4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include <sys/ioctl.h>
18 #include <sys/utsname.h>
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
23 #include "qemu-common.h"
25 #include "sysemu/sysemu.h"
26 #include "sysemu/kvm_int.h"
30 #include "exec/gdbstub.h"
31 #include "qemu/host-utils.h"
32 #include "qemu/config-file.h"
33 #include "qemu/error-report.h"
34 #include "hw/i386/pc.h"
35 #include "hw/i386/apic.h"
36 #include "hw/i386/apic_internal.h"
37 #include "hw/i386/apic-msidef.h"
39 #include "exec/ioport.h"
40 #include "standard-headers/asm-x86/hyperv.h"
41 #include "hw/pci/pci.h"
42 #include "hw/pci/msi.h"
43 #include "migration/migration.h"
44 #include "exec/memattrs.h"
49 #define DPRINTF(fmt, ...) \
50 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
52 #define DPRINTF(fmt, ...) \
56 #define MSR_KVM_WALL_CLOCK 0x11
57 #define MSR_KVM_SYSTEM_TIME 0x12
59 /* A 4096-byte buffer can hold the 8-byte kvm_msrs header, plus
60 * 255 kvm_msr_entry structs */
61 #define MSR_BUF_SIZE 4096
64 #define BUS_MCEERR_AR 4
67 #define BUS_MCEERR_AO 5
70 const KVMCapabilityInfo kvm_arch_required_capabilities
[] = {
71 KVM_CAP_INFO(SET_TSS_ADDR
),
72 KVM_CAP_INFO(EXT_CPUID
),
73 KVM_CAP_INFO(MP_STATE
),
77 static bool has_msr_star
;
78 static bool has_msr_hsave_pa
;
79 static bool has_msr_tsc_aux
;
80 static bool has_msr_tsc_adjust
;
81 static bool has_msr_tsc_deadline
;
82 static bool has_msr_feature_control
;
83 static bool has_msr_async_pf_en
;
84 static bool has_msr_pv_eoi_en
;
85 static bool has_msr_misc_enable
;
86 static bool has_msr_smbase
;
87 static bool has_msr_bndcfgs
;
88 static bool has_msr_kvm_steal_time
;
89 static int lm_capable_kernel
;
90 static bool has_msr_hv_hypercall
;
91 static bool has_msr_hv_vapic
;
92 static bool has_msr_hv_tsc
;
93 static bool has_msr_hv_crash
;
94 static bool has_msr_hv_reset
;
95 static bool has_msr_hv_vpindex
;
96 static bool has_msr_hv_runtime
;
97 static bool has_msr_hv_synic
;
98 static bool has_msr_hv_stimer
;
99 static bool has_msr_mtrr
;
100 static bool has_msr_xss
;
102 static bool has_msr_architectural_pmu
;
103 static uint32_t num_architectural_pmu_counters
;
105 static int has_xsave
;
107 static int has_pit_state2
;
109 static struct kvm_cpuid2
*cpuid_cache
;
111 int kvm_has_pit_state2(void)
113 return has_pit_state2
;
116 bool kvm_has_smm(void)
118 return kvm_check_extension(kvm_state
, KVM_CAP_X86_SMM
);
121 bool kvm_allows_irq0_override(void)
123 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
126 static int kvm_get_tsc(CPUState
*cs
)
128 X86CPU
*cpu
= X86_CPU(cs
);
129 CPUX86State
*env
= &cpu
->env
;
131 struct kvm_msrs info
;
132 struct kvm_msr_entry entries
[1];
136 if (env
->tsc_valid
) {
140 msr_data
.info
.nmsrs
= 1;
141 msr_data
.entries
[0].index
= MSR_IA32_TSC
;
142 env
->tsc_valid
= !runstate_is_running();
144 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MSRS
, &msr_data
);
150 env
->tsc
= msr_data
.entries
[0].data
;
154 static inline void do_kvm_synchronize_tsc(void *arg
)
161 void kvm_synchronize_all_tsc(void)
167 run_on_cpu(cpu
, do_kvm_synchronize_tsc
, cpu
);
172 static struct kvm_cpuid2
*try_get_cpuid(KVMState
*s
, int max
)
174 struct kvm_cpuid2
*cpuid
;
177 size
= sizeof(*cpuid
) + max
* sizeof(*cpuid
->entries
);
178 cpuid
= g_malloc0(size
);
180 r
= kvm_ioctl(s
, KVM_GET_SUPPORTED_CPUID
, cpuid
);
181 if (r
== 0 && cpuid
->nent
>= max
) {
189 fprintf(stderr
, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
197 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
200 static struct kvm_cpuid2
*get_supported_cpuid(KVMState
*s
)
202 struct kvm_cpuid2
*cpuid
;
205 if (cpuid_cache
!= NULL
) {
208 while ((cpuid
= try_get_cpuid(s
, max
)) == NULL
) {
215 static const struct kvm_para_features
{
218 } para_features
[] = {
219 { KVM_CAP_CLOCKSOURCE
, KVM_FEATURE_CLOCKSOURCE
},
220 { KVM_CAP_NOP_IO_DELAY
, KVM_FEATURE_NOP_IO_DELAY
},
221 { KVM_CAP_PV_MMU
, KVM_FEATURE_MMU_OP
},
222 { KVM_CAP_ASYNC_PF
, KVM_FEATURE_ASYNC_PF
},
225 static int get_para_features(KVMState
*s
)
229 for (i
= 0; i
< ARRAY_SIZE(para_features
); i
++) {
230 if (kvm_check_extension(s
, para_features
[i
].cap
)) {
231 features
|= (1 << para_features
[i
].feature
);
239 /* Returns the value for a specific register on the cpuid entry
241 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2
*entry
, int reg
)
261 /* Find matching entry for function/index on kvm_cpuid2 struct
263 static struct kvm_cpuid_entry2
*cpuid_find_entry(struct kvm_cpuid2
*cpuid
,
268 for (i
= 0; i
< cpuid
->nent
; ++i
) {
269 if (cpuid
->entries
[i
].function
== function
&&
270 cpuid
->entries
[i
].index
== index
) {
271 return &cpuid
->entries
[i
];
278 uint32_t kvm_arch_get_supported_cpuid(KVMState
*s
, uint32_t function
,
279 uint32_t index
, int reg
)
281 struct kvm_cpuid2
*cpuid
;
283 uint32_t cpuid_1_edx
;
286 cpuid
= get_supported_cpuid(s
);
288 struct kvm_cpuid_entry2
*entry
= cpuid_find_entry(cpuid
, function
, index
);
291 ret
= cpuid_entry_get_reg(entry
, reg
);
294 /* Fixups for the data returned by KVM, below */
296 if (function
== 1 && reg
== R_EDX
) {
297 /* KVM before 2.6.30 misreports the following features */
298 ret
|= CPUID_MTRR
| CPUID_PAT
| CPUID_MCE
| CPUID_MCA
;
299 } else if (function
== 1 && reg
== R_ECX
) {
300 /* We can set the hypervisor flag, even if KVM does not return it on
301 * GET_SUPPORTED_CPUID
303 ret
|= CPUID_EXT_HYPERVISOR
;
304 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
305 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
306 * and the irqchip is in the kernel.
308 if (kvm_irqchip_in_kernel() &&
309 kvm_check_extension(s
, KVM_CAP_TSC_DEADLINE_TIMER
)) {
310 ret
|= CPUID_EXT_TSC_DEADLINE_TIMER
;
313 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
314 * without the in-kernel irqchip
316 if (!kvm_irqchip_in_kernel()) {
317 ret
&= ~CPUID_EXT_X2APIC
;
319 } else if (function
== 6 && reg
== R_EAX
) {
320 ret
|= CPUID_6_EAX_ARAT
; /* safe to allow because of emulated APIC */
321 } else if (function
== 0x80000001 && reg
== R_EDX
) {
322 /* On Intel, kvm returns cpuid according to the Intel spec,
323 * so add missing bits according to the AMD spec:
325 cpuid_1_edx
= kvm_arch_get_supported_cpuid(s
, 1, 0, R_EDX
);
326 ret
|= cpuid_1_edx
& CPUID_EXT2_AMD_ALIASES
;
329 /* fallback for older kernels */
330 if ((function
== KVM_CPUID_FEATURES
) && !found
) {
331 ret
= get_para_features(s
);
337 typedef struct HWPoisonPage
{
339 QLIST_ENTRY(HWPoisonPage
) list
;
342 static QLIST_HEAD(, HWPoisonPage
) hwpoison_page_list
=
343 QLIST_HEAD_INITIALIZER(hwpoison_page_list
);
345 static void kvm_unpoison_all(void *param
)
347 HWPoisonPage
*page
, *next_page
;
349 QLIST_FOREACH_SAFE(page
, &hwpoison_page_list
, list
, next_page
) {
350 QLIST_REMOVE(page
, list
);
351 qemu_ram_remap(page
->ram_addr
, TARGET_PAGE_SIZE
);
356 static void kvm_hwpoison_page_add(ram_addr_t ram_addr
)
360 QLIST_FOREACH(page
, &hwpoison_page_list
, list
) {
361 if (page
->ram_addr
== ram_addr
) {
365 page
= g_new(HWPoisonPage
, 1);
366 page
->ram_addr
= ram_addr
;
367 QLIST_INSERT_HEAD(&hwpoison_page_list
, page
, list
);
370 static int kvm_get_mce_cap_supported(KVMState
*s
, uint64_t *mce_cap
,
375 r
= kvm_check_extension(s
, KVM_CAP_MCE
);
378 return kvm_ioctl(s
, KVM_X86_GET_MCE_CAP_SUPPORTED
, mce_cap
);
383 static void kvm_mce_inject(X86CPU
*cpu
, hwaddr paddr
, int code
)
385 CPUX86State
*env
= &cpu
->env
;
386 uint64_t status
= MCI_STATUS_VAL
| MCI_STATUS_UC
| MCI_STATUS_EN
|
387 MCI_STATUS_MISCV
| MCI_STATUS_ADDRV
| MCI_STATUS_S
;
388 uint64_t mcg_status
= MCG_STATUS_MCIP
;
390 if (code
== BUS_MCEERR_AR
) {
391 status
|= MCI_STATUS_AR
| 0x134;
392 mcg_status
|= MCG_STATUS_EIPV
;
395 mcg_status
|= MCG_STATUS_RIPV
;
397 cpu_x86_inject_mce(NULL
, cpu
, 9, status
, mcg_status
, paddr
,
398 (MCM_ADDR_PHYS
<< 6) | 0xc,
399 cpu_x86_support_mca_broadcast(env
) ?
