2 * QEMU generic PowerPC hardware System Emulator
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24 #include "qemu/osdep.h"
25 #include "qemu-common.h"
28 #include "hw/ppc/ppc.h"
29 #include "hw/ppc/ppc_e500.h"
30 #include "qemu/timer.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/cpus.h"
33 #include "hw/timer/m48t59.h"
35 #include "qemu/error-report.h"
36 #include "hw/loader.h"
37 #include "sysemu/kvm.h"
41 //#define PPC_DEBUG_IRQ
42 //#define PPC_DEBUG_TB
45 # define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
47 # define LOG_IRQ(...) do { } while (0)
52 # define LOG_TB(...) qemu_log(__VA_ARGS__)
54 # define LOG_TB(...) do { } while (0)
57 static void cpu_ppc_tb_stop (CPUPPCState
*env
);
58 static void cpu_ppc_tb_start (CPUPPCState
*env
);
60 void ppc_set_irq(PowerPCCPU
*cpu
, int n_IRQ
, int level
)
62 CPUState
*cs
= CPU(cpu
);
63 CPUPPCState
*env
= &cpu
->env
;
64 unsigned int old_pending
= env
->pending_interrupts
;
67 env
->pending_interrupts
|= 1 << n_IRQ
;
68 cpu_interrupt(cs
, CPU_INTERRUPT_HARD
);
70 env
->pending_interrupts
&= ~(1 << n_IRQ
);
71 if (env
->pending_interrupts
== 0) {
72 cpu_reset_interrupt(cs
, CPU_INTERRUPT_HARD
);
76 if (old_pending
!= env
->pending_interrupts
) {
78 kvmppc_set_interrupt(cpu
, n_IRQ
, level
);
82 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
83 "req %08x\n", __func__
, env
, n_IRQ
, level
,
84 env
->pending_interrupts
, CPU(cpu
)->interrupt_request
);
87 /* PowerPC 6xx / 7xx internal IRQ controller */
88 static void ppc6xx_set_irq(void *opaque
, int pin
, int level
)
90 PowerPCCPU
*cpu
= opaque
;
91 CPUPPCState
*env
= &cpu
->env
;
94 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
96 cur_level
= (env
->irq_input_state
>> pin
) & 1;
97 /* Don't generate spurious events */
98 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
99 CPUState
*cs
= CPU(cpu
);
102 case PPC6xx_INPUT_TBEN
:
103 /* Level sensitive - active high */
104 LOG_IRQ("%s: %s the time base\n",
105 __func__
, level
? "start" : "stop");
107 cpu_ppc_tb_start(env
);
109 cpu_ppc_tb_stop(env
);
111 case PPC6xx_INPUT_INT
:
112 /* Level sensitive - active high */
113 LOG_IRQ("%s: set the external IRQ state to %d\n",
115 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
117 case PPC6xx_INPUT_SMI
:
118 /* Level sensitive - active high */
119 LOG_IRQ("%s: set the SMI IRQ state to %d\n",
121 ppc_set_irq(cpu
, PPC_INTERRUPT_SMI
, level
);
123 case PPC6xx_INPUT_MCP
:
124 /* Negative edge sensitive */
125 /* XXX: TODO: actual reaction may depends on HID0 status
126 * 603/604/740/750: check HID0[EMCP]
128 if (cur_level
== 1 && level
== 0) {
129 LOG_IRQ("%s: raise machine check state\n",
131 ppc_set_irq(cpu
, PPC_INTERRUPT_MCK
, 1);
134 case PPC6xx_INPUT_CKSTP_IN
:
135 /* Level sensitive - active low */
136 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
137 /* XXX: Note that the only way to restart the CPU is to reset it */
139 LOG_IRQ("%s: stop the CPU\n", __func__
);
143 case PPC6xx_INPUT_HRESET
:
144 /* Level sensitive - active low */
146 LOG_IRQ("%s: reset the CPU\n", __func__
);
147 cpu_interrupt(cs
, CPU_INTERRUPT_RESET
);
150 case PPC6xx_INPUT_SRESET
:
151 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
153 ppc_set_irq(cpu
, PPC_INTERRUPT_RESET
, level
);
156 /* Unknown pin - do nothing */
157 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
161 env
->irq_input_state
|= 1 << pin
;
163 env
->irq_input_state
&= ~(1 << pin
);
167 void ppc6xx_irq_init(PowerPCCPU
*cpu
)
169 CPUPPCState
*env
= &cpu
->env
;
171 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc6xx_set_irq
, cpu
,
175 #if defined(TARGET_PPC64)
176 /* PowerPC 970 internal IRQ controller */
177 static void ppc970_set_irq(void *opaque
, int pin
, int level
)
179 PowerPCCPU
*cpu
= opaque
;
180 CPUPPCState
*env
= &cpu
->env
;
183 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
185 cur_level
= (env
->irq_input_state
>> pin
) & 1;
186 /* Don't generate spurious events */
187 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
188 CPUState
*cs
= CPU(cpu
);
191 case PPC970_INPUT_INT
:
192 /* Level sensitive - active high */
193 LOG_IRQ("%s: set the external IRQ state to %d\n",
195 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
197 case PPC970_INPUT_THINT
:
198 /* Level sensitive - active high */
199 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__
