* Secure accesses start with the page table in secure memory and
9989 * can be downgraded to non-secure at any step. Non-secure accesses
9990 * remain non-secure. We implement this by just ORing in the NSTable/NS
9991 * bits at each step.
9993 tableattrs
= regime_is_secure(env
, mmu_idx
) ? 0 : (1 << 4);
9995 uint64_t descriptor
;
9998 descaddr
|= (address
>> (stride
* (4 - level
))) & indexmask
;
10000 nstable
= extract32(tableattrs
, 4, 1);
10001 descriptor
= arm_ldq_ptw(cs
, descaddr
, !nstable
, mmu_idx
, fi
);
10002 if (fi
->type
!= ARMFault_None
) {
10006 if (!(descriptor
& 1) ||
10007 (!(descriptor
& 2) && (level
== 3))) {
10008 /* Invalid, or the Reserved level 3 encoding */
10011 descaddr
= descriptor
& descaddrmask
;
10013 if ((descriptor
& 2) && (level
< 3)) {
10014 /* Table entry. The top five bits are attributes which may
10015 * propagate down through lower levels of the table (and
10016 * which are all arranged so that 0 means "no effect", so
10017 * we can gather them up by ORing in the bits at each level).
10019 tableattrs
|= extract64(descriptor
, 59, 5);
10021 indexmask
= indexmask_grainsize
;
10024 /* Block entry at level 1 or 2, or page entry at level 3.
10025 * These are basically the same thing, although the number
10026 * of bits we pull in from the vaddr varies.
10028 page_size
= (1ULL << ((stride
* (4 - level
)) + 3));
10029 descaddr
|= (address
& (page_size
- 1));
10030 /* Extract attributes from the descriptor */
10031 attrs
= extract64(descriptor
, 2, 10)
10032 | (extract64(descriptor
, 52, 12) << 10);
10034 if (mmu_idx
== ARMMMUIdx_S2NS
) {
10035 /* Stage 2 table descriptors do not include any attribute fields */
10038 /* Merge in attributes from table descriptors */
10039 attrs
|= nstable
<< 3; /* NS */
10041 /* HPD disables all the table attributes except NSTable. */
10044 attrs
|= extract32(tableattrs
, 0, 2) << 11; /* XN, PXN */
10045 /* The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
10046 * means "force PL1 access only", which means forcing AP[1] to 0.
10048 attrs
&= ~(extract32(tableattrs
, 2, 1) << 4); /* !APT[0] => AP[1] */
10049 attrs
|= extract32(tableattrs
, 3, 1) << 5; /* APT[1] => AP[2] */
10052 /* Here descaddr is the final physical address, and attributes
10053 * are all in attrs.
10055 fault_type
= ARMFault_AccessFlag
;
10056 if ((attrs
& (1 << 8)) == 0) {
10061 ap
= extract32(attrs
, 4, 2);
10062 xn
= extract32(attrs
, 12, 1);
10064 if (mmu_idx
== ARMMMUIdx_S2NS
) {
10066 *prot
= get_S2prot(env
, ap
, xn
);
10068 ns
= extract32(attrs
, 3, 1);
10069 pxn
= extract32(attrs
, 11, 1);
10070 *prot
= get_S1prot(env
, mmu_idx
, aarch64
, ap
, ns
, xn
, pxn
);
10073 fault_type
= ARMFault_Permission
;
10074 if (!(*prot
& (1 << access_type
))) {
10079 /* The NS bit will (as required by the architecture) have no effect if
10080 * the CPU doesn't support TZ or this is a non-secure translation
10081 * regime, because the attribute will already be non-secure.
10083 txattrs
->secure
= false;
10086 if (cacheattrs
!= NULL
) {
10087 if (mmu_idx
== ARMMMUIdx_S2NS
) {
10088 cacheattrs
->attrs
= convert_stage2_attrs(env
,
10089 extract32(attrs
, 0, 4));
10091 /* Index into MAIR registers for cache attributes */
10092 uint8_t attrindx
= extract32(attrs
, 0, 3);
10093 uint64_t mair
= env
->cp15
.mair_el
[regime_el(env
, mmu_idx
)];
10094 assert(attrindx
<= 7);
10095 cacheattrs
->attrs
= extract64(mair
, attrindx
* 8, 8);
10097 cacheattrs
->shareability
= extract32(attrs
, 6, 2);
10100 *phys_ptr
= descaddr
;
10101 *page_size_ptr
= page_size
;
10105 fi
->type
= fault_type
;
10107 /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2. */
10108 fi
->stage2
= fi
->s1ptw
|| (mmu_idx
== ARMMMUIdx_S2NS
);
10112 static inline void get_phys_addr_pmsav7_default(CPUARMState
*env
,
10114 int32_t address
, int *prot
)
10116 if (!arm_feature(env
, ARM_FEATURE_M
)) {
10117 *prot
= PAGE_READ
| PAGE_WRITE
;
10119 case 0xF0000000 ... 0xFFFFFFFF:
10120 if (regime_sctlr(env
, mmu_idx
) & SCTLR_V
) {
10121 /* hivecs execing is ok */
10122 *prot
|= PAGE_EXEC
;
10125 case 0x00000000 ... 0x7FFFFFFF:
10126 *prot
|= PAGE_EXEC
;
10130 /* Default system address map for M profile cores.
10131 * The architecture specifies which regions are execute-never;
10132 * at the MPU level no other checks are defined.
10135 case 0x00000000 ... 0x1fffffff: /* ROM */
10136 case 0x20000000 ... 0x3fffffff: /* SRAM */
10137 case 0x60000000 ... 0x7fffffff: /* RAM */
10138 case 0x80000000 ... 0x9fffffff: /* RAM */
10139 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
10141 case 0x40000000 ... 0x5fffffff: /* Peripheral */
10142 case 0xa0000000 ... 0xbfffffff: /* Device */
10143 case 0xc0000000 ... 0xdfffffff: /* Device */
10144 case 0xe0000000 ... 0xffffffff: /* System */
10145 *prot
= PAGE_READ
| PAGE_WRITE
;
10148 g_assert_not_reached();
10153 static bool pmsav7_use_background_region(ARMCPU
*cpu
,
10154 ARMMMUIdx mmu_idx
, bool is_user
)
10156 /* Return true if we should use the default memory map as a
10157 * "background" region if there are no hits against any MPU regions.
10159 CPUARMState
*env
= &cpu
->env
;
10165 if (arm_feature(env
, ARM_FEATURE_M
)) {
10166 return env
->v7m
.mpu_ctrl
[regime_is_secure(env
, mmu_idx
)]
10167 & R_V7M_MPU_CTRL_PRIVDEFENA_MASK
;
10169 return regime_sctlr(env
, mmu_idx
) & SCTLR_BR
;
10173 static inline bool m_is_ppb_region(CPUARMState
*env
, uint32_t address
)
10175 /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
10176 return arm_feature(env
, ARM_FEATURE_M
) &&
10177 extract32(address
, 20, 12) == 0xe00;
10180 static inline bool m_is_system_region(CPUARMState
*env
, uint32_t address
)
10182 /* True if address is in the M profile system region
10183 * 0xe0000000 - 0xffffffff
10185 return arm_feature(env
, ARM_FEATURE_M
) && extract32(address
, 29, 3) == 0x7;
10188 static bool get_phys_addr_pmsav7(CPUARMState
*env
, uint32_t address
,
10189 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
10190 hwaddr
*phys_ptr
, int *prot
,
10191 target_ulong
*page_size
,
10192 ARMMMUFaultInfo
*fi
)
10194 ARMCPU
*cpu
= arm_env_get_cpu(env
);
10196 bool is_user
= regime_is_user(env
, mmu_idx
);
10198 *phys_ptr
= address
;
10199 *page_size
= TARGET_PAGE_SIZE
;
10202 if (regime_translation_disabled(env
, mmu_idx
) ||
10203 m_is_ppb_region(env
, address
)) {
10204 /* MPU disabled or M profile PPB access: use default memory map.
10205 * The other case which uses the default memory map in the
10206 * v7M ARM ARM pseudocode is exception vector reads from the vector
10207 * table. In QEMU those accesses are done in arm_v7m_load_vector(),
10208 * which always does a direct read using address_space_ldl(), rather
10209 * than going via this function, so we don't need to check that here.
10211 get_phys_addr_pmsav7_default(env
, mmu_idx
, address
, prot
);
10212 } else { /* MPU enabled */
10213 for (n
= (int)cpu
->pmsav7_dregion
- 1; n
>= 0; n
--) {
10214 /* region search */
10215 uint32_t base
= env
->pmsav7
.drbar
[n
];
10216 uint32_t rsize
= extract32(env
->pmsav7
.drsr
[n
], 1, 5);
10218 bool srdis
= false;
10220 if (!(env
->pmsav7
.drsr
[n
] & 0x1)) {
10225 qemu_log_mask(LOG_GUEST_ERROR
,
10226 "DRSR[%d]: Rsize field cannot be 0\n", n
);
10230 rmask
= (1ull << rsize
) - 1;
10232 if (base
& rmask
) {
10233 qemu_log_mask(LOG_GUEST_ERROR
,
10234 "DRBAR[%d]: 0x%" PRIx32
" misaligned "
10235 "to DRSR region size, mask = 0x%" PRIx32
"\n",
10240 if (address
< base
|| address
> base
+ rmask
) {
10242 * Address not in this region. We must check whether the
10243 * region covers addresses in the same page as our address.
10244 * In that case we must not report a size that covers the
10245 * whole page for a subsequent hit against a different MPU
10246 * region or the background region, because it would result in
10247 * incorrect TLB hits for subsequent accesses to addresses that
10248 * are in this MPU region.
10250 if (ranges_overlap(base
, rmask
,
10251 address
& TARGET_PAGE_MASK
,
10252 TARGET_PAGE_SIZE
)) {
10258 /* Region matched */
10260 if (rsize
>= 8) { /* no subregions for regions < 256 bytes */
10262 uint32_t srdis_mask
;
10264 rsize
-= 3; /* sub region size (power of 2) */
10265 snd
= ((address
- base
) >> rsize
) & 0x7;
10266 srdis
= extract32(env
->pmsav7
.drsr
[n
], snd
+ 8, 1);
10268 srdis_mask
= srdis
? 0x3 : 0x0;
10269 for (i
= 2; i
<= 8 && rsize
< TARGET_PAGE_BITS
; i
*= 2) {
10270 /* This will check in groups of 2, 4 and then 8, whether
10271 * the subregion bits are consistent. rsize is incremented
10272 * back up to give the region size, considering consistent
10273 * adjacent subregions as one region. Stop testing if rsize
10274 * is already big enough for an entire QEMU page.
10276 int snd_rounded
= snd
& ~(i
- 1);
10277 uint32_t srdis_multi
= extract32(env
->pmsav7
.drsr
[n
],
10278 snd_rounded
+ 8, i
);
10279 if (srdis_mask
^ srdis_multi
) {
10282 srdis_mask
= (srdis_mask
<< i
) | srdis_mask
;
10289 if (rsize
< TARGET_PAGE_BITS
) {
10290 *page_size
= 1 << rsize
;
10295 if (n
== -1) { /* no hits */
10296 if (!pmsav7_use_background_region(cpu
, mmu_idx
, is_user
)) {
10297 /* background fault */
10298 fi
->type
= ARMFault_Background
;
10301 get_phys_addr_pmsav7_default(env
, mmu_idx
, address
, prot
);
10302 } else { /* a MPU hit! */
10303 uint32_t ap
= extract32(env
->pmsav7
.dracr
[n
], 8, 3);
10304 uint32_t xn
= extract32(env
->pmsav7
.dracr
[n
], 12, 1);
10306 if (m_is_system_region(env
, address
)) {
10307 /* System space is always execute never */
10311 if (is_user
) { /* User mode AP bit decoding */
10316 break; /* no access */
10318 *prot
|= PAGE_WRITE
;
10322 *prot
|= PAGE_READ
| PAGE_EXEC
;
10325 /* for v7M, same as 6; for R profile a reserved value */
10326 if (arm_feature(env
, ARM_FEATURE_M
)) {
10327 *prot
|= PAGE_READ
| PAGE_EXEC
;
10332 qemu_log_mask(LOG_GUEST_ERROR
,
10333 "DRACR[%d]: Bad value for AP bits: 0x%"
10334 PRIx32
"\n", n
, ap
);
10336 } else { /* Priv. mode AP bits decoding */
10339 break; /* no access */
10343 *prot
|= PAGE_WRITE
;
10347 *prot
|= PAGE_READ
| PAGE_EXEC
;
10350 /* for v7M, same as 6; for R profile a reserved value */
10351 if (arm_feature(env
, ARM_FEATURE_M
)) {
10352 *prot
|= PAGE_READ
| PAGE_EXEC
;
10357 qemu_log_mask(LOG_GUEST_ERROR
,
10358 "DRACR[%d]: Bad value for AP bits: 0x%"
10359 PRIx32
"\n", n
, ap
);
10363 /* execute never */
10365 *prot
&= ~PAGE_EXEC
;
10370 fi
->type
= ARMFault_Permission
;
10372 return !(*prot
& (1 << access_type
));
10375 static bool v8m_is_sau_exempt(CPUARMState
*env
,
10376 uint32_t address
, MMUAccessType access_type
)
10378 /* The architecture specifies that certain address ranges are
10379 * exempt from v8M SAU/IDAU checks.
