kvm: x86: Fix xcr0 reset mismerge
[qemu.git] / target-i386 / kvm.c
blobc4a22dd58f2d63616a718713c07371a5541e7148
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
22 #include "qemu-common.h"
23 #include "sysemu.h"
24 #include "kvm.h"
25 #include "cpu.h"
26 #include "gdbstub.h"
27 #include "host-utils.h"
28 #include "hw/pc.h"
29 #include "hw/apic.h"
30 #include "ioport.h"
31 #include "kvm_x86.h"
33 #ifdef CONFIG_KVM_PARA
34 #include <linux/kvm_para.h>
35 #endif
37 //#define DEBUG_KVM
39 #ifdef DEBUG_KVM
40 #define DPRINTF(fmt, ...) \
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42 #else
43 #define DPRINTF(fmt, ...) \
44 do { } while (0)
45 #endif
47 #define MSR_KVM_WALL_CLOCK 0x11
48 #define MSR_KVM_SYSTEM_TIME 0x12
50 #ifndef BUS_MCEERR_AR
51 #define BUS_MCEERR_AR 4
52 #endif
53 #ifndef BUS_MCEERR_AO
54 #define BUS_MCEERR_AO 5
55 #endif
57 static int lm_capable_kernel;
59 #ifdef KVM_CAP_EXT_CPUID
61 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
63 struct kvm_cpuid2 *cpuid;
64 int r, size;
66 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
67 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
68 cpuid->nent = max;
69 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
70 if (r == 0 && cpuid->nent >= max) {
71 r = -E2BIG;
73 if (r < 0) {
74 if (r == -E2BIG) {
75 qemu_free(cpuid);
76 return NULL;
77 } else {
78 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
79 strerror(-r));
80 exit(1);
83 return cpuid;
86 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
87 uint32_t index, int reg)
89 struct kvm_cpuid2 *cpuid;
90 int i, max;
91 uint32_t ret = 0;
92 uint32_t cpuid_1_edx;
94 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
95 return -1U;
98 max = 1;
99 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
100 max *= 2;
103 for (i = 0; i < cpuid->nent; ++i) {
104 if (cpuid->entries[i].function == function &&
105 cpuid->entries[i].index == index) {
106 switch (reg) {
107 case R_EAX:
108 ret = cpuid->entries[i].eax;
109 break;
110 case R_EBX:
111 ret = cpuid->entries[i].ebx;
112 break;
113 case R_ECX:
114 ret = cpuid->entries[i].ecx;
115 break;
116 case R_EDX:
117 ret = cpuid->entries[i].edx;
118 switch (function) {
119 case 1:
120 /* KVM before 2.6.30 misreports the following features */
121 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
122 break;
123 case 0x80000001:
124 /* On Intel, kvm returns cpuid according to the Intel spec,
125 * so add missing bits according to the AMD spec:
127 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
128 ret |= cpuid_1_edx & 0x183f7ff;
129 break;
131 break;
136 qemu_free(cpuid);
138 return ret;
141 #else
143 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
144 uint32_t index, int reg)
146 return -1U;
149 #endif
151 #ifdef CONFIG_KVM_PARA
152 struct kvm_para_features {
153 int cap;
154 int feature;
155 } para_features[] = {
156 #ifdef KVM_CAP_CLOCKSOURCE
157 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
158 #endif
159 #ifdef KVM_CAP_NOP_IO_DELAY
160 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
161 #endif
162 #ifdef KVM_CAP_PV_MMU
163 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
164 #endif
165 #ifdef KVM_CAP_ASYNC_PF
166 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
167 #endif
168 { -1, -1 }
171 static int get_para_features(CPUState *env)
173 int i, features = 0;
175 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
176 if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
177 features |= (1 << para_features[i].feature);
180 return features;
182 #endif
184 #ifdef KVM_CAP_MCE
185 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
186 int *max_banks)
188 int r;
190 r = kvm_check_extension(s, KVM_CAP_MCE);
191 if (r > 0) {
192 *max_banks = r;
193 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
195 return -ENOSYS;
198 static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
200 return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
203 static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
205 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
208 static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
210 struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
211 int r;
213 kmsrs->nmsrs = n;
214 memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
215 r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
216 memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
217 free(kmsrs);
218 return r;
221 /* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
222 static int kvm_mce_in_progress(CPUState *env)
224 struct kvm_msr_entry msr_mcg_status = {
225 .index = MSR_MCG_STATUS,
227 int r;
229 r = kvm_get_msr(env, &msr_mcg_status, 1);
230 if (r == -1 || r == 0) {
231 fprintf(stderr, "Failed to get MCE status\n");
232 return 0;
234 return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
237 struct kvm_x86_mce_data
239 CPUState *env;
240 struct kvm_x86_mce *mce;
241 int abort_on_error;
244 static void kvm_do_inject_x86_mce(void *_data)
246 struct kvm_x86_mce_data *data = _data;
247 int r;
249 /* If there is an MCE exception being processed, ignore this SRAO MCE */
250 if ((data->env->mcg_cap & MCG_SER_P) &&
251 !(data->mce->status & MCI_STATUS_AR)) {
252 if (kvm_mce_in_progress(data->env)) {
253 return;
257 r = kvm_set_mce(data->env, data->mce);
258 if (r < 0) {
259 perror("kvm_set_mce FAILED");
260 if (data->abort_on_error) {
261 abort();
266 static void kvm_inject_x86_mce_on(CPUState *env, struct kvm_x86_mce *mce,
267 int flag)
269 struct kvm_x86_mce_data data = {
270 .env = env,
271 .mce = mce,
272 .abort_on_error = (flag & ABORT_ON_ERROR),
275 if (!env->mcg_cap) {
276 fprintf(stderr, "MCE support is not enabled!\n");
277 return;
280 run_on_cpu(env, kvm_do_inject_x86_mce, &data);
283 static void kvm_mce_broadcast_rest(CPUState *env);
284 #endif
286 void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
287 uint64_t mcg_status, uint64_t addr, uint64_t misc,
288 int flag)
290 #ifdef KVM_CAP_MCE
291 struct kvm_x86_mce mce = {
292 .bank = bank,
293 .status = status,
294 .mcg_status = mcg_status,
295 .addr = addr,
296 .misc = misc,
299 if (flag & MCE_BROADCAST) {
300 kvm_mce_broadcast_rest(cenv);
303 kvm_inject_x86_mce_on(cenv, &mce, flag);
304 #else
305 if (flag & ABORT_ON_ERROR) {
306 abort();
308 #endif
311 int kvm_arch_init_vcpu(CPUState *env)
313 struct {