,
201 ppc_set_irq(cpu
, PPC_INTERRUPT_THERM
, level
);
203 case PPC970_INPUT_MCP
:
204 /* Negative edge sensitive */
205 /* XXX: TODO: actual reaction may depends on HID0 status
206 * 603/604/740/750: check HID0[EMCP]
208 if (cur_level
== 1 && level
== 0) {
209 LOG_IRQ("%s: raise machine check state\n",
211 ppc_set_irq(cpu
, PPC_INTERRUPT_MCK
, 1);
214 case PPC970_INPUT_CKSTP
:
215 /* Level sensitive - active low */
216 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
218 LOG_IRQ("%s: stop the CPU\n", __func__
);
221 LOG_IRQ("%s: restart the CPU\n", __func__
);
226 case PPC970_INPUT_HRESET
:
227 /* Level sensitive - active low */
229 cpu_interrupt(cs
, CPU_INTERRUPT_RESET
);
232 case PPC970_INPUT_SRESET
:
233 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
235 ppc_set_irq(cpu
, PPC_INTERRUPT_RESET
, level
);
237 case PPC970_INPUT_TBEN
:
238 LOG_IRQ("%s: set the TBEN state to %d\n", __func__
,
243 /* Unknown pin - do nothing */
244 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
248 env
->irq_input_state
|= 1 << pin
;
250 env
->irq_input_state
&= ~(1 << pin
);
254 void ppc970_irq_init(PowerPCCPU
*cpu
)
256 CPUPPCState
*env
= &cpu
->env
;
258 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc970_set_irq
, cpu
,
262 /* POWER7 internal IRQ controller */
263 static void power7_set_irq(void *opaque
, int pin
, int level
)
265 PowerPCCPU
*cpu
= opaque
;
266 CPUPPCState
*env
= &cpu
->env
;
268 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
272 case POWER7_INPUT_INT
:
273 /* Level sensitive - active high */
274 LOG_IRQ("%s: set the external IRQ state to %d\n",
276 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
279 /* Unknown pin - do nothing */
280 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
284 env
->irq_input_state
|= 1 << pin
;
286 env
->irq_input_state
&= ~(1 << pin
);
290 void ppcPOWER7_irq_init(PowerPCCPU
*cpu
)
292 CPUPPCState
*env
= &cpu
->env
;
294 env
->irq_inputs
= (void **)qemu_allocate_irqs(&power7_set_irq
, cpu
,
297 #endif /* defined(TARGET_PPC64) */
299 /* PowerPC 40x internal IRQ controller */
300 static void ppc40x_set_irq(void *opaque
, int pin
, int level
)
302 PowerPCCPU
*cpu
= opaque
;
303 CPUPPCState
*env
= &cpu
->env
;
306 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
308 cur_level
= (env
->irq_input_state
>> pin
) & 1;
309 /* Don't generate spurious events */
310 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
311 CPUState
*cs
= CPU(cpu
);
314 case PPC40x_INPUT_RESET_SYS
:
316 LOG_IRQ("%s: reset the PowerPC system\n",
318 ppc40x_system_reset(cpu
);
321 case PPC40x_INPUT_RESET_CHIP
:
323 LOG_IRQ("%s: reset the PowerPC chip\n", __func__
);
324 ppc40x_chip_reset(cpu
);
327 case PPC40x_INPUT_RESET_CORE
:
328 /* XXX: TODO: update DBSR[MRR] */
330 LOG_IRQ("%s: reset the PowerPC core\n", __func__
);
331 ppc40x_core_reset(cpu
);
334 case PPC40x_INPUT_CINT
:
335 /* Level sensitive - active high */
336 LOG_IRQ("%s: set the critical IRQ state to %d\n",
338 ppc_set_irq(cpu
, PPC_INTERRUPT_CEXT
, level
);
340 case PPC40x_INPUT_INT
:
341 /* Level sensitive - active high */
342 LOG_IRQ("%s: set the external IRQ state to %d\n",
344 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
346 case PPC40x_INPUT_HALT
:
347 /* Level sensitive - active low */
349 LOG_IRQ("%s: stop the CPU\n", __func__
);
352 LOG_IRQ("%s: restart the CPU\n", __func__
);
357 case PPC40x_INPUT_DEBUG
:
358 /* Level sensitive - active high */
359 LOG_IRQ("%s: set the debug pin state to %d\n",
361 ppc_set_irq(cpu
, PPC_INTERRUPT_DEBUG
, level
);
364 /* Unknown pin - do nothing */
365 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
369 env
->irq_input_state
|= 1 << pin
;
371 env
->irq_input_state
&= ~(1 << pin
);
375 void ppc40x_irq_init(PowerPCCPU
*cpu
)
377 CPUPPCState
*env
= &cpu
->env
;
379 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc40x_set_irq
,
380 cpu
, PPC40x_INPUT_NB
);
383 /* PowerPC E500 internal IRQ controller */
384 static void ppce500_set_irq(void *opaque
, int pin
, int level
)
386 PowerPCCPU
*cpu
= opaque
;
387 CPUPPCState
*env
= &cpu
->env
;
390 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
392 cur_level
= (env
->irq_input_state
>> pin
) & 1;
393 /* Don't generate spurious events */
394 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
396 case PPCE500_INPUT_MCK
