2 * QEMU Enhanced Disk Format
4 * Copyright IBM, Corp. 2010
7 * Stefan Hajnoczi <stefanha@linux.vnet.ibm.com>
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "block/qdict.h"
17 #include "qapi/error.h"
18 #include "qemu/timer.h"
19 #include "qemu/bswap.h"
20 #include "qemu/option.h"
23 #include "sysemu/block-backend.h"
24 #include "qapi/qmp/qdict.h"
25 #include "qapi/qobject-input-visitor.h"
26 #include "qapi/qapi-visit-block-core.h"
28 static QemuOptsList qed_create_opts
;
30 static int bdrv_qed_probe(const uint8_t *buf
, int buf_size
,
33 const QEDHeader
*header
= (const QEDHeader
*)buf
;
35 if (buf_size
< sizeof(*header
)) {
38 if (le32_to_cpu(header
->magic
) != QED_MAGIC
) {
45 * Check whether an image format is raw
47 * @fmt: Backing file format, may be NULL
49 static bool qed_fmt_is_raw(const char *fmt
)
51 return fmt
&& strcmp(fmt
, "raw") == 0;
54 static void qed_header_le_to_cpu(const QEDHeader
*le
, QEDHeader
*cpu
)
56 cpu
->magic
= le32_to_cpu(le
->magic
);
57 cpu
->cluster_size
= le32_to_cpu(le
->cluster_size
);
58 cpu
->table_size
= le32_to_cpu(le
->table_size
);
59 cpu
->header_size
= le32_to_cpu(le
->header_size
);
60 cpu
->features
= le64_to_cpu(le
->features
);
61 cpu
->compat_features
= le64_to_cpu(le
->compat_features
);
62 cpu
->autoclear_features
= le64_to_cpu(le
->autoclear_features
);
63 cpu
->l1_table_offset
= le64_to_cpu(le
->l1_table_offset
);
64 cpu
->image_size
= le64_to_cpu(le
->image_size
);
65 cpu
->backing_filename_offset
= le32_to_cpu(le
->backing_filename_offset
);
66 cpu
->backing_filename_size
= le32_to_cpu(le
->backing_filename_size
);
69 static void qed_header_cpu_to_le(const QEDHeader
*cpu
, QEDHeader
*le
)
71 le
->magic
= cpu_to_le32(cpu
->magic
);
72 le
->cluster_size
= cpu_to_le32(cpu
->cluster_size
);
73 le
->table_size
= cpu_to_le32(cpu
->table_size
);
74 le
->header_size
= cpu_to_le32(cpu
->header_size
);
75 le
->features
= cpu_to_le64(cpu
->features
);
76 le
->compat_features
= cpu_to_le64(cpu
->compat_features
);
77 le
->autoclear_features
= cpu_to_le64(cpu
->autoclear_features
);
78 le
->l1_table_offset
= cpu_to_le64(cpu
->l1_table_offset
);
79 le
->image_size
= cpu_to_le64(cpu
->image_size
);
80 le
->backing_filename_offset
= cpu_to_le32(cpu
->backing_filename_offset
);
81 le
->backing_filename_size
= cpu_to_le32(cpu
->backing_filename_size
);
84 int qed_write_header_sync(BDRVQEDState
*s
)
89 qed_header_cpu_to_le(&s
->header
, &le
);
90 ret
= bdrv_pwrite(s
->bs
->file
, 0, &le
, sizeof(le
));
91 if (ret
!= sizeof(le
)) {
98 * Update header in-place (does not rewrite backing filename or other strings)
100 * This function only updates known header fields in-place and does not affect
101 * extra data after the QED header.
103 * No new allocating reqs can start while this function runs.
105 static int coroutine_fn
qed_write_header(BDRVQEDState
*s
)
107 /* We must write full sectors for O_DIRECT but cannot necessarily generate
108 * the data following the header if an unrecognized compat feature is
109 * active. Therefore, first read the sectors containing the header, update
110 * them, and write back.
113 int nsectors
= DIV_ROUND_UP(sizeof(QEDHeader
), BDRV_SECTOR_SIZE
);
114 size_t len
= nsectors
* BDRV_SECTOR_SIZE
;
120 assert(s
->allocating_acb
|| s
->allocating_write_reqs_plugged
);
122 buf
= qemu_blockalign(s
->bs
, len
);
123 iov
= (struct iovec
) {
127 qemu_iovec_init_external(&qiov
, &iov
, 1);
129 ret
= bdrv_co_preadv(s
->bs
->file
, 0, qiov
.size
, &qiov
, 0);
135 qed_header_cpu_to_le(&s
->header
, (QEDHeader
*) buf
);
137 ret
= bdrv_co_pwritev(s
->bs
->file
, 0, qiov
.size
, &qiov
, 0);
148 static uint64_t qed_max_image_size(uint32_t cluster_size
, uint32_t table_size
)
150 uint64_t table_entries
;
153 table_entries
= (table_size
* cluster_size
) / sizeof(uint64_t);
154 l2_size
= table_entries
* cluster_size
;
156 return l2_size
* table_entries
;
159 static bool qed_is_cluster_size_valid(uint32_t cluster_size
)
161 if (cluster_size
< QED_MIN_CLUSTER_SIZE
||
162 cluster_size
> QED_MAX_CLUSTER_SIZE
) {
165 if (cluster_size
& (cluster_size
- 1)) {
166 return false; /* not power of 2 */
171 static bool qed_is_table_size_valid(uint32_t table_size
)
173 if (table_size
< QED_MIN_TABLE_SIZE
||
174 table_size
> QED_MAX_TABLE_SIZE
) {
177 if (table_size
& (table_size
- 1)) {
178 return false; /* not power of 2 */
183 static bool qed_is_image_size_valid(uint64_t image_size
, uint32_t cluster_size
,
186 if (image_size
% BDRV_SECTOR_SIZE
!= 0) {
187 return false; /* not multiple of sector size */
189 if (image_size
> qed_max_image_size(cluster_size
, table_size
)) {
190 return false; /* image is too large */
196 * Read a string of known length from the image file
199 * @offset: File offset to start of string, in bytes
200 * @n: String length in bytes
201 * @buf: Destination buffer
202 * @buflen: Destination buffer length in bytes
203 * @ret: 0 on success, -errno on failure
205 * The string is NUL-terminated.
207 static int qed_read_string(BdrvChild
*file
, uint64_t offset
, size_t n
,
208 char *buf
, size_t buflen
)
214 ret
= bdrv_pread(file
, offset
, buf
, n
);
223 * Allocate new clusters
226 * @n: Number of contiguous clusters to allocate
227 * @ret: Offset of first allocated cluster
229 * This function only produces the offset where the new clusters should be
230 * written. It updates BDRVQEDState but does not make any changes to the image
233 * Called with table_lock held.