314 struct kvm_cpuid2 cpuid;
315 struct kvm_cpuid_entry2 entries[100];
316 } __attribute__((packed)) cpuid_data;
317 uint32_t limit, i, j, cpuid_i;
318 uint32_t unused;
319 struct kvm_cpuid_entry2 *c;
320 #ifdef KVM_CPUID_SIGNATURE
321 uint32_t signature[3];
322 #endif
324 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
326 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
327 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
328 env->cpuid_ext_features |= i;
330 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
331 0, R_EDX);
332 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
333 0, R_ECX);
334 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
335 0, R_EDX);
338 cpuid_i = 0;
340 #ifdef CONFIG_KVM_PARA
341 /* Paravirtualization CPUIDs */
342 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
343 c = &cpuid_data.entries[cpuid_i++];
344 memset(c, 0, sizeof(*c));
345 c->function = KVM_CPUID_SIGNATURE;
346 c->eax = 0;
347 c->ebx = signature[0];
348 c->ecx = signature[1];
349 c->edx = signature[2];
351 c = &cpuid_data.entries[cpuid_i++];
352 memset(c, 0, sizeof(*c));
353 c->function = KVM_CPUID_FEATURES;
354 c->eax = env->cpuid_kvm_features & get_para_features(env);
355 #endif
357 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
359 for (i = 0; i <= limit; i++) {
360 c = &cpuid_data.entries[cpuid_i++];
362 switch (i) {
363 case 2: {
364 /* Keep reading function 2 till all the input is received */
365 int times;
367 c->function = i;
368 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
369 KVM_CPUID_FLAG_STATE_READ_NEXT;
370 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
371 times = c->eax & 0xff;
373 for (j = 1; j < times; ++j) {
374 c = &cpuid_data.entries[cpuid_i++];
375 c->function = i;
376 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
377 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
379 break;
381 case 4:
382 case 0xb:
383 case 0xd:
384 for (j = 0; ; j++) {
385 c->function = i;
386 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
387 c->index = j;
388 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
390 if (i == 4 && c->eax == 0) {
391 break;
393 if (i == 0xb && !(c->ecx & 0xff00)) {
394 break;
396 if (i == 0xd && c->eax == 0) {
397 break;
399 c = &cpuid_data.entries[cpuid_i++];
401 break;
402 default:
403 c->function = i;
404 c->flags = 0;
405 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
406 break;
409 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
411 for (i = 0x80000000; i <= limit; i++) {
412 c = &cpuid_data.entries[cpuid_i++];
414 c->function = i;
415 c->flags = 0;
416 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
419 cpuid_data.cpuid.nent = cpuid_i;
421 #ifdef KVM_CAP_MCE
422 if (((env->cpuid_version >> 8)&0xF) >= 6
423 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
424 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
425 uint64_t mcg_cap;
426 int banks;
428 if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks)) {
429 perror("kvm_get_mce_cap_supported FAILED");
430 } else {
431 if (banks > MCE_BANKS_DEF)
432 banks = MCE_BANKS_DEF;
433 mcg_cap &= MCE_CAP_DEF;
434 mcg_cap |= banks;
435 if (kvm_setup_mce(env, &mcg_cap)) {
436 perror("kvm_setup_mce FAILED");
437 } else {
438 env->mcg_cap = mcg_cap;
442 #endif
444 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
447 void kvm_arch_reset_vcpu(CPUState *env)
449 env->exception_injected = -1;
450 env->interrupt_injected = -1;
451 env->nmi_injected = 0;
452 env->nmi_pending = 0;
453 env->xcr0 = 1;
454 if (kvm_irqchip_in_kernel()) {
455 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
456 KVM_MP_STATE_UNINITIALIZED;
457 } else {
458 env->mp_state = KVM_MP_STATE_RUNNABLE;
462 int has_msr_star;
463 int has_msr_hsave_pa;
465 static void kvm_supported_msrs(CPUState *env)
467 static int kvm_supported_msrs;
468 int ret;
470 /* first time */
471 if (kvm_supported_msrs == 0) {
472 struct kvm_msr_list msr_list, *kvm_msr_list;
474 kvm_supported_msrs = -1;
476 /* Obtain MSR list from KVM. These are the MSRs that we must
477 * save/restore */
478 msr_list.nmsrs = 0;
479 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
480 if (ret < 0 && ret != -E2BIG) {
481 return;
483 /* Old kernel modules had a bug and could write beyond the provided
484 memory. Allocate at least a safe amount of 1K. */
485 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
486 msr_list.nmsrs *
487 sizeof(msr_list.indices[0])));
489 kvm_msr_list->nmsrs = msr_list.nmsrs;
490 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
491 if (ret >= 0) {
492 int i;
494 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
495 if (kvm_msr_list->indices[i] == MSR_STAR) {
496 has_msr_star = 1;
497 continue;
499 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
500 has_msr_hsave_pa = 1;
501 continue;
506 free(kvm_msr_list);
509 return;
512 static int kvm_has_msr_hsave_pa(CPUState *env)
514 kvm_supported_msrs(env);
515 return has_msr_hsave_pa;
518 static int kvm_has_msr_star(CPUState *env)
520 kvm_supported_msrs(env);
521 return has_msr_star;
524 static int kvm_init_identity_map_page(KVMState *s)
526 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
527 int ret;
528 uint64_t addr = 0xfffbc000;
530 if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
531 return 0;
534 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
535 if (ret < 0) {
536 fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
537 return ret;
539 #endif
540 return 0;
543 int kvm_arch_init(KVMState *s, int smp_cpus)
545 int ret;
547 struct utsname utsname;
549 uname(&utsname);
550 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
552 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
553 * directly. In order to use vm86 mode, a TSS is needed. Since this
554 * must be part of guest physical memory, we need to allocate it. Older
555 * versions of KVM just assumed that it would be at the end of physical
556 * memory but that doesn't work with more than 4GB of memory. We simply
557 * refuse to work with those older versions of KVM. */
558 ret = kvm_check_extension(s, KVM_CAP_SET_TSS_ADDR);
559 if (ret <= 0) {
560 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
561 return ret;
564 /* this address is 3 pages before the bios, and the bios should present
565 * as unavaible memory. FIXME, need to ensure the e820 map deals with
566 * this?