:
398 LOG_IRQ("%s: reset the PowerPC system\n",
400 qemu_system_reset_request();
403 case PPCE500_INPUT_RESET_CORE
:
405 LOG_IRQ("%s: reset the PowerPC core\n", __func__
);
406 ppc_set_irq(cpu
, PPC_INTERRUPT_MCK
, level
);
409 case PPCE500_INPUT_CINT
:
410 /* Level sensitive - active high */
411 LOG_IRQ("%s: set the critical IRQ state to %d\n",
413 ppc_set_irq(cpu
, PPC_INTERRUPT_CEXT
, level
);
415 case PPCE500_INPUT_INT
:
416 /* Level sensitive - active high */
417 LOG_IRQ("%s: set the core IRQ state to %d\n",
419 ppc_set_irq(cpu
, PPC_INTERRUPT_EXT
, level
);
421 case PPCE500_INPUT_DEBUG
:
422 /* Level sensitive - active high */
423 LOG_IRQ("%s: set the debug pin state to %d\n",
425 ppc_set_irq(cpu
, PPC_INTERRUPT_DEBUG
, level
);
428 /* Unknown pin - do nothing */
429 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
433 env
->irq_input_state
|= 1 << pin
;
435 env
->irq_input_state
&= ~(1 << pin
);
439 void ppce500_irq_init(PowerPCCPU
*cpu
)
441 CPUPPCState
*env
= &cpu
->env
;
443 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppce500_set_irq
,
444 cpu
, PPCE500_INPUT_NB
);
447 /* Enable or Disable the E500 EPR capability */
448 void ppce500_set_mpic_proxy(bool enabled
)
453 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
455 cpu
->env
.mpic_proxy
= enabled
;
457 kvmppc_set_mpic_proxy(cpu
, enabled
);
462 /*****************************************************************************/
463 /* PowerPC time base and decrementer emulation */
465 uint64_t cpu_ppc_get_tb(ppc_tb_t
*tb_env
, uint64_t vmclk
, int64_t tb_offset
)
467 /* TB time in tb periods */
468 return muldiv64(vmclk
, tb_env
->tb_freq
, NANOSECONDS_PER_SECOND
) + tb_offset
;
471 uint64_t cpu_ppc_load_tbl (CPUPPCState
*env
)
473 ppc_tb_t
*tb_env
= env
->tb_env
;
477 return env
->spr
[SPR_TBL
];
480 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->tb_offset
);
481 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
486 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState
*env
)
488 ppc_tb_t
*tb_env
= env
->tb_env
;
491 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->tb_offset
);
492 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
497 uint32_t cpu_ppc_load_tbu (CPUPPCState
*env
)
500 return env
->spr
[SPR_TBU
];
503 return _cpu_ppc_load_tbu(env
);
506 static inline void cpu_ppc_store_tb(ppc_tb_t
*tb_env
, uint64_t vmclk
,
507 int64_t *tb_offsetp
, uint64_t value
)
509 *tb_offsetp
= value
-
510 muldiv64(vmclk
, tb_env
->tb_freq
, NANOSECONDS_PER_SECOND
);
512 LOG_TB("%s: tb %016" PRIx64
" offset %08" PRIx64
"\n",
513 __func__
, value
, *tb_offsetp
);
516 void cpu_ppc_store_tbl (CPUPPCState
*env
, uint32_t value
)
518 ppc_tb_t
*tb_env
= env
->tb_env
;
521 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->tb_offset
);
522 tb
&= 0xFFFFFFFF00000000ULL
;
523 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
524 &tb_env
->tb_offset
, tb
| (uint64_t)value
);
527 static inline void _cpu_ppc_store_tbu(CPUPPCState
*env
, uint32_t value
)
529 ppc_tb_t
*tb_env
= env
->tb_env
;
532 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->tb_offset
);
533 tb
&= 0x00000000FFFFFFFFULL
;
534 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
535 &tb_env
->tb_offset
, ((uint64_t)value
<< 32) | tb
);
538 void cpu_ppc_store_tbu (CPUPPCState
*env
, uint32_t value
)
540 _cpu_ppc_store_tbu(env
, value
);
543 uint64_t cpu_ppc_load_atbl (CPUPPCState
*env
)
545 ppc_tb_t
*tb_env
= env
->tb_env
;
548 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->atb_offset
);
549 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
554 uint32_t cpu_ppc_load_atbu (CPUPPCState
*env
)
556 ppc_tb_t
*tb_env
= env
->tb_env
;
559 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->atb_offset
);
560 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
565 void cpu_ppc_store_atbl (CPUPPCState
*env
, uint32_t value
)
567 ppc_tb_t
*tb_env
= env
->tb_env
;
570 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->atb_offset
);
571 tb
&= 0xFFFFFFFF00000000ULL
;
572 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
573 &tb_env
->atb_offset
, tb
| (uint64_t)value
);
576 void cpu_ppc_store_atbu (CPUPPCState
*env
, uint32_t value
)
578 ppc_tb_t
*tb_env
= env
->tb_env
;
581 tb
= cpu_ppc_get_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
), tb_env
->atb_offset
);