10382 (access_type
== MMU_INST_FETCH
&& m_is_system_region(env
, address
)) ||
10383 (address
>= 0xe0000000 && address
<= 0xe0002fff) ||
10384 (address
>= 0xe000e000 && address
<= 0xe000efff) ||
10385 (address
>= 0xe002e000 && address
<= 0xe002efff) ||
10386 (address
>= 0xe0040000 && address
<= 0xe0041fff) ||
10387 (address
>= 0xe00ff000 && address
<= 0xe00fffff);
10390 static void v8m_security_lookup(CPUARMState
*env
, uint32_t address
,
10391 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
10392 V8M_SAttributes
*sattrs
)
10394 /* Look up the security attributes for this address. Compare the
10395 * pseudocode SecurityCheck() function.
10396 * We assume the caller has zero-initialized *sattrs.
10398 ARMCPU
*cpu
= arm_env_get_cpu(env
);
10400 bool idau_exempt
= false, idau_ns
= true, idau_nsc
= true;
10401 int idau_region
= IREGION_NOTVALID
;
10402 uint32_t addr_page_base
= address
& TARGET_PAGE_MASK
;
10403 uint32_t addr_page_limit
= addr_page_base
+ (TARGET_PAGE_SIZE
- 1);
10406 IDAUInterfaceClass
*iic
= IDAU_INTERFACE_GET_CLASS(cpu
->idau
);
10407 IDAUInterface
*ii
= IDAU_INTERFACE(cpu
->idau
);
10409 iic
->check(ii
, address
, &idau_region
, &idau_exempt
, &idau_ns
,
10413 if (access_type
== MMU_INST_FETCH
&& extract32(address
, 28, 4) == 0xf) {
10414 /* 0xf0000000..0xffffffff is always S for insn fetches */
10418 if (idau_exempt
|| v8m_is_sau_exempt(env
, address
, access_type
)) {
10419 sattrs
->ns
= !regime_is_secure(env
, mmu_idx
);
10423 if (idau_region
!= IREGION_NOTVALID
) {
10424 sattrs
->irvalid
= true;
10425 sattrs
->iregion
= idau_region
;
10428 switch (env
->sau
.ctrl
& 3) {
10429 case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
10431 case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
10434 default: /* SAU.ENABLE == 1 */
10435 for (r
= 0; r
< cpu
->sau_sregion
; r
++) {
10436 if (env
->sau
.rlar
[r
] & 1) {
10437 uint32_t base
= env
->sau
.rbar
[r
] & ~0x1f;
10438 uint32_t limit
= env
->sau
.rlar
[r
] | 0x1f;
10440 if (base
<= address
&& limit
>= address
) {
10441 if (base
> addr_page_base
|| limit
< addr_page_limit
) {
10442 sattrs
->subpage
= true;
10444 if (sattrs
->srvalid
) {
10445 /* If we hit in more than one region then we must report
10446 * as Secure, not NS-Callable, with no valid region
10449 sattrs
->ns
= false;
10450 sattrs
->nsc
= false;
10451 sattrs
->sregion
= 0;
10452 sattrs
->srvalid
= false;
10455 if (env
->sau
.rlar
[r
] & 2) {
10456 sattrs
->nsc
= true;
10460 sattrs
->srvalid
= true;
10461 sattrs
->sregion
= r
;
10465 * Address not in this region. We must check whether the
10466 * region covers addresses in the same page as our address.
10467 * In that case we must not report a size that covers the
10468 * whole page for a subsequent hit against a different MPU
10469 * region or the background region, because it would result
10470 * in incorrect TLB hits for subsequent accesses to
10471 * addresses that are in this MPU region.
10473 if (limit
>= base
&&
10474 ranges_overlap(base
, limit
- base
+ 1,
10476 TARGET_PAGE_SIZE
)) {
10477 sattrs
->subpage
= true;
10483 /* The IDAU will override the SAU lookup results if it specifies
10484 * higher security than the SAU does.
10487 if (sattrs
->ns
|| (!idau_nsc
&& sattrs
->nsc
)) {
10488 sattrs
->ns
= false;
10489 sattrs
->nsc
= idau_nsc
;
10496 static bool pmsav8_mpu_lookup(CPUARMState
*env
, uint32_t address
,
10497 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
10498 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
,
10499 int *prot
, bool *is_subpage
,
10500 ARMMMUFaultInfo
*fi
, uint32_t *mregion
)
10502 /* Perform a PMSAv8 MPU lookup (without also doing the SAU check
10503 * that a full phys-to-virt translation does).
10504 * mregion is (if not NULL) set to the region number which matched,
10505 * or -1 if no region number is returned (MPU off, address did not
10506 * hit a region, address hit in multiple regions).
10507 * We set is_subpage to true if the region hit doesn't cover the
10508 * entire TARGET_PAGE the address is within.
10510 ARMCPU
*cpu
= arm_env_get_cpu(env
);
10511 bool is_user
= regime_is_user(env
, mmu_idx
);
10512 uint32_t secure
= regime_is_secure(env
, mmu_idx
);
10514 int matchregion
= -1;
10516 uint32_t addr_page_base
= address
& TARGET_PAGE_MASK
;
10517 uint32_t addr_page_limit
= addr_page_base
+ (TARGET_PAGE_SIZE
- 1);
10519 *is_subpage
= false;
10520 *phys_ptr
= address
;
10526 /* Unlike the ARM ARM pseudocode, we don't need to check whether this
10527 * was an exception vector read from the vector table (which is always
10528 * done using the default system address map), because those accesses
10529 * are done in arm_v7m_load_vector(), which always does a direct
10530 * read using address_space_ldl(), rather than going via this function.
10532 if (regime_translation_disabled(env
, mmu_idx
)) { /* MPU disabled */
10534 } else if (m_is_ppb_region(env
, address
)) {
10536 } else if (pmsav7_use_background_region(cpu
, mmu_idx
, is_user
)) {
10539 for (n
= (int)cpu
->pmsav7_dregion
- 1; n
>= 0; n
--) {
10540 /* region search */
10541 /* Note that the base address is bits [31:5] from the register
10542 * with bits [4:0] all zeroes, but the limit address is bits
10543 * [31:5] from the register with bits [4:0] all ones.
10545 uint32_t base
= env
->pmsav8
.rbar
[secure
][n
] & ~0x1f;
10546 uint32_t limit
= env
->pmsav8
.rlar
[secure
][n
] | 0x1f;
10548 if (!(env
->pmsav8
.rlar
[secure
][n
] & 0x1)) {
10549 /* Region disabled */
10553 if (address
< base
|| address
> limit
) {
10555 * Address not in this region. We must check whether the
10556 * region covers addresses in the same page as our address.
10557 * In that case we must not report a size that covers the
10558 * whole page for a subsequent hit against a different MPU
10559 * region or the background region, because it would result in
10560 * incorrect TLB hits for subsequent accesses to addresses that
10561 * are in this MPU region.
10563 if (limit
>= base
&&
10564 ranges_overlap(base
, limit
- base
+ 1,
10566 TARGET_PAGE_SIZE
)) {
10567 *is_subpage
= true;
10572 if (base
> addr_page_base
|| limit
< addr_page_limit
) {
10573 *is_subpage
= true;
10577 /* Multiple regions match -- always a failure (unlike
10578 * PMSAv7 where highest-numbered-region wins)
10580 fi
->type
= ARMFault_Permission
;
10591 /* background fault */
10592 fi
->type
= ARMFault_Background
;
10596 if (matchregion
== -1) {
10597 /* hit using the background region */
10598 get_phys_addr_pmsav7_default(env
, mmu_idx
, address
, prot
);
10600 uint32_t ap
= extract32(env
->pmsav8
.rbar
[secure
][matchregion
], 1, 2);
10601 uint32_t xn
= extract32(env
->pmsav8
.rbar
[secure
][matchregion
], 0, 1);
10603 if (m_is_system_region(env
, address
)) {
10604 /* System space is always execute never */
10608 *prot
= simple_ap_to_rw_prot(env
, mmu_idx
, ap
);
10609 if (*prot
&& !xn
) {
10610 *prot
|= PAGE_EXEC
;
10612 /* We don't need to look the attribute up in the MAIR0/MAIR1
10613 * registers because that only tells us about cacheability.
10616 *mregion
= matchregion
;
10620 fi
->type
= ARMFault_Permission
;
10622 return !(*prot
& (1 << access_type
));
10626 static bool get_phys_addr_pmsav8(CPUARMState
*env
, uint32_t address
,
10627 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
10628 hwaddr
*phys_ptr
, MemTxAttrs
*txattrs
,
10629 int *prot
, target_ulong
*page_size
,
10630 ARMMMUFaultInfo
*fi
)
10632 uint32_t secure
= regime_is_secure(env
, mmu_idx
);
10633 V8M_SAttributes sattrs
= {};
10635 bool mpu_is_subpage
;
10637 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
10638 v8m_security_lookup(env
, address
, access_type
, mmu_idx
, &sattrs
);
10639 if (access_type
== MMU_INST_FETCH
) {
10640 /* Instruction fetches always use the MMU bank and the
10641 * transaction attribute determined by the fetch address,
10642 * regardless of CPU state. This is painful for QEMU
10643 * to handle, because it would mean we need to encode
10644 * into the mmu_idx not just the (user, negpri) information
10645 * for the current security state but also that for the
10646 * other security state, which would balloon the number
10647 * of mmu_idx values needed alarmingly.
10648 * Fortunately we can avoid this because it's not actually
10649 * possible to arbitrarily execute code from memory with
10650 * the wrong security attribute: it will always generate
10651 * an exception of some kind or another, apart from the
10652 * special case of an NS CPU executing an SG instruction
10653 * in S&NSC memory. So we always just fail the translation
10654 * here and sort things out in the exception handler
10655 * (including possibly emulating an SG instruction).
10657 if (sattrs
.ns
!= !secure
) {
10659 fi
->type
= ARMFault_QEMU_NSCExec
;
10661 fi
->type
= ARMFault_QEMU_SFault
;
10663 *page_size
= sattrs
.subpage
? 1 : TARGET_PAGE_SIZE
;
10664 *phys_ptr
= address
;
10669 /* For data accesses we always use the MMU bank indicated
10670 * by the current CPU state, but the security attributes
10671 * might downgrade a secure access to nonsecure.
10674 txattrs
->secure
= false;
10675 } else if (!secure
) {
10676 /* NS access to S memory must fault.
10677 * Architecturally we should first check whether the
10678 * MPU information for this address indicates that we
10679 * are doing an unaligned access to Device memory, which
10680 * should generate a UsageFault instead. QEMU does not
10681 * currently check for that kind of unaligned access though.