400 MCE_INJECT_BROADCAST
: 0);
403 static void hardware_memory_error(void)
405 fprintf(stderr
, "Hardware memory error!\n");
409 int kvm_arch_on_sigbus_vcpu(CPUState
*c
, int code
, void *addr
)
411 X86CPU
*cpu
= X86_CPU(c
);
412 CPUX86State
*env
= &cpu
->env
;
416 if ((env
->mcg_cap
& MCG_SER_P
) && addr
417 && (code
== BUS_MCEERR_AR
|| code
== BUS_MCEERR_AO
)) {
418 ram_addr
= qemu_ram_addr_from_host(addr
);
419 if (ram_addr
== RAM_ADDR_INVALID
||
420 !kvm_physical_memory_addr_from_host(c
->kvm_state
, addr
, &paddr
)) {
421 fprintf(stderr
, "Hardware memory error for memory used by "
422 "QEMU itself instead of guest system!\n");
423 /* Hope we are lucky for AO MCE */
424 if (code
== BUS_MCEERR_AO
) {
427 hardware_memory_error();
430 kvm_hwpoison_page_add(ram_addr
);
431 kvm_mce_inject(cpu
, paddr
, code
);
433 if (code
== BUS_MCEERR_AO
) {
435 } else if (code
== BUS_MCEERR_AR
) {
436 hardware_memory_error();
444 int kvm_arch_on_sigbus(int code
, void *addr
)
446 X86CPU
*cpu
= X86_CPU(first_cpu
);
448 if ((cpu
->env
.mcg_cap
& MCG_SER_P
) && addr
&& code
== BUS_MCEERR_AO
) {
452 /* Hope we are lucky for AO MCE */
453 ram_addr
= qemu_ram_addr_from_host(addr
);
454 if (ram_addr
== RAM_ADDR_INVALID
||
455 !kvm_physical_memory_addr_from_host(first_cpu
->kvm_state
,
457 fprintf(stderr
, "Hardware memory error for memory used by "
458 "QEMU itself instead of guest system!: %p\n", addr
);
461 kvm_hwpoison_page_add(ram_addr
);
462 kvm_mce_inject(X86_CPU(first_cpu
), paddr
, code
);
464 if (code
== BUS_MCEERR_AO
) {
466 } else if (code
== BUS_MCEERR_AR
) {
467 hardware_memory_error();
475 static int kvm_inject_mce_oldstyle(X86CPU
*cpu
)
477 CPUX86State
*env
= &cpu
->env
;
479 if (!kvm_has_vcpu_events() && env
->exception_injected
== EXCP12_MCHK
) {
480 unsigned int bank
, bank_num
= env
->mcg_cap
& 0xff;
481 struct kvm_x86_mce mce
;
483 env
->exception_injected
= -1;
486 * There must be at least one bank in use if an MCE is pending.
487 * Find it and use its values for the event injection.
489 for (bank
= 0; bank
< bank_num
; bank
++) {
490 if (env
->mce_banks
[bank
* 4 + 1] & MCI_STATUS_VAL
) {
494 assert(bank
< bank_num
);
497 mce
.status
= env
->mce_banks
[bank
* 4 + 1];
498 mce
.mcg_status
= env
->mcg_status
;
499 mce
.addr
= env
->mce_banks
[bank
* 4 + 2];
500 mce
.misc
= env
->mce_banks
[bank
* 4 + 3];
502 return kvm_vcpu_ioctl(CPU(cpu
), KVM_X86_SET_MCE
, &mce
);
507 static void cpu_update_state(void *opaque
, int running
, RunState state
)
509 CPUX86State
*env
= opaque
;
512 env
->tsc_valid
= false;
516 unsigned long kvm_arch_vcpu_id(CPUState
*cs
)
518 X86CPU
*cpu
= X86_CPU(cs
);
522 #ifndef KVM_CPUID_SIGNATURE_NEXT
523 #define KVM_CPUID_SIGNATURE_NEXT 0x40000100
526 static bool hyperv_hypercall_available(X86CPU
*cpu
)
528 return cpu
->hyperv_vapic
||
529 (cpu
->hyperv_spinlock_attempts
!= HYPERV_SPINLOCK_NEVER_RETRY
);
532 static bool hyperv_enabled(X86CPU
*cpu
)
534 CPUState
*cs
= CPU(cpu
);
535 return kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV
) > 0 &&
536 (hyperv_hypercall_available(cpu
) ||
538 cpu
->hyperv_relaxed_timing
||
541 cpu
->hyperv_vpindex
||
542 cpu
->hyperv_runtime
||
547 static int kvm_arch_set_tsc_khz(CPUState
*cs
)
549 X86CPU
*cpu
= X86_CPU(cs
);
550 CPUX86State
*env
= &cpu
->env
;
557 r
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_TSC_CONTROL
) ?
558 kvm_vcpu_ioctl(cs
, KVM_SET_TSC_KHZ
, env
->tsc_khz
) :
561 /* When KVM_SET_TSC_KHZ fails, it's an error only if the current
562 * TSC frequency doesn't match the one we want.
564 int cur_freq
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_GET_TSC_KHZ
) ?