582 tb
&= 0x00000000FFFFFFFFULL
;
583 cpu_ppc_store_tb(tb_env
, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
),
584 &tb_env
->atb_offset
, ((uint64_t)value
<< 32) | tb
);
587 static void cpu_ppc_tb_stop (CPUPPCState
*env
)
589 ppc_tb_t
*tb_env
= env
->tb_env
;
590 uint64_t tb
, atb
, vmclk
;
592 /* If the time base is already frozen, do nothing */
593 if (tb_env
->tb_freq
!= 0) {
594 vmclk
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
595 /* Get the time base */
596 tb
= cpu_ppc_get_tb(tb_env
, vmclk
, tb_env
->tb_offset
);
597 /* Get the alternate time base */
598 atb
= cpu_ppc_get_tb(tb_env
, vmclk
, tb_env
->atb_offset
);
599 /* Store the time base value (ie compute the current offset) */
600 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->tb_offset
, tb
);
601 /* Store the alternate time base value (compute the current offset) */
602 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->atb_offset
, atb
);
603 /* Set the time base frequency to zero */
605 /* Now, the time bases are frozen to tb_offset / atb_offset value */
609 static void cpu_ppc_tb_start (CPUPPCState
*env
)
611 ppc_tb_t
*tb_env
= env
->tb_env
;
612 uint64_t tb
, atb
, vmclk
;
614 /* If the time base is not frozen, do nothing */
615 if (tb_env
->tb_freq
== 0) {
616 vmclk
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
617 /* Get the time base from tb_offset */
618 tb
= tb_env
->tb_offset
;
619 /* Get the alternate time base from atb_offset */
620 atb
= tb_env
->atb_offset
;
621 /* Restore the tb frequency from the decrementer frequency */
622 tb_env
->tb_freq
= tb_env
->decr_freq
;
623 /* Store the time base value */
624 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->tb_offset
, tb
);
625 /* Store the alternate time base value */
626 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->atb_offset
, atb
);
630 bool ppc_decr_clear_on_delivery(CPUPPCState
*env
)
632 ppc_tb_t
*tb_env
= env
->tb_env
;
633 int flags
= PPC_DECR_UNDERFLOW_TRIGGERED
| PPC_DECR_UNDERFLOW_LEVEL
;
634 return ((tb_env
->flags
& flags
) == PPC_DECR_UNDERFLOW_TRIGGERED
);
637 static inline uint32_t _cpu_ppc_load_decr(CPUPPCState
*env
, uint64_t next
)
639 ppc_tb_t
*tb_env
= env
->tb_env
;
643 diff
= next
- qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
645 decr
= muldiv64(diff
, tb_env
->decr_freq
, NANOSECONDS_PER_SECOND
);
646 } else if (tb_env
->flags
& PPC_TIMER_BOOKE
) {
649 decr
= -muldiv64(-diff
, tb_env
->decr_freq
, NANOSECONDS_PER_SECOND
);
651 LOG_TB("%s: %08" PRIx32
"\n", __func__
, decr
);
656 uint32_t cpu_ppc_load_decr (CPUPPCState
*env
)
658 ppc_tb_t
*tb_env
= env
->tb_env
;
661 return env
->spr
[SPR_DECR
];
664 return _cpu_ppc_load_decr(env
, tb_env
->decr_next
);
667 uint32_t cpu_ppc_load_hdecr (CPUPPCState
*env
)
669 ppc_tb_t
*tb_env
= env
->tb_env
;
671 return _cpu_ppc_load_decr(env
, tb_env
->hdecr_next
);
674 uint64_t cpu_ppc_load_purr (CPUPPCState
*env
)
676 ppc_tb_t
*tb_env
= env
->tb_env
;
679 diff
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
) - tb_env
->purr_start
;
681 return tb_env
->purr_load
+
682 muldiv64(diff
, tb_env
->tb_freq
, NANOSECONDS_PER_SECOND
);
685 /* When decrementer expires,
686 * all we need to do is generate or queue a CPU exception
688 static inline void cpu_ppc_decr_excp(PowerPCCPU
*cpu
)
691 LOG_TB("raise decrementer exception\n");
692 ppc_set_irq(cpu
, PPC_INTERRUPT_DECR
, 1);
695 static inline void cpu_ppc_decr_lower(PowerPCCPU
*cpu
)
697 ppc_set_irq(cpu
, PPC_INTERRUPT_DECR
, 0);
700 static inline void cpu_ppc_hdecr_excp(PowerPCCPU
*cpu
)
703 LOG_TB("raise decrementer exception\n");
704 ppc_set_irq(cpu
, PPC_INTERRUPT_HDECR
, 1);
707 static inline void cpu_ppc_hdecr_lower(PowerPCCPU
*cpu
)
709 ppc_set_irq(cpu
, PPC_INTERRUPT_HDECR
, 0);
712 static void __cpu_ppc_store_decr(PowerPCCPU
*cpu
, uint64_t *nextp
,
714 void (*raise_excp
)(void *),
715 void (*lower_excp
)(PowerPCCPU
*),
716 uint32_t decr
, uint32_t value
)
718 CPUPPCState
*env
= &cpu
->env
;
719 ppc_tb_t
*tb_env
= env
->tb_env
;
722 LOG_TB("%s: %08" PRIx32
" => %08" PRIx32
"\n", __func__
,
726 /* KVM handles decrementer exceptions, we don't need our own timer */
731 * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
734 * If we get a really small DEC value, we can assume that by the time we
735 * handled it we should inject an interrupt already.