235 static uint64_t qed_alloc_clusters(BDRVQEDState
*s
, unsigned int n
)
237 uint64_t offset
= s
->file_size
;
238 s
->file_size
+= n
* s
->header
.cluster_size
;
242 QEDTable
*qed_alloc_table(BDRVQEDState
*s
)
244 /* Honor O_DIRECT memory alignment requirements */
245 return qemu_blockalign(s
->bs
,
246 s
->header
.cluster_size
* s
->header
.table_size
);
250 * Allocate a new zeroed L2 table
252 * Called with table_lock held.
254 static CachedL2Table
*qed_new_l2_table(BDRVQEDState
*s
)
256 CachedL2Table
*l2_table
= qed_alloc_l2_cache_entry(&s
->l2_cache
);
258 l2_table
->table
= qed_alloc_table(s
);
259 l2_table
->offset
= qed_alloc_clusters(s
, s
->header
.table_size
);
261 memset(l2_table
->table
->offsets
, 0,
262 s
->header
.cluster_size
* s
->header
.table_size
);
266 static bool qed_plug_allocating_write_reqs(BDRVQEDState
*s
)
268 qemu_co_mutex_lock(&s
->table_lock
);
270 /* No reentrancy is allowed. */
271 assert(!s
->allocating_write_reqs_plugged
);
272 if (s
->allocating_acb
!= NULL
) {
273 /* Another allocating write came concurrently. This cannot happen
274 * from bdrv_qed_co_drain_begin, but it can happen when the timer runs.
276 qemu_co_mutex_unlock(&s
->table_lock
);
280 s
->allocating_write_reqs_plugged
= true;
281 qemu_co_mutex_unlock(&s
->table_lock
);
285 static void qed_unplug_allocating_write_reqs(BDRVQEDState
*s
)
287 qemu_co_mutex_lock(&s
->table_lock
);
288 assert(s
->allocating_write_reqs_plugged
);
289 s
->allocating_write_reqs_plugged
= false;
290 qemu_co_queue_next(&s
->allocating_write_reqs
);
291 qemu_co_mutex_unlock(&s
->table_lock
);
294 static void coroutine_fn
qed_need_check_timer_entry(void *opaque
)
296 BDRVQEDState
*s
= opaque
;
299 trace_qed_need_check_timer_cb(s
);
301 if (!qed_plug_allocating_write_reqs(s
)) {
305 /* Ensure writes are on disk before clearing flag */
306 ret
= bdrv_co_flush(s
->bs
->file
->bs
);
308 qed_unplug_allocating_write_reqs(s
);
312 s
->header
.features
&= ~QED_F_NEED_CHECK
;
313 ret
= qed_write_header(s
);
316 qed_unplug_allocating_write_reqs(s
);
318 ret
= bdrv_co_flush(s
->bs
);
322 static void qed_need_check_timer_cb(void *opaque
)
324 Coroutine
*co
= qemu_coroutine_create(qed_need_check_timer_entry
, opaque
);
325 qemu_coroutine_enter(co
);
328 static void qed_start_need_check_timer(BDRVQEDState
*s
)
330 trace_qed_start_need_check_timer(s
);
332 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
335 timer_mod(s
->need_check_timer
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) +
336 NANOSECONDS_PER_SECOND
* QED_NEED_CHECK_TIMEOUT
);
339 /* It's okay to call this multiple times or when no timer is started */
340 static void qed_cancel_need_check_timer(BDRVQEDState
*s
)
342 trace_qed_cancel_need_check_timer(s
);
343 timer_del(s
->need_check_timer
);
346 static void bdrv_qed_detach_aio_context(BlockDriverState
*bs
)
348 BDRVQEDState
*s
= bs
->opaque
;
350 qed_cancel_need_check_timer(s
);
351 timer_free(s
->need_check_timer
);
354 static void bdrv_qed_attach_aio_context(BlockDriverState
*bs
,
355 AioContext
*new_context
)
357 BDRVQEDState
*s
= bs
->opaque
;
359 s
->need_check_timer
= aio_timer_new(new_context
,
360 QEMU_CLOCK_VIRTUAL
, SCALE_NS
,
361 qed_need_check_timer_cb
, s
);
362 if (s
->header
.features
& QED_F_NEED_CHECK
) {
363 qed_start_need_check_timer(s
);
367 static void coroutine_fn
bdrv_qed_co_drain_begin(BlockDriverState
*bs
)
369 BDRVQEDState
*s
= bs
->opaque
;
371 /* Fire the timer immediately in order to start doing I/O as soon as the
374 if (s
->need_check_timer
&& timer_pending(s
->need_check_timer
)) {
375 qed_cancel_need_check_timer(s
);
376 qed_need_check_timer_entry(s
);
380 static void bdrv_qed_init_state(BlockDriverState
*bs
)
382 BDRVQEDState
*s
= bs
->opaque
;
384 memset(s
, 0, sizeof(BDRVQEDState
));
386 qemu_co_mutex_init(&s
->table_lock
);
387 qemu_co_queue_init(&s
->allocating_write_reqs
);
390 /* Called with table_lock held. */
391 static int coroutine_fn
bdrv_qed_do_open(BlockDriverState
*bs
, QDict
*options
,
392 int flags
, Error
**errp
)
394 BDRVQEDState
*s
= bs
->opaque
;
399 ret
= bdrv_pread(bs
->file
, 0, &le_header
, sizeof(le_header
));
403 qed_header_le_to_cpu(&le_header
, &s
->header
);
405 if (s
->header
.magic
!= QED_MAGIC
) {
406 error_setg(errp
, "Image not in QED format");
409 if (s
->header
.features
& ~QED_FEATURE_MASK
) {
410 /* image uses unsupported feature bits */
411 error_setg(errp
, "Unsupported QED features: %" PRIx64
,
412 s
->header
.features
& ~QED_FEATURE_MASK
);
415 if (!qed_is_cluster_size_valid(s
->header
.cluster_size
)) {
419 /* Round down file size to the last cluster */
420 file_size
= bdrv_getlength(bs
->file
->bs
);
424 s
->file_size
= qed_start_of_cluster(s
, file_size
);
426 if (!qed_is_table_size_valid(s
->header
.table_size
)) {
429 if (!qed_is_image_size_valid(s
->header
.image_size
,
430 s
->header
.cluster_size
,
431 s
->header
.table_size
)) {
434 if (!qed_check_table_offset(s
, s
->header
.l1_table_offset
)) {
438 s
->table_nelems
= (s
->header
.cluster_size
* s
->header
.table_size
) /
440 s
->l2_shift
= ctz32(s
->header
.cluster_size
);
441 s
->l2_mask
= s
->table_nelems
- 1;
442 s
->l1_shift
= s
->l2_shift
+ ctz32(s
->table_nelems
);
444 /* Header size calculation must not overflow uint32_t */
445 if (s
->header
.header_size
> UINT32_MAX
/ s
->header
.cluster_size
) {
449 if ((s
->header
.features
& QED_F_BACKING_FILE
)) {
450 if ((uint64_t)s
->header
.backing_filename_offset
+
451 s
->header
.backing_filename_size
>
452 s
->header
.cluster_size
* s
->header
.header_size
) {
456 ret
= qed_read_string(bs
->file
, s
->header
.backing_filename_offset
,
457 s
->header
.backing_filename_size
, bs
->backing_file
,
458 sizeof(bs
->backing_file
));
463 if (s
->header
.features
& QED_F_BACKING_FORMAT_NO_PROBE
) {
464 pstrcpy(bs
->backing_format
, sizeof(bs
->backing_format
), "raw");
468 /* Reset unknown autoclear feature bits. This is a backwards
469 * compatibility mechanism that allows images to be opened by older
470 * programs, which "knock out" unknown feature bits. When an image is
471 * opened by a newer program again it can detect that the autoclear
472 * feature is no longer valid.
