target-i386: cleanup x86_cpu_get_phys_page_debug
[qemu.git] / hw / arm / virt.c
blob3b55a4bf7de54604dcfb82afafdfeee80e24e52d
1 /*
2 * ARM mach-virt emulation
4 * Copyright (c) 2013 Linaro Limited
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2 or later, as published by the Free Software Foundation.
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program. If not, see <http://www.gnu.org/licenses/>.
18 * Emulate a virtual board which works by passing Linux all the information
19 * it needs about what devices are present via the device tree.
20 * There are some restrictions about what we can do here:
21 * + we can only present devices whose Linux drivers will work based
22 * purely on the device tree with no platform data at all
23 * + we want to present a very stripped-down minimalist platform,
24 * both because this reduces the security attack surface from the guest
25 * and also because it reduces our exposure to being broken when
26 * the kernel updates its device tree bindings and requires further
27 * information in a device binding that we aren't providing.
28 * This is essentially the same approach kvmtool uses.
31 #include "hw/sysbus.h"
32 #include "hw/arm/arm.h"
33 #include "hw/arm/primecell.h"
34 #include "hw/devices.h"
35 #include "net/net.h"
36 #include "sysemu/device_tree.h"
37 #include "sysemu/sysemu.h"
38 #include "sysemu/kvm.h"
39 #include "hw/boards.h"
40 #include "exec/address-spaces.h"
41 #include "qemu/bitops.h"
42 #include "qemu/error-report.h"
44 #define NUM_VIRTIO_TRANSPORTS 32
46 /* Number of external interrupt lines to configure the GIC with */
47 #define NUM_IRQS 128
49 #define GIC_FDT_IRQ_TYPE_SPI 0
50 #define GIC_FDT_IRQ_TYPE_PPI 1
52 #define GIC_FDT_IRQ_FLAGS_EDGE_LO_HI 1
53 #define GIC_FDT_IRQ_FLAGS_EDGE_HI_LO 2
54 #define GIC_FDT_IRQ_FLAGS_LEVEL_HI 4
55 #define GIC_FDT_IRQ_FLAGS_LEVEL_LO 8
57 #define GIC_FDT_IRQ_PPI_CPU_START 8
58 #define GIC_FDT_IRQ_PPI_CPU_WIDTH 8
60 enum {
61 VIRT_FLASH,
62 VIRT_MEM,
63 VIRT_CPUPERIPHS,
64 VIRT_GIC_DIST,
65 VIRT_GIC_CPU,
66 VIRT_UART,
67 VIRT_MMIO,
70 typedef struct MemMapEntry {
71 hwaddr base;
72 hwaddr size;
73 } MemMapEntry;
75 typedef struct VirtBoardInfo {
76 struct arm_boot_info bootinfo;
77 const char *cpu_model;
78 const MemMapEntry *memmap;
79 const int *irqmap;
80 int smp_cpus;
81 void *fdt;
82 int fdt_size;
83 uint32_t clock_phandle;
84 } VirtBoardInfo;
86 /* Addresses and sizes of our components.
87 * 0..128MB is space for a flash device so we can run bootrom code such as UEFI.
88 * 128MB..256MB is used for miscellaneous device I/O.
89 * 256MB..1GB is reserved for possible future PCI support (ie where the
90 * PCI memory window will go if we add a PCI host controller).
91 * 1GB and up is RAM (which may happily spill over into the
92 * high memory region beyond 4GB).
93 * This represents a compromise between how much RAM can be given to
94 * a 32 bit VM and leaving space for expansion and in particular for PCI.