737 * On MSB level based DEC implementations the MSB always means the interrupt
738 * is pending, so raise it on those.
740 * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
741 * an edge interrupt, so raise it here too.
744 ((tb_env
->flags
& PPC_DECR_UNDERFLOW_LEVEL
) && (value
& 0x80000000)) ||
745 ((tb_env
->flags
& PPC_DECR_UNDERFLOW_TRIGGERED
) && (value
& 0x80000000)
746 && !(decr
& 0x80000000))) {
751 /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
752 if (!(value
& 0x80000000) && (tb_env
->flags
& PPC_DECR_UNDERFLOW_LEVEL
)) {
756 /* Calculate the next timer event */
757 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
758 next
= now
+ muldiv64(value
, NANOSECONDS_PER_SECOND
, tb_env
->decr_freq
);
762 timer_mod(timer
, next
);
765 static inline void _cpu_ppc_store_decr(PowerPCCPU
*cpu
, uint32_t decr
,
768 ppc_tb_t
*tb_env
= cpu
->env
.tb_env
;
770 __cpu_ppc_store_decr(cpu
, &tb_env
->decr_next
, tb_env
->decr_timer
,
771 tb_env
->decr_timer
->cb
, &cpu_ppc_decr_lower
, decr
,
775 void cpu_ppc_store_decr (CPUPPCState
*env
, uint32_t value
)
777 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
779 _cpu_ppc_store_decr(cpu
, cpu_ppc_load_decr(env
), value
);
782 static void cpu_ppc_decr_cb(void *opaque
)
784 PowerPCCPU
*cpu
= opaque
;
786 cpu_ppc_decr_excp(cpu
);
789 static inline void _cpu_ppc_store_hdecr(PowerPCCPU
*cpu
, uint32_t hdecr
,
792 ppc_tb_t
*tb_env
= cpu
->env
.tb_env
;
794 if (tb_env
->hdecr_timer
!= NULL
) {
795 __cpu_ppc_store_decr(cpu
, &tb_env
->hdecr_next
, tb_env
->hdecr_timer
,
796 tb_env
->hdecr_timer
->cb
, &cpu_ppc_hdecr_lower
,
801 void cpu_ppc_store_hdecr (CPUPPCState
*env
, uint32_t value
)
803 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
805 _cpu_ppc_store_hdecr(cpu
, cpu_ppc_load_hdecr(env
), value
);
808 static void cpu_ppc_hdecr_cb(void *opaque
)
810 PowerPCCPU
*cpu
= opaque
;
812 cpu_ppc_hdecr_excp(cpu
);
815 static void cpu_ppc_store_purr(PowerPCCPU
*cpu
, uint64_t value
)
817 ppc_tb_t
*tb_env
= cpu
->env
.tb_env
;
819 tb_env
->purr_load
= value
;
820 tb_env
->purr_start
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
823 static void cpu_ppc_set_tb_clk (void *opaque
, uint32_t freq
)
825 CPUPPCState
*env
= opaque
;
826 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
827 ppc_tb_t
*tb_env
= env
->tb_env
;
829 tb_env
->tb_freq
= freq
;
830 tb_env
->decr_freq
= freq
;
831 /* There is a bug in Linux 2.4 kernels:
832 * if a decrementer exception is pending when it enables msr_ee at startup,
833 * it's not ready to handle it...
835 _cpu_ppc_store_decr(cpu
, 0xFFFFFFFF, 0xFFFFFFFF);
836 _cpu_ppc_store_hdecr(cpu
, 0xFFFFFFFF, 0xFFFFFFFF);
837 cpu_ppc_store_purr(cpu
, 0x0000000000000000ULL
);
840 static void timebase_pre_save(void *opaque
)
842 PPCTimebase
*tb
= opaque
;
843 uint64_t ticks
= cpu_get_host_ticks();
844 PowerPCCPU
*first_ppc_cpu
= POWERPC_CPU(first_cpu
);
846 if (!first_ppc_cpu
->env
.tb_env
) {
847 error_report("No timebase object");
851 tb
->time_of_the_day_ns
= qemu_clock_get_ns(QEMU_CLOCK_HOST
);
853 * tb_offset is only expected to be changed by migration so
854 * there is no need to update it from KVM here
856 tb
->guest_timebase
= ticks
+ first_ppc_cpu
->env
.tb_env
->tb_offset
;
859 static int timebase_post_load(void *opaque
, int version_id
)
861 PPCTimebase
*tb_remote
= opaque
;
863 PowerPCCPU
*first_ppc_cpu
= POWERPC_CPU(first_cpu
);
864 int64_t tb_off_adj
, tb_off
, ns_diff
;
865 int64_t migration_duration_ns
, migration_duration_tb
, guest_tb
, host_ns
;
868 if (!first_ppc_cpu
->env
.tb_env
) {
869 error_report("No timebase object");
873 freq
= first_ppc_cpu
->env
.tb_env
->tb_freq
;
875 * Calculate timebase on the destination side of migration.
