KVM: x86: Fix up misreported CPU features
[qemu.git] / kvm-all.c
blobf8350c95808e909b0ec1c83e83ef50216789abcf
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "hw/hw.h"
26 #include "gdbstub.h"
27 #include "kvm.h"
29 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
30 #define PAGE_SIZE TARGET_PAGE_SIZE
32 //#define DEBUG_KVM
34 #ifdef DEBUG_KVM
35 #define dprintf(fmt, ...) \
36 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define dprintf(fmt, ...) \
39 do { } while (0)
40 #endif
42 typedef struct KVMSlot
44 target_phys_addr_t start_addr;
45 ram_addr_t memory_size;
46 ram_addr_t phys_offset;
47 int slot;
48 int flags;
49 } KVMSlot;
51 typedef struct kvm_dirty_log KVMDirtyLog;
53 int kvm_allowed = 0;
55 struct KVMState
57 KVMSlot slots[32];
58 int fd;
59 int vmfd;
60 int regs_modified;
61 int coalesced_mmio;
62 #ifdef KVM_CAP_COALESCED_MMIO
63 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
64 #endif
65 int broken_set_mem_region;
66 int migration_log;
67 int vcpu_events;
68 #ifdef KVM_CAP_SET_GUEST_DEBUG
69 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
70 #endif
71 int irqchip_in_kernel;
72 int pit_in_kernel;
75 static KVMState *kvm_state;
77 static KVMSlot *kvm_alloc_slot(KVMState *s)
79 int i;
81 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
82 /* KVM private memory slots */
83 if (i >= 8 && i < 12)
84 continue;
85 if (s->slots[i].memory_size == 0)
86 return &s->slots[i];
89 fprintf(stderr, "%s: no free slot available\n", __func__);
90 abort();
93 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
94 target_phys_addr_t start_addr,
95 target_phys_addr_t end_addr)
97 int i;
99 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
100 KVMSlot *mem = &s->slots[i];
102 if (start_addr == mem->start_addr &&
103 end_addr == mem->start_addr + mem->memory_size) {
104 return mem;
108 return NULL;
112 * Find overlapping slot with lowest start address
114 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
115 target_phys_addr_t start_addr,
116 target_phys_addr_t end_addr)
118 KVMSlot *found = NULL;
119 int i;
121 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
122 KVMSlot *mem = &s->slots[i];
124 if (mem->memory_size == 0 ||
125 (found && found->start_addr < mem->start_addr)) {
126 continue;
129 if (end_addr > mem->start_addr &&
130 start_addr < mem->start_addr + mem->memory_size) {
131 found = mem;
135 return found;
138 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
140 struct kvm_userspace_memory_region mem;
142 mem.slot = slot->slot;
143 mem.guest_phys_addr = slot->start_addr;
144 mem.memory_size = slot->memory_size;
145 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
146 mem.flags = slot->flags;
147 if (s->migration_log) {
148 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
150 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
153 static void kvm_reset_vcpu(void *opaque)
155 CPUState *env = opaque;
157 kvm_arch_reset_vcpu(env);
158 if (kvm_arch_put_registers(env)) {
159 fprintf(stderr, "Fatal: kvm vcpu reset failed\n");
160 abort();
164 int kvm_irqchip_in_kernel(void)
166 return kvm_state->irqchip_in_kernel;
169 int kvm_pit_in_kernel(void)
171 return kvm_state->pit_in_kernel;
175 int kvm_init_vcpu(CPUState *env)
177 KVMState *s = kvm_state;
178 long mmap_size;
179 int ret;
181 dprintf("kvm_init_vcpu\n");
183 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
184 if (ret < 0) {
185 dprintf("kvm_create_vcpu failed\n");
186 goto err;
189 env->kvm_fd = ret;
190 env->kvm_state = s;
192 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
193 if (mmap_size < 0) {
194 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
195 goto err;
198 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
199 env->kvm_fd, 0);
200 if (env->kvm_run == MAP_FAILED) {
201 ret = -errno;
202 dprintf("mmap'ing vcpu state failed\n");
203 goto err;
206 #ifdef KVM_CAP_COALESCED_MMIO
207 if (s->coalesced_mmio && !s->coalesced_mmio_ring)
208 s->coalesced_mmio_ring = (void *) env->kvm_run +