96 static const MemMapEntry a15memmap[] = {
97 /* Space up to 0x8000000 is reserved for a boot ROM */
98 [VIRT_FLASH] = { 0, 0x8000000 },
99 [VIRT_CPUPERIPHS] = { 0x8000000, 0x20000 },
100 /* GIC distributor and CPU interfaces sit inside the CPU peripheral space */
101 [VIRT_GIC_DIST] = { 0x8000000, 0x10000 },
102 [VIRT_GIC_CPU] = { 0x8010000, 0x10000 },
103 [VIRT_UART] = { 0x9000000, 0x1000 },
104 [VIRT_MMIO] = { 0xa000000, 0x200 },
105 /* ...repeating for a total of NUM_VIRTIO_TRANSPORTS, each of that size */
106 /* 0x10000000 .. 0x40000000 reserved for PCI */
107 [VIRT_MEM] = { 0x40000000, 30ULL * 1024 * 1024 * 1024 },
110 static const int a15irqmap[] = {
111 [VIRT_UART] = 1,
112 [VIRT_MMIO] = 16, /* ...to 16 + NUM_VIRTIO_TRANSPORTS - 1 */
115 static VirtBoardInfo machines[] = {
117 .cpu_model = "cortex-a15",
118 .memmap = a15memmap,
119 .irqmap = a15irqmap,
122 .cpu_model = "cortex-a57",
123 .memmap = a15memmap,
124 .irqmap = a15irqmap,
127 .cpu_model = "host",
128 .memmap = a15memmap,
129 .irqmap = a15irqmap,
133 static VirtBoardInfo *find_machine_info(const char *cpu)
135 int i;
137 for (i = 0; i < ARRAY_SIZE(machines); i++) {
138 if (strcmp(cpu, machines[i].cpu_model) == 0) {
139 return &machines[i];
142 return NULL;
145 static void create_fdt(VirtBoardInfo *vbi)
147 void *fdt = create_device_tree(&vbi->fdt_size);
149 if (!fdt) {
150 error_report("create_device_tree() failed");
151 exit(1);
154 vbi->fdt = fdt;
156 /* Header */
157 qemu_fdt_setprop_string(fdt, "/", "compatible", "linux,dummy-virt");
158 qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
159 qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
162 * /chosen and /memory nodes must exist for load_dtb
163 * to fill in necessary properties later
165 qemu_fdt_add_subnode(fdt, "/chosen");
166 qemu_fdt_add_subnode(fdt, "/memory");
167 qemu_fdt_setprop_string(fdt, "/memory", "device_type", "memory");
169 /* Clock node, for the benefit of the UART. The kernel device tree
170 * binding documentation claims the PL011 node clock properties are
171 * optional but in practice if you omit them the kernel refuses to
172 * probe for the device.
174 vbi->clock_phandle = qemu_fdt_alloc_phandle(fdt);
175 qemu_fdt_add_subnode(fdt, "/apb-pclk");
176 qemu_fdt_setprop_string(fdt, "/apb-pclk", "compatible", "fixed-clock");
177 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "#clock-cells", 0x0);
178 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "clock-frequency", 24000000);
179 qemu_fdt_setprop_string(fdt, "/apb-pclk", "clock-output-names",
180 "clk24mhz");
181 qemu_fdt_setprop_cell(fdt, "/apb-pclk", "phandle", vbi->clock_phandle);
183 /* No PSCI for TCG yet */
184 if (kvm_enabled()) {
185 qemu_fdt_add_subnode(fdt, "/psci");
186 qemu_fdt_setprop_string(fdt, "/psci", "compatible", "arm,psci");
187 qemu_fdt_setprop_string(fdt, "/psci", "method", "hvc");
188 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_suspend",
189 PSCI_FN_CPU_SUSPEND);
190 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_off", PSCI_FN_CPU_OFF);
191 qemu_fdt_setprop_cell(fdt, "/psci", "cpu_on", PSCI_FN_CPU_ON);
192 qemu_fdt_setprop_cell(fdt, "/psci", "migrate", PSCI_FN_MIGRATE);
196 static void fdt_add_timer_nodes(const VirtBoardInfo *vbi)
198 /* Note that on A15 h/w these interrupts are level-triggered,
199 * but for the GIC implementation provided by both QEMU and KVM
200 * they are edge-triggered.