876 * The destination timebase must be not less than the source timebase.
877 * We try to adjust timebase by downtime if host clocks are not
878 * too much out of sync (1 second for now).
880 host_ns
= qemu_clock_get_ns(QEMU_CLOCK_HOST
);
881 ns_diff
= MAX(0, host_ns
- tb_remote
->time_of_the_day_ns
);
882 migration_duration_ns
= MIN(NANOSECONDS_PER_SECOND
, ns_diff
);
883 migration_duration_tb
= muldiv64(freq
, migration_duration_ns
,
884 NANOSECONDS_PER_SECOND
);
885 guest_tb
= tb_remote
->guest_timebase
+ MIN(0, migration_duration_tb
);
887 tb_off_adj
= guest_tb
- cpu_get_host_ticks();
889 tb_off
= first_ppc_cpu
->env
.tb_env
->tb_offset
;
890 trace_ppc_tb_adjust(tb_off
, tb_off_adj
, tb_off_adj
- tb_off
,
891 (tb_off_adj
- tb_off
) / freq
);
893 /* Set new offset to all CPUs */
895 PowerPCCPU
*pcpu
= POWERPC_CPU(cpu
);
896 pcpu
->env
.tb_env
->tb_offset
= tb_off_adj
;
902 const VMStateDescription vmstate_ppc_timebase
= {
905 .minimum_version_id
= 1,
906 .minimum_version_id_old
= 1,
907 .pre_save
= timebase_pre_save
,
908 .post_load
= timebase_post_load
,
909 .fields
= (VMStateField
[]) {
910 VMSTATE_UINT64(guest_timebase
, PPCTimebase
),
911 VMSTATE_INT64(time_of_the_day_ns
, PPCTimebase
),
912 VMSTATE_END_OF_LIST()
916 /* Set up (once) timebase frequency (in Hz) */
917 clk_setup_cb
cpu_ppc_tb_init (CPUPPCState
*env
, uint32_t freq
)
919 PowerPCCPU
*cpu
= ppc_env_get_cpu(env
);
922 tb_env
= g_malloc0(sizeof(ppc_tb_t
));
923 env
->tb_env
= tb_env
;
924 tb_env
->flags
= PPC_DECR_UNDERFLOW_TRIGGERED
;
925 if (env
->insns_flags
& PPC_SEGMENT_64B
) {
926 /* All Book3S 64bit CPUs implement level based DEC logic */
927 tb_env
->flags
|= PPC_DECR_UNDERFLOW_LEVEL
;
929 /* Create new timer */
930 tb_env
->decr_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_ppc_decr_cb
, cpu
);
932 /* XXX: find a suitable condition to enable the hypervisor decrementer
934 tb_env
->hdecr_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_ppc_hdecr_cb
,
937 tb_env
->hdecr_timer
= NULL
;
939 cpu_ppc_set_tb_clk(env
, freq
);
941 return &cpu_ppc_set_tb_clk
;
944 /* Specific helpers for POWER & PowerPC 601 RTC */
946 static clk_setup_cb
cpu_ppc601_rtc_init (CPUPPCState
*env
)
948 return cpu_ppc_tb_init(env
, 7812500);
952 void cpu_ppc601_store_rtcu (CPUPPCState
*env
, uint32_t value
)
954 _cpu_ppc_store_tbu(env
, value
);
957 uint32_t cpu_ppc601_load_rtcu (CPUPPCState
*env
)
959 return _cpu_ppc_load_tbu(env
);
962 void cpu_ppc601_store_rtcl (CPUPPCState
*env
, uint32_t value
)
964 cpu_ppc_store_tbl(env
, value
& 0x3FFFFF80);
967 uint32_t cpu_ppc601_load_rtcl (CPUPPCState
*env
)
969 return cpu_ppc_load_tbl(env
) & 0x3FFFFF80;
972 /*****************************************************************************/
973 /* PowerPC 40x timers */
976 typedef struct ppc40x_timer_t ppc40x_timer_t
;
977 struct ppc40x_timer_t
{
978 uint64_t pit_reload
; /* PIT auto-reload value */
979 uint64_t fit_next
; /* Tick for next FIT interrupt */
980 QEMUTimer
*fit_timer
;
981 uint64_t wdt_next
; /* Tick for next WDT interrupt */
982 QEMUTimer
*wdt_timer
;
984 /* 405 have the PIT, 440 have a DECR. */
985 unsigned int decr_excp
;
988 /* Fixed interval timer */
989 static void cpu_4xx_fit_cb (void *opaque
)
994 ppc40x_timer_t
*ppc40x_timer
;
998 cpu
= ppc_env_get_cpu(env
);
999 tb_env
= env
->tb_env
;
1000 ppc40x_timer
= tb_env
->opaque
;
1001 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
1002 switch ((env
->spr
[SPR_40x_TCR
] >> 24) & 0x3) {
1016 /* Cannot occur, but makes gcc happy */
1019 next
= now
+ muldiv64(next
, NANOSECONDS_PER_SECOND
, tb_env
->tb_freq
);
1022 timer_mod(ppc40x_timer
->fit_timer
, next
);
1023 env
->spr