10682 * If we added it we would need to do so as a special case
10683 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
10685 fi
->type
= ARMFault_QEMU_SFault
;
10686 *page_size
= sattrs
.subpage
? 1 : TARGET_PAGE_SIZE
;
10687 *phys_ptr
= address
;
10694 ret
= pmsav8_mpu_lookup(env
, address
, access_type
, mmu_idx
, phys_ptr
,
10695 txattrs
, prot
, &mpu_is_subpage
, fi
, NULL
);
10696 *page_size
= sattrs
.subpage
|| mpu_is_subpage
? 1 : TARGET_PAGE_SIZE
;
10700 static bool get_phys_addr_pmsav5(CPUARMState
*env
, uint32_t address
,
10701 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
10702 hwaddr
*phys_ptr
, int *prot
,
10703 ARMMMUFaultInfo
*fi
)
10708 bool is_user
= regime_is_user(env
, mmu_idx
);
10710 if (regime_translation_disabled(env
, mmu_idx
)) {
10711 /* MPU disabled. */
10712 *phys_ptr
= address
;
10713 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
10717 *phys_ptr
= address
;
10718 for (n
= 7; n
>= 0; n
--) {
10719 base
= env
->cp15
.c6_region
[n
];
10720 if ((base
& 1) == 0) {
10723 mask
= 1 << ((base
>> 1) & 0x1f);
10724 /* Keep this shift separate from the above to avoid an
10725 (undefined) << 32. */
10726 mask
= (mask
<< 1) - 1;
10727 if (((base
^ address
) & ~mask
) == 0) {
10732 fi
->type
= ARMFault_Background
;
10736 if (access_type
== MMU_INST_FETCH
) {
10737 mask
= env
->cp15
.pmsav5_insn_ap
;
10739 mask
= env
->cp15
.pmsav5_data_ap
;
10741 mask
= (mask
>> (n
* 4)) & 0xf;
10744 fi
->type
= ARMFault_Permission
;
10749 fi
->type
= ARMFault_Permission
;
10753 *prot
= PAGE_READ
| PAGE_WRITE
;
10758 *prot
|= PAGE_WRITE
;
10762 *prot
= PAGE_READ
| PAGE_WRITE
;
10766 fi
->type
= ARMFault_Permission
;
10776 /* Bad permission. */
10777 fi
->type
= ARMFault_Permission
;
10781 *prot
|= PAGE_EXEC
;
10785 /* Combine either inner or outer cacheability attributes for normal
10786 * memory, according to table D4-42 and pseudocode procedure
10787 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
10789 * NB: only stage 1 includes allocation hints (RW bits), leading to
10792 static uint8_t combine_cacheattr_nibble(uint8_t s1
, uint8_t s2
)
10794 if (s1
== 4 || s2
== 4) {
10795 /* non-cacheable has precedence */
10797 } else if (extract32(s1
, 2, 2) == 0 || extract32(s1
, 2, 2) == 2) {
10798 /* stage 1 write-through takes precedence */
10800 } else if (extract32(s2
, 2, 2) == 2) {
10801 /* stage 2 write-through takes precedence, but the allocation hint
10802 * is still taken from stage 1
10804 return (2 << 2) | extract32(s1
, 0, 2);
10805 } else { /* write-back */
10810 /* Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
10811 * and CombineS1S2Desc()
10813 * @s1: Attributes from stage 1 walk
10814 * @s2: Attributes from stage 2 walk
10816 static ARMCacheAttrs
combine_cacheattrs(ARMCacheAttrs s1
, ARMCacheAttrs s2
)
10818 uint8_t s1lo
= extract32(s1
.attrs
, 0, 4), s2lo
= extract32(s2
.attrs
, 0, 4);
10819 uint8_t s1hi
= extract32(s1
.attrs
, 4, 4), s2hi
= extract32(s2
.attrs
, 4, 4);
10822 /* Combine shareability attributes (table D4-43) */
10823 if (s1
.shareability
== 2 || s2
.shareability
== 2) {
10824 /* if either are outer-shareable, the result is outer-shareable */
10825 ret
.shareability
= 2;
10826 } else if (s1
.shareability
== 3 || s2
.shareability
== 3) {
10827 /* if either are inner-shareable, the result is inner-shareable */
10828 ret
.shareability
= 3;
10830 /* both non-shareable */
10831 ret
.shareability
= 0;
10834 /* Combine memory type and cacheability attributes */
10835 if (s1hi
== 0 || s2hi
== 0) {
10836 /* Device has precedence over normal */
10837 if (s1lo
== 0 || s2lo
== 0) {
10838 /* nGnRnE has precedence over anything */
10840 } else if (s1lo
== 4 || s2lo
== 4) {
10841 /* non-Reordering has precedence over Reordering */
10842 ret
.attrs
= 4; /* nGnRE */
10843 } else if (s1lo
== 8 || s2lo
== 8) {
10844 /* non-Gathering has precedence over Gathering */
10845 ret
.attrs
= 8; /* nGRE */
10847 ret
.attrs
= 0xc; /* GRE */
10850 /* Any location for which the resultant memory type is any
10851 * type of Device memory is always treated as Outer Shareable.
10853 ret
.shareability
= 2;
10854 } else { /* Normal memory */
10855 /* Outer/inner cacheability combine independently */
10856 ret
.attrs
= combine_cacheattr_nibble(s1hi
, s2hi
) << 4
10857 | combine_cacheattr_nibble(s1lo
, s2lo
);
10859 if (ret
.attrs
== 0x44) {
10860 /* Any location for which the resultant memory type is Normal
10861 * Inner Non-cacheable, Outer Non-cacheable is always treated
10862 * as Outer Shareable.
10864 ret
.shareability
= 2;
10872 /* get_phys_addr - get the physical address for this virtual address
10874 * Find the physical address corresponding to the given virtual address,
10875 * by doing a translation table walk on MMU based systems or using the
10876 * MPU state on MPU based systems.
10878 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
10879 * prot and page_size may not be filled in, and the populated fsr value provides
10880 * information on why the translation aborted, in the format of a
10881 * DFSR/IFSR fault register, with the following caveats:
10882 * * we honour the short vs long DFSR format differences.
10883 * * the WnR bit is never set (the caller must do this).
10884 * * for PSMAv5 based systems we don't bother to return a full FSR format
10887 * @env: CPUARMState
10888 * @address: virtual address to get physical address for
10889 * @access_type: 0 for read, 1 for write, 2 for execute
10890 * @mmu_idx: MMU index indicating required translation regime
10891 * @phys_ptr: set to the physical address corresponding to the virtual address
10892 * @attrs: set to the memory transaction attributes to use
10893 * @prot: set to the permissions for the page containing phys_ptr
10894 * @page_size: set to the size of the page containing phys_ptr
10895 * @fi: set to fault info if the translation fails
10896 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
10898 static bool get_phys_addr(CPUARMState
*env
, target_ulong address
,
10899 MMUAccessType access_type
, ARMMMUIdx mmu_idx
,
10900 hwaddr
*phys_ptr
, MemTxAttrs
*attrs
, int *prot
,
10901 target_ulong
*page_size
,
10902 ARMMMUFaultInfo
*fi
, ARMCacheAttrs
*cacheattrs
)
10904 if (mmu_idx
== ARMMMUIdx_S12NSE0
|| mmu_idx
== ARMMMUIdx_S12NSE1
) {
10905 /* Call ourselves recursively to do the stage 1 and then stage 2
10908 if (arm_feature(env
, ARM_FEATURE_EL2
)) {
10912 ARMCacheAttrs cacheattrs2
= {};
10914 ret
= get_phys_addr(env
, address
, access_type
,
10915 stage_1_mmu_idx(mmu_idx
), &ipa
, attrs
,
10916 prot
, page_size
, fi
, cacheattrs
);
10918 /* If S1 fails or S2 is disabled, return early. */
10919 if (ret
|| regime_translation_disabled(env
, ARMMMUIdx_S2NS
)) {
10924 /* S1 is done. Now do S2 translation. */
10925 ret
= get_phys_addr_lpae(env
, ipa
, access_type
, ARMMMUIdx_S2NS
,
10926 phys_ptr
, attrs
, &s2_prot
,
10928 cacheattrs
!= NULL
? &cacheattrs2
: NULL
);
10930 /* Combine the S1 and S2 perms. */
10933 /* Combine the S1 and S2 cache attributes, if needed */
10934 if (!ret
&& cacheattrs
!= NULL
) {
10935 if (env
->cp15
.hcr_el2
& HCR_DC
) {
10937 * HCR.DC forces the first stage attributes to
10938 * Normal Non-Shareable,
10939 * Inner Write-Back Read-Allocate Write-Allocate,
10940 * Outer Write-Back Read-Allocate Write-Allocate.
10942 cacheattrs
->attrs
= 0xff;
10943 cacheattrs
->shareability
= 0;
10945 *cacheattrs
= combine_cacheattrs(*cacheattrs
, cacheattrs2
);
10951 * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
10953 mmu_idx
= stage_1_mmu_idx(mmu_idx
);
10957 /* The page table entries may downgrade secure to non-secure, but
10958 * cannot upgrade an non-secure translation regime's attributes
10961 attrs
->secure
= regime_is_secure(env
, mmu_idx
);
10962 attrs
->user
= regime_is_user(env
, mmu_idx
);
10964 /* Fast Context Switch Extension. This doesn't exist at all in v8.
10965 * In v7 and earlier it affects all stage 1 translations.
10967 if (address
< 0x02000000 && mmu_idx
!= ARMMMUIdx_S2NS
10968 && !arm_feature(env
, ARM_FEATURE_V8
)) {
10969 if (regime_el(env
, mmu_idx
) == 3) {
10970 address
+= env
->cp15
.fcseidr_s
;
10972 address
+= env
->cp15
.fcseidr_ns
;
10976 if (arm_feature(env
, ARM_FEATURE_PMSA
)) {
10978 *page_size
= TARGET_PAGE_SIZE
;
10980 if (arm_feature(env
, ARM_FEATURE_V8
)) {
10982 ret
= get_phys_addr_pmsav8(env
, address
, access_type
, mmu_idx
,
10983 phys_ptr
, attrs
, prot
, page_size
, fi
);
10984 } else if (arm_feature(env
, ARM_FEATURE_V7
)) {
10986 ret
= get_phys_addr_pmsav7(env
, address
, access_type
, mmu_idx
,
10987 phys_ptr
, prot
, page_size
, fi
);
10990 ret
= get_phys_addr_pmsav5(env
, address
, access_type
, mmu_idx
,
10991 phys_ptr
, prot
, fi
);
10993 qemu_log_mask(CPU_LOG_MMU
, "PMSA MPU lookup for %s at 0x%08" PRIx32
10994 " mmu_idx %u -> %s (prot %c%c%c)\n",
10995 access_type
== MMU_DATA_LOAD
? "reading" :
10996 (access_type
== MMU_DATA_STORE
? "writing" : "execute"),
10997 (uint32_t)address
, mmu_idx
,
10998 ret
? "Miss" : "Hit",
10999 *prot
& PAGE_READ
? 'r' : '-',
11000 *prot
& PAGE_WRITE
? 'w' : '-',
11001 *prot
& PAGE_EXEC
? 'x' : '-');
11006 /* Definitely a real MMU, not an MPU */
11008 if (regime_translation_disabled(env
, mmu_idx
)) {
11009 /* MMU disabled. */
11010 *phys_ptr
= address
;
11011 *prot
= PAGE_READ
| PAGE_WRITE
| PAGE_EXEC
;
11012 *page_size
= TARGET_PAGE_SIZE
;
11016 if (regime_using_lpae_format(env
, mmu_idx
)) {
11017 return get_phys_addr_lpae(env
, address
, access_type
, mmu_idx
,
11018 phys_ptr
, attrs
, prot
, page_size
,
11020 } else if (regime_sctlr(env
, mmu_idx
) & SCTLR_XP
) {
11021 return get_phys_addr_v6(env
, address
, access_type
, mmu_idx
,
11022 phys_ptr
, attrs
, prot
, page_size
, fi
);
11024 return get_phys_addr_v5(env
, address
, access_type
, mmu_idx
,
11025 phys_ptr
, prot
, page_size
, fi
);
11029 /* Walk the page table and (if the mapping exists) add the page
11030 * to the TLB. Return false on success, or true on failure. Populate
11031 * fsr with ARM DFSR/IFSR fault register format value on failure.
11033 bool arm_tlb_fill(CPUState
*cs
, vaddr address
,
11034 MMUAccessType access_type
, int mmu_idx
,
11035 ARMMMUFaultInfo
*fi
)
11037 ARMCPU
*cpu
= ARM_CPU(cs
);
11038 CPUARMState
*env
= &cpu
->env
;
11040 target_ulong page_size
;
11043 MemTxAttrs attrs
= {};
11045 ret
= get_phys_addr(env
, address
, access_type
,
11046 core_to_arm_mmu_idx(env
, mmu_idx
), &phys_addr
,
11047 &attrs
, &prot
, &page_size
, fi
, NULL
);
11050 * Map a single [sub]page. Regions smaller than our declared
11051 * target page size are handled specially, so for those we
11052 * pass in the exact addresses.
11054 if (page_size
>= TARGET_PAGE_SIZE
) {
11055 phys_addr
&= TARGET_PAGE_MASK
;
11056 address
&= TARGET_PAGE_MASK
;
11058 tlb_set_page_with_attrs(cs
, address
, phys_addr
, attrs
,
11059 prot
, mmu_idx
, page_size
);
11066 hwaddr
arm_cpu_get_phys_page_attrs_debug(CPUState
*cs
, vaddr addr
,
11069 ARMCPU
*cpu
= ARM_CPU(cs
);
11070 CPUARMState
*env
= &cpu
->env
;
11072 target_ulong page_size
;
11075 ARMMMUFaultInfo fi
= {};
11076 ARMMMUIdx mmu_idx
= core_to_arm_mmu_idx(env
, cpu_mmu_index(env
, false));
11078 *attrs
= (MemTxAttrs
) {};
11080 ret
= get_phys_addr(env
, addr
, 0, mmu_idx
, &phys_addr
,
11081 attrs
, &prot
, &page_size
, &fi
, NULL
);
11089 uint32_t HELPER(v7m_mrs
)(CPUARMState
*env
, uint32_t reg
)
11092 unsigned el
= arm_current_el(env
);
11094 /* First handle registers which unprivileged can read */
11097 case 0 ... 7: /* xPSR sub-fields */
11099 if ((reg
& 1) && el
) {
11100 mask
|= XPSR_EXCP
; /* IPSR (unpriv. reads as zero) */
11103 mask
|= XPSR_NZCV
| XPSR_Q
; /* APSR */
11105 /* EPSR reads as zero */
11106 return xpsr_read(env
) & mask
;
11108 case 20: /* CONTROL */
11109 return env
->v7m
.control
[env
->v7m
.secure
];
11110 case 0x94: /* CONTROL_NS */
11111 /* We have to handle this here because unprivileged Secure code
11112 * can read the NS CONTROL register.