474 if ((s
->header
.autoclear_features
& ~QED_AUTOCLEAR_FEATURE_MASK
) != 0 &&
475 !bdrv_is_read_only(bs
->file
->bs
) && !(flags
& BDRV_O_INACTIVE
)) {
476 s
->header
.autoclear_features
&= QED_AUTOCLEAR_FEATURE_MASK
;
478 ret
= qed_write_header_sync(s
);
483 /* From here on only known autoclear feature bits are valid */
484 bdrv_flush(bs
->file
->bs
);
487 s
->l1_table
= qed_alloc_table(s
);
488 qed_init_l2_cache(&s
->l2_cache
);
490 ret
= qed_read_l1_table_sync(s
);
495 /* If image was not closed cleanly, check consistency */
496 if (!(flags
& BDRV_O_CHECK
) && (s
->header
.features
& QED_F_NEED_CHECK
)) {
497 /* Read-only images cannot be fixed. There is no risk of corruption
498 * since write operations are not possible. Therefore, allow
499 * potentially inconsistent images to be opened read-only. This can
500 * aid data recovery from an otherwise inconsistent image.
502 if (!bdrv_is_read_only(bs
->file
->bs
) &&
503 !(flags
& BDRV_O_INACTIVE
)) {
504 BdrvCheckResult result
= {0};
506 ret
= qed_check(s
, &result
, true);
513 bdrv_qed_attach_aio_context(bs
, bdrv_get_aio_context(bs
));
517 qed_free_l2_cache(&s
->l2_cache
);
518 qemu_vfree(s
->l1_table
);
523 typedef struct QEDOpenCo
{
524 BlockDriverState
*bs
;
531 static void coroutine_fn
bdrv_qed_open_entry(void *opaque
)
533 QEDOpenCo
*qoc
= opaque
;
534 BDRVQEDState
*s
= qoc
->bs
->opaque
;
536 qemu_co_mutex_lock(&s
->table_lock
);
537 qoc
->ret
= bdrv_qed_do_open(qoc
->bs
, qoc
->options
, qoc
->flags
, qoc
->errp
);
538 qemu_co_mutex_unlock(&s
->table_lock
);
541 static int bdrv_qed_open(BlockDriverState
*bs
, QDict
*options
, int flags
,
552 bs
->file
= bdrv_open_child(NULL
, options
, "file", bs
, &child_file
,
558 bdrv_qed_init_state(bs
);
559 if (qemu_in_coroutine()) {
560 bdrv_qed_open_entry(&qoc
);
562 qemu_coroutine_enter(qemu_coroutine_create(bdrv_qed_open_entry
, &qoc
));
563 BDRV_POLL_WHILE(bs
, qoc
.ret
== -EINPROGRESS
);
565 BDRV_POLL_WHILE(bs
, qoc
.ret
== -EINPROGRESS
);
569 static void bdrv_qed_refresh_limits(BlockDriverState
*bs
, Error
**errp
)
571 BDRVQEDState
*s
= bs
->opaque
;
573 bs
->bl
.pwrite_zeroes_alignment
= s
->header
.cluster_size
;
576 /* We have nothing to do for QED reopen, stubs just return
578 static int bdrv_qed_reopen_prepare(BDRVReopenState
*state
,
579 BlockReopenQueue
*queue
, Error
**errp
)
584 static void bdrv_qed_close(BlockDriverState
*bs
)
586 BDRVQEDState
*s
= bs
->opaque
;
588 bdrv_qed_detach_aio_context(bs
);
590 /* Ensure writes reach stable storage */
591 bdrv_flush(bs
->file
->bs
);
593 /* Clean shutdown, no check required on next open */
594 if (s
->header
.features
& QED_F_NEED_CHECK
) {
595 s
->header
.features
&= ~QED_F_NEED_CHECK
;
596 qed_write_header_sync(s
);
599 qed_free_l2_cache(&s
->l2_cache
);
600 qemu_vfree(s
->l1_table
);
603 static int coroutine_fn
bdrv_qed_co_create(BlockdevCreateOptions
*opts
,
606 BlockdevCreateOptionsQed
*qed_opts
;
607 BlockBackend
*blk
= NULL
;
608 BlockDriverState
*bs
= NULL
;
612 uint8_t *l1_table
= NULL
;
616 assert(opts
->driver
== BLOCKDEV_DRIVER_QED
);
617 qed_opts
= &opts
->u
.qed
;
619 /* Validate options and set default values */
620 if (!qed_opts
->has_cluster_size
) {
621 qed_opts
->cluster_size
= QED_DEFAULT_CLUSTER_SIZE
;
623 if (!qed_opts
->has_table_size
) {
624 qed_opts
->table_size
= QED_DEFAULT_TABLE_SIZE
;
627 if (!qed_is_cluster_size_valid(qed_opts
->cluster_size
)) {
628 error_setg(errp
, "QED cluster size must be within range [%u, %u] "
630 QED_MIN_CLUSTER_SIZE
, QED_MAX_CLUSTER_SIZE
);
633 if (!qed_is_table_size_valid(qed_opts
->table_size
)) {
634 error_setg(errp
, "QED table size must be within range [%u, %u] "
636 QED_MIN_TABLE_SIZE
, QED_MAX_TABLE_SIZE
);
639 if (!qed_is_image_size_valid(qed_opts
->size
, qed_opts
->cluster_size
,
640 qed_opts
->table_size
))
642 error_setg(errp
, "QED image size must be a non-zero multiple of "
643 "cluster size and less than %" PRIu64
" bytes",
644 qed_max_image_size(qed_opts
->cluster_size
,
645 qed_opts
->table_size
));
649 /* Create BlockBackend to write to the image */
650 bs
= bdrv_open_blockdev_ref(qed_opts
->file
, errp
);
655 blk
= blk_new(BLK_PERM_WRITE
| BLK_PERM_RESIZE
, BLK_PERM_ALL
);
656 ret
= blk_insert_bs(blk
, bs
, errp
);
660 blk_set_allow_write_beyond_eof(blk
, true);
662 /* Prepare image format */