[SPR_40x_TSR
] |= 1 << 26;
1024 if ((env
->spr
[SPR_40x_TCR
] >> 23) & 0x1) {
1025 ppc_set_irq(cpu
, PPC_INTERRUPT_FIT
, 1);
1027 LOG_TB("%s: ir %d TCR " TARGET_FMT_lx
" TSR " TARGET_FMT_lx
"\n", __func__
,
1028 (int)((env
->spr
[SPR_40x_TCR
] >> 23) & 0x1),
1029 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
]);
1032 /* Programmable interval timer */
1033 static void start_stop_pit (CPUPPCState
*env
, ppc_tb_t
*tb_env
, int is_excp
)
1035 ppc40x_timer_t
*ppc40x_timer
;
1038 ppc40x_timer
= tb_env
->opaque
;
1039 if (ppc40x_timer
->pit_reload
<= 1 ||
1040 !((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1) ||
1041 (is_excp
&& !((env
->spr
[SPR_40x_TCR
] >> 22) & 0x1))) {
1043 LOG_TB("%s: stop PIT\n", __func__
);
1044 timer_del(tb_env
->decr_timer
);
1046 LOG_TB("%s: start PIT %016" PRIx64
"\n",
1047 __func__
, ppc40x_timer
->pit_reload
);
1048 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
1049 next
= now
+ muldiv64(ppc40x_timer
->pit_reload
,
1050 NANOSECONDS_PER_SECOND
, tb_env
->decr_freq
);
1052 next
+= tb_env
->decr_next
- now
;
1055 timer_mod(tb_env
->decr_timer
, next
);
1056 tb_env
->decr_next
= next
;
1060 static void cpu_4xx_pit_cb (void *opaque
)
1065 ppc40x_timer_t
*ppc40x_timer
;
1068 cpu
= ppc_env_get_cpu(env
);
1069 tb_env
= env
->tb_env
;
1070 ppc40x_timer
= tb_env
->opaque
;
1071 env
->spr
[SPR_40x_TSR
] |= 1 << 27;
1072 if ((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1) {
1073 ppc_set_irq(cpu
, ppc40x_timer
->decr_excp
, 1);
1075 start_stop_pit(env
, tb_env
, 1);
1076 LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx
" TSR " TARGET_FMT_lx
" "
1077 "%016" PRIx64
"\n", __func__
,
1078 (int)((env
->spr
[SPR_40x_TCR
] >> 22) & 0x1),
1079 (int)((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1),
1080 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
],
1081 ppc40x_timer
->pit_reload
);
1084 /* Watchdog timer */
1085 static void cpu_4xx_wdt_cb (void *opaque
)
1090 ppc40x_timer_t
*ppc40x_timer
;
1094 cpu
= ppc_env_get_cpu(env
);
1095 tb_env
= env
->tb_env
;
1096 ppc40x_timer
= tb_env
->opaque
;
1097 now
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
1098 switch ((env
->spr
[SPR_40x_TCR
] >> 30) & 0x3) {
1112 /* Cannot occur, but makes gcc happy */
1115 next
= now
+ muldiv64(next
, NANOSECONDS_PER_SECOND
, tb_env
->decr_freq
);
1118 LOG_TB("%s: TCR " TARGET_FMT_lx
" TSR " TARGET_FMT_lx
"\n", __func__
,
1119 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
]);
1120 switch ((env
->spr
[SPR_40x_TSR
] >> 30) & 0x3) {
1123 timer_mod(ppc40x_timer
->wdt_timer
, next
);
1124 ppc40x_timer
->wdt_next
= next
;
1125 env
->spr
[SPR_40x_TSR
] |= 1U << 31;
1128 timer_mod(ppc40x_timer
->wdt_timer
, next
);
1129 ppc40x_timer
->wdt_next
= next
;
1130 env
->spr
[SPR_40x_TSR
] |= 1 << 30;
1131 if ((env
->spr
[SPR_40x_TCR
] >> 27) & 0x1) {
1132 ppc_set_irq(cpu
, PPC_INTERRUPT_WDT
, 1);
1136 env
->spr
[SPR_40x_TSR
] &= ~0x30000000;
1137 env
->spr
[SPR_40x_TSR
] |= env
->spr
[SPR_40x_TCR
] & 0x30000000;
1138 switch ((env
->spr
[SPR_40x_TCR
] >> 28) & 0x3) {
1142 case 0x1: /* Core reset */
1143 ppc40x_core_reset(cpu
);
1145 case 0x2: /* Chip reset */
1146 ppc40x_chip_reset(cpu
);
1148 case 0x3: /* System reset */
1149 ppc40x_system_reset(cpu
);
1155 void store_40x_pit (CPUPPCState
*env
, target_ulong val
)
1158 ppc40x_timer_t
*ppc40x_timer
;
1160 tb_env
= env
->tb_env
;
1161 ppc40x_timer
= tb_env
->opaque
;
1162 LOG_TB("%s val" TARGET_FMT_lx
"\n", __func__
, val
);
1163 ppc40x_timer
->pit_reload
= val
;
1164 start_stop_pit(env
, tb_env
, 0);
1167 target_ulong
load_40x_pit (CPUPPCState
*env
)
1169 return cpu_ppc_load_decr(env
);