565 kvm_vcpu_ioctl(cs
, KVM_GET_TSC_KHZ
) :
567 if (cur_freq
<= 0 || cur_freq
!= env
->tsc_khz
) {
568 error_report("warning: TSC frequency mismatch between "
569 "VM and host, and TSC scaling unavailable");
577 static Error
*invtsc_mig_blocker
;
579 #define KVM_MAX_CPUID_ENTRIES 100
581 int kvm_arch_init_vcpu(CPUState
*cs
)
584 struct kvm_cpuid2 cpuid
;
585 struct kvm_cpuid_entry2 entries
[KVM_MAX_CPUID_ENTRIES
];
586 } QEMU_PACKED cpuid_data
;
587 X86CPU
*cpu
= X86_CPU(cs
);
588 CPUX86State
*env
= &cpu
->env
;
589 uint32_t limit
, i
, j
, cpuid_i
;
591 struct kvm_cpuid_entry2
*c
;
592 uint32_t signature
[3];
593 int kvm_base
= KVM_CPUID_SIGNATURE
;
596 memset(&cpuid_data
, 0, sizeof(cpuid_data
));
600 /* Paravirtualization CPUIDs */
601 if (hyperv_enabled(cpu
)) {
602 c
= &cpuid_data
.entries
[cpuid_i
++];
603 c
->function
= HYPERV_CPUID_VENDOR_AND_MAX_FUNCTIONS
;
604 if (!cpu
->hyperv_vendor_id
) {
605 memcpy(signature
, "Microsoft Hv", 12);
607 size_t len
= strlen(cpu
->hyperv_vendor_id
);
610 error_report("hv-vendor-id truncated to 12 characters");
613 memset(signature
, 0, 12);
614 memcpy(signature
, cpu
->hyperv_vendor_id
, len
);
616 c
->eax
= HYPERV_CPUID_MIN
;
617 c
->ebx
= signature
[0];
618 c
->ecx
= signature
[1];
619 c
->edx
= signature
[2];
621 c
= &cpuid_data
.entries
[cpuid_i
++];
622 c
->function
= HYPERV_CPUID_INTERFACE
;
623 memcpy(signature
, "Hv#1\0\0\0\0\0\0\0\0", 12);
624 c
->eax
= signature
[0];
629 c
= &cpuid_data
.entries
[cpuid_i
++];
630 c
->function
= HYPERV_CPUID_VERSION
;
634 c
= &cpuid_data
.entries
[cpuid_i
++];
635 c
->function
= HYPERV_CPUID_FEATURES
;
636 if (cpu
->hyperv_relaxed_timing
) {
637 c
->eax
|= HV_X64_MSR_HYPERCALL_AVAILABLE
;
639 if (cpu
->hyperv_vapic
) {
640 c
->eax
|= HV_X64_MSR_HYPERCALL_AVAILABLE
;
641 c
->eax
|= HV_X64_MSR_APIC_ACCESS_AVAILABLE
;
642 has_msr_hv_vapic
= true;
644 if (cpu
->hyperv_time
&&
645 kvm_check_extension(cs
->kvm_state
, KVM_CAP_HYPERV_TIME
) > 0) {
646 c
->eax
|= HV_X64_MSR_HYPERCALL_AVAILABLE
;
647 c
->eax
|= HV_X64_MSR_TIME_REF_COUNT_AVAILABLE
;
649 has_msr_hv_tsc
= true;
651 if (cpu
->hyperv_crash
&& has_msr_hv_crash
) {
652 c
->edx
|= HV_X64_GUEST_CRASH_MSR_AVAILABLE
;
654 c
->edx
|= HV_X64_CPU_DYNAMIC_PARTITIONING_AVAILABLE
;
655 if (cpu
->hyperv_reset
&& has_msr_hv_reset
) {
656 c
->eax
|= HV_X64_MSR_RESET_AVAILABLE
;
658 if (cpu
->hyperv_vpindex
&& has_msr_hv_vpindex
) {
659 c
->eax
|= HV_X64_MSR_VP_INDEX_AVAILABLE
;
661 if (cpu
->hyperv_runtime
&& has_msr_hv_runtime
) {
662 c
->eax
|= HV_X64_MSR_VP_RUNTIME_AVAILABLE
;
664 if (cpu
->hyperv_synic
) {
667 if (!has_msr_hv_synic
||
668 kvm_vcpu_enable_cap(cs
, KVM_CAP_HYPERV_SYNIC
, 0)) {
669 fprintf(stderr
, "Hyper-V SynIC is not supported by kernel\n");
673 c
->eax
|= HV_X64_MSR_SYNIC_AVAILABLE
;
674 env
->msr_hv_synic_version
= HV_SYNIC_VERSION_1
;
675 for (sint
= 0; sint
< ARRAY_SIZE(env
->msr_hv_synic_sint
); sint
++) {
676 env
->msr_hv_synic_sint
[sint
] = HV_SYNIC_SINT_MASKED
;
679 if (cpu
->hyperv_stimer
) {
680 if (!has_msr_hv_stimer
) {
681 fprintf(stderr
, "Hyper-V timers aren't supported by kernel\n");
684 c
->eax
|= HV_X64_MSR_SYNTIMER_AVAILABLE
;
686 c
= &cpuid_data
.entries
[cpuid_i
++];
687 c
->function
= HYPERV_CPUID_ENLIGHTMENT_INFO
;
688 if (cpu
->hyperv_relaxed_timing
) {
689 c
->eax
|= HV_X64_RELAXED_TIMING_RECOMMENDED
;
691 if (has_msr_hv_vapic
) {
692 c
->eax
|= HV_X64_APIC_ACCESS_RECOMMENDED
;
694 c
->ebx
= cpu
->hyperv_spinlock_attempts
;
696 c
= &cpuid_data
.entries
[cpuid_i
++];
697 c
->function
= HYPERV_CPUID_IMPLEMENT_LIMITS
;
701 kvm_base
= KVM_CPUID_SIGNATURE_NEXT
;
702 has_msr_hv_hypercall
= true;
705 if (cpu
->expose_kvm
) {
706 memcpy(signature
, "KVMKVMKVM\0\0\0", 12);
707 c
= &cpuid_data
.entries
[cpuid_i
++];
708 c
->function
= KVM_CPUID_SIGNATURE
| kvm_base
;
709 c
->eax
= KVM_CPUID_FEATURES
| kvm_base
;
710 c
->ebx
= signature
[0];
711 c
->ecx
= signature
[1];
712 c
->edx
= signature
[2];
714 c
= &cpuid_data
.entries
[cpuid_i
++];
715 c
->function
= KVM_CPUID_FEATURES
| kvm_base
;
716 c
->eax
= env
->features
[FEAT_KVM
];
718 has_msr_async_pf_en
= c
->eax
& (1 << KVM_FEATURE_ASYNC_PF
);
720 has_msr_pv_eoi_en
= c
->eax
& (1 << KVM_FEATURE_PV_EOI
);
722 has_msr_kvm_steal_time
= c
->eax
& (1 << KVM_FEATURE_STEAL_TIME
);
725 cpu_x86_cpuid(env
, 0, 0, &limit
, &unused
, &unused
, &unused
);
727 for (i
= 0; i
<= limit
; i
++) {
728 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
729 fprintf(stderr
, "unsupported level value: 0x%x\n", limit
);
732 c
= &cpuid_data
.entries
[cpuid_i
++];
736 /* Keep reading function 2 till all the input is received */
740 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
|
741 KVM_CPUID_FLAG_STATE_READ_NEXT
;
742 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
743 times
= c
->eax
& 0xff;
745 for (j
= 1; j
< times
; ++j
) {
746 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
747 fprintf(stderr
, "cpuid_data is full, no space for "
748 "cpuid(eax:2):eax & 0xf = 0x%x\n", times
);
751 c
= &cpuid_data
.entries
[cpuid_i
++];
753 c
->flags
= KVM_CPUID_FLAG_STATEFUL_FUNC
;
754 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
762 if (i
== 0xd && j
== 64) {
766 c
->flags
= KVM_CPUID_FLAG_SIGNIFCANT_INDEX
;
768 cpu_x86_cpuid(env
, i
, j
, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
770 if (i
== 4 && c
->eax
== 0) {
773 if (i
== 0xb && !(c
->ecx
& 0xff00)) {
776 if (i
== 0xd && c
->eax
== 0) {
779 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
780 fprintf(stderr
, "cpuid_data is full, no space for "
781 "cpuid(eax:0x%x,ecx:0x%x)\n", i
, j
);
784 c
= &cpuid_data
.entries
[cpuid_i
++];
790 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
798 cpu_x86_cpuid(env
, 0x0a, 0, &ver
, &unused
, &unused
, &unused
);
799 if ((ver
& 0xff) > 0) {
800 has_msr_architectural_pmu
= true;
801 num_architectural_pmu_counters
= (ver
& 0xff00) >> 8;
803 /* Shouldn't be more than 32, since that's the number of bits
804 * available in EBX to tell us _which_ counters are available.
807 if (num_architectural_pmu_counters
> MAX_GP_COUNTERS
) {
808 num_architectural_pmu_counters
= MAX_GP_COUNTERS
;
813 cpu_x86_cpuid(env
, 0x80000000, 0, &limit
, &unused
, &unused
, &unused
);
815 for (i
= 0x80000000; i
<= limit
; i
++) {
816 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
817 fprintf(stderr
, "unsupported xlevel value: 0x%x\n", limit
);
820 c
= &cpuid_data
.entries
[cpuid_i
++];
824 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
827 /* Call Centaur's CPUID instructions they are supported. */
828 if (env
->cpuid_xlevel2
> 0) {
829 cpu_x86_cpuid(env
, 0xC0000000, 0, &limit
, &unused
, &unused
, &unused
);
831 for (i
= 0xC0000000; i
<= limit
; i
++) {
832 if (cpuid_i
== KVM_MAX_CPUID_ENTRIES
) {
833 fprintf(stderr
, "unsupported xlevel2 value: 0x%x\n", limit
);
836 c
= &cpuid_data
.entries
[cpuid_i
++];
840 cpu_x86_cpuid(env
, i
, 0, &c
->eax
, &c
->ebx
, &c
->ecx
, &c
->edx
);
844 cpuid_data
.cpuid
.nent
= cpuid_i
;
846 if (((env
->cpuid_version
>> 8)&0xF) >= 6
847 && (env
->features
[FEAT_1_EDX
] & (CPUID_MCE
| CPUID_MCA
)) ==
848 (CPUID_MCE
| CPUID_MCA
)
849 && kvm_check_extension(cs
->kvm_state
, KVM_CAP_MCE
) > 0) {
850 uint64_t mcg_cap
, unsupported_caps
;
854 ret
= kvm_get_mce_cap_supported(cs
->kvm_state
, &mcg_cap
, &banks
);
856 fprintf(stderr
, "kvm_get_mce_cap_supported: %s", strerror(-ret
));
860 if (banks
< (env
->mcg_cap
& MCG_CAP_BANKS_MASK
)) {
861 error_report("kvm: Unsupported MCE bank count (QEMU = %d, KVM = %d)",
862 (int)(env
->mcg_cap
& MCG_CAP_BANKS_MASK
), banks
);
866 unsupported_caps
= env
->mcg_cap
& ~(mcg_cap
| MCG_CAP_BANKS_MASK
);
867 if (unsupported_caps
) {
868 error_report("warning: Unsupported MCG_CAP bits: 0x%" PRIx64
,
872 env
->mcg_cap
&= mcg_cap
| MCG_CAP_BANKS_MASK
;
873 ret
= kvm_vcpu_ioctl(cs
, KVM_X86_SETUP_MCE
, &env
->mcg_cap
);
875 fprintf(stderr
, "KVM_X86_SETUP_MCE: %s", strerror(-ret
));
880 qemu_add_vm_change_state_handler(cpu_update_state
, env
);
882 c
= cpuid_find_entry(&cpuid_data
.cpuid
, 1, 0);
884 has_msr_feature_control
= !!(c
->ecx
& CPUID_EXT_VMX
) ||
885 !!(c
->ecx
& CPUID_EXT_SMX
);
888 c
= cpuid_find_entry(&cpuid_data
.cpuid
, 0x80000007, 0);
889 if (c
&& (c
->edx
& 1<<8) && invtsc_mig_blocker
== NULL
) {
891 error_setg(&invtsc_mig_blocker
,
892 "State blocked by non-migratable CPU device"
894 migrate_add_blocker(invtsc_mig_blocker
);
896 vmstate_x86_cpu
.unmigratable
= 1;
899 cpuid_data
.cpuid
.padding
= 0;
900 r
= kvm_vcpu_ioctl(cs
, KVM_SET_CPUID2
, &cpuid_data
);
905 r
= kvm_arch_set_tsc_khz(cs
);
910 /* vcpu's TSC frequency is either specified by user, or following
911 * the value used by KVM if the former is not present. In the
912 * latter case, we query it from KVM and record in env->tsc_khz,
913 * so that vcpu's TSC frequency can be migrated later via this field.