663 header
= (QEDHeader
) {
665 .cluster_size
= qed_opts
->cluster_size
,
666 .table_size
= qed_opts
->table_size
,
669 .compat_features
= 0,
670 .l1_table_offset
= qed_opts
->cluster_size
,
671 .image_size
= qed_opts
->size
,
674 l1_size
= header
.cluster_size
* header
.table_size
;
676 /* File must start empty and grow, check truncate is supported */
677 ret
= blk_truncate(blk
, 0, PREALLOC_MODE_OFF
, errp
);
682 if (qed_opts
->has_backing_file
) {
683 header
.features
|= QED_F_BACKING_FILE
;
684 header
.backing_filename_offset
= sizeof(le_header
);
685 header
.backing_filename_size
= strlen(qed_opts
->backing_file
);
687 if (qed_opts
->has_backing_fmt
) {
688 const char *backing_fmt
= BlockdevDriver_str(qed_opts
->backing_fmt
);
689 if (qed_fmt_is_raw(backing_fmt
)) {
690 header
.features
|= QED_F_BACKING_FORMAT_NO_PROBE
;
695 qed_header_cpu_to_le(&header
, &le_header
);
696 ret
= blk_pwrite(blk
, 0, &le_header
, sizeof(le_header
), 0);
700 ret
= blk_pwrite(blk
, sizeof(le_header
), qed_opts
->backing_file
,
701 header
.backing_filename_size
, 0);
706 l1_table
= g_malloc0(l1_size
);
707 ret
= blk_pwrite(blk
, header
.l1_table_offset
, l1_table
, l1_size
, 0);
712 ret
= 0; /* success */
720 static int coroutine_fn
bdrv_qed_co_create_opts(const char *filename
,
724 BlockdevCreateOptions
*create_options
= NULL
;
727 BlockDriverState
*bs
= NULL
;
728 Error
*local_err
= NULL
;
731 static const QDictRenames opt_renames
[] = {
732 { BLOCK_OPT_BACKING_FILE
, "backing-file" },
733 { BLOCK_OPT_BACKING_FMT
, "backing-fmt" },
734 { BLOCK_OPT_CLUSTER_SIZE
, "cluster-size" },
735 { BLOCK_OPT_TABLE_SIZE
, "table-size" },
739 /* Parse options and convert legacy syntax */
740 qdict
= qemu_opts_to_qdict_filtered(opts
, NULL
, &qed_create_opts
, true);
742 if (!qdict_rename_keys(qdict
, opt_renames
, errp
)) {
747 /* Create and open the file (protocol layer) */
748 ret
= bdrv_create_file(filename
, opts
, &local_err
);
750 error_propagate(errp
, local_err
);
754 bs
= bdrv_open(filename
, NULL
, NULL
,
755 BDRV_O_RDWR
| BDRV_O_RESIZE
| BDRV_O_PROTOCOL
, errp
);
761 /* Now get the QAPI type BlockdevCreateOptions */
762 qdict_put_str(qdict
, "driver", "qed");
763 qdict_put_str(qdict
, "file", bs
->node_name
);
765 v
= qobject_input_visitor_new_flat_confused(qdict
, errp
);
771 visit_type_BlockdevCreateOptions(v
, NULL
, &create_options
, &local_err
);
775 error_propagate(errp
, local_err
);
780 /* Silently round up size */
781 assert(create_options
->driver
== BLOCKDEV_DRIVER_QED
);
782 create_options
->u
.qed
.size
=
783 ROUND_UP(create_options
->u
.qed
.size
, BDRV_SECTOR_SIZE
);
785 /* Create the qed image (format layer) */
786 ret
= bdrv_qed_co_create(create_options
, errp
);
789 qobject_unref(qdict
);
791 qapi_free_BlockdevCreateOptions(create_options
);
795 static int coroutine_fn
bdrv_qed_co_block_status(BlockDriverState
*bs
,
797 int64_t pos
, int64_t bytes
,
798 int64_t *pnum
, int64_t *map
,
799 BlockDriverState
**file
)
801 BDRVQEDState
*s
= bs
->opaque
;
802 size_t len
= MIN(bytes
, SIZE_MAX
);
804 QEDRequest request
= { .l2_table
= NULL
};
808 qemu_co_mutex_lock(&s
->table_lock
);
809 ret
= qed_find_cluster(s
, &request
, pos
, &len
, &offset
);
813 case QED_CLUSTER_FOUND
:
814 *map
= offset
| qed_offset_into_cluster(s
, pos
);
815 status
= BDRV_BLOCK_DATA
| BDRV_BLOCK_OFFSET_VALID
;
816 *file
= bs
->file
->bs
;
818 case QED_CLUSTER_ZERO
:
819 status
= BDRV_BLOCK_ZERO
;
831 qed_unref_l2_cache_entry(request
.l2_table
);
832 qemu_co_mutex_unlock(&s
->table_lock
);
837 static BDRVQEDState
*acb_to_s(QEDAIOCB
*acb
)
839 return acb
->bs
->opaque
;
843 * Read from the backing file or zero-fill if no backing file
846 * @pos: Byte position in device
847 * @qiov: Destination I/O vector
848 * @backing_qiov: Possibly shortened copy of qiov, to be allocated here
849 * @cb: Completion function
850 * @opaque: User data for completion function
852 * This function reads qiov->size bytes starting at pos from the backing file.
853 * If there is no backing file then zeroes are read.
855 static int coroutine_fn
qed_read_backing_file(BDRVQEDState
*s
, uint64_t pos
,
857 QEMUIOVector
**backing_qiov
)
859 uint64_t backing_length
= 0;
863 /* If there is a backing file, get its length. Treat the absence of a
864 * backing file like a zero length backing file.