569 * Tell fw_cfg to notify the BIOS to reserve the range.
571 if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
572 perror("e820_add_entry() table is full");
573 exit(1);
575 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
576 if (ret < 0) {
577 return ret;
580 return kvm_init_identity_map_page(s);
583 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
585 lhs->selector = rhs->selector;
586 lhs->base = rhs->base;
587 lhs->limit = rhs->limit;
588 lhs->type = 3;
589 lhs->present = 1;
590 lhs->dpl = 3;
591 lhs->db = 0;
592 lhs->s = 1;
593 lhs->l = 0;
594 lhs->g = 0;
595 lhs->avl = 0;
596 lhs->unusable = 0;
599 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
601 unsigned flags = rhs->flags;
602 lhs->selector = rhs->selector;
603 lhs->base = rhs->base;
604 lhs->limit = rhs->limit;
605 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
606 lhs->present = (flags & DESC_P_MASK) != 0;
607 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
608 lhs->db = (flags >> DESC_B_SHIFT) & 1;
609 lhs->s = (flags & DESC_S_MASK) != 0;
610 lhs->l = (flags >> DESC_L_SHIFT) & 1;
611 lhs->g = (flags & DESC_G_MASK) != 0;
612 lhs->avl = (flags & DESC_AVL_MASK) != 0;
613 lhs->unusable = 0;
616 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
618 lhs->selector = rhs->selector;
619 lhs->base = rhs->base;
620 lhs->limit = rhs->limit;
621 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
622 (rhs->present * DESC_P_MASK) |
623 (rhs->dpl << DESC_DPL_SHIFT) |
624 (rhs->db << DESC_B_SHIFT) |
625 (rhs->s * DESC_S_MASK) |
626 (rhs->l << DESC_L_SHIFT) |
627 (rhs->g * DESC_G_MASK) |
628 (rhs->avl * DESC_AVL_MASK);
631 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
633 if (set) {
634 *kvm_reg = *qemu_reg;
635 } else {
636 *qemu_reg = *kvm_reg;
640 static int kvm_getput_regs(CPUState *env, int set)
642 struct kvm_regs regs;
643 int ret = 0;
645 if (!set) {
646 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
647 if (ret < 0) {
648 return ret;
652 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
653 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
654 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
655 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
656 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
657 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
658 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
659 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
660 #ifdef TARGET_X86_64
661 kvm_getput_reg(&regs.r8, &env->regs[8], set);
662 kvm_getput_reg(&regs.r9, &env->regs[9], set);
663 kvm_getput_reg(&regs.r10, &env->regs[10], set);
664 kvm_getput_reg(&regs.r11, &env->regs[11], set);
665 kvm_getput_reg(&regs.r12, &env->regs[12], set);
666 kvm_getput_reg(&regs.r13, &env->regs[13], set);
667 kvm_getput_reg(&regs.r14, &env->regs[14], set);
668 kvm_getput_reg(&regs.r15, &env->regs[15], set);
669 #endif
671 kvm_getput_reg(&regs.rflags, &env->eflags, set);
672 kvm_getput_reg(&regs.rip, &env->eip, set);
674 if (set) {
675 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
678 return ret;
681 static int kvm_put_fpu(CPUState *env)
683 struct kvm_fpu fpu;
684 int i;
686 memset(&fpu, 0, sizeof fpu);
687 fpu.fsw = env->fpus & ~(7 << 11);
688 fpu.fsw |= (env->fpstt & 7) << 11;
689 fpu.fcw = env->fpuc;
690 for (i = 0; i < 8; ++i) {
691 fpu.ftwx |= (!env->fptags[i]) << i;
693 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
694 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
695 fpu.mxcsr = env->mxcsr;
697 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
700 #ifdef KVM_CAP_XSAVE
701 #define XSAVE_CWD_RIP 2
702 #define XSAVE_CWD_RDP 4
703 #define XSAVE_MXCSR 6
704 #define XSAVE_ST_SPACE 8
705 #define XSAVE_XMM_SPACE 40
706 #define XSAVE_XSTATE_BV 128
707 #define XSAVE_YMMH_SPACE 144
708 #endif
710 static int kvm_put_xsave(CPUState *env)
712 #ifdef KVM_CAP_XSAVE
713 int i, r;
714 struct kvm_xsave* xsave;
715 uint16_t cwd, swd, twd, fop;
717 if (!kvm_has_xsave()) {
718 return kvm_put_fpu(env);
721 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
722 memset(xsave, 0, sizeof(struct kvm_xsave));
723 cwd = swd = twd = fop = 0;
724 swd = env->fpus & ~(7 << 11);
725 swd |= (env->fpstt & 7) << 11;
726 cwd = env->fpuc;
727 for (i = 0; i < 8; ++i) {
728 twd |= (!env->fptags[i]) << i;
730 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
731 xsave->region[1] = (uint32_t)(fop << 16) + twd;
732 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
733 sizeof env->fpregs);
734 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
735 sizeof env->xmm_regs);
736 xsave->region[XSAVE_MXCSR] = env->mxcsr;
737 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
738 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
739 sizeof env->ymmh_regs);
740 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
741 qemu_free(xsave);
742 return r;
743 #else
744 return kvm_put_fpu(env);
745 #endif
748 static int kvm_put_xcrs(CPUState *env)
750 #ifdef KVM_CAP_XCRS
751 struct kvm_xcrs xcrs;
753 if (!kvm_has_xcrs()) {
754 return 0;
757 xcrs.nr_xcrs = 1;
758 xcrs.flags = 0;
759 xcrs.xcrs[0].xcr = 0;
760 xcrs.xcrs[0].value = env->xcr0;
761 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
762 #else
763 return 0;
764 #endif
767 static int kvm_put_sregs(CPUState *env)
769 struct kvm_sregs sregs;
771 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
772 if (env->interrupt_injected >= 0) {
773 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
774 (uint64_t)1 << (env->interrupt_injected % 64);
777 if ((env->eflags & VM_MASK)) {
778 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
779 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
780 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