916 r
= kvm_check_extension(cs
->kvm_state
, KVM_CAP_GET_TSC_KHZ
) ?
917 kvm_vcpu_ioctl(cs
, KVM_GET_TSC_KHZ
) :
925 env
->kvm_xsave_buf
= qemu_memalign(4096, sizeof(struct kvm_xsave
));
927 cpu
->kvm_msr_buf
= g_malloc0(MSR_BUF_SIZE
);
929 if (env
->features
[FEAT_1_EDX
] & CPUID_MTRR
) {
932 if (!(env
->features
[FEAT_8000_0001_EDX
] & CPUID_EXT2_RDTSCP
)) {
933 has_msr_tsc_aux
= false;
939 void kvm_arch_reset_vcpu(X86CPU
*cpu
)
941 CPUX86State
*env
= &cpu
->env
;
943 env
->exception_injected
= -1;
944 env
->interrupt_injected
= -1;
946 if (kvm_irqchip_in_kernel()) {
947 env
->mp_state
= cpu_is_bsp(cpu
) ? KVM_MP_STATE_RUNNABLE
:
948 KVM_MP_STATE_UNINITIALIZED
;
950 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
954 void kvm_arch_do_init_vcpu(X86CPU
*cpu
)
956 CPUX86State
*env
= &cpu
->env
;
958 /* APs get directly into wait-for-SIPI state. */
959 if (env
->mp_state
== KVM_MP_STATE_UNINITIALIZED
) {
960 env
->mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
964 static int kvm_get_supported_msrs(KVMState
*s
)
966 static int kvm_supported_msrs
;
970 if (kvm_supported_msrs
== 0) {
971 struct kvm_msr_list msr_list
, *kvm_msr_list
;
973 kvm_supported_msrs
= -1;
975 /* Obtain MSR list from KVM. These are the MSRs that we must
978 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, &msr_list
);
979 if (ret
< 0 && ret
!= -E2BIG
) {
982 /* Old kernel modules had a bug and could write beyond the provided
983 memory. Allocate at least a safe amount of 1K. */
984 kvm_msr_list
= g_malloc0(MAX(1024, sizeof(msr_list
) +
986 sizeof(msr_list
.indices
[0])));
988 kvm_msr_list
->nmsrs
= msr_list
.nmsrs
;
989 ret
= kvm_ioctl(s
, KVM_GET_MSR_INDEX_LIST
, kvm_msr_list
);
993 for (i
= 0; i
< kvm_msr_list
->nmsrs
; i
++) {
994 if (kvm_msr_list
->indices
[i
] == MSR_STAR
) {
998 if (kvm_msr_list
->indices
[i
] == MSR_VM_HSAVE_PA
) {
999 has_msr_hsave_pa
= true;
1002 if (kvm_msr_list
->indices
[i
] == MSR_TSC_AUX
) {
1003 has_msr_tsc_aux
= true;
1006 if (kvm_msr_list
->indices
[i
] == MSR_TSC_ADJUST
) {
1007 has_msr_tsc_adjust
= true;
1010 if (kvm_msr_list
->indices
[i
] == MSR_IA32_TSCDEADLINE
) {
1011 has_msr_tsc_deadline
= true;
1014 if (kvm_msr_list
->indices
[i
] == MSR_IA32_SMBASE
) {
1015 has_msr_smbase
= true;
1018 if (kvm_msr_list
->indices
[i
] == MSR_IA32_MISC_ENABLE
) {
1019 has_msr_misc_enable
= true;
1022 if (kvm_msr_list
->indices
[i
] == MSR_IA32_BNDCFGS
) {
1023 has_msr_bndcfgs
= true;
1026 if (kvm_msr_list
->indices
[i
] == MSR_IA32_XSS
) {
1030 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_CRASH_CTL
) {
1031 has_msr_hv_crash
= true;
1034 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_RESET
) {
1035 has_msr_hv_reset
= true;
1038 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_VP_INDEX
) {
1039 has_msr_hv_vpindex
= true;
1042 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_VP_RUNTIME
) {
1043 has_msr_hv_runtime
= true;
1046 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_SCONTROL
) {
1047 has_msr_hv_synic
= true;
1050 if (kvm_msr_list
->indices
[i
] == HV_X64_MSR_STIMER0_CONFIG
) {
1051 has_msr_hv_stimer
= true;
1057 g_free(kvm_msr_list
);
1063 static Notifier smram_machine_done
;
1064 static KVMMemoryListener smram_listener
;
1065 static AddressSpace smram_address_space
;
1066 static MemoryRegion smram_as_root
;
1067 static MemoryRegion smram_as_mem
;
1069 static void register_smram_listener(Notifier
*n
, void *unused
)
1071 MemoryRegion
*smram
=
1072 (MemoryRegion
*) object_resolve_path("/machine/smram", NULL
);
1074 /* Outer container... */
1075 memory_region_init(&smram_as_root
, OBJECT(kvm_state
), "mem-container-smram", ~0ull);
1076 memory_region_set_enabled(&smram_as_root
, true);
1078 /* ... with two regions inside: normal system memory with low
1081 memory_region_init_alias(&smram_as_mem
, OBJECT(kvm_state
), "mem-smram",
1082 get_system_memory(), 0, ~0ull);
1083 memory_region_add_subregion_overlap(&smram_as_root
, 0, &smram_as_mem
, 0);
1084 memory_region_set_enabled(&smram_as_mem
, true);
1087 /* ... SMRAM with higher priority */
1088 memory_region_add_subregion_overlap(&smram_as_root
, 0, smram
, 10);
1089 memory_region_set_enabled(smram
, true);
1092 address_space_init(&smram_address_space
, &smram_as_root
, "KVM-SMRAM");
1093 kvm_memory_listener_register(kvm_state
, &smram_listener
,
1094 &smram_address_space
, 1);
1097 int kvm_arch_init(MachineState
*ms
, KVMState
*s
)
1099 uint64_t identity_base
= 0xfffbc000;
1100 uint64_t shadow_mem
;
1102 struct utsname utsname
;
1104 #ifdef KVM_CAP_XSAVE
1105 has_xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
1109 has_xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
1112 #ifdef KVM_CAP_PIT_STATE2
1113 has_pit_state2
= kvm_check_extension(s
, KVM_CAP_PIT_STATE2
);
1116 ret
= kvm_get_supported_msrs(s
);
1122 lm_capable_kernel
= strcmp(utsname
.machine
, "x86_64") == 0;
1125 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
1126 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
1127 * Since these must be part of guest physical memory, we need to allocate
1128 * them, both by setting their start addresses in the kernel and by
1129 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
1131 * Older KVM versions may not support setting the identity map base. In
1132 * that case we need to stick with the default, i.e. a 256K maximum BIOS
1135 if (kvm_check_extension(s
, KVM_CAP_SET_IDENTITY_MAP_ADDR
)) {
1136 /* Allows up to 16M BIOSes. */
1137 identity_base
= 0xfeffc000;
1139 ret
= kvm_vm_ioctl(s
, KVM_SET_IDENTITY_MAP_ADDR
, &identity_base
);
1145 /* Set TSS base one page after EPT identity map. */
1146 ret
= kvm_vm_ioctl(s
, KVM_SET_TSS_ADDR
, identity_base
+ 0x1000);
1151 /* Tell fw_cfg to notify the BIOS to reserve the range. */
1152 ret
= e820_add_entry(identity_base
, 0x4000, E820_RESERVED
);
1154 fprintf(stderr
, "e820_add_entry() table is full\n");
1157 qemu_register_reset(kvm_unpoison_all
, NULL
);
1159 shadow_mem
= machine_kvm_shadow_mem(ms
);
1160 if (shadow_mem
!= -1) {
1162 ret
= kvm_vm_ioctl(s
, KVM_SET_NR_MMU_PAGES
, shadow_mem
);