866 if (s
->bs
->backing
) {
867 int64_t l
= bdrv_getlength(s
->bs
->backing
->bs
);
874 /* Zero all sectors if reading beyond the end of the backing file */
875 if (pos
>= backing_length
||
876 pos
+ qiov
->size
> backing_length
) {
877 qemu_iovec_memset(qiov
, 0, 0, qiov
->size
);
880 /* Complete now if there are no backing file sectors to read */
881 if (pos
>= backing_length
) {
885 /* If the read straddles the end of the backing file, shorten it */
886 size
= MIN((uint64_t)backing_length
- pos
, qiov
->size
);
888 assert(*backing_qiov
== NULL
);
889 *backing_qiov
= g_new(QEMUIOVector
, 1);
890 qemu_iovec_init(*backing_qiov
, qiov
->niov
);
891 qemu_iovec_concat(*backing_qiov
, qiov
, 0, size
);
893 BLKDBG_EVENT(s
->bs
->file
, BLKDBG_READ_BACKING_AIO
);
894 ret
= bdrv_co_preadv(s
->bs
->backing
, pos
, size
, *backing_qiov
, 0);
902 * Copy data from backing file into the image
905 * @pos: Byte position in device
906 * @len: Number of bytes
907 * @offset: Byte offset in image file
909 static int coroutine_fn
qed_copy_from_backing_file(BDRVQEDState
*s
,
910 uint64_t pos
, uint64_t len
,
914 QEMUIOVector
*backing_qiov
= NULL
;
918 /* Skip copy entirely if there is no work to do */
923 iov
= (struct iovec
) {
924 .iov_base
= qemu_blockalign(s
->bs
, len
),
927 qemu_iovec_init_external(&qiov
, &iov
, 1);
929 ret
= qed_read_backing_file(s
, pos
, &qiov
, &backing_qiov
);
932 qemu_iovec_destroy(backing_qiov
);
933 g_free(backing_qiov
);
941 BLKDBG_EVENT(s
->bs
->file
, BLKDBG_COW_WRITE
);
942 ret
= bdrv_co_pwritev(s
->bs
->file
, offset
, qiov
.size
, &qiov
, 0);
948 qemu_vfree(iov
.iov_base
);
953 * Link one or more contiguous clusters into a table
957 * @index: First cluster index
958 * @n: Number of contiguous clusters
959 * @cluster: First cluster offset
961 * The cluster offset may be an allocated byte offset in the image file, the
962 * zero cluster marker, or the unallocated cluster marker.
964 * Called with table_lock held.
966 static void coroutine_fn
qed_update_l2_table(BDRVQEDState
*s
, QEDTable
*table
,
967 int index
, unsigned int n
,
971 for (i
= index
; i
< index
+ n
; i
++) {
972 table
->offsets
[i
] = cluster
;
973 if (!qed_offset_is_unalloc_cluster(cluster
) &&
974 !qed_offset_is_zero_cluster(cluster
)) {
975 cluster
+= s
->header
.cluster_size
;
980 /* Called with table_lock held. */
981 static void coroutine_fn
qed_aio_complete(QEDAIOCB
*acb
)
983 BDRVQEDState
*s
= acb_to_s(acb
);
986 qemu_iovec_destroy(&acb
->cur_qiov
);
987 qed_unref_l2_cache_entry(acb
->request
.l2_table
);
989 /* Free the buffer we may have allocated for zero writes */
990 if (acb
->flags
& QED_AIOCB_ZERO
) {
991 qemu_vfree(acb
->qiov
->iov
[0].iov_base
);
992 acb
->qiov
->iov
[0].iov_base
= NULL
;
995 /* Start next allocating write request waiting behind this one. Note that
996 * requests enqueue themselves when they first hit an unallocated cluster
997 * but they wait until the entire request is finished before waking up the
998 * next request in the queue. This ensures that we don't cycle through
999 * requests multiple times but rather finish one at a time completely.
1001 if (acb
== s
->allocating_acb
) {
1002 s
->allocating_acb
= NULL
;
1003 if (!qemu_co_queue_empty(&s
->allocating_write_reqs
)) {
1004 qemu_co_queue_next(&s
->allocating_write_reqs
);
1005 } else if (s
->header
.features
& QED_F_NEED_CHECK
) {
1006 qed_start_need_check_timer(s
);
1012 * Update L1 table with new L2 table offset and write it out
1014 * Called with table_lock held.
1016 static int coroutine_fn
qed_aio_write_l1_update(QEDAIOCB
*acb
)
1018 BDRVQEDState
*s
= acb_to_s(acb
);
1019 CachedL2Table
*l2_table
= acb
->request
.l2_table
;
1020 uint64_t l2_offset
= l2_table
->offset
;
1023 index
= qed_l1_index(s
, acb
->cur_pos
);
1024 s
->l1_table
->offsets
[index
] = l2_table
->offset
;
1026 ret
= qed_write_l1_table(s
, index
, 1);
1028 /* Commit the current L2 table to the cache */
1029 qed_commit_l2_cache_entry(&s
->l2_cache
, l2_table
);
1031 /* This is guaranteed to succeed because we just committed the entry to the
1034 acb
->request
.l2_table
= qed_find_l2_cache_entry(&s
->l2_cache
, l2_offset
);
1035 assert(acb
->request
.l2_table
!= NULL
);
1042 * Update L2 table with new cluster offsets and write them out
1044 * Called with table_lock held.
1046 static int coroutine_fn
qed_aio_write_l2_update(QEDAIOCB
*acb
, uint64_t offset
)
1048 BDRVQEDState
*s
= acb_to_s(acb
);
1049 bool need_alloc
= acb
->find_cluster_ret
== QED_CLUSTER_L1
;
1053 qed_unref_l2_cache_entry(acb
->request
.l2_table
);
1054 acb
->request
.l2_table
= qed_new_l2_table(s
);
1057 index
= qed_l2_index(s
, acb
->cur_pos
);
1058 qed_update_l2_table(s
, acb
->request
.l2_table
->table
, index
, acb
->cur_nclusters
,
1062 /* Write out the whole new L2 table */
1063 ret
= qed_write_l2_table(s
, &acb
->request
, 0, s
->table_nelems
, true);
1067 return qed_aio_write_l1_update(acb
);
1069 /* Write out only the updated part of the L2 table */
1070 ret
= qed_write_l2_table(s
, &acb
->request
, index
, acb
->cur_nclusters
,
1080 * Write data to the image file
1082 * Called with table_lock *not* held.
1084 static int coroutine_fn
qed_aio_write_main(QEDAIOCB
*acb
)
1086 BDRVQEDState
*s
= acb_to_s(acb
);
1087 uint64_t offset
= acb
->cur_cluster
+
1088 qed_offset_into_cluster(s
, acb
->cur_pos
);
1090 trace_qed_aio_write_main(s
, acb
, 0, offset
, acb
->cur_qiov
.size
);
1092 BLKDBG_EVENT(s
->bs
->file
, BLKDBG_WRITE_AIO
);
1093 return bdrv_co_pwritev(s
->bs
->file
, offset
, acb
->cur_qiov
.size
,
1098 * Populate untouched regions of new data cluster
1100 * Called with table_lock held.