781 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
782 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
783 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
784 } else {
785 set_seg(&sregs.cs, &env->segs[R_CS]);
786 set_seg(&sregs.ds, &env->segs[R_DS]);
787 set_seg(&sregs.es, &env->segs[R_ES]);
788 set_seg(&sregs.fs, &env->segs[R_FS]);
789 set_seg(&sregs.gs, &env->segs[R_GS]);
790 set_seg(&sregs.ss, &env->segs[R_SS]);
793 set_seg(&sregs.tr, &env->tr);
794 set_seg(&sregs.ldt, &env->ldt);
796 sregs.idt.limit = env->idt.limit;
797 sregs.idt.base = env->idt.base;
798 sregs.gdt.limit = env->gdt.limit;
799 sregs.gdt.base = env->gdt.base;
801 sregs.cr0 = env->cr[0];
802 sregs.cr2 = env->cr[2];
803 sregs.cr3 = env->cr[3];
804 sregs.cr4 = env->cr[4];
806 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
807 sregs.apic_base = cpu_get_apic_base(env->apic_state);
809 sregs.efer = env->efer;
811 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
814 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
815 uint32_t index, uint64_t value)
817 entry->index = index;
818 entry->data = value;
821 static int kvm_put_msrs(CPUState *env, int level)
823 struct {
824 struct kvm_msrs info;
825 struct kvm_msr_entry entries[100];
826 } msr_data;
827 struct kvm_msr_entry *msrs = msr_data.entries;
828 int n = 0;
830 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
831 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
832 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
833 if (kvm_has_msr_star(env)) {
834 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
836 if (kvm_has_msr_hsave_pa(env)) {
837 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
839 #ifdef TARGET_X86_64
840 if (lm_capable_kernel) {
841 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
842 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
843 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
844 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
846 #endif
847 if (level == KVM_PUT_FULL_STATE) {
849 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
850 * writeback. Until this is fixed, we only write the offset to SMP
851 * guests after migration, desynchronizing the VCPUs, but avoiding
852 * huge jump-backs that would occur without any writeback at all.
854 if (smp_cpus == 1 || env->tsc != 0) {
855 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
857 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
858 env->system_time_msr);
859 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
860 #ifdef KVM_CAP_ASYNC_PF
861 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
862 #endif
864 #ifdef KVM_CAP_MCE
865 if (env->mcg_cap) {
866 int i;
868 if (level == KVM_PUT_RESET_STATE) {
869 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
870 } else if (level == KVM_PUT_FULL_STATE) {
871 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
872 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
873 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
874 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
878 #endif
880 msr_data.info.nmsrs = n;
882 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
887 static int kvm_get_fpu(CPUState *env)
889 struct kvm_fpu fpu;
890 int i, ret;
892 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
893 if (ret < 0) {
894 return ret;
897 env->fpstt = (fpu.fsw >> 11) & 7;
898 env->fpus = fpu.fsw;
899 env->fpuc = fpu.fcw;
900 for (i = 0; i < 8; ++i) {
901 env->fptags[i] = !((fpu.ftwx >> i) & 1);
903 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
904 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
905 env->mxcsr = fpu.mxcsr;
907 return 0;
910 static int kvm_get_xsave(CPUState *env)
912 #ifdef KVM_CAP_XSAVE
913 struct kvm_xsave* xsave;
914 int ret, i;
915 uint16_t cwd, swd, twd, fop;
917 if (!kvm_has_xsave()) {
918 return kvm_get_fpu(env);
921 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
922 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
923 if (ret < 0) {
924 qemu_free(xsave);
925 return ret;
928 cwd = (uint16_t)xsave->region[0];
929 swd = (uint16_t)(xsave->region[0] >> 16);
930 twd = (uint16_t)xsave->region[1];
931 fop = (uint16_t)(xsave->region[1] >> 16);
932 env->fpstt = (swd >> 11) & 7;
933 env->fpus = swd;
934 env->fpuc = cwd;
935 for (i = 0; i < 8; ++i) {
936 env->fptags[i] = !((twd >> i) & 1);
938 env->mxcsr = xsave->region[XSAVE_MXCSR];
939 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
940 sizeof env->fpregs);
941 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
942 sizeof env->xmm_regs);
943 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
944 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
945 sizeof env->ymmh_regs);
946 qemu_free(xsave);
947 return 0;
948 #else
949 return kvm_get_fpu(env);
950 #endif
953 static int kvm_get_xcrs(CPUState *env)
955 #ifdef KVM_CAP_XCRS
956 int i, ret;
957 struct kvm_xcrs xcrs;
959 if (!kvm_has_xcrs()) {
960 return 0;
963 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
964 if (ret < 0) {
965 return ret;
968 for (i = 0; i < xcrs.nr_xcrs; i++) {
969 /* Only support xcr0 now */
970 if (xcrs.xcrs[0].xcr == 0) {
971 env->xcr0 = xcrs.xcrs[0].value;
972 break;
975 return 0;
976 #else
977 return 0;
978 #endif
981 static int kvm_get_sregs(CPUState *env)
983 struct kvm_sregs sregs;
984 uint32_t hflags;
985 int bit, i, ret;
987 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
988 if (ret < 0) {
989 return ret;
992 /* There can only be one pending IRQ set in the bitmap at a time, so try
993 to find it and save its number instead (-1 for none). */
994 env->interrupt_injected = -1;
995 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
996 if (sregs.interrupt_bitmap[i]) {
997 bit = ctz64(sregs.interrupt_bitmap[i]);
998 env->interrupt_injected = i * 64 + bit;