1168 if (kvm_check_extension(s
, KVM_CAP_X86_SMM
)) {
1169 smram_machine_done
.notify
= register_smram_listener
;
1170 qemu_add_machine_init_done_notifier(&smram_machine_done
);
1175 static void set_v8086_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
1177 lhs
->selector
= rhs
->selector
;
1178 lhs
->base
= rhs
->base
;
1179 lhs
->limit
= rhs
->limit
;
1191 static void set_seg(struct kvm_segment
*lhs
, const SegmentCache
*rhs
)
1193 unsigned flags
= rhs
->flags
;
1194 lhs
->selector
= rhs
->selector
;
1195 lhs
->base
= rhs
->base
;
1196 lhs
->limit
= rhs
->limit
;
1197 lhs
->type
= (flags
>> DESC_TYPE_SHIFT
) & 15;
1198 lhs
->present
= (flags
& DESC_P_MASK
) != 0;
1199 lhs
->dpl
= (flags
>> DESC_DPL_SHIFT
) & 3;
1200 lhs
->db
= (flags
>> DESC_B_SHIFT
) & 1;
1201 lhs
->s
= (flags
& DESC_S_MASK
) != 0;
1202 lhs
->l
= (flags
>> DESC_L_SHIFT
) & 1;
1203 lhs
->g
= (flags
& DESC_G_MASK
) != 0;
1204 lhs
->avl
= (flags
& DESC_AVL_MASK
) != 0;
1205 lhs
->unusable
= !lhs
->present
;
1209 static void get_seg(SegmentCache
*lhs
, const struct kvm_segment
*rhs
)
1211 lhs
->selector
= rhs
->selector
;
1212 lhs
->base
= rhs
->base
;
1213 lhs
->limit
= rhs
->limit
;
1214 if (rhs
->unusable
) {
1217 lhs
->flags
= (rhs
->type
<< DESC_TYPE_SHIFT
) |
1218 (rhs
->present
* DESC_P_MASK
) |
1219 (rhs
->dpl
<< DESC_DPL_SHIFT
) |
1220 (rhs
->db
<< DESC_B_SHIFT
) |
1221 (rhs
->s
* DESC_S_MASK
) |
1222 (rhs
->l
<< DESC_L_SHIFT
) |
1223 (rhs
->g
* DESC_G_MASK
) |
1224 (rhs
->avl
* DESC_AVL_MASK
);
1228 static void kvm_getput_reg(__u64
*kvm_reg
, target_ulong
*qemu_reg
, int set
)
1231 *kvm_reg
= *qemu_reg
;
1233 *qemu_reg
= *kvm_reg
;
1237 static int kvm_getput_regs(X86CPU
*cpu
, int set
)
1239 CPUX86State
*env
= &cpu
->env
;
1240 struct kvm_regs regs
;
1244 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_REGS
, ®s
);
1250 kvm_getput_reg(®s
.rax
, &env
->regs
[R_EAX
], set
);
1251 kvm_getput_reg(®s
.rbx
, &env
->regs
[R_EBX
], set
);
1252 kvm_getput_reg(®s
.rcx
, &env
->regs
[R_ECX
], set
);
1253 kvm_getput_reg(®s
.rdx
, &env
->regs
[R_EDX
], set
);
1254 kvm_getput_reg(®s
.rsi
, &env
->regs
[R_ESI
], set
);
1255 kvm_getput_reg(®s
.rdi
, &env
->regs
[R_EDI
], set
);
1256 kvm_getput_reg(®s
.rsp
, &env
->regs
[R_ESP
], set
);
1257 kvm_getput_reg(®s
.rbp
, &env
->regs
[R_EBP
], set
);
1258 #ifdef TARGET_X86_64
1259 kvm_getput_reg(®s
.r8
, &env
->regs
[8], set
);
1260 kvm_getput_reg(®s
.r9
, &env
->regs
[9], set
);
1261 kvm_getput_reg(®s
.r10
, &env
->regs
[10], set
);
1262 kvm_getput_reg(®s
.r11
, &env
->regs
[11], set
);
1263 kvm_getput_reg(®s
.r12
, &env
->regs
[12], set
);
1264 kvm_getput_reg(®s
.r13
, &env
->regs
[13], set
);
1265 kvm_getput_reg(®s
.r14
, &env
->regs
[14], set
);
1266 kvm_getput_reg(®s
.r15
, &env
->regs
[15], set
);
1269 kvm_getput_reg(®s
.rflags
, &env
->eflags
, set
);
1270 kvm_getput_reg(®s
.rip
, &env
->eip
, set
);
1273 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_REGS
, ®s
);
1279 static int kvm_put_fpu(X86CPU
*cpu
)
1281 CPUX86State
*env
= &cpu
->env
;
1285 memset(&fpu
, 0, sizeof fpu
);
1286 fpu
.fsw
= env
->fpus
& ~(7 << 11);
1287 fpu
.fsw
|= (env
->fpstt
& 7) << 11;
1288 fpu
.fcw
= env
->fpuc
;
1289 fpu
.last_opcode
= env
->fpop
;
1290 fpu
.last_ip
= env
->fpip
;
1291 fpu
.last_dp
= env
->fpdp
;
1292 for (i
= 0; i
< 8; ++i
) {
1293 fpu
.ftwx
|= (!env
->fptags
[i
]) << i
;
1295 memcpy(fpu
.fpr
, env
->fpregs
, sizeof env
->fpregs
);
1296 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1297 stq_p(&fpu
.xmm
[i
][0], env
->xmm_regs
[i
].ZMM_Q(0));
1298 stq_p(&fpu
.xmm
[i
][8], env
->xmm_regs
[i
].ZMM_Q(1));
1300 fpu
.mxcsr
= env
->mxcsr
;
1302 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_FPU
, &fpu
);
1305 #define XSAVE_FCW_FSW 0
1306 #define XSAVE_FTW_FOP 1
1307 #define XSAVE_CWD_RIP 2
1308 #define XSAVE_CWD_RDP 4
1309 #define XSAVE_MXCSR 6
1310 #define XSAVE_ST_SPACE 8
1311 #define XSAVE_XMM_SPACE 40
1312 #define XSAVE_XSTATE_BV 128
1313 #define XSAVE_YMMH_SPACE 144
1314 #define XSAVE_BNDREGS 240
1315 #define XSAVE_BNDCSR 256
1316 #define XSAVE_OPMASK 272
1317 #define XSAVE_ZMM_Hi256 288
1318 #define XSAVE_Hi16_ZMM 416
1319 #define XSAVE_PKRU 672
1321 #define XSAVE_BYTE_OFFSET(word_offset) \
1322 ((word_offset) * sizeof(((struct kvm_xsave *)0)->region[0]))
1324 #define ASSERT_OFFSET(word_offset, field) \
1325 QEMU_BUILD_BUG_ON(XSAVE_BYTE_OFFSET(word_offset) != \
1326 offsetof(X86XSaveArea, field))
1328 ASSERT_OFFSET(XSAVE_FCW_FSW
, legacy
.fcw
);
1329 ASSERT_OFFSET(XSAVE_FTW_FOP
, legacy
.ftw
);
1330 ASSERT_OFFSET(XSAVE_CWD_RIP
, legacy
.fpip
);
1331 ASSERT_OFFSET(XSAVE_CWD_RDP
, legacy
.fpdp
);
1332 ASSERT_OFFSET(XSAVE_MXCSR
, legacy
.mxcsr
);
1333 ASSERT_OFFSET(XSAVE_ST_SPACE
, legacy
.fpregs
);
1334 ASSERT_OFFSET(XSAVE_XMM_SPACE
, legacy
.xmm_regs
);
1335 ASSERT_OFFSET(XSAVE_XSTATE_BV
, header
.xstate_bv
);
1336 ASSERT_OFFSET(XSAVE_YMMH_SPACE
, avx_state
);
1337 ASSERT_OFFSET(XSAVE_BNDREGS
, bndreg_state
);
1338 ASSERT_OFFSET(XSAVE_BNDCSR
, bndcsr_state
);
1339 ASSERT_OFFSET(XSAVE_OPMASK
, opmask_state
);
1340 ASSERT_OFFSET(XSAVE_ZMM_Hi256
, zmm_hi256_state
);
1341 ASSERT_OFFSET(XSAVE_Hi16_ZMM
, hi16_zmm_state
);
1342 ASSERT_OFFSET(XSAVE_PKRU
, pkru_state
);
1344 static int kvm_put_xsave(X86CPU
*cpu
)
1346 CPUX86State
*env
= &cpu
->env
;
1347 X86XSaveArea
*xsave
= env
->kvm_xsave_buf
;
1348 uint16_t cwd
, swd
, twd
;
1352 return kvm_put_fpu(cpu
);
1355 memset(xsave
, 0, sizeof(struct kvm_xsave
));
1357 swd
= env
->fpus
& ~(7 << 11);
1358 swd
|= (env
->fpstt
& 7) << 11;
1360 for (i
= 0; i
< 8; ++i
) {
1361 twd
|= (!env
->fptags
[i
]) << i
;
1363 xsave
->legacy
.fcw
= cwd
;
1364 xsave
->legacy
.fsw
= swd
;
1365 xsave
->legacy
.ftw
= twd
;
1366 xsave
->legacy
.fpop
= env
->fpop
;
1367 xsave
->legacy
.fpip
= env
->fpip
;
1368 xsave
->legacy
.fpdp
= env
->fpdp
;
1369 memcpy(&xsave
->legacy
.fpregs
, env
->fpregs
,
1370 sizeof env
->fpregs
);
1371 xsave
->legacy
.mxcsr
= env
->mxcsr
;
1372 xsave
->header
.xstate_bv
= env
->xstate_bv
;
1373 memcpy(&xsave
->bndreg_state
.bnd_regs
, env
->bnd_regs
,
1374 sizeof env
->bnd_regs
);