11114 if (!env
->v7m
.secure
) {
11117 return env
->v7m
.control
[M_REG_NS
];
11121 return 0; /* unprivileged reads others as zero */
11124 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
11126 case 0x88: /* MSP_NS */
11127 if (!env
->v7m
.secure
) {
11130 return env
->v7m
.other_ss_msp
;
11131 case 0x89: /* PSP_NS */
11132 if (!env
->v7m
.secure
) {
11135 return env
->v7m
.other_ss_psp
;
11136 case 0x8a: /* MSPLIM_NS */
11137 if (!env
->v7m
.secure
) {
11140 return env
->v7m
.msplim
[M_REG_NS
];
11141 case 0x8b: /* PSPLIM_NS */
11142 if (!env
->v7m
.secure
) {
11145 return env
->v7m
.psplim
[M_REG_NS
];
11146 case 0x90: /* PRIMASK_NS */
11147 if (!env
->v7m
.secure
) {
11150 return env
->v7m
.primask
[M_REG_NS
];
11151 case 0x91: /* BASEPRI_NS */
11152 if (!env
->v7m
.secure
) {
11155 return env
->v7m
.basepri
[M_REG_NS
];
11156 case 0x93: /* FAULTMASK_NS */
11157 if (!env
->v7m
.secure
) {
11160 return env
->v7m
.faultmask
[M_REG_NS
];
11161 case 0x98: /* SP_NS */
11163 /* This gives the non-secure SP selected based on whether we're
11164 * currently in handler mode or not, using the NS CONTROL.SPSEL.
11166 bool spsel
= env
->v7m
.control
[M_REG_NS
] & R_V7M_CONTROL_SPSEL_MASK
;
11168 if (!env
->v7m
.secure
) {
11171 if (!arm_v7m_is_handler_mode(env
) && spsel
) {
11172 return env
->v7m
.other_ss_psp
;
11174 return env
->v7m
.other_ss_msp
;
11184 return v7m_using_psp(env
) ? env
->v7m
.other_sp
: env
->regs
[13];
11186 return v7m_using_psp(env
) ? env
->regs
[13] : env
->v7m
.other_sp
;
11187 case 10: /* MSPLIM */
11188 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
11191 return env
->v7m
.msplim
[env
->v7m
.secure
];
11192 case 11: /* PSPLIM */
11193 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
11196 return env
->v7m
.psplim
[env
->v7m
.secure
];
11197 case 16: /* PRIMASK */
11198 return env
->v7m
.primask
[env
->v7m
.secure
];
11199 case 17: /* BASEPRI */
11200 case 18: /* BASEPRI_MAX */
11201 return env
->v7m
.basepri
[env
->v7m
.secure
];
11202 case 19: /* FAULTMASK */
11203 return env
->v7m
.faultmask
[env
->v7m
.secure
];
11206 qemu_log_mask(LOG_GUEST_ERROR
, "Attempt to read unknown special"
11207 " register %d\n", reg
);
11212 void HELPER(v7m_msr
)(CPUARMState
*env
, uint32_t maskreg
, uint32_t val
)
11214 /* We're passed bits [11..0] of the instruction; extract
11215 * SYSm and the mask bits.
11216 * Invalid combinations of SYSm and mask are UNPREDICTABLE;
11217 * we choose to treat them as if the mask bits were valid.
11218 * NB that the pseudocode 'mask' variable is bits [11..10],
11219 * whereas ours is [11..8].
11221 uint32_t mask
= extract32(maskreg
, 8, 4);
11222 uint32_t reg
= extract32(maskreg
, 0, 8);
11224 if (arm_current_el(env
) == 0 && reg
> 7) {
11225 /* only xPSR sub-fields may be written by unprivileged */
11229 if (arm_feature(env
, ARM_FEATURE_M_SECURITY
)) {
11231 case 0x88: /* MSP_NS */
11232 if (!env
->v7m
.secure
) {
11235 env
->v7m
.other_ss_msp
= val
;
11237 case 0x89: /* PSP_NS */
11238 if (!env
->v7m
.secure
) {
11241 env
->v7m
.other_ss_psp
= val
;
11243 case 0x8a: /* MSPLIM_NS */
11244 if (!env
->v7m
.secure
) {
11247 env
->v7m
.msplim
[M_REG_NS
] = val
& ~7;
11249 case 0x8b: /* PSPLIM_NS */
11250 if (!env
->v7m
.secure
) {
11253 env
->v7m
.psplim
[M_REG_NS
] = val
& ~7;
11255 case 0x90: /* PRIMASK_NS */
11256 if (!env
->v7m
.secure
) {
11259 env
->v7m
.primask
[M_REG_NS
] = val
& 1;
11261 case 0x91: /* BASEPRI_NS */
11262 if (!env
->v7m
.secure
|| !arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
11265 env
->v7m
.basepri
[M_REG_NS
] = val
& 0xff;
11267 case 0x93: /* FAULTMASK_NS */
11268 if (!env
->v7m
.secure
|| !arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
11271 env
->v7m
.faultmask
[M_REG_NS
] = val
& 1;
11273 case 0x94: /* CONTROL_NS */
11274 if (!env
->v7m
.secure
) {
11277 write_v7m_control_spsel_for_secstate(env
,
11278 val
& R_V7M_CONTROL_SPSEL_MASK
,
11280 if (arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
11281 env
->v7m
.control
[M_REG_NS
] &= ~R_V7M_CONTROL_NPRIV_MASK
;
11282 env
->v7m
.control
[M_REG_NS
] |= val
& R_V7M_CONTROL_NPRIV_MASK
;
11285 case 0x98: /* SP_NS */
11287 /* This gives the non-secure SP selected based on whether we're
11288 * currently in handler mode or not, using the NS CONTROL.SPSEL.
11290 bool spsel
= env
->v7m
.control
[M_REG_NS
] & R_V7M_CONTROL_SPSEL_MASK
;
11291 bool is_psp
= !arm_v7m_is_handler_mode(env
) && spsel
;
11294 if (!env
->v7m
.secure
) {
11298 limit
= is_psp
? env
->v7m
.psplim
[false] : env
->v7m
.msplim
[false];
11301 CPUState
*cs
= CPU(arm_env_get_cpu(env
));
11303 cpu_restore_state(cs
, GETPC(), true);
11304 raise_exception(env
, EXCP_STKOF
, 0, 1);
11308 env
->v7m
.other_ss_psp
= val
;
11310 env
->v7m
.other_ss_msp
= val
;
11320 case 0 ... 7: /* xPSR sub-fields */
11321 /* only APSR is actually writable */
11323 uint32_t apsrmask
= 0;
11326 apsrmask
|= XPSR_NZCV
| XPSR_Q
;
11328 if ((mask
& 4) && arm_feature(env
, ARM_FEATURE_THUMB_DSP
)) {
11329 apsrmask
|= XPSR_GE
;
11331 xpsr_write(env
, val
, apsrmask
);
11335 if (v7m_using_psp(env
)) {
11336 env
->v7m
.other_sp
= val
;
11338 env
->regs
[13] = val
;
11342 if (v7m_using_psp(env
)) {
11343 env
->regs
[13] = val
;
11345 env
->v7m
.other_sp
= val
;
11348 case 10: /* MSPLIM */
11349 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
11352 env
->v7m
.msplim
[env
->v7m
.secure
] = val
& ~7;
11354 case 11: /* PSPLIM */
11355 if (!arm_feature(env
, ARM_FEATURE_V8
)) {
11358 env
->v7m
.psplim
[env
->v7m
.secure
] = val
& ~7;
11360 case 16: /* PRIMASK */
11361 env
->v7m
.primask
[env
->v7m
.secure
] = val
& 1;
11363 case 17: /* BASEPRI */
11364 if (!arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
11367 env
->v7m
.basepri
[env
->v7m
.secure
] = val
& 0xff;
11369 case 18: /* BASEPRI_MAX */
11370 if (!arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
11374 if (val
!= 0 && (val
< env
->v7m
.basepri
[env
->v7m
.secure
]
11375 || env
->v7m
.basepri
[env
->v7m
.secure
] == 0)) {
11376 env
->v7m
.basepri
[env
->v7m
.secure
] = val
;
11379 case 19: /* FAULTMASK */
11380 if (!arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
11383 env
->v7m
.faultmask
[env
->v7m
.secure
] = val
& 1;
11385 case 20: /* CONTROL */
11386 /* Writing to the SPSEL bit only has an effect if we are in
11387 * thread mode; other bits can be updated by any privileged code.
11388 * write_v7m_control_spsel() deals with updating the SPSEL bit in
11389 * env->v7m.control, so we only need update the others.
11390 * For v7M, we must just ignore explicit writes to SPSEL in handler
11391 * mode; for v8M the write is permitted but will have no effect.
11393 if (arm_feature(env
, ARM_FEATURE_V8
) ||
11394 !arm_v7m_is_handler_mode(env
)) {
11395 write_v7m_control_spsel(env
, (val
& R_V7M_CONTROL_SPSEL_MASK
) != 0);
11397 if (arm_feature(env
, ARM_FEATURE_M_MAIN
)) {
11398 env
->v7m
.control
[env
->v7m
.secure
] &= ~R_V7M_CONTROL_NPRIV_MASK
;
11399 env
->v7m
.control
[env
->v7m
.secure
] |= val
& R_V7M_CONTROL_NPRIV_MASK
;
11404 qemu_log_mask(LOG_GUEST_ERROR
, "Attempt to write unknown special"
11405 " register %d\n", reg
);
11410 uint32_t HELPER(v7m_tt
)(CPUARMState
*env
, uint32_t addr
, uint32_t op
)
11412 /* Implement the TT instruction. op is bits [7:6] of the insn. */
11413 bool forceunpriv
= op
& 1;
11415 V8M_SAttributes sattrs
= {};
11417 bool r
, rw
, nsr
, nsrw
, mrvalid
;
11419 ARMMMUFaultInfo fi
= {};
11420 MemTxAttrs attrs
= {};
11425 bool targetsec
= env
->v7m
.secure
;
11428 /* Work out what the security state and privilege level we're
11429 * interested in is...
11432 targetsec
= !targetsec
;
11436 targetpriv
= false;
11438 targetpriv
= arm_v7m_is_handler_mode(env
) ||
11439 !(env
->v7m
.control
[targetsec
] & R_V7M_CONTROL_NPRIV_MASK
);
11442 /* ...and then figure out which MMU index this is */
11443 mmu_idx
= arm_v7m_mmu_idx_for_secstate_and_priv(env
, targetsec
, targetpriv
);
11445 /* We know that the MPU and SAU don't care about the access type
11446 * for our purposes beyond that we don't want to claim to be
11447 * an insn fetch, so we arbitrarily call this a read.
11450 /* MPU region info only available for privileged or if
11451 * inspecting the other MPU state.
11453 if (arm_current_el(env
) != 0 || alt
) {
11454 /* We can ignore the return value as prot is always set */
11455 pmsav8_mpu_lookup(env
, addr
, MMU_DATA_LOAD
, mmu_idx
,
11456 &phys_addr
, &attrs
, &prot
, &is_subpage
,
11458 if (mregion
== -1) {
11464 r
= prot
& PAGE_READ
;
11465 rw
= prot
& PAGE_WRITE
;
11473 if (env
->v7m
.secure
) {
11474 v8m_security_lookup(env
, addr
, MMU_DATA_LOAD
, mmu_idx
, &sattrs
);
11475 nsr
= sattrs
.ns
&& r
;
11476 nsrw
= sattrs
.ns
&& rw
;
11483 tt_resp
= (sattrs
.iregion
<< 24) |
11484 (sattrs
.irvalid
<< 23) |
11485 ((!sattrs
.ns
) << 22) |
11490 (sattrs
.srvalid
<< 17) |
11492 (sattrs
.sregion
<< 8) |
11500 void HELPER(dc_zva
)(CPUARMState
*env
, uint64_t vaddr_in
)
11502 /* Implement DC ZVA, which zeroes a fixed-length block of memory.
11503 * Note that we do not implement the (architecturally mandated)
11504 * alignment fault for attempts to use this on Device memory
11505 * (which matches the usual QEMU behaviour of not implementing either
11506 * alignment faults or any memory attribute handling).
11509 ARMCPU
*cpu
= arm_env_get_cpu(env
);
11510 uint64_t blocklen
= 4 << cpu
->dcz_blocksize
;
11511 uint64_t vaddr
= vaddr_in
& ~(blocklen
- 1);
11513 #ifndef CONFIG_USER_ONLY
11515 /* Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
11516 * the block size so we might have to do more than one TLB lookup.
11517 * We know that in fact for any v8 CPU the page size is at least 4K
11518 * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
11519 * 1K as an artefact of legacy v5 subpage support being present in the
11520 * same QEMU executable.
11522 int maxidx
= DIV_ROUND_UP(blocklen
, TARGET_PAGE_SIZE
);
11523 void *hostaddr
[maxidx
];
11525 unsigned mmu_idx
= cpu_mmu_index(env
, false);
11526 TCGMemOpIdx oi
= make_memop_idx(MO_UB
, mmu_idx
);
11528 for (try = 0; try < 2; try++) {
11530 for (i
= 0; i
< maxidx
; i
++) {
11531 hostaddr
[i
] = tlb_vaddr_to_host(env
,
11532 vaddr
+ TARGET_PAGE_SIZE
* i
,
11534 if (!hostaddr
[i
]) {
11539 /* If it's all in the TLB it's fair game for just writing to;
11540 * we know we don't need to update dirty status, etc.