999 break;
1003 get_seg(&env->segs[R_CS], &sregs.cs);
1004 get_seg(&env->segs[R_DS], &sregs.ds);
1005 get_seg(&env->segs[R_ES], &sregs.es);
1006 get_seg(&env->segs[R_FS], &sregs.fs);
1007 get_seg(&env->segs[R_GS], &sregs.gs);
1008 get_seg(&env->segs[R_SS], &sregs.ss);
1010 get_seg(&env->tr, &sregs.tr);
1011 get_seg(&env->ldt, &sregs.ldt);
1013 env->idt.limit = sregs.idt.limit;
1014 env->idt.base = sregs.idt.base;
1015 env->gdt.limit = sregs.gdt.limit;
1016 env->gdt.base = sregs.gdt.base;
1018 env->cr[0] = sregs.cr0;
1019 env->cr[2] = sregs.cr2;
1020 env->cr[3] = sregs.cr3;
1021 env->cr[4] = sregs.cr4;
1023 cpu_set_apic_base(env->apic_state, sregs.apic_base);
1025 env->efer = sregs.efer;
1026 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1028 #define HFLAG_COPY_MASK \
1029 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1030 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1031 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1032 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1034 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1035 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1036 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1037 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1038 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1039 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1040 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1042 if (env->efer & MSR_EFER_LMA) {
1043 hflags |= HF_LMA_MASK;
1046 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1047 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1048 } else {
1049 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1050 (DESC_B_SHIFT - HF_CS32_SHIFT);
1051 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1052 (DESC_B_SHIFT - HF_SS32_SHIFT);
1053 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1054 !(hflags & HF_CS32_MASK)) {
1055 hflags |= HF_ADDSEG_MASK;
1056 } else {
1057 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1058 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1061 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1063 return 0;
1066 static int kvm_get_msrs(CPUState *env)
1068 struct {
1069 struct kvm_msrs info;
1070 struct kvm_msr_entry entries[100];
1071 } msr_data;
1072 struct kvm_msr_entry *msrs = msr_data.entries;
1073 int ret, i, n;
1075 n = 0;
1076 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1077 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1078 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1079 if (kvm_has_msr_star(env)) {
1080 msrs[n++].index = MSR_STAR;
1082 if (kvm_has_msr_hsave_pa(env)) {
1083 msrs[n++].index = MSR_VM_HSAVE_PA;
1085 msrs[n++].index = MSR_IA32_TSC;
1086 #ifdef TARGET_X86_64
1087 if (lm_capable_kernel) {
1088 msrs[n++].index = MSR_CSTAR;
1089 msrs[n++].index = MSR_KERNELGSBASE;
1090 msrs[n++].index = MSR_FMASK;
1091 msrs[n++].index = MSR_LSTAR;
1093 #endif
1094 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1095 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1096 #ifdef KVM_CAP_ASYNC_PF
1097 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1098 #endif
1100 #ifdef KVM_CAP_MCE
1101 if (env->mcg_cap) {
1102 msrs[n++].index = MSR_MCG_STATUS;
1103 msrs[n++].index = MSR_MCG_CTL;
1104 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1105 msrs[n++].index = MSR_MC0_CTL + i;
1108 #endif
1110 msr_data.info.nmsrs = n;
1111 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1112 if (ret < 0) {
1113 return ret;
1116 for (i = 0; i < ret; i++) {
1117 switch (msrs[i].index) {
1118 case MSR_IA32_SYSENTER_CS:
1119 env->sysenter_cs = msrs[i].data;
1120 break;
1121 case MSR_IA32_SYSENTER_ESP:
1122 env->sysenter_esp = msrs[i].data;
1123 break;
1124 case MSR_IA32_SYSENTER_EIP:
1125 env->sysenter_eip = msrs[i].data;
1126 break;
1127 case MSR_STAR:
1128 env->star = msrs[i].data;
1129 break;
1130 #ifdef TARGET_X86_64
1131 case MSR_CSTAR:
1132 env->cstar = msrs[i].data;
1133 break;
1134 case MSR_KERNELGSBASE:
1135 env->kernelgsbase = msrs[i].data;
1136 break;
1137 case MSR_FMASK:
1138 env->fmask = msrs[i].data;
1139 break;
1140 case MSR_LSTAR:
1141 env->lstar = msrs[i].data;
1142 break;
1143 #endif
1144 case MSR_IA32_TSC:
1145 env->tsc = msrs[i].data;
1146 break;
1147 case MSR_VM_HSAVE_PA:
1148 env->vm_hsave = msrs[i].data;
1149 break;
1150 case MSR_KVM_SYSTEM_TIME:
1151 env->system_time_msr = msrs[i].data;
1152 break;
1153 case MSR_KVM_WALL_CLOCK:
1154 env->wall_clock_msr = msrs[i].data;
1155 break;
1156 #ifdef KVM_CAP_MCE
1157 case MSR_MCG_STATUS:
1158 env->mcg_status = msrs[i].data;
1159 break;
1160 case MSR_MCG_CTL:
1161 env->mcg_ctl = msrs[i].data;
1162 break;
1163 #endif
1164 default:
1165 #ifdef KVM_CAP_MCE
1166 if (msrs[i].index >= MSR_MC0_CTL &&
1167 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1168 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1170 #endif
1171 break;
1172 #ifdef KVM_CAP_ASYNC_PF
1173 case MSR_KVM_ASYNC_PF_EN:
1174 env->async_pf_en_msr = msrs[i].data;
1175 break;
1176 #endif
1180 return 0;
1183 static int kvm_put_mp_state(CPUState *env)
1185 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1187 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1190 static int kvm_get_mp_state(CPUState *env)
1192 struct kvm_mp_state mp_state;
1193 int ret;
1195 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1196 if (ret < 0) {
1197 return ret;
1199 env->mp_state = mp_state.mp_state;
1200 if (kvm_irqchip_in_kernel()) {
1201 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1203 return 0;
1206 static int kvm_put_vcpu_events(CPUState *env, int level)
1208 #ifdef KVM_CAP_VCPU_EVENTS
1209 struct kvm_vcpu_events events;
1211 if (!kvm_has_vcpu_events()) {
1212 return 0;