209 s->coalesced_mmio * PAGE_SIZE;
210 #endif
212 ret = kvm_arch_init_vcpu(env);
213 if (ret == 0) {
214 qemu_register_reset(kvm_reset_vcpu, env);
215 kvm_arch_reset_vcpu(env);
216 ret = kvm_arch_put_registers(env);
218 err:
219 return ret;
223 * dirty pages logging control
225 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
226 ram_addr_t size, int flags, int mask)
228 KVMState *s = kvm_state;
229 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
230 int old_flags;
232 if (mem == NULL) {
233 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
234 TARGET_FMT_plx "\n", __func__, phys_addr,
235 (target_phys_addr_t)(phys_addr + size - 1));
236 return -EINVAL;
239 old_flags = mem->flags;
241 flags = (mem->flags & ~mask) | flags;
242 mem->flags = flags;
244 /* If nothing changed effectively, no need to issue ioctl */
245 if (s->migration_log) {
246 flags |= KVM_MEM_LOG_DIRTY_PAGES;
248 if (flags == old_flags) {
249 return 0;
252 return kvm_set_user_memory_region(s, mem);
255 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
257 return kvm_dirty_pages_log_change(phys_addr, size,
258 KVM_MEM_LOG_DIRTY_PAGES,
259 KVM_MEM_LOG_DIRTY_PAGES);
262 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
264 return kvm_dirty_pages_log_change(phys_addr, size,
266 KVM_MEM_LOG_DIRTY_PAGES);
269 int kvm_set_migration_log(int enable)
271 KVMState *s = kvm_state;
272 KVMSlot *mem;
273 int i, err;
275 s->migration_log = enable;
277 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
278 mem = &s->slots[i];
280 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
281 continue;
283 err = kvm_set_user_memory_region(s, mem);
284 if (err) {
285 return err;
288 return 0;
291 static int test_le_bit(unsigned long nr, unsigned char *addr)
293 return (addr[nr >> 3] >> (nr & 7)) & 1;
297 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
298 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
299 * This means all bits are set to dirty.
301 * @start_add: start of logged region.
302 * @end_addr: end of logged region.
304 int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
305 target_phys_addr_t end_addr)
307 KVMState *s = kvm_state;
308 unsigned long size, allocated_size = 0;
309 target_phys_addr_t phys_addr;
310 ram_addr_t addr;
311 KVMDirtyLog d;
312 KVMSlot *mem;
313 int ret = 0;
315 d.dirty_bitmap = NULL;
316 while (start_addr < end_addr) {
317 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
318 if (mem == NULL) {
319 break;
322 size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
323 if (!d.dirty_bitmap) {
324 d.dirty_bitmap = qemu_malloc(size);
325 } else if (size > allocated_size) {
326 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
328 allocated_size = size;
329 memset(d.dirty_bitmap, 0, allocated_size);
331 d.slot = mem->slot;
333 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
334 dprintf("ioctl failed %d\n", errno);
335 ret = -1;
336 break;
339 for (phys_addr = mem->start_addr, addr = mem->phys_offset;
340 phys_addr < mem->start_addr + mem->memory_size;
341 phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
342 unsigned char *bitmap = (unsigned char *)d.dirty_bitmap;
343 unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
345 if (test_le_bit(nr, bitmap)) {
346 cpu_physical_memory_set_dirty(addr);
349 start_addr = phys_addr;
351 qemu_free(d.dirty_bitmap);
353 return ret;
356 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
358 int ret = -ENOSYS;
359 #ifdef KVM_CAP_COALESCED_MMIO
360 KVMState *s = kvm_state;
362 if (s->coalesced_mmio) {
363 struct kvm_coalesced_mmio_zone zone;
365 zone.addr = start;
366 zone.size = size;
368 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
370 #endif
372 return ret;
375 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
377 int ret = -ENOSYS;
378 #ifdef KVM_CAP_COALESCED_MMIO
379 KVMState *s = kvm_state;
381 if (s->coalesced_mmio) {
382 struct kvm_coalesced_mmio_zone zone;
384 zone.addr = start;