202 uint32_t irqflags = GIC_FDT_IRQ_FLAGS_EDGE_LO_HI;
204 irqflags = deposit32(irqflags, GIC_FDT_IRQ_PPI_CPU_START,
205 GIC_FDT_IRQ_PPI_CPU_WIDTH, (1 << vbi->smp_cpus) - 1);
207 qemu_fdt_add_subnode(vbi->fdt, "/timer");
208 qemu_fdt_setprop_string(vbi->fdt, "/timer",
209 "compatible", "arm,armv7-timer");
210 qemu_fdt_setprop_cells(vbi->fdt, "/timer", "interrupts",
211 GIC_FDT_IRQ_TYPE_PPI, 13, irqflags,
212 GIC_FDT_IRQ_TYPE_PPI, 14, irqflags,
213 GIC_FDT_IRQ_TYPE_PPI, 11, irqflags,
214 GIC_FDT_IRQ_TYPE_PPI, 10, irqflags);
217 static void fdt_add_cpu_nodes(const VirtBoardInfo *vbi)
219 int cpu;
221 qemu_fdt_add_subnode(vbi->fdt, "/cpus");
222 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#address-cells", 0x1);
223 qemu_fdt_setprop_cell(vbi->fdt, "/cpus", "#size-cells", 0x0);
225 for (cpu = vbi->smp_cpus - 1; cpu >= 0; cpu--) {
226 char *nodename = g_strdup_printf("/cpus/cpu@%d", cpu);
227 ARMCPU *armcpu = ARM_CPU(qemu_get_cpu(cpu));
229 qemu_fdt_add_subnode(vbi->fdt, nodename);
230 qemu_fdt_setprop_string(vbi->fdt, nodename, "device_type", "cpu");
231 qemu_fdt_setprop_string(vbi->fdt, nodename, "compatible",
232 armcpu->dtb_compatible);
234 if (vbi->smp_cpus > 1) {
235 qemu_fdt_setprop_string(vbi->fdt, nodename,
236 "enable-method", "psci");
239 qemu_fdt_setprop_cell(vbi->fdt, nodename, "reg", cpu);
240 g_free(nodename);
244 static void fdt_add_gic_node(const VirtBoardInfo *vbi)
246 uint32_t gic_phandle;
248 gic_phandle = qemu_fdt_alloc_phandle(vbi->fdt);
249 qemu_fdt_setprop_cell(vbi->fdt, "/", "interrupt-parent", gic_phandle);
251 qemu_fdt_add_subnode(vbi->fdt, "/intc");
252 /* 'cortex-a15-gic' means 'GIC v2' */
253 qemu_fdt_setprop_string(vbi->fdt, "/intc", "compatible",
254 "arm,cortex-a15-gic");
255 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "#interrupt-cells", 3);
256 qemu_fdt_setprop(vbi->fdt, "/intc", "interrupt-controller", NULL, 0);
257 qemu_fdt_setprop_sized_cells(vbi->fdt, "/intc", "reg",
258 2, vbi->memmap[VIRT_GIC_DIST].base,
259 2, vbi->memmap[VIRT_GIC_DIST].size,
260 2, vbi->memmap[VIRT_GIC_CPU].base,
261 2, vbi->memmap[VIRT_GIC_CPU].size);
262 qemu_fdt_setprop_cell(vbi->fdt, "/intc", "phandle", gic_phandle);
265 static void create_gic(const VirtBoardInfo *vbi, qemu_irq *pic)
267 /* We create a standalone GIC v2 */
268 DeviceState *gicdev;
269 SysBusDevice *gicbusdev;
270 const char *gictype = "arm_gic";
271 int i;
273 if (kvm_irqchip_in_kernel()) {
274 gictype = "kvm-arm-gic";
277 gicdev = qdev_create(NULL, gictype);
278 qdev_prop_set_uint32(gicdev, "revision", 2);
279 qdev_prop_set_uint32(gicdev, "num-cpu", smp_cpus);
280 /* Note that the num-irq property counts both internal and external
281 * interrupts; there are always 32 of the former (mandated by GIC spec).