1375 xsave
->bndcsr_state
.bndcsr
= env
->bndcs_regs
;
1376 memcpy(&xsave
->opmask_state
.opmask_regs
, env
->opmask_regs
,
1377 sizeof env
->opmask_regs
);
1379 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1380 uint8_t *xmm
= xsave
->legacy
.xmm_regs
[i
];
1381 uint8_t *ymmh
= xsave
->avx_state
.ymmh
[i
];
1382 uint8_t *zmmh
= xsave
->zmm_hi256_state
.zmm_hi256
[i
];
1383 stq_p(xmm
, env
->xmm_regs
[i
].ZMM_Q(0));
1384 stq_p(xmm
+8, env
->xmm_regs
[i
].ZMM_Q(1));
1385 stq_p(ymmh
, env
->xmm_regs
[i
].ZMM_Q(2));
1386 stq_p(ymmh
+8, env
->xmm_regs
[i
].ZMM_Q(3));
1387 stq_p(zmmh
, env
->xmm_regs
[i
].ZMM_Q(4));
1388 stq_p(zmmh
+8, env
->xmm_regs
[i
].ZMM_Q(5));
1389 stq_p(zmmh
+16, env
->xmm_regs
[i
].ZMM_Q(6));
1390 stq_p(zmmh
+24, env
->xmm_regs
[i
].ZMM_Q(7));
1393 #ifdef TARGET_X86_64
1394 memcpy(&xsave
->hi16_zmm_state
.hi16_zmm
, &env
->xmm_regs
[16],
1395 16 * sizeof env
->xmm_regs
[16]);
1396 memcpy(&xsave
->pkru_state
, &env
->pkru
, sizeof env
->pkru
);
1398 r
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XSAVE
, xsave
);
1402 static int kvm_put_xcrs(X86CPU
*cpu
)
1404 CPUX86State
*env
= &cpu
->env
;
1405 struct kvm_xcrs xcrs
= {};
1413 xcrs
.xcrs
[0].xcr
= 0;
1414 xcrs
.xcrs
[0].value
= env
->xcr0
;
1415 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_XCRS
, &xcrs
);
1418 static int kvm_put_sregs(X86CPU
*cpu
)
1420 CPUX86State
*env
= &cpu
->env
;
1421 struct kvm_sregs sregs
;
1423 memset(sregs
.interrupt_bitmap
, 0, sizeof(sregs
.interrupt_bitmap
));
1424 if (env
->interrupt_injected
>= 0) {
1425 sregs
.interrupt_bitmap
[env
->interrupt_injected
/ 64] |=
1426 (uint64_t)1 << (env
->interrupt_injected
% 64);
1429 if ((env
->eflags
& VM_MASK
)) {
1430 set_v8086_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
1431 set_v8086_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
1432 set_v8086_seg(&sregs
.es
, &env
->segs
[R_ES
]);
1433 set_v8086_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
1434 set_v8086_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
1435 set_v8086_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
1437 set_seg(&sregs
.cs
, &env
->segs
[R_CS
]);
1438 set_seg(&sregs
.ds
, &env
->segs
[R_DS
]);
1439 set_seg(&sregs
.es
, &env
->segs
[R_ES
]);
1440 set_seg(&sregs
.fs
, &env
->segs
[R_FS
]);
1441 set_seg(&sregs
.gs
, &env
->segs
[R_GS
]);
1442 set_seg(&sregs
.ss
, &env
->segs
[R_SS
]);
1445 set_seg(&sregs
.tr
, &env
->tr
);
1446 set_seg(&sregs
.ldt
, &env
->ldt
);
1448 sregs
.idt
.limit
= env
->idt
.limit
;
1449 sregs
.idt
.base
= env
->idt
.base
;
1450 memset(sregs
.idt
.padding
, 0, sizeof sregs
.idt
.padding
);
1451 sregs
.gdt
.limit
= env
->gdt
.limit
;
1452 sregs
.gdt
.base
= env
->gdt
.base
;
1453 memset(sregs
.gdt
.padding
, 0, sizeof sregs
.gdt
.padding
);
1455 sregs
.cr0
= env
->cr
[0];
1456 sregs
.cr2
= env
->cr
[2];
1457 sregs
.cr3
= env
->cr
[3];
1458 sregs
.cr4
= env
->cr
[4];
1460 sregs
.cr8
= cpu_get_apic_tpr(cpu
->apic_state
);
1461 sregs
.apic_base
= cpu_get_apic_base(cpu
->apic_state
);
1463 sregs
.efer
= env
->efer
;
1465 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_SREGS
, &sregs
);
1468 static void kvm_msr_buf_reset(X86CPU
*cpu
)
1470 memset(cpu
->kvm_msr_buf
, 0, MSR_BUF_SIZE
);
1473 static void kvm_msr_entry_add(X86CPU
*cpu
, uint32_t index
, uint64_t value
)
1475 struct kvm_msrs
*msrs
= cpu
->kvm_msr_buf
;
1476 void *limit
= ((void *)msrs
) + MSR_BUF_SIZE
;
1477 struct kvm_msr_entry
*entry
= &msrs
->entries
[msrs
->nmsrs
];
1479 assert((void *)(entry
+ 1) <= limit
);
1481 entry
->index
= index
;
1482 entry
->reserved
= 0;
1483 entry
->data
= value
;
1487 static int kvm_put_tscdeadline_msr(X86CPU
*cpu
)
1489 CPUX86State
*env
= &cpu
->env
;
1492 if (!has_msr_tsc_deadline
) {
1496 kvm_msr_buf_reset(cpu
);
1497 kvm_msr_entry_add(cpu
, MSR_IA32_TSCDEADLINE
, env
->tsc_deadline
);
1499 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, cpu
->kvm_msr_buf
);
1509 * Provide a separate write service for the feature control MSR in order to
1510 * kick the VCPU out of VMXON or even guest mode on reset. This has to be done
1511 * before writing any other state because forcibly leaving nested mode
1512 * invalidates the VCPU state.
1514 static int kvm_put_msr_feature_control(X86CPU
*cpu
)
1518 if (!has_msr_feature_control
) {
1522 kvm_msr_buf_reset(cpu
);
1523 kvm_msr_entry_add(cpu
, MSR_IA32_FEATURE_CONTROL
,
1524 cpu
->env
.msr_ia32_feature_control
);
1526 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, cpu
->kvm_msr_buf
);
1535 static int kvm_put_msrs(X86CPU
*cpu
, int level
)
1537 CPUX86State
*env
= &cpu
->env
;
1541 kvm_msr_buf_reset(cpu
);
1543 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_CS
, env
->sysenter_cs
);
1544 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_ESP
, env
->sysenter_esp
);
1545 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_EIP
, env
->sysenter_eip
);
1546 kvm_msr_entry_add(cpu
, MSR_PAT
, env
->pat
);
1548 kvm_msr_entry_add(cpu
, MSR_STAR
, env
->star
);
1550 if (has_msr_hsave_pa
) {
1551 kvm_msr_entry_add(cpu
, MSR_VM_HSAVE_PA
, env
->vm_hsave
);
1553 if (has_msr_tsc_aux
) {
1554 kvm_msr_entry_add(cpu
, MSR_TSC_AUX
, env
->tsc_aux
);
1556 if (has_msr_tsc_adjust
) {
1557 kvm_msr_entry_add(cpu
, MSR_TSC_ADJUST
, env
->tsc_adjust
);
1559 if (has_msr_misc_enable
) {
1560 kvm_msr_entry_add(cpu
, MSR_IA32_MISC_ENABLE
,
1561 env
->msr_ia32_misc_enable
);
1563 if (has_msr_smbase
) {
1564 kvm_msr_entry_add(cpu
, MSR_IA32_SMBASE
, env
->smbase
);
1566 if (has_msr_bndcfgs
) {
1567 kvm_msr_entry_add(cpu
, MSR_IA32_BNDCFGS
, env
->msr_bndcfgs
);
1570 kvm_msr_entry_add(cpu
, MSR_IA32_XSS
, env
->xss
);
1572 #ifdef TARGET_X86_64
1573 if (lm_capable_kernel
) {
1574 kvm_msr_entry_add(cpu
, MSR_CSTAR
, env
->cstar
);
1575 kvm_msr_entry_add(cpu
, MSR_KERNELGSBASE
, env
->kernelgsbase
);
1576 kvm_msr_entry_add(cpu
, MSR_FMASK
, env
->fmask
);
1577 kvm_msr_entry_add(cpu
, MSR_LSTAR
, env
->lstar
);
1581 * The following MSRs have side effects on the guest or are too heavy
1582 * for normal writeback. Limit them to reset or full state updates.