385 zone.size = size;
387 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
389 #endif
391 return ret;
394 int kvm_check_extension(KVMState *s, unsigned int extension)
396 int ret;
398 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
399 if (ret < 0) {
400 ret = 0;
403 return ret;
406 int kvm_init(int smp_cpus)
408 static const char upgrade_note[] =
409 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
410 "(see http://sourceforge.net/projects/kvm).\n";
411 KVMState *s;
412 int ret;
413 int i;
415 if (smp_cpus > 1) {
416 fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
417 return -EINVAL;
420 s = qemu_mallocz(sizeof(KVMState));
422 #ifdef KVM_CAP_SET_GUEST_DEBUG
423 QTAILQ_INIT(&s->kvm_sw_breakpoints);
424 #endif
425 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
426 s->slots[i].slot = i;
428 s->vmfd = -1;
429 s->fd = qemu_open("/dev/kvm", O_RDWR);
430 if (s->fd == -1) {
431 fprintf(stderr, "Could not access KVM kernel module: %m\n");
432 ret = -errno;
433 goto err;
436 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
437 if (ret < KVM_API_VERSION) {
438 if (ret > 0)
439 ret = -EINVAL;
440 fprintf(stderr, "kvm version too old\n");
441 goto err;
444 if (ret > KVM_API_VERSION) {
445 ret = -EINVAL;
446 fprintf(stderr, "kvm version not supported\n");
447 goto err;
450 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
451 if (s->vmfd < 0)
452 goto err;
454 /* initially, KVM allocated its own memory and we had to jump through
455 * hooks to make phys_ram_base point to this. Modern versions of KVM
456 * just use a user allocated buffer so we can use regular pages
457 * unmodified. Make sure we have a sufficiently modern version of KVM.
459 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
460 ret = -EINVAL;
461 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
462 upgrade_note);
463 goto err;
466 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
467 * destroyed properly. Since we rely on this capability, refuse to work
468 * with any kernel without this capability. */
469 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
470 ret = -EINVAL;
472 fprintf(stderr,
473 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
474 upgrade_note);
475 goto err;
478 s->coalesced_mmio = 0;
479 #ifdef KVM_CAP_COALESCED_MMIO
480 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
481 s->coalesced_mmio_ring = NULL;
482 #endif
484 s->broken_set_mem_region = 1;
485 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
486 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
487 if (ret > 0) {
488 s->broken_set_mem_region = 0;
490 #endif
492 s->vcpu_events = 0;
493 #ifdef KVM_CAP_VCPU_EVENTS
494 s->vcpu_events = kvm_check_extension(s, KVM_CAP_VCPU_EVENTS);
495 #endif
497 ret = kvm_arch_init(s, smp_cpus);
498 if (ret < 0)
499 goto err;
501 kvm_state = s;
503 return 0;
505 err:
506 if (s) {
507 if (s->vmfd != -1)
508 close(s->vmfd);
509 if (s->fd != -1)
510 close(s->fd);
512 qemu_free(s);
514 return ret;
517 static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
518 uint32_t count)
520 int i;
521 uint8_t *ptr = data;
523 for (i = 0; i < count; i++) {
524 if (direction == KVM_EXIT_IO_IN) {
525 switch (size) {
526 case 1:
527 stb_p(ptr, cpu_inb(port));
528 break;
529 case 2:
530 stw_p(ptr, cpu_inw(port));
531 break;
532 case 4:
533 stl_p(ptr, cpu_inl(port));
534 break;
536 } else {
537 switch (size) {
538 case 1:
539 cpu_outb(port, ldub_p(ptr));
540 break;
541 case 2:
542 cpu_outw(port, lduw_p(ptr));
543 break;
544 case 4:
545 cpu_outl(port, ldl_p(ptr));
546 break;
550 ptr += size;
553 return 1;
556 void kvm_flush_coalesced_mmio_buffer(void)
558 #ifdef KVM_CAP_COALESCED_MMIO
559 KVMState *s = kvm_state;
560 if (s->coalesced_mmio_ring) {
561 struct kvm_coalesced_mmio_ring *ring = s->coalesced_mmio_ring;
562 while (ring->first != ring->last) {
563 struct kvm_coalesced_mmio *ent;
565 ent = &ring->coalesced_mmio[ring->first];
567 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