1215 events.exception.injected = (env->exception_injected >= 0);
1216 events.exception.nr = env->exception_injected;
1217 events.exception.has_error_code = env->has_error_code;
1218 events.exception.error_code = env->error_code;
1220 events.interrupt.injected = (env->interrupt_injected >= 0);
1221 events.interrupt.nr = env->interrupt_injected;
1222 events.interrupt.soft = env->soft_interrupt;
1224 events.nmi.injected = env->nmi_injected;
1225 events.nmi.pending = env->nmi_pending;
1226 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1228 events.sipi_vector = env->sipi_vector;
1230 events.flags = 0;
1231 if (level >= KVM_PUT_RESET_STATE) {
1232 events.flags |=
1233 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1236 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1237 #else
1238 return 0;
1239 #endif
1242 static int kvm_get_vcpu_events(CPUState *env)
1244 #ifdef KVM_CAP_VCPU_EVENTS
1245 struct kvm_vcpu_events events;
1246 int ret;
1248 if (!kvm_has_vcpu_events()) {
1249 return 0;
1252 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1253 if (ret < 0) {
1254 return ret;
1256 env->exception_injected =
1257 events.exception.injected ? events.exception.nr : -1;
1258 env->has_error_code = events.exception.has_error_code;
1259 env->error_code = events.exception.error_code;
1261 env->interrupt_injected =
1262 events.interrupt.injected ? events.interrupt.nr : -1;
1263 env->soft_interrupt = events.interrupt.soft;
1265 env->nmi_injected = events.nmi.injected;
1266 env->nmi_pending = events.nmi.pending;
1267 if (events.nmi.masked) {
1268 env->hflags2 |= HF2_NMI_MASK;
1269 } else {
1270 env->hflags2 &= ~HF2_NMI_MASK;
1273 env->sipi_vector = events.sipi_vector;
1274 #endif
1276 return 0;
1279 static int kvm_guest_debug_workarounds(CPUState *env)
1281 int ret = 0;
1282 #ifdef KVM_CAP_SET_GUEST_DEBUG
1283 unsigned long reinject_trap = 0;
1285 if (!kvm_has_vcpu_events()) {
1286 if (env->exception_injected == 1) {
1287 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1288 } else if (env->exception_injected == 3) {
1289 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1291 env->exception_injected = -1;
1295 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1296 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1297 * by updating the debug state once again if single-stepping is on.
1298 * Another reason to call kvm_update_guest_debug here is a pending debug
1299 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1300 * reinject them via SET_GUEST_DEBUG.
1302 if (reinject_trap ||
1303 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1304 ret = kvm_update_guest_debug(env, reinject_trap);
1306 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1307 return ret;
1310 static int kvm_put_debugregs(CPUState *env)
1312 #ifdef KVM_CAP_DEBUGREGS
1313 struct kvm_debugregs dbgregs;
1314 int i;
1316 if (!kvm_has_debugregs()) {
1317 return 0;
1320 for (i = 0; i < 4; i++) {
1321 dbgregs.db[i] = env->dr[i];
1323 dbgregs.dr6 = env->dr[6];
1324 dbgregs.dr7 = env->dr[7];
1325 dbgregs.flags = 0;
1327 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1328 #else
1329 return 0;
1330 #endif
1333 static int kvm_get_debugregs(CPUState *env)
1335 #ifdef KVM_CAP_DEBUGREGS
1336 struct kvm_debugregs dbgregs;
1337 int i, ret;
1339 if (!kvm_has_debugregs()) {
1340 return 0;
1343 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1344 if (ret < 0) {
1345 return ret;
1347 for (i = 0; i < 4; i++) {
1348 env->dr[i] = dbgregs.db[i];
1350 env->dr[4] = env->dr[6] = dbgregs.dr6;
1351 env->dr[5] = env->dr[7] = dbgregs.dr7;
1352 #endif
1354 return 0;
1357 int kvm_arch_put_registers(CPUState *env, int level)
1359 int ret;
1361 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1363 ret = kvm_getput_regs(env, 1);
1364 if (ret < 0) {
1365 return ret;
1367 ret = kvm_put_xsave(env);
1368 if (ret < 0) {
1369 return ret;
1371 ret = kvm_put_xcrs(env);
1372 if (ret < 0) {
1373 return ret;
1375 ret = kvm_put_sregs(env);
1376 if (ret < 0) {
1377 return ret;
1379 ret = kvm_put_msrs(env, level);
1380 if (ret < 0) {
1381 return ret;
1383 if (level >= KVM_PUT_RESET_STATE) {
1384 ret = kvm_put_mp_state(env);
1385 if (ret < 0) {
1386 return ret;
1389 ret = kvm_put_vcpu_events(env, level);
1390 if (ret < 0) {
1391 return ret;
1393 ret = kvm_put_debugregs(env);
1394 if (ret < 0) {
1395 return ret;
1397 /* must be last */
1398 ret = kvm_guest_debug_workarounds(env);
1399 if (ret < 0) {
1400 return ret;
1402 return 0;
1405 int kvm_arch_get_registers(CPUState *env)
1407 int ret;
1409 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1411 ret = kvm_getput_regs(env, 0);
1412 if (ret < 0) {
1413 return ret;
1415 ret = kvm_get_xsave(env);
1416 if (ret < 0) {
1417 return ret;
1419 ret = kvm_get_xcrs(env);
1420 if (ret < 0) {
1421 return ret;
1423 ret = kvm_get_sregs(env);
1424 if (ret < 0) {
1425 return ret;
1427 ret = kvm_get_msrs(env);
1428 if (ret < 0) {
1429 return ret;
1431 ret = kvm_get_mp_state(env);
1432 if (ret < 0) {
1433 return ret;
1435 ret = kvm_get_vcpu_events(env);
1436 if (ret < 0) {
1437 return ret;
1439 ret = kvm_get_debugregs(env);
1440 if (ret < 0) {
1441 return ret;
1443 return 0;
1446 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1448 /* Inject NMI */
1449 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1450 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1451 DPRINTF("injected NMI\n");
1452 kvm_vcpu_ioctl(env, KVM_NMI);
1455 /* Try to inject an interrupt if the guest can accept it */
1456 if (run->ready_for_interrupt_injection &&
1457 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1458 (env->eflags & IF_MASK)) {
1459 int irq;
1461 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1462 irq = cpu_get_pic_interrupt(env);
1463 if (irq >= 0) {
1464 struct kvm_interrupt intr;