1584 if (level
>= KVM_PUT_RESET_STATE
) {
1585 kvm_msr_entry_add(cpu
, MSR_IA32_TSC
, env
->tsc
);
1586 kvm_msr_entry_add(cpu
, MSR_KVM_SYSTEM_TIME
, env
->system_time_msr
);
1587 kvm_msr_entry_add(cpu
, MSR_KVM_WALL_CLOCK
, env
->wall_clock_msr
);
1588 if (has_msr_async_pf_en
) {
1589 kvm_msr_entry_add(cpu
, MSR_KVM_ASYNC_PF_EN
, env
->async_pf_en_msr
);
1591 if (has_msr_pv_eoi_en
) {
1592 kvm_msr_entry_add(cpu
, MSR_KVM_PV_EOI_EN
, env
->pv_eoi_en_msr
);
1594 if (has_msr_kvm_steal_time
) {
1595 kvm_msr_entry_add(cpu
, MSR_KVM_STEAL_TIME
, env
->steal_time_msr
);
1597 if (has_msr_architectural_pmu
) {
1598 /* Stop the counter. */
1599 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
, 0);
1600 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
, 0);
1602 /* Set the counter values. */
1603 for (i
= 0; i
< MAX_FIXED_COUNTERS
; i
++) {
1604 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR0
+ i
,
1605 env
->msr_fixed_counters
[i
]);
1607 for (i
= 0; i
< num_architectural_pmu_counters
; i
++) {
1608 kvm_msr_entry_add(cpu
, MSR_P6_PERFCTR0
+ i
,
1609 env
->msr_gp_counters
[i
]);
1610 kvm_msr_entry_add(cpu
, MSR_P6_EVNTSEL0
+ i
,
1611 env
->msr_gp_evtsel
[i
]);
1613 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_STATUS
,
1614 env
->msr_global_status
);
1615 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_OVF_CTRL
,
1616 env
->msr_global_ovf_ctrl
);
1618 /* Now start the PMU. */
1619 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
,
1620 env
->msr_fixed_ctr_ctrl
);
1621 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
,
1622 env
->msr_global_ctrl
);
1624 if (has_msr_hv_hypercall
) {
1625 kvm_msr_entry_add(cpu
, HV_X64_MSR_GUEST_OS_ID
,
1626 env
->msr_hv_guest_os_id
);
1627 kvm_msr_entry_add(cpu
, HV_X64_MSR_HYPERCALL
,
1628 env
->msr_hv_hypercall
);
1630 if (has_msr_hv_vapic
) {
1631 kvm_msr_entry_add(cpu
, HV_X64_MSR_APIC_ASSIST_PAGE
,
1634 if (has_msr_hv_tsc
) {
1635 kvm_msr_entry_add(cpu
, HV_X64_MSR_REFERENCE_TSC
, env
->msr_hv_tsc
);
1637 if (has_msr_hv_crash
) {
1640 for (j
= 0; j
< HV_X64_MSR_CRASH_PARAMS
; j
++)
1641 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_P0
+ j
,
1642 env
->msr_hv_crash_params
[j
]);
1644 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_CTL
,
1645 HV_X64_MSR_CRASH_CTL_NOTIFY
);
1647 if (has_msr_hv_runtime
) {
1648 kvm_msr_entry_add(cpu
, HV_X64_MSR_VP_RUNTIME
, env
->msr_hv_runtime
);
1650 if (cpu
->hyperv_synic
) {
1653 kvm_msr_entry_add(cpu
, HV_X64_MSR_SCONTROL
,
1654 env
->msr_hv_synic_control
);
1655 kvm_msr_entry_add(cpu
, HV_X64_MSR_SVERSION
,
1656 env
->msr_hv_synic_version
);
1657 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIEFP
,
1658 env
->msr_hv_synic_evt_page
);
1659 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIMP
,
1660 env
->msr_hv_synic_msg_page
);
1662 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_synic_sint
); j
++) {
1663 kvm_msr_entry_add(cpu
, HV_X64_MSR_SINT0
+ j
,
1664 env
->msr_hv_synic_sint
[j
]);
1667 if (has_msr_hv_stimer
) {
1670 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_stimer_config
); j
++) {
1671 kvm_msr_entry_add(cpu
, HV_X64_MSR_STIMER0_CONFIG
+ j
* 2,
1672 env
->msr_hv_stimer_config
[j
]);
1675 for (j
= 0; j
< ARRAY_SIZE(env
->msr_hv_stimer_count
); j
++) {
1676 kvm_msr_entry_add(cpu
, HV_X64_MSR_STIMER0_COUNT
+ j
* 2,
1677 env
->msr_hv_stimer_count
[j
]);
1681 kvm_msr_entry_add(cpu
, MSR_MTRRdefType
, env
->mtrr_deftype
);
1682 kvm_msr_entry_add(cpu
, MSR_MTRRfix64K_00000
, env
->mtrr_fixed
[0]);
1683 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_80000
, env
->mtrr_fixed
[1]);
1684 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_A0000
, env
->mtrr_fixed
[2]);
1685 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C0000
, env
->mtrr_fixed
[3]);
1686 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C8000
, env
->mtrr_fixed
[4]);
1687 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D0000
, env
->mtrr_fixed
[5]);
1688 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D8000
, env
->mtrr_fixed
[6]);
1689 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E0000
, env
->mtrr_fixed
[7]);
1690 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E8000
, env
->mtrr_fixed
[8]);
1691 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F0000
, env
->mtrr_fixed
[9]);
1692 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F8000
, env
->mtrr_fixed
[10]);
1693 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
1694 kvm_msr_entry_add(cpu
, MSR_MTRRphysBase(i
),
1695 env
->mtrr_var
[i
].base
);
1696 kvm_msr_entry_add(cpu
, MSR_MTRRphysMask(i
),
1697 env
->mtrr_var
[i
].mask
);
1701 /* Note: MSR_IA32_FEATURE_CONTROL is written separately, see
1702 * kvm_put_msr_feature_control. */
1707 kvm_msr_entry_add(cpu
, MSR_MCG_STATUS
, env
->mcg_status
);
1708 kvm_msr_entry_add(cpu
, MSR_MCG_CTL
, env
->mcg_ctl
);
1709 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
1710 kvm_msr_entry_add(cpu
, MSR_MC0_CTL
+ i
, env
->mce_banks
[i
]);
1714 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MSRS
, cpu
->kvm_msr_buf
);
1719 assert(ret
== cpu
->kvm_msr_buf
->nmsrs
);
1724 static int kvm_get_fpu(X86CPU
*cpu
)
1726 CPUX86State
*env
= &cpu
->env
;
1730 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_FPU
, &fpu
);
1735 env
->fpstt
= (fpu
.fsw
>> 11) & 7;
1736 env
->fpus
= fpu
.fsw
;
1737 env
->fpuc
= fpu
.fcw
;
1738 env
->fpop
= fpu
.last_opcode
;
1739 env
->fpip
= fpu
.last_ip
;
1740 env
->fpdp
= fpu
.last_dp
;
1741 for (i
= 0; i
< 8; ++i
) {
1742 env
->fptags
[i
] = !((fpu
.ftwx
>> i
) & 1);
1744 memcpy(env
->fpregs
, fpu
.fpr
, sizeof env
->fpregs
);
1745 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1746 env
->xmm_regs
[i
].ZMM_Q(0) = ldq_p(&fpu
.xmm
[i
][0]);
1747 env
->xmm_regs
[i
].ZMM_Q(1) = ldq_p(&fpu
.xmm
[i
][8]);
1749 env
->mxcsr
= fpu
.mxcsr
;
1754 static int kvm_get_xsave(X86CPU
*cpu
)
1756 CPUX86State
*env
= &cpu
->env
;
1757 X86XSaveArea
*xsave
= env
->kvm_xsave_buf
;
1759 uint16_t cwd
, swd
, twd
;
1762 return kvm_get_fpu(cpu