568 /* FIXME smp_wmb() */
569 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
572 #endif
575 void kvm_cpu_synchronize_state(CPUState *env)
577 if (!env->kvm_state->regs_modified) {
578 kvm_arch_get_registers(env);
579 env->kvm_state->regs_modified = 1;
583 int kvm_cpu_exec(CPUState *env)
585 struct kvm_run *run = env->kvm_run;
586 int ret;
588 dprintf("kvm_cpu_exec()\n");
590 do {
591 if (env->exit_request) {
592 dprintf("interrupt exit requested\n");
593 ret = 0;
594 break;
597 if (env->kvm_state->regs_modified) {
598 kvm_arch_put_registers(env);
599 env->kvm_state->regs_modified = 0;
602 kvm_arch_pre_run(env, run);
603 qemu_mutex_unlock_iothread();
604 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
605 qemu_mutex_lock_iothread();
606 kvm_arch_post_run(env, run);
608 if (ret == -EINTR || ret == -EAGAIN) {
609 dprintf("io window exit\n");
610 ret = 0;
611 break;
614 if (ret < 0) {
615 dprintf("kvm run failed %s\n", strerror(-ret));
616 abort();
619 kvm_flush_coalesced_mmio_buffer();
621 ret = 0; /* exit loop */
622 switch (run->exit_reason) {
623 case KVM_EXIT_IO:
624 dprintf("handle_io\n");
625 ret = kvm_handle_io(run->io.port,
626 (uint8_t *)run + run->io.data_offset,
627 run->io.direction,
628 run->io.size,
629 run->io.count);
630 break;
631 case KVM_EXIT_MMIO:
632 dprintf("handle_mmio\n");
633 cpu_physical_memory_rw(run->mmio.phys_addr,
634 run->mmio.data,
635 run->mmio.len,
636 run->mmio.is_write);
637 ret = 1;
638 break;
639 case KVM_EXIT_IRQ_WINDOW_OPEN:
640 dprintf("irq_window_open\n");
641 break;
642 case KVM_EXIT_SHUTDOWN:
643 dprintf("shutdown\n");
644 qemu_system_reset_request();
645 ret = 1;
646 break;
647 case KVM_EXIT_UNKNOWN:
648 dprintf("kvm_exit_unknown\n");
649 break;
650 case KVM_EXIT_FAIL_ENTRY:
651 dprintf("kvm_exit_fail_entry\n");
652 break;
653 case KVM_EXIT_EXCEPTION:
654 dprintf("kvm_exit_exception\n");
655 break;
656 case KVM_EXIT_DEBUG:
657 dprintf("kvm_exit_debug\n");
658 #ifdef KVM_CAP_SET_GUEST_DEBUG
659 if (kvm_arch_debug(&run->debug.arch)) {
660 gdb_set_stop_cpu(env);
661 vm_stop(EXCP_DEBUG);
662 env->exception_index = EXCP_DEBUG;
663 return 0;
665 /* re-enter, this exception was guest-internal */
666 ret = 1;
667 #endif /* KVM_CAP_SET_GUEST_DEBUG */
668 break;
669 default:
670 dprintf("kvm_arch_handle_exit\n");
671 ret = kvm_arch_handle_exit(env, run);
672 break;
674 } while (ret > 0);
676 if (env->exit_request) {
677 env->exit_request = 0;
678 env->exception_index = EXCP_INTERRUPT;
681 return ret;
684 void kvm_set_phys_mem(target_phys_addr_t start_addr,
685 ram_addr_t size,
686 ram_addr_t phys_offset)
688 KVMState *s = kvm_state;
689 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
690 KVMSlot *mem, old;
691 int err;
693 if (start_addr & ~TARGET_PAGE_MASK) {
694 if (flags >= IO_MEM_UNASSIGNED) {
695 if (!kvm_lookup_overlapping_slot(s, start_addr,
696 start_addr + size)) {
697 return;
699 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
700 } else {
701 fprintf(stderr, "Only page-aligned memory slots supported\n");
703 abort();
706 /* KVM does not support read-only slots */
707 phys_offset &= ~IO_MEM_ROM;
709 while (1) {
710 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
711 if (!mem) {
712 break;
715 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
716 (start_addr + size <= mem->start_addr + mem->memory_size) &&
717 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
718 /* The new slot fits into the existing one and comes with
719 * identical parameters - nothing to be done. */
720 return;
723 old = *mem;
725 /* unregister the overlapping slot */
726 mem->memory_size = 0;
727 err = kvm_set_user_memory_region(s, mem);
728 if (err) {
729 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
730 __func__, strerror(-err));
731 abort();
734 /* Workaround for older KVM versions: we can't join slots, even not by
735 * unregistering the previous ones and then registering the larger
736 * slot. We have to maintain the existing fragmentation. Sigh.