11542 for (i
= 0; i
< maxidx
- 1; i
++) {
11543 memset(hostaddr
[i
], 0, TARGET_PAGE_SIZE
);
11545 memset(hostaddr
[i
], 0, blocklen
- (i
* TARGET_PAGE_SIZE
));
11548 /* OK, try a store and see if we can populate the tlb. This
11549 * might cause an exception if the memory isn't writable,
11550 * in which case we will longjmp out of here. We must for
11551 * this purpose use the actual register value passed to us
11552 * so that we get the fault address right.
11554 helper_ret_stb_mmu(env
, vaddr_in
, 0, oi
, GETPC());
11555 /* Now we can populate the other TLB entries, if any */
11556 for (i
= 0; i
< maxidx
; i
++) {
11557 uint64_t va
= vaddr
+ TARGET_PAGE_SIZE
* i
;
11558 if (va
!= (vaddr_in
& TARGET_PAGE_MASK
)) {
11559 helper_ret_stb_mmu(env
, va
, 0, oi
, GETPC());
11564 /* Slow path (probably attempt to do this to an I/O device or
11565 * similar, or clearing of a block of code we have translations
11566 * cached for). Just do a series of byte writes as the architecture
11567 * demands. It's not worth trying to use a cpu_physical_memory_map(),
11568 * memset(), unmap() sequence here because:
11569 * + we'd need to account for the blocksize being larger than a page
11570 * + the direct-RAM access case is almost always going to be dealt
11571 * with in the fastpath code above, so there's no speed benefit
11572 * + we would have to deal with the map returning NULL because the
11573 * bounce buffer was in use
11575 for (i
= 0; i
< blocklen
; i
++) {
11576 helper_ret_stb_mmu(env
, vaddr
+ i
, 0, oi
, GETPC());
11580 memset(g2h(vaddr
), 0, blocklen
);
11584 /* Note that signed overflow is undefined in C. The following routines are
11585 careful to use unsigned types where modulo arithmetic is required.
11586 Failure to do so _will_ break on newer gcc. */
11588 /* Signed saturating arithmetic. */
11590 /* Perform 16-bit signed saturating addition. */
11591 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
11596 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
11605 /* Perform 8-bit signed saturating addition. */
11606 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
11611 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
11620 /* Perform 16-bit signed saturating subtraction. */
11621 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
11626 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
11635 /* Perform 8-bit signed saturating subtraction. */
11636 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
11641 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
11650 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
11651 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
11652 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
11653 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
11656 #include "op_addsub.h"
11658 /* Unsigned saturating arithmetic. */
11659 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
11668 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
11676 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
11685 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
11693 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
11694 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
11695 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
11696 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
11699 #include "op_addsub.h"
11701 /* Signed modulo arithmetic. */
11702 #define SARITH16(a, b, n, op) do { \
11704 sum = (int32_t)(int16_t)(a) op (int32_t)(int16_t)(b); \
11705 RESULT(sum, n, 16); \
11707 ge |= 3 << (n * 2); \
11710 #define SARITH8(a, b, n, op) do { \
11712 sum = (int32_t)(int8_t)(a) op (int32_t)(int8_t)(b); \
11713 RESULT(sum, n, 8); \
11719 #define ADD16(a, b, n) SARITH16(a, b, n, +)
11720 #define SUB16(a, b, n) SARITH16(a, b, n, -)
11721 #define ADD8(a, b, n) SARITH8(a, b, n, +)
11722 #define SUB8(a, b, n) SARITH8(a, b, n, -)
11726 #include "op_addsub.h"
11728 /* Unsigned modulo arithmetic. */
11729 #define ADD16(a, b, n) do { \
11731 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
11732 RESULT(sum, n, 16); \
11733 if ((sum >> 16) == 1) \
11734 ge |= 3 << (n * 2); \
11737 #define ADD8(a, b, n) do { \
11739 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
11740 RESULT(sum, n, 8); \
11741 if ((sum >> 8) == 1) \
11745 #define SUB16(a, b, n) do { \
11747 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
11748 RESULT(sum, n, 16); \
11749 if ((sum >> 16) == 0) \
11750 ge |= 3 << (n * 2); \
11753 #define SUB8(a, b, n) do { \
11755 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
11756 RESULT(sum, n, 8); \
11757 if ((sum >> 8) == 0) \
11764 #include "op_addsub.h"
11766 /* Halved signed arithmetic. */
11767 #define ADD16(a, b, n) \
11768 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
11769 #define SUB16(a, b, n) \
11770 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
11771 #define ADD8(a, b, n) \
11772 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
11773 #define SUB8(a, b, n) \
11774 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
11777 #include "op_addsub.h"
11779 /* Halved unsigned arithmetic. */
11780 #define ADD16(a, b, n) \
11781 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11782 #define SUB16(a, b, n) \
11783 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
11784 #define ADD8(a, b, n) \
11785 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11786 #define SUB8(a, b, n) \
11787 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
11790 #include "op_addsub.h"
11792 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
11800 /* Unsigned sum of absolute byte differences. */
11801 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
11804 sum
= do_usad(a
, b
);
11805 sum
+= do_usad(a
>> 8, b
>> 8);
11806 sum
+= do_usad(a
>> 16, b
>>16);
11807 sum
+= do_usad(a
>> 24, b
>> 24);
11811 /* For ARMv6 SEL instruction. */
11812 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
11824 mask
|= 0xff000000;
11825 return (a
& mask
) | (b
& ~mask
);
11828 /* VFP support. We follow the convention used for VFP instructions:
11829 Single precision routines have a "s" suffix, double precision a
11832 /* Convert host exception flags to vfp form. */
11833 static inline int vfp_exceptbits_from_host(int host_bits
)
11835 int target_bits
= 0;
11837 if (host_bits
& float_flag_invalid
)
11839 if (host_bits
& float_flag_divbyzero
)
11841 if (host_bits
& float_flag_overflow
)
11843 if (host_bits
& (float_flag_underflow
| float_flag_output_denormal
))
11845 if (host_bits
& float_flag_inexact
)
11846 target_bits
|= 0x10;
11847 if (host_bits
& float_flag_input_denormal
)
11848 target_bits
|= 0x80;
11849 return target_bits
;
11852 uint32_t HELPER(vfp_get_fpscr
)(CPUARMState
*env
)
11857 fpscr
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & 0xffc8ffff)
11858 | (env
->vfp
.vec_len
<< 16)
11859 | (env
->vfp
.vec_stride
<< 20);
11861 i
= get_float_exception_flags(&env
->vfp
.fp_status
);
11862 i
|= get_float_exception_flags(&env
->vfp
.standard_fp_status
);
11863 /* FZ16 does not generate an input denormal exception. */
11864 i
|= (get_float_exception_flags(&env
->vfp
.fp_status_f16
)
11865 & ~float_flag_input_denormal
);
11867 fpscr
|= vfp_exceptbits_from_host(i
);
11871 uint32_t vfp_get_fpscr(CPUARMState
*env
)
11873 return HELPER(vfp_get_fpscr
)(env
);
11876 /* Convert vfp exception flags to target form. */
11877 static inline int vfp_exceptbits_to_host(int target_bits
)
11881 if (target_bits
& 1)
11882 host_bits
|= float_flag_invalid
;
11883 if (target_bits
& 2)
11884 host_bits
|= float_flag_divbyzero
;
11885 if (target_bits
& 4)
11886 host_bits
|= float_flag_overflow
;
11887 if (target_bits
& 8)
11888 host_bits
|= float_flag_underflow
;
11889 if (target_bits
& 0x10)
11890 host_bits
|= float_flag_inexact
;
11891 if (target_bits
& 0x80)
11892 host_bits
|= float_flag_input_denormal
;
11896 void HELPER(vfp_set_fpscr
)(CPUARMState
*env
, uint32_t val
)
11901 /* When ARMv8.2-FP16 is not supported, FZ16 is RES0. */
11902 if (!cpu_isar_feature(aa64_fp16
, arm_env_get_cpu(env
))) {
11906 changed
= env
->vfp
.xregs
[ARM_VFP_FPSCR
];
11907 env
->vfp
.xregs
[ARM_VFP_FPSCR
] = (val
& 0xffc8ffff);
11908 env
->vfp
.vec_len
= (val
>> 16) & 7;
11909 env
->vfp
.vec_stride
= (val
>> 20) & 3;
11912 if (changed
& (3 << 22)) {
11913 i
= (val
>> 22) & 3;
11915 case FPROUNDING_TIEEVEN
:
11916 i
= float_round_nearest_even
;
11918 case FPROUNDING_POSINF
:
11919 i
= float_round_up
;
11921 case FPROUNDING_NEGINF
:
11922 i
= float_round_down
;
11924 case FPROUNDING_ZERO
:
11925 i
= float_round_to_zero
;
11928 set_float_rounding_mode(i
, &env
->vfp
.fp_status
);
11929 set_float_rounding_mode(i
, &env
->vfp
.fp_status_f16
);
11931 if (changed
& FPCR_FZ16
) {
11932 bool ftz_enabled
= val
& FPCR_FZ16
;
11933 set_flush_to_zero(ftz_enabled
, &env
->vfp
.fp_status_f16
);
11934 set_flush_inputs_to_zero(ftz_enabled
, &env
->vfp
.fp_status_f16
);
11936 if (changed
& FPCR_FZ
) {
11937 bool ftz_enabled
= val
& FPCR_FZ
;
11938 set_flush_to_zero(ftz_enabled
, &env
->vfp
.fp_status
);
11939 set_flush_inputs_to_zero(ftz_enabled
, &env
->vfp
.fp_status
);
11941 if (changed
& FPCR_DN
) {
11942 bool dnan_enabled
= val
& FPCR_DN
;
11943 set_default_nan_mode(dnan_enabled
, &env
->vfp
.fp_status
);
11944 set_default_nan_mode(dnan_enabled
, &env
->vfp
.fp_status_f16
);
11947 /* The exception flags are ORed together when we read fpscr so we
11948 * only need to preserve the current state in one of our
11949 * float_status values.