1102 static int coroutine_fn
qed_aio_write_cow(QEDAIOCB
*acb
)
1104 BDRVQEDState
*s
= acb_to_s(acb
);
1105 uint64_t start
, len
, offset
;
1108 qemu_co_mutex_unlock(&s
->table_lock
);
1110 /* Populate front untouched region of new data cluster */
1111 start
= qed_start_of_cluster(s
, acb
->cur_pos
);
1112 len
= qed_offset_into_cluster(s
, acb
->cur_pos
);
1114 trace_qed_aio_write_prefill(s
, acb
, start
, len
, acb
->cur_cluster
);
1115 ret
= qed_copy_from_backing_file(s
, start
, len
, acb
->cur_cluster
);
1120 /* Populate back untouched region of new data cluster */
1121 start
= acb
->cur_pos
+ acb
->cur_qiov
.size
;
1122 len
= qed_start_of_cluster(s
, start
+ s
->header
.cluster_size
- 1) - start
;
1123 offset
= acb
->cur_cluster
+
1124 qed_offset_into_cluster(s
, acb
->cur_pos
) +
1127 trace_qed_aio_write_postfill(s
, acb
, start
, len
, offset
);
1128 ret
= qed_copy_from_backing_file(s
, start
, len
, offset
);
1133 ret
= qed_aio_write_main(acb
);
1138 if (s
->bs
->backing
) {
1140 * Flush new data clusters before updating the L2 table
1142 * This flush is necessary when a backing file is in use. A crash
1143 * during an allocating write could result in empty clusters in the
1144 * image. If the write only touched a subregion of the cluster,
1145 * then backing image sectors have been lost in the untouched
1146 * region. The solution is to flush after writing a new data
1147 * cluster and before updating the L2 table.
1149 ret
= bdrv_co_flush(s
->bs
->file
->bs
);
1153 qemu_co_mutex_lock(&s
->table_lock
);
1158 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1160 static bool qed_should_set_need_check(BDRVQEDState
*s
)
1162 /* The flush before L2 update path ensures consistency */
1163 if (s
->bs
->backing
) {
1167 return !(s
->header
.features
& QED_F_NEED_CHECK
);
1171 * Write new data cluster
1173 * @acb: Write request
1174 * @len: Length in bytes
1176 * This path is taken when writing to previously unallocated clusters.
1178 * Called with table_lock held.
1180 static int coroutine_fn
qed_aio_write_alloc(QEDAIOCB
*acb
, size_t len
)
1182 BDRVQEDState
*s
= acb_to_s(acb
);
1185 /* Cancel timer when the first allocating request comes in */
1186 if (s
->allocating_acb
== NULL
) {
1187 qed_cancel_need_check_timer(s
);
1190 /* Freeze this request if another allocating write is in progress */
1191 if (s
->allocating_acb
!= acb
|| s
->allocating_write_reqs_plugged
) {
1192 if (s
->allocating_acb
!= NULL
) {
1193 qemu_co_queue_wait(&s
->allocating_write_reqs
, &s
->table_lock
);
1194 assert(s
->allocating_acb
== NULL
);
1196 s
->allocating_acb
= acb
;
1197 return -EAGAIN
; /* start over with looking up table entries */
1200 acb
->cur_nclusters
= qed_bytes_to_clusters(s
,
1201 qed_offset_into_cluster(s
, acb
->cur_pos
) + len
);
1202 qemu_iovec_concat(&acb
->cur_qiov
, acb
->qiov
, acb
->qiov_offset
, len
);
1204 if (acb
->flags
& QED_AIOCB_ZERO
) {
1205 /* Skip ahead if the clusters are already zero */
1206 if (acb
->find_cluster_ret
== QED_CLUSTER_ZERO
) {
1209 acb
->cur_cluster
= 1;
1211 acb
->cur_cluster
= qed_alloc_clusters(s
, acb
->cur_nclusters
);
1214 if (qed_should_set_need_check(s
)) {
1215 s
->header
.features
|= QED_F_NEED_CHECK
;
1216 ret
= qed_write_header(s
);
1222 if (!(acb
->flags
& QED_AIOCB_ZERO
)) {
1223 ret
= qed_aio_write_cow(acb
);
1229 return qed_aio_write_l2_update(acb
, acb
->cur_cluster
);
1233 * Write data cluster in place
1235 * @acb: Write request
1236 * @offset: Cluster offset in bytes
1237 * @len: Length in bytes
1239 * This path is taken when writing to already allocated clusters.
1241 * Called with table_lock held.
1243 static int coroutine_fn
qed_aio_write_inplace(QEDAIOCB
*acb
, uint64_t offset
,
1246 BDRVQEDState
*s
= acb_to_s(acb
);
1249 qemu_co_mutex_unlock(&s
->table_lock
);
1251 /* Allocate buffer for zero writes */
1252 if (acb
->flags
& QED_AIOCB_ZERO
) {
1253 struct iovec
*iov
= acb
->qiov
->iov
;
1255 if (!iov
->iov_base
) {
1256 iov
->iov_base
= qemu_try_blockalign(acb
->bs
, iov
->iov_len
);
1257 if (iov
->iov_base
== NULL
) {
1261 memset(iov
->iov_base
, 0, iov
->iov_len
);
1265 /* Calculate the I/O vector */
1266 acb
->cur_cluster
= offset
;
1267 qemu_iovec_concat(&acb
->cur_qiov
, acb
->qiov
, acb
->qiov_offset
, len
);
1269 /* Do the actual write. */
1270 r
= qed_aio_write_main(acb
);
1272 qemu_co_mutex_lock(&s
->table_lock
);
1277 * Write data cluster
1279 * @opaque: Write request
1280 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1281 * @offset: Cluster offset in bytes
1282 * @len: Length in bytes
1284 * Called with table_lock held.
1286 static int coroutine_fn
qed_aio_write_data(void *opaque
, int ret
,
1287 uint64_t offset
, size_t len
)
1289 QEDAIOCB
*acb
= opaque
;
1291 trace_qed_aio_write_data(acb_to_s(acb
), acb
, ret
, offset
, len
);
1293 acb
->find_cluster_ret
= ret
;
1296 case QED_CLUSTER_FOUND
:
1297 return qed_aio_write_inplace(acb
, offset
, len
);
1299 case QED_CLUSTER_L2
:
1300 case QED_CLUSTER_L1
:
1301 case QED_CLUSTER_ZERO
:
1302 return qed_aio_write_alloc(acb
, len
);
1305 g_assert_not_reached();
1312 * @opaque: Read request
1313 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1314 * @offset: Cluster offset in bytes
1315 * @len: Length in bytes
1317 * Called with table_lock held.