1465 intr.irq = irq;
1466 /* FIXME: errors */
1467 DPRINTF("injected interrupt %d\n", irq);
1468 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1472 /* If we have an interrupt but the guest is not ready to receive an
1473 * interrupt, request an interrupt window exit. This will
1474 * cause a return to userspace as soon as the guest is ready to
1475 * receive interrupts. */
1476 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1477 run->request_interrupt_window = 1;
1478 } else {
1479 run->request_interrupt_window = 0;
1482 DPRINTF("setting tpr\n");
1483 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1485 return 0;
1488 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1490 if (run->if_flag) {
1491 env->eflags |= IF_MASK;
1492 } else {
1493 env->eflags &= ~IF_MASK;
1495 cpu_set_apic_tpr(env->apic_state, run->cr8);
1496 cpu_set_apic_base(env->apic_state, run->apic_base);
1498 return 0;
1501 int kvm_arch_process_irqchip_events(CPUState *env)
1503 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1504 kvm_cpu_synchronize_state(env);
1505 do_cpu_init(env);
1506 env->exception_index = EXCP_HALTED;
1509 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1510 kvm_cpu_synchronize_state(env);
1511 do_cpu_sipi(env);
1514 return env->halted;
1517 static int kvm_handle_halt(CPUState *env)
1519 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1520 (env->eflags & IF_MASK)) &&
1521 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1522 env->halted = 1;
1523 env->exception_index = EXCP_HLT;
1524 return 0;
1527 return 1;
1530 static bool host_supports_vmx(void)
1532 uint32_t ecx, unused;
1534 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1535 return ecx & CPUID_EXT_VMX;
1538 #define VMX_INVALID_GUEST_STATE 0x80000021
1540 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1542 uint64_t code;
1543 int ret = 0;
1545 switch (run->exit_reason) {
1546 case KVM_EXIT_HLT:
1547 DPRINTF("handle_hlt\n");
1548 ret = kvm_handle_halt(env);
1549 break;
1550 case KVM_EXIT_SET_TPR:
1551 ret = 1;
1552 break;
1553 case KVM_EXIT_FAIL_ENTRY:
1554 code = run->fail_entry.hardware_entry_failure_reason;
1555 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1556 code);
1557 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1558 fprintf(stderr,
1559 "\nIf you're runnning a guest on an Intel machine without "
1560 "unrestricted mode\n"
1561 "support, the failure can be most likely due to the guest "
1562 "entering an invalid\n"
1563 "state for Intel VT. For example, the guest maybe running "
1564 "in big real mode\n"
1565 "which is not supported on less recent Intel processors."
1566 "\n\n");
1568 ret = -1;
1569 break;
1570 case KVM_EXIT_EXCEPTION:
1571 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1572 run->ex.exception, run->ex.error_code);
1573 ret = -1;
1574 break;
1575 default:
1576 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1577 ret = -1;
1578 break;
1581 return ret;
1584 #ifdef KVM_CAP_SET_GUEST_DEBUG
1585 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1587 static const uint8_t int3 = 0xcc;
1589 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1590 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1591 return -EINVAL;
1593 return 0;
1596 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1598 uint8_t int3;
1600 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1601 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1602 return -EINVAL;
1604 return 0;
1607 static struct {
1608 target_ulong addr;
1609 int len;
1610 int type;
1611 } hw_breakpoint[4];
1613 static int nb_hw_breakpoint;
1615 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1617 int n;
1619 for (n = 0; n < nb_hw_breakpoint; n++) {
1620 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1621 (hw_breakpoint[n].len == len || len == -1)) {
1622 return n;
1625 return -1;
1628 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1629 target_ulong len, int type)
1631 switch (type) {
1632 case GDB_BREAKPOINT_HW:
1633 len = 1;
1634 break;
1635 case GDB_WATCHPOINT_WRITE:
1636 case GDB_WATCHPOINT_ACCESS:
1637 switch (len) {
1638 case 1:
1639 break;
1640 case 2:
1641 case 4:
1642 case 8:
1643 if (addr & (len - 1)) {
1644 return -EINVAL;
1646 break;
1647 default:
1648 return -EINVAL;
1650 break;
1651 default:
1652 return -ENOSYS;
1655 if (nb_hw_breakpoint == 4) {
1656 return -ENOBUFS;
1658 if (find_hw_breakpoint(addr, len, type) >= 0) {
1659 return -EEXIST;
1661 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1662 hw_breakpoint[nb_hw_breakpoint].len = len;
1663 hw_breakpoint[nb_hw_breakpoint].type = type;
1664 nb_hw_breakpoint++;
1666 return 0;
1669 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1670 target_ulong len, int type)
1672 int n;
1674 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1675 if (n < 0) {
1676 return -ENOENT;
1678 nb_hw_breakpoint--;
1679 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1681 return 0;
1684 void kvm_arch_remove_all_hw_breakpoints(void)
1686 nb_hw_breakpoint = 0;
1689 static CPUWatchpoint hw_watchpoint;
1691 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1693 int handle = 0;
1694 int n;
1696 if (arch_info->exception == 1) {
1697 if (arch_info->dr6 & (1 << 14)) {
1698 if (cpu_single_env->singlestep_enabled) {
1699 handle = 1;
1701 } else {
1702 for (n = 0; n < 4; n++) {
1703 if (arch_info->dr6 & (1 << n)) {
1704 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1705 case 0x0:
1706 handle = 1;
1707 break;
1708 case 0x1:
1709 handle = 1;
1710 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1711 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1712 hw_watchpoint.flags = BP_MEM_WRITE;
1713 break;
1714 case 0x3:
1715 handle = 1;