738 * This workaround assumes that the new slot starts at the same
739 * address as the first existing one. If not or if some overlapping
740 * slot comes around later, we will fail (not seen in practice so far)
741 * - and actually require a recent KVM version. */
742 if (s->broken_set_mem_region &&
743 old.start_addr == start_addr && old.memory_size < size &&
744 flags < IO_MEM_UNASSIGNED) {
745 mem = kvm_alloc_slot(s);
746 mem->memory_size = old.memory_size;
747 mem->start_addr = old.start_addr;
748 mem->phys_offset = old.phys_offset;
749 mem->flags = 0;
751 err = kvm_set_user_memory_region(s, mem);
752 if (err) {
753 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
754 strerror(-err));
755 abort();
758 start_addr += old.memory_size;
759 phys_offset += old.memory_size;
760 size -= old.memory_size;
761 continue;
764 /* register prefix slot */
765 if (old.start_addr < start_addr) {
766 mem = kvm_alloc_slot(s);
767 mem->memory_size = start_addr - old.start_addr;
768 mem->start_addr = old.start_addr;
769 mem->phys_offset = old.phys_offset;
770 mem->flags = 0;
772 err = kvm_set_user_memory_region(s, mem);
773 if (err) {
774 fprintf(stderr, "%s: error registering prefix slot: %s\n",
775 __func__, strerror(-err));
776 abort();
780 /* register suffix slot */
781 if (old.start_addr + old.memory_size > start_addr + size) {
782 ram_addr_t size_delta;
784 mem = kvm_alloc_slot(s);
785 mem->start_addr = start_addr + size;
786 size_delta = mem->start_addr - old.start_addr;
787 mem->memory_size = old.memory_size - size_delta;
788 mem->phys_offset = old.phys_offset + size_delta;
789 mem->flags = 0;
791 err = kvm_set_user_memory_region(s, mem);
792 if (err) {
793 fprintf(stderr, "%s: error registering suffix slot: %s\n",
794 __func__, strerror(-err));
795 abort();
800 /* in case the KVM bug workaround already "consumed" the new slot */
801 if (!size)
802 return;
804 /* KVM does not need to know about this memory */
805 if (flags >= IO_MEM_UNASSIGNED)
806 return;
808 mem = kvm_alloc_slot(s);
809 mem->memory_size = size;
810 mem->start_addr = start_addr;
811 mem->phys_offset = phys_offset;
812 mem->flags = 0;
814 err = kvm_set_user_memory_region(s, mem);
815 if (err) {
816 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
817 strerror(-err));
818 abort();
822 int kvm_ioctl(KVMState *s, int type, ...)
824 int ret;
825 void *arg;
826 va_list ap;
828 va_start(ap, type);
829 arg = va_arg(ap, void *);
830 va_end(ap);
832 ret = ioctl(s->fd, type, arg);
833 if (ret == -1)
834 ret = -errno;
836 return ret;
839 int kvm_vm_ioctl(KVMState *s, int type, ...)