11951 i
= vfp_exceptbits_to_host(val
);
11952 set_float_exception_flags(i
, &env
->vfp
.fp_status
);
11953 set_float_exception_flags(0, &env
->vfp
.fp_status_f16
);
11954 set_float_exception_flags(0, &env
->vfp
.standard_fp_status
);
11957 void vfp_set_fpscr(CPUARMState
*env
, uint32_t val
)
11959 HELPER(vfp_set_fpscr
)(env
, val
);
11962 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
11964 #define VFP_BINOP(name) \
11965 float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
11967 float_status *fpst = fpstp; \
11968 return float32_ ## name(a, b, fpst); \
11970 float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
11972 float_status *fpst = fpstp; \
11973 return float64_ ## name(a, b, fpst); \
11985 float32
VFP_HELPER(neg
, s
)(float32 a
)
11987 return float32_chs(a
);
11990 float64
VFP_HELPER(neg
, d
)(float64 a
)
11992 return float64_chs(a
);
11995 float32
VFP_HELPER(abs
, s
)(float32 a
)
11997 return float32_abs(a
);
12000 float64
VFP_HELPER(abs
, d
)(float64 a
)
12002 return float64_abs(a
);
12005 float32
VFP_HELPER(sqrt
, s
)(float32 a
, CPUARMState
*env
)
12007 return float32_sqrt(a
, &env
->vfp
.fp_status
);
12010 float64
VFP_HELPER(sqrt
, d
)(float64 a
, CPUARMState
*env
)
12012 return float64_sqrt(a
, &env
->vfp
.fp_status
);
12015 /* XXX: check quiet/signaling case */
12016 #define DO_VFP_cmp(p, type) \
12017 void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env) \
12020 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
12021 case 0: flags = 0x6; break; \
12022 case -1: flags = 0x8; break; \
12023 case 1: flags = 0x2; break; \
12024 default: case 2: flags = 0x3; break; \
12026 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
12027 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
12029 void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
12032 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
12033 case 0: flags = 0x6; break; \
12034 case -1: flags = 0x8; break; \
12035 case 1: flags = 0x2; break; \
12036 default: case 2: flags = 0x3; break; \
12038 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
12039 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
12041 DO_VFP_cmp(s
, float32
)
12042 DO_VFP_cmp(d
, float64
)
12045 /* Integer to float and float to integer conversions */
12047 #define CONV_ITOF(name, ftype, fsz, sign) \
12048 ftype HELPER(name)(uint32_t x, void *fpstp) \
12050 float_status *fpst = fpstp; \
12051 return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
12054 #define CONV_FTOI(name, ftype, fsz, sign, round) \
12055 sign##int32_t HELPER(name)(ftype x, void *fpstp) \
12057 float_status *fpst = fpstp; \
12058 if (float##fsz##_is_any_nan(x)) { \
12059 float_raise(float_flag_invalid, fpst); \
12062 return float##fsz##_to_##sign##int32##round(x, fpst); \
12065 #define FLOAT_CONVS(name, p, ftype, fsz, sign) \
12066 CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign) \
12067 CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, ) \
12068 CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
12070 FLOAT_CONVS(si
, h
, uint32_t, 16, )
12071 FLOAT_CONVS(si
, s
, float32
, 32, )
12072 FLOAT_CONVS(si
, d
, float64
, 64, )
12073 FLOAT_CONVS(ui
, h
, uint32_t, 16, u
)
12074 FLOAT_CONVS(ui
, s
, float32
, 32, u
)
12075 FLOAT_CONVS(ui
, d
, float64
, 64, u
)
12081 /* floating point conversion */
12082 float64
VFP_HELPER(fcvtd
, s
)(float32 x
, CPUARMState
*env
)
12084 return float32_to_float64(x
, &env
->vfp
.fp_status
);
12087 float32
VFP_HELPER(fcvts
, d
)(float64 x
, CPUARMState
*env
)
12089 return float64_to_float32(x
, &env
->vfp
.fp_status
);
12092 /* VFP3 fixed point conversion. */
12093 #define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
12094 float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
12096 { return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); }
12098 #define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ROUND, suff) \
12099 uint##isz##_t HELPER(vfp_to##name##p##suff)(float##fsz x, uint32_t shift, \
12102 if (unlikely(float##fsz##_is_any_nan(x))) { \
12103 float_raise(float_flag_invalid, fpst); \
12106 return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst); \
12109 #define VFP_CONV_FIX(name, p, fsz, isz, itype) \
12110 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
12111 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
12112 float_round_to_zero, _round_to_zero) \
12113 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
12114 get_float_rounding_mode(fpst), )
12116 #define VFP_CONV_FIX_A64(name, p, fsz, isz, itype) \
12117 VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
12118 VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, \
12119 get_float_rounding_mode(fpst), )
12121 VFP_CONV_FIX(sh
, d
, 64, 64, int16
)
12122 VFP_CONV_FIX(sl
, d
, 64, 64, int32
)
12123 VFP_CONV_FIX_A64(sq
, d
, 64, 64, int64
)
12124 VFP_CONV_FIX(uh
, d
, 64, 64, uint16
)
12125 VFP_CONV_FIX(ul
, d
, 64, 64, uint32
)
12126 VFP_CONV_FIX_A64(uq
, d
, 64, 64, uint64
)
12127 VFP_CONV_FIX(sh
, s
, 32, 32, int16
)
12128 VFP_CONV_FIX(sl
, s
, 32, 32, int32
)
12129 VFP_CONV_FIX_A64(sq
, s
, 32, 64, int64
)
12130 VFP_CONV_FIX(uh
, s
, 32, 32, uint16
)
12131 VFP_CONV_FIX(ul
, s
, 32, 32, uint32
)
12132 VFP_CONV_FIX_A64(uq
, s
, 32, 64, uint64
)
12134 #undef VFP_CONV_FIX
12135 #undef VFP_CONV_FIX_FLOAT
12136 #undef VFP_CONV_FLOAT_FIX_ROUND
12137 #undef VFP_CONV_FIX_A64
12139 uint32_t HELPER(vfp_sltoh
)(uint32_t x
, uint32_t shift
, void *fpst
)
12141 return int32_to_float16_scalbn(x
, -shift
, fpst
);
12144 uint32_t HELPER(vfp_ultoh
)(uint32_t x
, uint32_t shift
, void *fpst
)
12146 return uint32_to_float16_scalbn(x
, -shift
, fpst
);
12149 uint32_t HELPER(vfp_sqtoh
)(uint64_t x
, uint32_t shift
, void *fpst
)
12151 return int64_to_float16_scalbn(x
, -shift
, fpst
);
12154 uint32_t HELPER(vfp_uqtoh
)(uint64_t x
, uint32_t shift
, void *fpst
)
12156 return uint64_to_float16_scalbn(x
, -shift
, fpst
);
12159 uint32_t HELPER(vfp_toshh
)(uint32_t x
, uint32_t shift
, void *fpst
)
12161 if (unlikely(float16_is_any_nan(x
))) {
12162 float_raise(float_flag_invalid
, fpst
);
12165 return float16_to_int16_scalbn(x
, get_float_rounding_mode(fpst
),
12169 uint32_t HELPER(vfp_touhh
)(uint32_t x
, uint32_t shift
, void *fpst
)
12171 if (unlikely(float16_is_any_nan(x
))) {
12172 float_raise(float_flag_invalid
, fpst
);
12175 return float16_to_uint16_scalbn(x
, get_float_rounding_mode(fpst
),
12179 uint32_t HELPER(vfp_toslh
)(uint32_t x
, uint32_t shift
, void *fpst
)
12181 if (unlikely(float16_is_any_nan(x
))) {
12182 float_raise(float_flag_invalid
, fpst
);
12185 return float16_to_int32_scalbn(x
, get_float_rounding_mode(fpst
),
12189 uint32_t HELPER(vfp_toulh
)(uint32_t x
, uint32_t shift
, void *fpst
)
12191 if (unlikely(float16_is_any_nan(x
))) {
12192 float_raise(float_flag_invalid
, fpst
);
12195 return float16_to_uint32_scalbn(x
, get_float_rounding_mode(fpst
),
12199 uint64_t HELPER(vfp_tosqh
)(uint32_t x
, uint32_t shift
, void *fpst
)
12201 if (unlikely(float16_is_any_nan(x
))) {
12202 float_raise(float_flag_invalid
, fpst
);
12205 return float16_to_int64_scalbn(x
, get_float_rounding_mode(fpst
),
12209 uint64_t HELPER(vfp_touqh
)(uint32_t x
, uint32_t shift
, void *fpst
)
12211 if (unlikely(float16_is_any_nan(x
))) {
12212 float_raise(float_flag_invalid
, fpst
);
12215 return float16_to_uint64_scalbn(x
, get_float_rounding_mode(fpst
),
12219 /* Set the current fp rounding mode and return the old one.
12220 * The argument is a softfloat float_round_ value.
12222 uint32_t HELPER(set_rmode
)(uint32_t rmode
, void *fpstp
)
12224 float_status
*fp_status
= fpstp
;
12226 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
12227 set_float_rounding_mode(rmode
, fp_status
);
12232 /* Set the current fp rounding mode in the standard fp status and return
12233 * the old one. This is for NEON instructions that need to change the
12234 * rounding mode but wish to use the standard FPSCR values for everything
12235 * else. Always set the rounding mode back to the correct value after
12237 * The argument is a softfloat float_round_ value.
12239 uint32_t HELPER(set_neon_rmode
)(uint32_t rmode
, CPUARMState
*env
)
12241 float_status
*fp_status
= &env
->vfp
.standard_fp_status
;
12243 uint32_t prev_rmode
= get_float_rounding_mode(fp_status
);
12244 set_float_rounding_mode(rmode
, fp_status
);
12249 /* Half precision conversions. */
12250 float32
HELPER(vfp_fcvt_f16_to_f32
)(uint32_t a
, void *fpstp
, uint32_t ahp_mode
)
12252 /* Squash FZ16 to 0 for the duration of conversion. In this case,
12253 * it would affect flushing input denormals.
12255 float_status
*fpst
= fpstp
;
12256 flag save
= get_flush_inputs_to_zero(fpst
);
12257 set_flush_inputs_to_zero(false, fpst
);
12258 float32 r
= float16_to_float32(a
, !ahp_mode
, fpst
);
12259 set_flush_inputs_to_zero(save
, fpst
);
12263 uint32_t HELPER(vfp_fcvt_f32_to_f16
)(float32 a
, void *fpstp
, uint32_t ahp_mode
)
12265 /* Squash FZ16 to 0 for the duration of conversion. In this case,
12266 * it would affect flushing output denormals.
12268 float_status
*fpst
= fpstp
;
12269 flag save
= get_flush_to_zero(fpst
);
12270 set_flush_to_zero(false, fpst
);
12271 float16 r
= float32_to_float16(a
, !ahp_mode
, fpst
);
12272 set_flush_to_zero(save
, fpst
);
12276 float64
HELPER(vfp_fcvt_f16_to_f64
)(uint32_t a
, void *fpstp
, uint32_t ahp_mode
)
12278 /* Squash FZ16 to 0 for the duration of conversion. In this case,
12279 * it would affect flushing input denormals.
12281 float_status
*fpst
= fpstp
;
12282 flag save
= get_flush_inputs_to_zero(fpst
);
12283 set_flush_inputs_to_zero(false, fpst
);
12284 float64 r
= float16_to_float64(a
, !ahp_mode
, fpst
);
12285 set_flush_inputs_to_zero(save
, fpst
);
12289 uint32_t HELPER(vfp_fcvt_f64_to_f16
)(float64 a
, void *fpstp
, uint32_t ahp_mode
)
12291 /* Squash FZ16 to 0 for the duration of conversion. In this case,
12292 * it would affect flushing output denormals.
12294 float_status
*fpst
= fpstp
;
12295 flag save
= get_flush_to_zero(fpst
);
12296 set_flush_to_zero(false, fpst
);
12297 float16 r
= float64_to_float16(a
, !ahp_mode
, fpst
);
12298 set_flush_to_zero(save
, fpst
);
12302 #define float32_two make_float32(0x40000000)
12303 #define float32_three make_float32(0x40400000)
12304 #define float32_one_point_five make_float32(0x3fc00000)
12306 float32
HELPER(recps_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
12308 float_status
*s
= &env
->vfp
.standard_fp_status
;
12309 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
12310 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
12311 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
12312 float_raise(float_flag_input_denormal
, s
);
12314 return float32_two
;
12316 return float32_sub(float32_two
, float32_mul(a
, b
, s
), s
);
12319 float32
HELPER(rsqrts_f32
)(float32 a
, float32 b
, CPUARMState
*env
)
12321 float_status
*s
= &env
->vfp
.standard_fp_status
;
12323 if ((float32_is_infinity(a
) && float32_is_zero_or_denormal(b
)) ||
12324 (float32_is_infinity(b
) && float32_is_zero_or_denormal(a
))) {
12325 if (!(float32_is_zero(a
) || float32_is_zero(b
))) {
12326 float_raise(float_flag_input_denormal
, s
);
12328 return float32_one_point_five
;
12330 product
= float32_mul(a
, b
, s
);
12331 return float32_div(float32_sub(float32_three
, product
, s
), float32_two
, s
);
12334 /* NEON helpers. */
12336 /* Constants 256 and 512 are used in some helpers; we avoid relying on
12337 * int->float conversions at run-time. */
12338 #define float64_256 make_float64(0x4070000000000000LL)
12339 #define float64_512 make_float64(0x4080000000000000LL)
12340 #define float16_maxnorm make_float16(0x7bff)
12341 #define float32_maxnorm make_float32(0x7f7fffff)
12342 #define float64_maxnorm make_float64(0x7fefffffffffffffLL)
12344 /* Reciprocal functions
12346 * The algorithm that must be used to calculate the estimate
12347 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
12350 /* See RecipEstimate()
12352 * input is a 9 bit fixed point number
12353 * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
12354 * result range 256 .. 511 for a number from 1.0 to 511/256.