1716 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1717 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1718 hw_watchpoint.flags = BP_MEM_ACCESS;
1719 break;
1724 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1725 handle = 1;
1727 if (!handle) {
1728 cpu_synchronize_state(cpu_single_env);
1729 assert(cpu_single_env->exception_injected == -1);
1731 cpu_single_env->exception_injected = arch_info->exception;
1732 cpu_single_env->has_error_code = 0;
1735 return handle;
1738 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1740 const uint8_t type_code[] = {
1741 [GDB_BREAKPOINT_HW] = 0x0,
1742 [GDB_WATCHPOINT_WRITE] = 0x1,
1743 [GDB_WATCHPOINT_ACCESS] = 0x3
1745 const uint8_t len_code[] = {
1746 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1748 int n;
1750 if (kvm_sw_breakpoints_active(env)) {
1751 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1753 if (nb_hw_breakpoint > 0) {
1754 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1755 dbg->arch.debugreg[7] = 0x0600;
1756 for (n = 0; n < nb_hw_breakpoint; n++) {
1757 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1758 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1759 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1760 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1764 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1766 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1768 return !(env->cr[0] & CR0_PE_MASK) ||
1769 ((env->segs[R_CS].selector & 3) != 3);
1772 static void hardware_memory_error(void)
1774 fprintf(stderr, "Hardware memory error!\n");
1775 exit(1);
1778 #ifdef KVM_CAP_MCE
1779 static void kvm_mce_broadcast_rest(CPUState *env)
1781 struct kvm_x86_mce mce = {
1782 .bank = 1,
1783 .status = MCI_STATUS_VAL | MCI_STATUS_UC,
1784 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1785 .addr = 0,
1786 .misc = 0,
1788 CPUState *cenv;
1790 /* Broadcast MCA signal for processor version 06H_EH and above */
1791 if (cpu_x86_support_mca_broadcast(env)) {
1792 for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
1793 if (cenv == env) {
1794 continue;
1796 kvm_inject_x86_mce_on(cenv, &mce, ABORT_ON_ERROR);
1801 static void kvm_mce_inj_srar_dataload(CPUState *env, target_phys_addr_t paddr)
1803 struct kvm_x86_mce mce = {
1804 .bank = 9,
1805 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1806 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1807 | MCI_STATUS_AR | 0x134,
1808 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV,
1809 .addr = paddr,
1810 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1812 int r;
1814 r = kvm_set_mce(env, &mce);
1815 if (r < 0) {
1816 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1817 abort();
1819 kvm_mce_broadcast_rest(env);
1822 static void kvm_mce_inj_srao_memscrub(CPUState *env, target_phys_addr_t paddr)
1824 struct kvm_x86_mce mce = {
1825 .bank = 9,
1826 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1827 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1828 | 0xc0,
1829 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1830 .addr = paddr,
1831 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1833 int r;
1835 r = kvm_set_mce(env, &mce);
1836 if (r < 0) {
1837 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1838 abort();
1840 kvm_mce_broadcast_rest(env);
1843 static void kvm_mce_inj_srao_memscrub2(CPUState *env, target_phys_addr_t paddr)
1845 struct kvm_x86_mce mce = {
1846 .bank = 9,
1847 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1848 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1849 | 0xc0,
1850 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1851 .addr = paddr,
1852 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1855 kvm_inject_x86_mce_on(env, &mce, ABORT_ON_ERROR);
1856 kvm_mce_broadcast_rest(env);
1859 #endif
1861 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1863 #if defined(KVM_CAP_MCE)
1864 void *vaddr;
1865 ram_addr_t ram_addr;
1866 target_phys_addr_t paddr;
1868 if ((env->mcg_cap & MCG_SER_P) && addr
1869 && (code == BUS_MCEERR_AR
1870 || code == BUS_MCEERR_AO)) {
1871 vaddr = (void *)addr;
1872 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1873 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
1874 fprintf(stderr, "Hardware memory error for memory used by "
1875 "QEMU itself instead of guest system!\n");
1876 /* Hope we are lucky for AO MCE */
1877 if (code == BUS_MCEERR_AO) {
1878 return 0;
1879 } else {
1880 hardware_memory_error();
1884 if (code == BUS_MCEERR_AR) {
1885 /* Fake an Intel architectural Data Load SRAR UCR */
1886 kvm_mce_inj_srar_dataload(env, paddr);
1887 } else {
1889 * If there is an MCE excpetion being processed, ignore
1890 * this SRAO MCE
1892 if (!kvm_mce_in_progress(env)) {
1893 /* Fake an Intel architectural Memory scrubbing UCR */
1894 kvm_mce_inj_srao_memscrub(env, paddr);
1897 } else
1898 #endif
1900 if (code == BUS_MCEERR_AO) {
1901 return 0;
1902 } else if (code == BUS_MCEERR_AR) {
1903 hardware_memory_error();
1904 } else {
1905 return 1;
1908 return 0;
1911 int kvm_on_sigbus(int code, void *addr)
1913 #if defined(KVM_CAP_MCE)
1914 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
1915 void *vaddr;
1916 ram_addr_t ram_addr;
1917 target_phys_addr_t paddr;
1919 /* Hope we are lucky for AO MCE */
1920 vaddr = addr;
1921 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1922 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
1923 fprintf(stderr, "Hardware memory error for memory used by "
1924 "QEMU itself instead of guest system!: %p\n", addr);
1925 return 0;
1927 kvm_mce_inj_srao_memscrub2(first_cpu, paddr);
1928 } else
1929 #endif
1931 if (code == BUS_MCEERR_AO) {
1932 return 0;
1933 } else if (code == BUS_MCEERR_AR) {
1934 hardware_memory_error();
1935 } else {
1936 return 1;
1939 return 0;