1319 static int coroutine_fn
qed_aio_read_data(void *opaque
, int ret
,
1320 uint64_t offset
, size_t len
)
1322 QEDAIOCB
*acb
= opaque
;
1323 BDRVQEDState
*s
= acb_to_s(acb
);
1324 BlockDriverState
*bs
= acb
->bs
;
1327 qemu_co_mutex_unlock(&s
->table_lock
);
1329 /* Adjust offset into cluster */
1330 offset
+= qed_offset_into_cluster(s
, acb
->cur_pos
);
1332 trace_qed_aio_read_data(s
, acb
, ret
, offset
, len
);
1334 qemu_iovec_concat(&acb
->cur_qiov
, acb
->qiov
, acb
->qiov_offset
, len
);
1336 /* Handle zero cluster and backing file reads, otherwise read
1337 * data cluster directly.
1339 if (ret
== QED_CLUSTER_ZERO
) {
1340 qemu_iovec_memset(&acb
->cur_qiov
, 0, 0, acb
->cur_qiov
.size
);
1342 } else if (ret
!= QED_CLUSTER_FOUND
) {
1343 r
= qed_read_backing_file(s
, acb
->cur_pos
, &acb
->cur_qiov
,
1344 &acb
->backing_qiov
);
1346 BLKDBG_EVENT(bs
->file
, BLKDBG_READ_AIO
);
1347 r
= bdrv_co_preadv(bs
->file
, offset
, acb
->cur_qiov
.size
,
1351 qemu_co_mutex_lock(&s
->table_lock
);
1356 * Begin next I/O or complete the request
1358 static int coroutine_fn
qed_aio_next_io(QEDAIOCB
*acb
)
1360 BDRVQEDState
*s
= acb_to_s(acb
);
1365 qemu_co_mutex_lock(&s
->table_lock
);
1367 trace_qed_aio_next_io(s
, acb
, 0, acb
->cur_pos
+ acb
->cur_qiov
.size
);
1369 if (acb
->backing_qiov
) {
1370 qemu_iovec_destroy(acb
->backing_qiov
);
1371 g_free(acb
->backing_qiov
);
1372 acb
->backing_qiov
= NULL
;
1375 acb
->qiov_offset
+= acb
->cur_qiov
.size
;
1376 acb
->cur_pos
+= acb
->cur_qiov
.size
;
1377 qemu_iovec_reset(&acb
->cur_qiov
);
1379 /* Complete request */
1380 if (acb
->cur_pos
>= acb
->end_pos
) {
1385 /* Find next cluster and start I/O */
1386 len
= acb
->end_pos
- acb
->cur_pos
;
1387 ret
= qed_find_cluster(s
, &acb
->request
, acb
->cur_pos
, &len
, &offset
);
1392 if (acb
->flags
& QED_AIOCB_WRITE
) {
1393 ret
= qed_aio_write_data(acb
, ret
, offset
, len
);
1395 ret
= qed_aio_read_data(acb
, ret
, offset
, len
);
1398 if (ret
< 0 && ret
!= -EAGAIN
) {
1403 trace_qed_aio_complete(s
, acb
, ret
);
1404 qed_aio_complete(acb
);
1405 qemu_co_mutex_unlock(&s
->table_lock
);
1409 static int coroutine_fn
qed_co_request(BlockDriverState
*bs
, int64_t sector_num
,
1410 QEMUIOVector
*qiov
, int nb_sectors
,
1415 .cur_pos
= (uint64_t) sector_num
* BDRV_SECTOR_SIZE
,
1416 .end_pos
= (sector_num
+ nb_sectors
) * BDRV_SECTOR_SIZE
,
1420 qemu_iovec_init(&acb
.cur_qiov
, qiov
->niov
);
1422 trace_qed_aio_setup(bs
->opaque
, &acb
, sector_num
, nb_sectors
, NULL
, flags
);
1425 return qed_aio_next_io(&acb
);
1428 static int coroutine_fn
bdrv_qed_co_readv(BlockDriverState
*bs
,
1429 int64_t sector_num
, int nb_sectors
,
1432 return qed_co_request(bs
, sector_num
, qiov
, nb_sectors
, 0);
1435 static int coroutine_fn
bdrv_qed_co_writev(BlockDriverState
*bs
,
1436 int64_t sector_num
, int nb_sectors
,
1437 QEMUIOVector
*qiov
, int flags
)
1440 return qed_co_request(bs
, sector_num
, qiov
, nb_sectors
, QED_AIOCB_WRITE
);
1443 static int coroutine_fn
bdrv_qed_co_pwrite_zeroes(BlockDriverState
*bs
,
1446 BdrvRequestFlags flags
)
1448 BDRVQEDState
*s
= bs
->opaque
;
1452 /* Fall back if the request is not aligned */
1453 if (qed_offset_into_cluster(s
, offset
) ||
1454 qed_offset_into_cluster(s
, bytes
)) {
1458 /* Zero writes start without an I/O buffer. If a buffer becomes necessary
1459 * then it will be allocated during request processing.
1461 iov
.iov_base
= NULL
;
1462 iov
.iov_len
= bytes
;
1464 qemu_iovec_init_external(&qiov
, &iov
, 1);
1465 return qed_co_request(bs
, offset
>> BDRV_SECTOR_BITS
, &qiov
,
1466 bytes
>> BDRV_SECTOR_BITS
,
1467 QED_AIOCB_WRITE
| QED_AIOCB_ZERO
);
1470 static int coroutine_fn
bdrv_qed_co_truncate(BlockDriverState
*bs
,
1472 PreallocMode prealloc
,
1475 BDRVQEDState
*s
= bs
->opaque
;
1476 uint64_t old_image_size
;
1479 if (prealloc
!= PREALLOC_MODE_OFF
) {
1480 error_setg(errp
, "Unsupported preallocation mode '%s'",
1481 PreallocMode_str(prealloc
));
1485 if (!qed_is_image_size_valid(offset
, s
->header
.cluster_size
,
1486 s
->header
.table_size
)) {
1487 error_setg(errp
, "Invalid image size specified");
1491 if ((uint64_t)offset
< s
->header
.image_size
) {
1492 error_setg(errp
, "Shrinking images is currently not supported");
1496 old_image_size
= s
->header
.image_size
;
1497 s
->header
.image_size
= offset
;
1498 ret
= qed_write_header_sync(s
);
1500 s
->header
.image_size
= old_image_size
;
1501 error_setg_errno(errp
, -ret
, "Failed to update the image size");
1506 static int64_t bdrv_qed_getlength(BlockDriverState
*bs
)
1508 BDRVQEDState
*s
= bs
->opaque
;
1509 return s
->header
.image_size
;
1512 static int bdrv_qed_get_info(BlockDriverState
*bs
, BlockDriverInfo
*bdi
)
1514 BDRVQEDState
*s
= bs
->opaque
;
1516 memset(bdi
, 0, sizeof(*bdi
));
1517 bdi
->cluster_size
= s
->header
.cluster_size
;
1518 bdi