283 qdev_prop_set_uint32(gicdev, "num-irq", NUM_IRQS + 32);
284 qdev_init_nofail(gicdev);
285 gicbusdev = SYS_BUS_DEVICE(gicdev);
286 sysbus_mmio_map(gicbusdev, 0, vbi->memmap[VIRT_GIC_DIST].base);
287 sysbus_mmio_map(gicbusdev, 1, vbi->memmap[VIRT_GIC_CPU].base);
289 /* Wire the outputs from each CPU's generic timer to the
290 * appropriate GIC PPI inputs, and the GIC's IRQ output to
291 * the CPU's IRQ input.
293 for (i = 0; i < smp_cpus; i++) {
294 DeviceState *cpudev = DEVICE(qemu_get_cpu(i));
295 int ppibase = NUM_IRQS + i * 32;
296 /* physical timer; we wire it up to the non-secure timer's ID,
297 * since a real A15 always has TrustZone but QEMU doesn't.
299 qdev_connect_gpio_out(cpudev, 0,
300 qdev_get_gpio_in(gicdev, ppibase + 30));
301 /* virtual timer */
302 qdev_connect_gpio_out(cpudev, 1,
303 qdev_get_gpio_in(gicdev, ppibase + 27));
305 sysbus_connect_irq(gicbusdev, i, qdev_get_gpio_in(cpudev, ARM_CPU_IRQ));
308 for (i = 0; i < NUM_IRQS; i++) {
309 pic[i] = qdev_get_gpio_in(gicdev, i);
312 fdt_add_gic_node(vbi);
315 static void create_uart(const VirtBoardInfo *vbi, qemu_irq *pic)
317 char *nodename;
318 hwaddr base = vbi->memmap[VIRT_UART].base;
319 hwaddr size = vbi->memmap[VIRT_UART].size;
320 int irq = vbi->irqmap[VIRT_UART];
321 const char compat[] = "arm,pl011\0arm,primecell";
322 const char clocknames[] = "uartclk\0apb_pclk";
324 sysbus_create_simple("pl011", base, pic[irq]);
326 nodename = g_strdup_printf("/pl011@%" PRIx64, base);
327 qemu_fdt_add_subnode(vbi->fdt, nodename);
328 /* Note that we can't use setprop_string because of the embedded NUL */
329 qemu_fdt_setprop(vbi->fdt, nodename, "compatible",
330 compat, sizeof(compat));
331 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
332 2, base, 2, size);
333 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
334 GIC_FDT_IRQ_TYPE_SPI, irq,
335 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
336 qemu_fdt_setprop_cells(vbi->fdt, nodename, "clocks",
337 vbi->clock_phandle, vbi->clock_phandle);
338 qemu_fdt_setprop(vbi->fdt, nodename, "clock-names",
339 clocknames, sizeof(clocknames));
340 g_free(nodename);
343 static void create_virtio_devices(const VirtBoardInfo *vbi, qemu_irq *pic)
345 int i;
346 hwaddr size = vbi->memmap[VIRT_MMIO].size;
348 /* Note that we have to create the transports in forwards order
349 * so that command line devices are inserted lowest address first,
350 * and then add dtb nodes in reverse order so that they appear in
351 * the finished device tree lowest address first.