12357 static int recip_estimate(int input
)
12360 assert(256 <= input
&& input
< 512);
12361 a
= (input
* 2) + 1;
12364 assert(256 <= r
&& r
< 512);
12369 * Common wrapper to call recip_estimate
12371 * The parameters are exponent and 64 bit fraction (without implicit
12372 * bit) where the binary point is nominally at bit 52. Returns a
12373 * float64 which can then be rounded to the appropriate size by the
12377 static uint64_t call_recip_estimate(int *exp
, int exp_off
, uint64_t frac
)
12379 uint32_t scaled
, estimate
;
12380 uint64_t result_frac
;
12383 /* Handle sub-normals */
12385 if (extract64(frac
, 51, 1) == 0) {
12393 /* scaled = UInt('1':fraction<51:44>) */
12394 scaled
= deposit32(1 << 8, 0, 8, extract64(frac
, 44, 8));
12395 estimate
= recip_estimate(scaled
);
12397 result_exp
= exp_off
- *exp
;
12398 result_frac
= deposit64(0, 44, 8, estimate
);
12399 if (result_exp
== 0) {
12400 result_frac
= deposit64(result_frac
>> 1, 51, 1, 1);
12401 } else if (result_exp
== -1) {
12402 result_frac
= deposit64(result_frac
>> 2, 50, 2, 1);
12408 return result_frac
;
12411 static bool round_to_inf(float_status
*fpst
, bool sign_bit
)
12413 switch (fpst
->float_rounding_mode
) {
12414 case float_round_nearest_even
: /* Round to Nearest */
12416 case float_round_up
: /* Round to +Inf */
12418 case float_round_down
: /* Round to -Inf */
12420 case float_round_to_zero
: /* Round to Zero */
12424 g_assert_not_reached();
12427 uint32_t HELPER(recpe_f16
)(uint32_t input
, void *fpstp
)
12429 float_status
*fpst
= fpstp
;
12430 float16 f16
= float16_squash_input_denormal(input
, fpst
);
12431 uint32_t f16_val
= float16_val(f16
);
12432 uint32_t f16_sign
= float16_is_neg(f16
);
12433 int f16_exp
= extract32(f16_val
, 10, 5);
12434 uint32_t f16_frac
= extract32(f16_val
, 0, 10);
12437 if (float16_is_any_nan(f16
)) {
12439 if (float16_is_signaling_nan(f16
, fpst
)) {
12440 float_raise(float_flag_invalid
, fpst
);
12441 nan
= float16_silence_nan(f16
, fpst
);
12443 if (fpst
->default_nan_mode
) {
12444 nan
= float16_default_nan(fpst
);
12447 } else if (float16_is_infinity(f16
)) {
12448 return float16_set_sign(float16_zero
, float16_is_neg(f16
));
12449 } else if (float16_is_zero(f16
)) {
12450 float_raise(float_flag_divbyzero
, fpst
);
12451 return float16_set_sign(float16_infinity
, float16_is_neg(f16
));
12452 } else if (float16_abs(f16
) < (1 << 8)) {
12453 /* Abs(value) < 2.0^-16 */
12454 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
12455 if (round_to_inf(fpst
, f16_sign
)) {
12456 return float16_set_sign(float16_infinity
, f16_sign
);
12458 return float16_set_sign(float16_maxnorm
, f16_sign
);
12460 } else if (f16_exp
>= 29 && fpst
->flush_to_zero
) {
12461 float_raise(float_flag_underflow
, fpst
);
12462 return float16_set_sign(float16_zero
, float16_is_neg(f16
));
12465 f64_frac
= call_recip_estimate(&f16_exp
, 29,
12466 ((uint64_t) f16_frac
) << (52 - 10));
12468 /* result = sign : result_exp<4:0> : fraction<51:42> */
12469 f16_val
= deposit32(0, 15, 1, f16_sign
);
12470 f16_val
= deposit32(f16_val
, 10, 5, f16_exp
);
12471 f16_val
= deposit32(f16_val
, 0, 10, extract64(f64_frac
, 52 - 10, 10));
12472 return make_float16(f16_val
);
12475 float32
HELPER(recpe_f32
)(float32 input
, void *fpstp
)
12477 float_status
*fpst
= fpstp
;
12478 float32 f32
= float32_squash_input_denormal(input
, fpst
);
12479 uint32_t f32_val
= float32_val(f32
);
12480 bool f32_sign
= float32_is_neg(f32
);
12481 int f32_exp
= extract32(f32_val
, 23, 8);
12482 uint32_t f32_frac
= extract32(f32_val
, 0, 23);
12485 if (float32_is_any_nan(f32
)) {
12487 if (float32_is_signaling_nan(f32
, fpst
)) {
12488 float_raise(float_flag_invalid
, fpst
);
12489 nan
= float32_silence_nan(f32
, fpst
);
12491 if (fpst
->default_nan_mode
) {
12492 nan
= float32_default_nan(fpst
);
12495 } else if (float32_is_infinity(f32
)) {
12496 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
12497 } else if (float32_is_zero(f32
)) {
12498 float_raise(float_flag_divbyzero
, fpst
);
12499 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
12500 } else if (float32_abs(f32
) < (1ULL << 21)) {
12501 /* Abs(value) < 2.0^-128 */
12502 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
12503 if (round_to_inf(fpst
, f32_sign
)) {
12504 return float32_set_sign(float32_infinity
, f32_sign
);
12506 return float32_set_sign(float32_maxnorm
, f32_sign
);
12508 } else if (f32_exp
>= 253 && fpst
->flush_to_zero
) {
12509 float_raise(float_flag_underflow
, fpst
);
12510 return float32_set_sign(float32_zero
, float32_is_neg(f32
));
12513 f64_frac
= call_recip_estimate(&f32_exp
, 253,
12514 ((uint64_t) f32_frac
) << (52 - 23));
12516 /* result = sign : result_exp<7:0> : fraction<51:29> */
12517 f32_val
= deposit32(0, 31, 1, f32_sign
);
12518 f32_val
= deposit32(f32_val
, 23, 8, f32_exp
);
12519 f32_val
= deposit32(f32_val
, 0, 23, extract64(f64_frac
, 52 - 23, 23));
12520 return make_float32(f32_val
);
12523 float64
HELPER(recpe_f64
)(float64 input
, void *fpstp
)
12525 float_status
*fpst
= fpstp
;
12526 float64 f64
= float64_squash_input_denormal(input
, fpst
);
12527 uint64_t f64_val
= float64_val(f64
);
12528 bool f64_sign
= float64_is_neg(f64
);
12529 int f64_exp
= extract64(f64_val
, 52, 11);
12530 uint64_t f64_frac
= extract64(f64_val
, 0, 52);
12532 /* Deal with any special cases */
12533 if (float64_is_any_nan(f64
)) {
12535 if (float64_is_signaling_nan(f64
, fpst
)) {
12536 float_raise(float_flag_invalid
, fpst
);
12537 nan
= float64_silence_nan(f64
, fpst
);
12539 if (fpst
->default_nan_mode
) {
12540 nan
= float64_default_nan(fpst
);
12543 } else if (float64_is_infinity(f64
)) {
12544 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
12545 } else if (float64_is_zero(f64
)) {
12546 float_raise(float_flag_divbyzero
, fpst
);
12547 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
12548 } else if ((f64_val
& ~(1ULL << 63)) < (1ULL << 50)) {
12549 /* Abs(value) < 2.0^-1024 */
12550 float_raise(float_flag_overflow
| float_flag_inexact
, fpst
);
12551 if (round_to_inf(fpst
, f64_sign
)) {
12552 return float64_set_sign(float64_infinity
, f64_sign
);
12554 return float64_set_sign(float64_maxnorm
, f64_sign
);
12556 } else if (f64_exp
>= 2045 && fpst
->flush_to_zero
) {
12557 float_raise(float_flag_underflow
, fpst
);
12558 return float64_set_sign(float64_zero
, float64_is_neg(f64
));
12561 f64_frac
= call_recip_estimate(&f64_exp
, 2045, f64_frac
);
12563 /* result = sign : result_exp<10:0> : fraction<51:0>; */
12564 f64_val
= deposit64(0, 63, 1, f64_sign
);
12565 f64_val
= deposit64(f64_val
, 52, 11, f64_exp
);
12566 f64_val
= deposit64(f64_val
, 0, 52, f64_frac
);
12567 return make_float64(f64_val
);
12570 /* The algorithm that must be used to calculate the estimate
12571 * is specified by the ARM ARM.
12574 static int do_recip_sqrt_estimate(int a
)
12578 assert(128 <= a
&& a
< 512);
12586 while (a
* (b
+ 1) * (b
+ 1) < (1 << 28)) {
12589 estimate
= (b
+ 1) / 2;
12590 assert(256 <= estimate
&& estimate
< 512);
12596 static uint64_t recip_sqrt_estimate(int *exp
, int exp_off
, uint64_t frac
)
12602 while (extract64(frac
, 51, 1) == 0) {
12606 frac
= extract64(frac
, 0, 51) << 1;
12610 /* scaled = UInt('01':fraction<51:45>) */
12611 scaled
= deposit32(1 << 7, 0, 7, extract64(frac
, 45, 7));
12613 /* scaled = UInt('1':fraction<51:44>) */
12614 scaled
= deposit32(1 << 8, 0, 8, extract64(frac
, 44, 8));
12616 estimate
= do_recip_sqrt_estimate(scaled
);
12618 *exp
= (exp_off
- *exp
) / 2;
12619 return extract64(estimate
, 0, 8) << 44;
12622 uint32_t HELPER(rsqrte_f16
)(uint32_t input
, void *fpstp
)
12624 float_status
*s
= fpstp
;
12625 float16 f16
= float16_squash_input_denormal(input
, s
);
12626 uint16_t val
= float16_val(f16
);
12627 bool f16_sign
= float16_is_neg(f16
);
12628 int f16_exp
= extract32(val
, 10, 5);
12629 uint16_t f16_frac
= extract32(val
, 0, 10);
12632 if (float16_is_any_nan(f16
)) {
12634 if (float16_is_signaling_nan(f16
, s
)) {
12635 float_raise(float_flag_invalid
, s
);
12636 nan
= float16_silence_nan(f16
, s
);
12638 if (s
->default_nan_mode
) {
12639 nan
= float16_default_nan(s
);
12642 } else if (float16_is_zero(f16
)) {
12643 float_raise(float_flag_divbyzero
, s
);
12644 return float16_set_sign(float16_infinity
, f16_sign
);
12645 } else if (f16_sign
) {
12646 float_raise(float_flag_invalid
, s
);
12647 return float16_default_nan(s
);
12648 } else if (float16_is_infinity(f16
)) {
12649 return float16_zero
;
12652 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
12653 * preserving the parity of the exponent. */
12655 f64_frac
= ((uint64_t) f16_frac
) << (52 - 10);
12657 f64_frac
= recip_sqrt_estimate(&f16_exp
, 44, f64_frac
);
12659 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
12660 val
= deposit32(0, 15, 1, f16_sign
);
12661 val
= deposit32(val
, 10, 5, f16_exp
);
12662 val
= deposit32(val
, 2, 8, extract64(f64_frac
, 52 - 8, 8));
12663 return make_float16(val
);
12666 float32
HELPER(rsqrte_f32
)(float32 input
, void *fpstp
)
12668 float_status
*s
= fpstp
;
12669 float32 f32
= float32_squash_input_denormal(input
, s
);
12670 uint32_t val
= float32_val(f32
);
12671 uint32_t f32_sign
= float32_is_neg(f32
);
12672 int f32_exp
= extract32(val
, 23, 8);
12673 uint32_t f32_frac
= extract32(val
, 0, 23);
12676 if (float32_is_any_nan(f32
)) {
12678 if (float32_is_signaling_nan(f32
, s
)) {
12679 float_raise(float_flag_invalid
, s
);
12680 nan
= float32_silence_nan(f32
, s
);
12682 if (s
->default_nan_mode
) {
12683 nan
= float32_default_nan(s
);
12686 } else if (float32_is_zero(f32
)) {
12687 float_raise(float_flag_divbyzero
, s
);
12688 return float32_set_sign(float32_infinity
, float32_is_neg(f32
));
12689 } else if (float32_is_neg(f32
)) {
12690 float_raise(float_flag_invalid
, s
);
12691 return float32_default_nan(s
);
12692 } else if (float32_is_infinity(f32
)) {
12693 return float32_zero
;
12696 /* Scale and normalize to a double-precision value between 0.25 and 1.0,
12697 * preserving the parity of the exponent. */
12699 f64_frac
= ((uint64_t) f32_frac
) << 29;
12701 f64_frac
= recip_sqrt_estimate(&f32_exp
, 380, f64_frac
);
12703 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
12704 val
= deposit32(0, 31, 1, f32_sign
);
12705 val
= deposit32(val
, 23, 8, f32_exp
);
12706 val
= deposit32(val
, 15, 8, extract64(f64_frac
, 52 - 8, 8));
12707 return make_float32(val
);
12710 float64
HELPER(rsqrte_f64
)(float64 input
, void *fpstp
)
12712 float_status
*s
= fpstp
;
12713 float64 f64
= float64_squash_input_denormal(input
, s
);
12714 uint64_t val
= float64_val(f64
);
12715 bool f64_sign
= float64_is_neg(f64
);
12716 int f64_exp
= extract64(val
, 52, 11);
12717 uint64_t f64_frac
= extract64(val
, 0, 52);
12719 if (float64_is_any_nan(f64
)) {
12721 if (float64_is_signaling_nan(f64
, s
)) {
12722 float_raise(float_flag_invalid
, s
);
12723 nan
= float64_silence_nan(f64
, s
);
12725 if (s
->default_nan_mode
) {
12726 nan
= float64_default_nan(s
);
12729 } else if (float64_is_zero(f64
)) {
12730 float_raise(float_flag_divbyzero
, s
);
12731 return float64_set_sign(float64_infinity
, float64_is_neg(f64
));
12732 } else if (float64_is_neg(f64
)) {
12733 float_raise(float_flag_invalid
, s
);
12734 return float64_default_nan(s
);
12735 } else if (float64_is_infinity(f64
)) {
12736 return float64_zero
;
12739 f64_frac
= recip_sqrt_estimate(&f64_exp
, 3068, f64_frac
);
12741 /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
12742 val
= deposit64(0, 61, 1, f64_sign
);
12743 val
= deposit64(val
, 52, 11, f64_exp
);
12744 val
= deposit64(val
, 44, 8, extract64(f64_frac
, 52 - 8, 8));
12745 return make_float64(val
);
12748 uint32_t HELPER(recpe_u32
)(uint32_t a
, void *fpstp
)
12750 /* float_status *s = fpstp; */
12751 int input
, estimate
;
12753 if ((a
& 0x80000000) == 0) {
12757 input
= extract32(a
, 23, 9);
12758 estimate
= recip_estimate(input
);
12760 return deposit32(0, (32 - 9), 9, estimate
);
12763 uint32_t HELPER(rsqrte_u32
)(uint32_t a
, void *fpstp
)
12767 if ((a
& 0xc0000000) == 0) {
12771 estimate
= do_recip_sqrt_estimate(extract32(a
, 23, 9));
12773 return deposit32(0, 23, 9, estimate
);
12776 /* VFPv4 fused multiply-accumulate */
12777 float32
VFP_HELPER(muladd
, s
)(float32 a
, float32 b
, float32 c
, void *fpstp
)
12779 float_status
*fpst
= fpstp
;
12780 return float32_muladd(a
, b
, c
, 0, fpst
);
12783 float64
VFP_HELPER(muladd
, d
)(float64 a
, float64 b
, float64 c
, void *fpstp
)
12785 float_status
*fpst
= fpstp
;
12786 return float64_muladd(a
, b
, c
, 0, fpst
);
12789 /* ARMv8 round to integral */
12790 float32
HELPER(rints_exact
)(float32 x
, void *fp_status
)
12792 return float32_round_to_int(x
, fp_status
);
12795 float64
HELPER(rintd_exact
)(float64 x
, void *fp_status
)
12797 return float64_round_to_int(x
, fp_status
);
12800 float32
HELPER(rints
)(float32 x
, void *fp_status
)
12802 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
12805 ret
= float32_round_to_int(x
, fp_status
);
12807 /* Suppress any inexact exceptions the conversion produced */
12808 if (!(old_flags
& float_flag_inexact
)) {
12809 new_flags
= get_float_exception_flags(fp_status
);
12810 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
12816 float64
HELPER(rintd
)(float64 x
, void *fp_status
)
12818 int old_flags
= get_float_exception_flags(fp_status
), new_flags
;
12821 ret
= float64_round_to_int(x
, fp_status
);
12823 new_flags
= get_float_exception_flags(fp_status
);
12825 /* Suppress any inexact exceptions the conversion produced */
12826 if (!(old_flags
& float_flag_inexact
)) {
12827 new_flags
= get_float_exception_flags(fp_status
);
12828 set_float_exception_flags(new_flags
& ~float_flag_inexact
, fp_status
);
12834 /* Convert ARM rounding mode to softfloat */
12835 int arm_rmode_to_sf(int rmode
)
12838 case FPROUNDING_TIEAWAY
:
12839 rmode
= float_round_ties_away
;
12841 case FPROUNDING_ODD
:
12842 /* FIXME: add support for TIEAWAY and ODD */
12843 qemu_log_mask(LOG_UNIMP
, "arm: unimplemented rounding mode: %d\n",
12845 /* fall through for now */
12846 case FPROUNDING_TIEEVEN
:
12848 rmode
= float_round_nearest_even
;
12850 case FPROUNDING_POSINF
:
12851 rmode
= float_round_up
;
12853 case FPROUNDING_NEGINF
:
12854 rmode
= float_round_down
;
12856 case FPROUNDING_ZERO
:
12857 rmode
= float_round_to_zero
;
12864 * The upper bytes of val (above the number specified by 'bytes') must have
12865 * been zeroed out by the caller.