1172 static void ppc_40x_set_tb_clk (void *opaque
, uint32_t freq
)
1174 CPUPPCState
*env
= opaque
;
1175 ppc_tb_t
*tb_env
= env
->tb_env
;
1177 LOG_TB("%s set new frequency to %" PRIu32
"\n", __func__
,
1179 tb_env
->tb_freq
= freq
;
1180 tb_env
->decr_freq
= freq
;
1181 /* XXX: we should also update all timers */
1184 clk_setup_cb
ppc_40x_timers_init (CPUPPCState
*env
, uint32_t freq
,
1185 unsigned int decr_excp
)
1188 ppc40x_timer_t
*ppc40x_timer
;
1190 tb_env
= g_malloc0(sizeof(ppc_tb_t
));
1191 env
->tb_env
= tb_env
;
1192 tb_env
->flags
= PPC_DECR_UNDERFLOW_TRIGGERED
;
1193 ppc40x_timer
= g_malloc0(sizeof(ppc40x_timer_t
));
1194 tb_env
->tb_freq
= freq
;
1195 tb_env
->decr_freq
= freq
;
1196 tb_env
->opaque
= ppc40x_timer
;
1197 LOG_TB("%s freq %" PRIu32
"\n", __func__
, freq
);
1198 if (ppc40x_timer
!= NULL
) {
1199 /* We use decr timer for PIT */
1200 tb_env
->decr_timer
= timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_4xx_pit_cb
, env
);
1201 ppc40x_timer
->fit_timer
=
1202 timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_4xx_fit_cb
, env
);
1203 ppc40x_timer
->wdt_timer
=
1204 timer_new_ns(QEMU_CLOCK_VIRTUAL
, &cpu_4xx_wdt_cb
, env
);
1205 ppc40x_timer
->decr_excp
= decr_excp
;
1208 return &ppc_40x_set_tb_clk
;
1211 /*****************************************************************************/
1212 /* Embedded PowerPC Device Control Registers */
1213 typedef struct ppc_dcrn_t ppc_dcrn_t
;
1215 dcr_read_cb dcr_read
;
1216 dcr_write_cb dcr_write
;
1220 /* XXX: on 460, DCR addresses are 32 bits wide,
1221 * using DCRIPR to get the 22 upper bits of the DCR address
1223 #define DCRN_NB 1024
1225 ppc_dcrn_t dcrn
[DCRN_NB
];
1226 int (*read_error
)(int dcrn
);
1227 int (*write_error
)(int dcrn
);
1230 int ppc_dcr_read (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t *valp
)
1234 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1236 dcr
= &dcr_env
->dcrn
[dcrn
];
1237 if (dcr
->dcr_read
== NULL
)
1239 *valp
= (*dcr
->dcr_read
)(dcr
->opaque
, dcrn
);
1244 if (dcr_env
->read_error
!= NULL
)
1245 return (*dcr_env
->read_error
)(dcrn
);
1250 int ppc_dcr_write (ppc_dcr_t
*dcr_env
, int dcrn
, uint32_t val
)
1254 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1256 dcr
= &dcr_env
->dcrn
[dcrn
];
1257 if (dcr
->dcr_write
== NULL
)
1259 (*dcr
->dcr_write
)(dcr
->opaque
, dcrn
, val
);
1264 if (dcr_env
->write_error
!= NULL
)
1265 return (*dcr_env
->write_error
)(dcrn
);
1270 int ppc_dcr_register (CPUPPCState
*env
, int dcrn
, void *opaque
,
1271 dcr_read_cb dcr_read
, dcr_write_cb dcr_write
)
1276 dcr_env
= env
->dcr_env
;
1277 if (dcr_env
== NULL
)
1279 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1281 dcr
= &dcr_env
->dcrn
[dcrn
];
1282 if (dcr
->opaque
!= NULL
||
1283 dcr
->dcr_read
!= NULL
||
1284 dcr
->dcr_write
!= NULL
)
1286 dcr
->opaque
= opaque
;
1287 dcr
->dcr_read
= dcr_read
;
1288 dcr
->dcr_write
= dcr_write
;
1293 int ppc_dcr_init (CPUPPCState
*env
, int (*read_error
)(int dcrn
),
1294 int (*write_error
)(int dcrn
))
1298 dcr_env
= g_malloc0(sizeof(ppc_dcr_t
));
1299 dcr_env
->read_error
= read_error
;
1300 dcr_env
->write_error
= write_error
;
1301 env
->dcr_env
= dcr_env
;
1306 /*****************************************************************************/
1308 void PPC_debug_write (void *opaque
, uint32_t addr
, uint32_t val
)
1320 printf("Set loglevel to %04" PRIx32
"\n", val
);
1321 qemu_set_log(val
| 0x100);
1326 /* CPU device-tree ID helpers */
1327 int ppc_get_vcpu_dt_id(PowerPCCPU
*cpu
)
1329 return cpu
->cpu_dt_id
;
1332 PowerPCCPU
*ppc_get_vcpu_by_dt_id(int cpu_dt_id
)
1337 PowerPCCPU
*cpu
= POWERPC_CPU(cs
);
1339 if (cpu
->cpu_dt_id
== cpu_dt_id
) {