353 for (i = 0; i < NUM_VIRTIO_TRANSPORTS; i++) {
354 int irq = vbi->irqmap[VIRT_MMIO] + i;
355 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
357 sysbus_create_simple("virtio-mmio", base, pic[irq]);
360 for (i = NUM_VIRTIO_TRANSPORTS - 1; i >= 0; i--) {
361 char *nodename;
362 int irq = vbi->irqmap[VIRT_MMIO] + i;
363 hwaddr base = vbi->memmap[VIRT_MMIO].base + i * size;
365 nodename = g_strdup_printf("/virtio_mmio@%" PRIx64, base);
366 qemu_fdt_add_subnode(vbi->fdt, nodename);
367 qemu_fdt_setprop_string(vbi->fdt, nodename,
368 "compatible", "virtio,mmio");
369 qemu_fdt_setprop_sized_cells(vbi->fdt, nodename, "reg",
370 2, base, 2, size);
371 qemu_fdt_setprop_cells(vbi->fdt, nodename, "interrupts",
372 GIC_FDT_IRQ_TYPE_SPI, irq,
373 GIC_FDT_IRQ_FLAGS_EDGE_LO_HI);
374 g_free(nodename);
378 static void *machvirt_dtb(const struct arm_boot_info *binfo, int *fdt_size)
380 const VirtBoardInfo *board = (const VirtBoardInfo *)binfo;
382 *fdt_size = board->fdt_size;
383 return board->fdt;
386 static void machvirt_init(MachineState *machine)
388 qemu_irq pic[NUM_IRQS];
389 MemoryRegion *sysmem = get_system_memory();
390 int n;
391 MemoryRegion *ram = g_new(MemoryRegion, 1);
392 const char *cpu_model = machine->cpu_model;
393 VirtBoardInfo *vbi;
395 if (!cpu_model) {
396 cpu_model = "cortex-a15";
399 vbi = find_machine_info(cpu_model);
401 if (!vbi) {
402 error_report("mach-virt: CPU %s not supported", cpu_model);
403 exit(1);
406 vbi->smp_cpus = smp_cpus;
409 * Only supported method of starting secondary CPUs is PSCI and
410 * PSCI is not yet supported with TCG, so limit smp_cpus to 1
411 * if we're not using KVM.
413 if (!kvm_enabled() && smp_cpus > 1) {
414 error_report("mach-virt: must enable KVM to use multiple CPUs");
415 exit(1);
418 if (machine->ram_size > vbi->memmap[VIRT_MEM].size) {
419 error_report("mach-virt: cannot model more than 30GB RAM");
420 exit(1);
423 create_fdt(vbi);
424 fdt_add_timer_nodes(vbi);
426 for (n = 0; n < smp_cpus; n++) {
427 ObjectClass *oc = cpu_class_by_name(TYPE_ARM_CPU, cpu_model);
428 Object *cpuobj;
430 if (!oc) {
431 fprintf(stderr, "Unable to find CPU definition\n");
432 exit(1);
434 cpuobj = object_new(object_class_get_name(oc));
436 /* Secondary CPUs start in PSCI powered-down state */
437 if (n > 0) {
438 object_property_set_bool(cpuobj, true, "start-powered-off", NULL);
441 if (object_property_find(cpuobj, "reset-cbar", NULL)) {
442 object_property_set_int(cpuobj, vbi->memmap[VIRT_CPUPERIPHS].base,
443 "reset-cbar", &error_abort);
446 object_property_set_bool(cpuobj, true, "realized", NULL);
448 fdt_add_cpu_nodes(vbi);
450 memory_region_init_ram(ram, NULL, "mach-virt.ram", machine->ram_size);
451 vmstate_register_ram_global(ram);
452 memory_region_add_subregion(sysmem, vbi->memmap[VIRT_MEM].base, ram);
454 create_gic(vbi, pic);
456 create_uart(vbi, pic);
458 /* Create mmio transports, so the user can create virtio backends
459 * (which will be automatically plugged in to the transports). If
460 * no backend is created the transport will just sit harmlessly idle.
462 create_virtio_devices(vbi, pic);
464 vbi->bootinfo.ram_size = machine->ram_size;
465 vbi->bootinfo.kernel_filename = machine->kernel_filename;
466 vbi->bootinfo.kernel_cmdline = machine->kernel_cmdline;
467 vbi->bootinfo.initrd_filename = machine->initrd_filename;
468 vbi->bootinfo.nb_cpus = smp_cpus;
469 vbi->bootinfo.board_id = -1;
470 vbi->bootinfo.loader_start = vbi->memmap[VIRT_MEM].base;
471 vbi->bootinfo.get_dtb = machvirt_dtb;
472 arm_load_kernel(ARM_CPU(first_cpu), &vbi->bootinfo);
475 static QEMUMachine machvirt_a15_machine = {
476 .name = "virt",
477 .desc = "ARM Virtual Machine",
478 .init = machvirt_init,
479 .max_cpus = 4,
482 static void machvirt_machine_init(void)
484 qemu_register_machine(&machvirt_a15_machine);
487 machine_init(machvirt_machine_init);