12867 uint32_t HELPER(crc32
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
12871 stl_le_p(buf
, val
);
12873 /* zlib crc32 converts the accumulator and output to one's complement. */
12874 return crc32(acc
^ 0xffffffff, buf
, bytes
) ^ 0xffffffff;
12877 uint32_t HELPER(crc32c
)(uint32_t acc
, uint32_t val
, uint32_t bytes
)
12881 stl_le_p(buf
, val
);
12883 /* Linux crc32c converts the output to one's complement. */
12884 return crc32c(acc
, buf
, bytes
) ^ 0xffffffff;
12887 /* Return the exception level to which FP-disabled exceptions should
12888 * be taken, or 0 if FP is enabled.
12890 int fp_exception_el(CPUARMState
*env
, int cur_el
)
12892 #ifndef CONFIG_USER_ONLY
12895 /* CPACR and the CPTR registers don't exist before v6, so FP is
12896 * always accessible
12898 if (!arm_feature(env
, ARM_FEATURE_V6
)) {
12902 /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
12903 * 0, 2 : trap EL0 and EL1/PL1 accesses
12904 * 1 : trap only EL0 accesses
12905 * 3 : trap no accesses
12907 fpen
= extract32(env
->cp15
.cpacr_el1
, 20, 2);
12911 if (cur_el
== 0 || cur_el
== 1) {
12912 /* Trap to PL1, which might be EL1 or EL3 */
12913 if (arm_is_secure(env
) && !arm_el_is_aa64(env
, 3)) {
12918 if (cur_el
== 3 && !is_a64(env
)) {
12919 /* Secure PL1 running at EL3 */
12932 /* For the CPTR registers we don't need to guard with an ARM_FEATURE
12933 * check because zero bits in the registers mean "don't trap".
12936 /* CPTR_EL2 : present in v7VE or v8 */
12937 if (cur_el
<= 2 && extract32(env
->cp15
.cptr_el
[2], 10, 1)
12938 && !arm_is_secure_below_el3(env
)) {
12939 /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
12943 /* CPTR_EL3 : present in v8 */
12944 if (extract32(env
->cp15
.cptr_el
[3], 10, 1)) {
12945 /* Trap all FP ops to EL3 */
12952 void cpu_get_tb_cpu_state(CPUARMState
*env
, target_ulong
*pc
,
12953 target_ulong
*cs_base
, uint32_t *pflags
)
12955 ARMMMUIdx mmu_idx
= core_to_arm_mmu_idx(env
, cpu_mmu_index(env
, false));
12956 int current_el
= arm_current_el(env
);
12957 int fp_el
= fp_exception_el(env
, current_el
);
12958 uint32_t flags
= 0;
12961 ARMCPU
*cpu
= arm_env_get_cpu(env
);
12964 flags
= FIELD_DP32(flags
, TBFLAG_ANY
, AARCH64_STATE
, 1);
12965 /* Get control bits for tagged addresses */
12966 flags
= FIELD_DP32(flags
, TBFLAG_A64
, TBI0
,
12967 arm_regime_tbi0(env
, mmu_idx
));
12968 flags
= FIELD_DP32(flags
, TBFLAG_A64
, TBI1
,
12969 arm_regime_tbi1(env
, mmu_idx
));
12971 if (cpu_isar_feature(aa64_sve
, cpu
)) {
12972 int sve_el
= sve_exception_el(env
, current_el
);
12975 /* If SVE is disabled, but FP is enabled,
12976 * then the effective len is 0.
12978 if (sve_el
!= 0 && fp_el
== 0) {
12981 zcr_len
= sve_zcr_len_for_el(env
, current_el
);
12983 flags
= FIELD_DP32(flags
, TBFLAG_A64
, SVEEXC_EL
, sve_el
);
12984 flags
= FIELD_DP32(flags
, TBFLAG_A64
, ZCR_LEN
, zcr_len
);
12987 *pc
= env
->regs
[15];
12988 flags
= FIELD_DP32(flags
, TBFLAG_A32
, THUMB
, env
->thumb
);
12989 flags
= FIELD_DP32(flags
, TBFLAG_A32
, VECLEN
, env
->vfp
.vec_len
);
12990 flags
= FIELD_DP32(flags
, TBFLAG_A32
, VECSTRIDE
, env
->vfp
.vec_stride
);
12991 flags
= FIELD_DP32(flags
, TBFLAG_A32
, CONDEXEC
, env
->condexec_bits
);
12992 flags
= FIELD_DP32(flags
, TBFLAG_A32
, SCTLR_B
, arm_sctlr_b(env
));
12993 flags
= FIELD_DP32(flags
, TBFLAG_A32
, NS
, !access_secure_reg(env
));
12994 if (env
->vfp
.xregs
[ARM_VFP_FPEXC
] & (1 << 30)
12995 || arm_el_is_aa64(env
, 1)) {
12996 flags
= FIELD_DP32(flags
, TBFLAG_A32
, VFPEN
, 1);
12998 flags
= FIELD_DP32(flags
, TBFLAG_A32
, XSCALE_CPAR
, env
->cp15
.c15_cpar
);
13001 flags
= FIELD_DP32(flags
, TBFLAG_ANY
, MMUIDX
, arm_to_core_mmu_idx(mmu_idx
));
13003 /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
13004 * states defined in the ARM ARM for software singlestep:
13005 * SS_ACTIVE PSTATE.SS State
13006 * 0 x Inactive (the TB flag for SS is always 0)
13007 * 1 0 Active-pending
13008 * 1 1 Active-not-pending
13010 if (arm_singlestep_active(env
)) {
13011 flags
= FIELD_DP32(flags
, TBFLAG_ANY
, SS_ACTIVE
, 1);
13013 if (env
->pstate
& PSTATE_SS
) {
13014 flags
= FIELD_DP32(flags
, TBFLAG_ANY
, PSTATE_SS
, 1);
13017 if (env
->uncached_cpsr
& PSTATE_SS
) {
13018 flags
= FIELD_DP32(flags
, TBFLAG_ANY
, PSTATE_SS
, 1);
13022 if (arm_cpu_data_is_big_endian(env
)) {
13023 flags
= FIELD_DP32(flags
, TBFLAG_ANY
, BE_DATA
, 1);
13025 flags
= FIELD_DP32(flags
, TBFLAG_ANY
, FPEXC_EL
, fp_el
);
13027 if (arm_v7m_is_handler_mode(env
)) {
13028 flags
= FIELD_DP32(flags
, TBFLAG_A32
, HANDLER
, 1);
13031 /* v8M always applies stack limit checks unless CCR.STKOFHFNMIGN is
13032 * suppressing them because the requested execution priority is less than 0.
13034 if (arm_feature(env
, ARM_FEATURE_V8
) &&
13035 arm_feature(env
, ARM_FEATURE_M
) &&
13036 !((mmu_idx
& ARM_MMU_IDX_M_NEGPRI
) &&
13037 (env
->v7m
.ccr
[env
->v7m
.secure
] & R_V7M_CCR_STKOFHFNMIGN_MASK
))) {
13038 flags
= FIELD_DP32(flags
, TBFLAG_A32
, STACKCHECK
, 1);
13045 #ifdef TARGET_AARCH64
13047 * The manual says that when SVE is enabled and VQ is widened the
13048 * implementation is allowed to zero the previously inaccessible
13049 * portion of the registers. The corollary to that is that when
13050 * SVE is enabled and VQ is narrowed we are also allowed to zero
13051 * the now inaccessible portion of the registers.
13053 * The intent of this is that no predicate bit beyond VQ is ever set.
13054 * Which means that some operations on predicate registers themselves
13055 * may operate on full uint64_t or even unrolled across the maximum
13056 * uint64_t[4]. Performing 4 bits of host arithmetic unconditionally
13057 * may well be cheaper than conditionals to restrict the operation
13058 * to the relevant portion of a uint16_t[16].
13060 void aarch64_sve_narrow_vq(CPUARMState
*env
, unsigned vq
)
13065 assert(vq
>= 1 && vq
<= ARM_MAX_VQ
);
13066 assert(vq
<= arm_env_get_cpu(env
)->sve_max_vq
);
13068 /* Zap the high bits of the zregs. */
13069 for (i
= 0; i
< 32; i
++) {
13070 memset(&env
->vfp
.zregs
[i
].d
[2 * vq
], 0, 16 * (ARM_MAX_VQ
- vq
));
13073 /* Zap the high bits of the pregs and ffr. */
13076 pmask
= ~(-1ULL << (16 * (vq
& 3)));
13078 for (j
= vq
/ 4; j
< ARM_MAX_VQ
/ 4; j
++) {
13079 for (i
= 0; i
< 17; ++i
) {
13080 env
->vfp
.pregs
[i
].p
[j
] &= pmask
;
13087 * Notice a change in SVE vector size when changing EL.
13089 void aarch64_sve_change_el(CPUARMState
*env
, int old_el
,
13090 int new_el
, bool el0_a64
)
13092 ARMCPU
*cpu
= arm_env_get_cpu(env
);
13093 int old_len
, new_len
;
13094 bool old_a64
, new_a64
;
13096 /* Nothing to do if no SVE. */
13097 if (!cpu_isar_feature(aa64_sve
, cpu
)) {
13101 /* Nothing to do if FP is disabled in either EL. */
13102 if (fp_exception_el(env
, old_el
) || fp_exception_el(env
, new_el
)) {
13107 * DDI0584A.d sec 3.2: "If SVE instructions are disabled or trapped
13108 * at ELx, or not available because the EL is in AArch32 state, then
13109 * for all purposes other than a direct read, the ZCR_ELx.LEN field
13110 * has an effective value of 0".
13112 * Consider EL2 (aa64, vq=4) -> EL0 (aa32) -> EL1 (aa64, vq=0).
13113 * If we ignore aa32 state, we would fail to see the vq4->vq0 transition
13114 * from EL2->EL1. Thus we go ahead and narrow when entering aa32 so that
13115 * we already have the correct register contents when encountering the
13116 * vq0->vq0 transition between EL0->EL1.
13118 old_a64
= old_el
? arm_el_is_aa64(env
, old_el
) : el0_a64
;
13119 old_len
= (old_a64
&& !sve_exception_el(env
, old_el
)
13120 ? sve_zcr_len_for_el(env
, old_el
) : 0);
13121 new_a64
= new_el
? arm_el_is_aa64(env
, new_el
) : el0_a64
;
13122 new_len
= (new_a64
&& !sve_exception_el(env
, new_el
)
13123 ? sve_zcr_len_for_el(env
, new_el
) : 0);
13125 /* When changing vector length, clear inaccessible state. */
13126 if (new_len
< old_len
) {
13127 aarch64_sve_narrow_vq(env
, new_len
+ 1);