841 int ret;
842 void *arg;
843 va_list ap;
845 va_start(ap, type);
846 arg = va_arg(ap, void *);
847 va_end(ap);
849 ret = ioctl(s->vmfd, type, arg);
850 if (ret == -1)
851 ret = -errno;
853 return ret;
856 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
858 int ret;
859 void *arg;
860 va_list ap;
862 va_start(ap, type);
863 arg = va_arg(ap, void *);
864 va_end(ap);
866 ret = ioctl(env->kvm_fd, type, arg);
867 if (ret == -1)
868 ret = -errno;
870 return ret;
873 int kvm_has_sync_mmu(void)
875 #ifdef KVM_CAP_SYNC_MMU
876 KVMState *s = kvm_state;
878 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
879 #else
880 return 0;
881 #endif
884 int kvm_has_vcpu_events(void)
886 return kvm_state->vcpu_events;
889 void kvm_setup_guest_memory(void *start, size_t size)
891 if (!kvm_has_sync_mmu()) {
892 #ifdef MADV_DONTFORK
893 int ret = madvise(start, size, MADV_DONTFORK);
895 if (ret) {
896 perror("madvice");
897 exit(1);
899 #else
900 fprintf(stderr,
901 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
902 exit(1);
903 #endif
907 #ifdef KVM_CAP_SET_GUEST_DEBUG
908 static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
910 #ifdef CONFIG_IOTHREAD
911 if (env == cpu_single_env) {
912 func(data);
913 return;
915 abort();
916 #else
917 func(data);
918 #endif
921 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
922 target_ulong pc)
924 struct kvm_sw_breakpoint *bp;
926 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
927 if (bp->pc == pc)
928 return bp;
930 return NULL;
933 int kvm_sw_breakpoints_active(CPUState *env)
935 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
938 struct kvm_set_guest_debug_data {
939 struct kvm_guest_debug dbg;
940 CPUState *env;
941 int err;
944 static void kvm_invoke_set_guest_debug(void *data)
946 struct kvm_set_guest_debug_data *dbg_data = data;
947 CPUState *env = dbg_data->env;
949 if (env->kvm_state->regs_modified) {
950 kvm_arch_put_registers(env);
951 env->kvm_state->regs_modified = 0;
953 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
956 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
958 struct kvm_set_guest_debug_data data;
960 data.dbg.control = 0;
961 if (env->singlestep_enabled)
962 data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
964 kvm_arch_update_guest_debug(env, &data.dbg);
965 data.dbg.control |= reinject_trap;
966 data.env = env;
968 on_vcpu(env, kvm_invoke_set_guest_debug, &data);
969 return data.err;
972 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
973 target_ulong len, int type)
975 struct kvm_sw_breakpoint *bp;
976 CPUState *env;
977 int err;
979 if (type == GDB_BREAKPOINT_SW) {
980 bp = kvm_find_sw_breakpoint(current_env, addr);
981 if (bp) {
982 bp->use_count++;
983 return 0;
986 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
987 if (!bp)
988 return -ENOMEM;
990 bp->pc = addr;
991 bp->use_count = 1;
992 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
993 if (err) {
994 free(bp);
995 return err;
998 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
999 bp, entry);
1000 } else {
1001 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1002 if (err)
1003 return err;
1006 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1007 err = kvm_update_guest_debug(env, 0);
1008 if (err)
1009 return err;
1011 return 0;
1014 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1015 target_ulong len, int type)
1017 struct kvm_sw_breakpoint *bp;
1018 CPUState *env;
1019 int err;
1021 if (type == GDB_BREAKPOINT_SW) {
1022 bp = kvm_find_sw_breakpoint(current_env, addr);
1023 if (!bp)
1024 return -ENOENT;
1026 if (bp->use_count > 1) {
1027 bp->use_count--;
1028 return 0;
1031 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1032 if (err)
1033 return err;
1035 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1036 qemu_free(bp);
1037 } else {
1038 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1039 if (err)
1040 return err;
1043 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1044 err = kvm_update_guest_debug(env, 0);
1045 if (err)
1046 return err;
1048 return 0;
1051 void kvm_remove_all_breakpoints(CPUState *current_env)
1053 struct kvm_sw_breakpoint *bp, *next;
1054 KVMState *s = current_env->kvm_state;
1055 CPUState *env;
1057 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1058 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1059 /* Try harder to find a CPU that currently sees the breakpoint. */
1060 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1061 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1062 break;
1066 kvm_arch_remove_all_hw_breakpoints();
1068 for (env = first_cpu; env != NULL; env = env->next_cpu)
1069 kvm_update_guest_debug(env, 0);
1072 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1074 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1076 return -EINVAL;
1079 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1080 target_ulong len, int type)
1082 return -EINVAL;
1085 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1086 target_ulong len, int type)
1088 return -EINVAL;
1091 void kvm_remove_all_breakpoints(CPUState *current_env)
1094 #endif /* !KVM_CAP_SET_GUEST_DEBUG */