->is_dirty
= s
->header
.features
& QED_F_NEED_CHECK
;
1519 bdi
->unallocated_blocks_are_zero
= true;
1523 static int bdrv_qed_change_backing_file(BlockDriverState
*bs
,
1524 const char *backing_file
,
1525 const char *backing_fmt
)
1527 BDRVQEDState
*s
= bs
->opaque
;
1528 QEDHeader new_header
, le_header
;
1530 size_t buffer_len
, backing_file_len
;
1533 /* Refuse to set backing filename if unknown compat feature bits are
1534 * active. If the image uses an unknown compat feature then we may not
1535 * know the layout of data following the header structure and cannot safely
1538 if (backing_file
&& (s
->header
.compat_features
&
1539 ~QED_COMPAT_FEATURE_MASK
)) {
1543 memcpy(&new_header
, &s
->header
, sizeof(new_header
));
1545 new_header
.features
&= ~(QED_F_BACKING_FILE
|
1546 QED_F_BACKING_FORMAT_NO_PROBE
);
1548 /* Adjust feature flags */
1550 new_header
.features
|= QED_F_BACKING_FILE
;
1552 if (qed_fmt_is_raw(backing_fmt
)) {
1553 new_header
.features
|= QED_F_BACKING_FORMAT_NO_PROBE
;
1557 /* Calculate new header size */
1558 backing_file_len
= 0;
1561 backing_file_len
= strlen(backing_file
);
1564 buffer_len
= sizeof(new_header
);
1565 new_header
.backing_filename_offset
= buffer_len
;
1566 new_header
.backing_filename_size
= backing_file_len
;
1567 buffer_len
+= backing_file_len
;
1569 /* Make sure we can rewrite header without failing */
1570 if (buffer_len
> new_header
.header_size
* new_header
.cluster_size
) {
1574 /* Prepare new header */
1575 buffer
= g_malloc(buffer_len
);
1577 qed_header_cpu_to_le(&new_header
, &le_header
);
1578 memcpy(buffer
, &le_header
, sizeof(le_header
));
1579 buffer_len
= sizeof(le_header
);
1582 memcpy(buffer
+ buffer_len
, backing_file
, backing_file_len
);
1583 buffer_len
+= backing_file_len
;
1586 /* Write new header */
1587 ret
= bdrv_pwrite_sync(bs
->file
, 0, buffer
, buffer_len
);
1590 memcpy(&s
->header
, &new_header
, sizeof(new_header
));
1595 static void coroutine_fn
bdrv_qed_co_invalidate_cache(BlockDriverState
*bs
,
1598 BDRVQEDState
*s
= bs
->opaque
;
1599 Error
*local_err
= NULL
;
1604 bdrv_qed_init_state(bs
);
1605 qemu_co_mutex_lock(&s
->table_lock
);
1606 ret
= bdrv_qed_do_open(bs
, NULL
, bs
->open_flags
, &local_err
);
1607 qemu_co_mutex_unlock(&s
->table_lock
);
1609 error_propagate_prepend(errp
, local_err
,
1610 "Could not reopen qed layer: ");
1612 } else if (ret
< 0) {
1613 error_setg_errno(errp
, -ret
, "Could not reopen qed layer");
1618 static int bdrv_qed_co_check(BlockDriverState
*bs
, BdrvCheckResult
*result
,
1621 BDRVQEDState
*s
= bs
->opaque
;
1624 qemu_co_mutex_lock(&s
->table_lock
);
1625 ret
= qed_check(s
, result
, !!fix
);
1626 qemu_co_mutex_unlock(&s
->table_lock
);
1631 static QemuOptsList qed_create_opts
= {
1632 .name
= "qed-create-opts",
1633 .head
= QTAILQ_HEAD_INITIALIZER(qed_create_opts
.head
),
1636 .name
= BLOCK_OPT_SIZE
,
1637 .type
= QEMU_OPT_SIZE
,
1638 .help
= "Virtual disk size"
1641 .name
= BLOCK_OPT_BACKING_FILE
,
1642 .type
= QEMU_OPT_STRING
,
1643 .help
= "File name of a base image"
1646 .name
= BLOCK_OPT_BACKING_FMT
,
1647 .type
= QEMU_OPT_STRING
,
1648 .help
= "Image format of the base image"
1651 .name
= BLOCK_OPT_CLUSTER_SIZE
,
1652 .type
= QEMU_OPT_SIZE
,
1653 .help
= "Cluster size (in bytes)",
1654 .def_value_str
= stringify(QED_DEFAULT_CLUSTER_SIZE
)
1657 .name
= BLOCK_OPT_TABLE_SIZE
,
1658 .type
= QEMU_OPT_SIZE
,
1659 .help
= "L1/L2 table size (in clusters)"
1661 { /* end of list */ }
1665 static BlockDriver bdrv_qed
= {
1666 .format_name
= "qed",
1667 .instance_size
= sizeof(BDRVQEDState
),
1668 .create_opts
= &qed_create_opts
,
1669 .supports_backing
= true,
1671 .bdrv_probe
= bdrv_qed_probe
,
1672 .bdrv_open
= bdrv_qed_open
,
1673 .bdrv_close
= bdrv_qed_close
,
1674 .bdrv_reopen_prepare
= bdrv_qed_reopen_prepare
,
1675 .bdrv_child_perm
= bdrv_format_default_perms
,
1676 .bdrv_co_create
= bdrv_qed_co_create
,
1677 .bdrv_co_create_opts
= bdrv_qed_co_create_opts
,
1678 .bdrv_has_zero_init
= bdrv_has_zero_init_1
,
1679 .bdrv_co_block_status
= bdrv_qed_co_block_status
,
1680 .bdrv_co_readv
= bdrv_qed_co_readv
,
1681 .bdrv_co_writev
= bdrv_qed_co_writev
,
1682 .bdrv_co_pwrite_zeroes
= bdrv_qed_co_pwrite_zeroes
,
1683 .bdrv_co_truncate
= bdrv_qed_co_truncate
,
1684 .bdrv_getlength
= bdrv_qed_getlength
,
1685 .bdrv_get_info
= bdrv_qed_get_info
,
1686 .bdrv_refresh_limits
= bdrv_qed_refresh_limits
,
1687 .bdrv_change_backing_file
= bdrv_qed_change_backing_file
,
1688 .bdrv_co_invalidate_cache
= bdrv_qed_co_invalidate_cache
,
1689 .bdrv_co_check
= bdrv_qed_co_check
,
1690 .bdrv_detach_aio_context
= bdrv_qed_detach_aio_context
,
1691 .bdrv_attach_aio_context
= bdrv_qed_attach_aio_context
,
1692 .bdrv_co_drain_begin
= bdrv_qed_co_drain_begin
,
1695 static void bdrv_qed_init(void)
1697 bdrv_register(&bdrv_qed
);
1700 block_init(bdrv_qed_init
);