);
1765 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XSAVE
, xsave
);
1770 cwd
= xsave
->legacy
.fcw
;
1771 swd
= xsave
->legacy
.fsw
;
1772 twd
= xsave
->legacy
.ftw
;
1773 env
->fpop
= xsave
->legacy
.fpop
;
1774 env
->fpstt
= (swd
>> 11) & 7;
1777 for (i
= 0; i
< 8; ++i
) {
1778 env
->fptags
[i
] = !((twd
>> i
) & 1);
1780 env
->fpip
= xsave
->legacy
.fpip
;
1781 env
->fpdp
= xsave
->legacy
.fpdp
;
1782 env
->mxcsr
= xsave
->legacy
.mxcsr
;
1783 memcpy(env
->fpregs
, &xsave
->legacy
.fpregs
,
1784 sizeof env
->fpregs
);
1785 env
->xstate_bv
= xsave
->header
.xstate_bv
;
1786 memcpy(env
->bnd_regs
, &xsave
->bndreg_state
.bnd_regs
,
1787 sizeof env
->bnd_regs
);
1788 env
->bndcs_regs
= xsave
->bndcsr_state
.bndcsr
;
1789 memcpy(env
->opmask_regs
, &xsave
->opmask_state
.opmask_regs
,
1790 sizeof env
->opmask_regs
);
1792 for (i
= 0; i
< CPU_NB_REGS
; i
++) {
1793 uint8_t *xmm
= xsave
->legacy
.xmm_regs
[i
];
1794 uint8_t *ymmh
= xsave
->avx_state
.ymmh
[i
];
1795 uint8_t *zmmh
= xsave
->zmm_hi256_state
.zmm_hi256
[i
];
1796 env
->xmm_regs
[i
].ZMM_Q(0) = ldq_p(xmm
);
1797 env
->xmm_regs
[i
].ZMM_Q(1) = ldq_p(xmm
+8);
1798 env
->xmm_regs
[i
].ZMM_Q(2) = ldq_p(ymmh
);
1799 env
->xmm_regs
[i
].ZMM_Q(3) = ldq_p(ymmh
+8);
1800 env
->xmm_regs
[i
].ZMM_Q(4) = ldq_p(zmmh
);
1801 env
->xmm_regs
[i
].ZMM_Q(5) = ldq_p(zmmh
+8);
1802 env
->xmm_regs
[i
].ZMM_Q(6) = ldq_p(zmmh
+16);
1803 env
->xmm_regs
[i
].ZMM_Q(7) = ldq_p(zmmh
+24);
1806 #ifdef TARGET_X86_64
1807 memcpy(&env
->xmm_regs
[16], &xsave
->hi16_zmm_state
.hi16_zmm
,
1808 16 * sizeof env
->xmm_regs
[16]);
1809 memcpy(&env
->pkru
, &xsave
->pkru_state
, sizeof env
->pkru
);
1814 static int kvm_get_xcrs(X86CPU
*cpu
)
1816 CPUX86State
*env
= &cpu
->env
;
1818 struct kvm_xcrs xcrs
;
1824 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_XCRS
, &xcrs
);
1829 for (i
= 0; i
< xcrs
.nr_xcrs
; i
++) {
1830 /* Only support xcr0 now */
1831 if (xcrs
.xcrs
[i
].xcr
== 0) {
1832 env
->xcr0
= xcrs
.xcrs
[i
].value
;
1839 static int kvm_get_sregs(X86CPU
*cpu
)
1841 CPUX86State
*env
= &cpu
->env
;
1842 struct kvm_sregs sregs
;
1846 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_SREGS
, &sregs
);
1851 /* There can only be one pending IRQ set in the bitmap at a time, so try
1852 to find it and save its number instead (-1 for none). */
1853 env
->interrupt_injected
= -1;
1854 for (i
= 0; i
< ARRAY_SIZE(sregs
.interrupt_bitmap
); i
++) {
1855 if (sregs
.interrupt_bitmap
[i
]) {
1856 bit
= ctz64(sregs
.interrupt_bitmap
[i
]);
1857 env
->interrupt_injected
= i
* 64 + bit
;
1862 get_seg(&env
->segs
[R_CS
], &sregs
.cs
);
1863 get_seg(&env
->segs
[R_DS
], &sregs
.ds
);
1864 get_seg(&env
->segs
[R_ES
], &sregs
.es
);
1865 get_seg(&env
->segs
[R_FS
], &sregs
.fs
);
1866 get_seg(&env
->segs
[R_GS
], &sregs
.gs
);
1867 get_seg(&env
->segs
[R_SS
], &sregs
.ss
);
1869 get_seg(&env
->tr
, &sregs
.tr
);
1870 get_seg(&env
->ldt
, &sregs
.ldt
);
1872 env
->idt
.limit
= sregs
.idt
.limit
;
1873 env
->idt
.base
= sregs
.idt
.base
;
1874 env
->gdt
.limit
= sregs
.gdt
.limit
;
1875 env
->gdt
.base
= sregs
.gdt
.base
;
1877 env
->cr
[0] = sregs
.cr0
;
1878 env
->cr
[2] = sregs
.cr2
;
1879 env
->cr
[3] = sregs
.cr3
;
1880 env
->cr
[4] = sregs
.cr4
;
1882 env
->efer
= sregs
.efer
;
1884 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1886 #define HFLAG_COPY_MASK \
1887 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1888 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1889 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1890 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1892 hflags
= env
->hflags
& HFLAG_COPY_MASK
;
1893 hflags
|= (env
->segs
[R_SS
].flags
>> DESC_DPL_SHIFT
) & HF_CPL_MASK
;
1894 hflags
|= (env
->cr
[0] & CR0_PE_MASK
) << (HF_PE_SHIFT
- CR0_PE_SHIFT
);
1895 hflags
|= (env
->cr
[0] << (HF_MP_SHIFT
- CR0_MP_SHIFT
)) &
1896 (HF_MP_MASK
| HF_EM_MASK
| HF_TS_MASK
);
1897 hflags
|= (env
->eflags
& (HF_TF_MASK
| HF_VM_MASK
| HF_IOPL_MASK
));
1899 if (env
->cr
[4] & CR4_OSFXSR_MASK
) {
1900 hflags
|= HF_OSFXSR_MASK
;
1903 if (env
->efer
& MSR_EFER_LMA
) {
1904 hflags
|= HF_LMA_MASK
;
1907 if ((hflags
& HF_LMA_MASK
) && (env
->segs
[R_CS
].flags
& DESC_L_MASK
)) {
1908 hflags
|= HF_CS32_MASK
| HF_SS32_MASK
| HF_CS64_MASK
;
1910 hflags
|= (env
->segs
[R_CS
].flags
& DESC_B_MASK
) >>
1911 (DESC_B_SHIFT
- HF_CS32_SHIFT
);
1912 hflags
|= (env
->segs
[R_SS
].flags
& DESC_B_MASK
) >>
1913 (DESC_B_SHIFT
- HF_SS32_SHIFT
);
1914 if (!(env
->cr
[0] & CR0_PE_MASK
) || (env
->eflags
& VM_MASK
) ||
1915 !(hflags
& HF_CS32_MASK
)) {
1916 hflags
|= HF_ADDSEG_MASK
;
1918 hflags
|= ((env
->segs
[R_DS
].base
| env
->segs
[R_ES
].base
|
1919 env
->segs
[R_SS
].base
) != 0) << HF_ADDSEG_SHIFT
;
1922 env
->hflags
= hflags
;
1927 static int kvm_get_msrs(X86CPU
*cpu
)
1929 CPUX86State
*env
= &cpu
->env
;
1930 struct kvm_msr_entry
*msrs
= cpu
->kvm_msr_buf
->entries
;
1933 kvm_msr_buf_reset(cpu
);
1935 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_CS
, 0);
1936 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_ESP
, 0);
1937 kvm_msr_entry_add(cpu
, MSR_IA32_SYSENTER_EIP
, 0);
1938 kvm_msr_entry_add(cpu
, MSR_PAT
, 0);
1940 kvm_msr_entry_add(cpu
, MSR_STAR
, 0);
1942 if (has_msr_hsave_pa
) {
1943 kvm_msr_entry_add(cpu
, MSR_VM_HSAVE_PA
, 0);
1945 if (has_msr_tsc_aux
) {
1946 kvm_msr_entry_add(cpu
, MSR_TSC_AUX
, 0);
1948 if (has_msr_tsc_adjust
) {
1949 kvm_msr_entry_add(cpu
, MSR_TSC_ADJUST
, 0);
1951 if (has_msr_tsc_deadline
) {
1952 kvm_msr_entry_add(cpu
, MSR_IA32_TSCDEADLINE
, 0);
1954 if (has_msr_misc_enable
) {
1955 kvm_msr_entry_add(cpu
, MSR_IA32_MISC_ENABLE
, 0);
1957 if (has_msr_smbase
) {
1958 kvm_msr_entry_add(cpu
, MSR_IA32_SMBASE
, 0);
1960 if (has_msr_feature_control
) {
1961 kvm_msr_entry_add(cpu
, MSR_IA32_FEATURE_CONTROL
, 0);
1963 if (has_msr_bndcfgs
) {
1964 kvm_msr_entry_add(cpu
, MSR_IA32_BNDCFGS
, 0);
1967 kvm_msr_entry_add(cpu
, MSR_IA32_XSS
, 0);
1971 if (!env
->tsc_valid
) {
1972 kvm_msr_entry_add(cpu
, MSR_IA32_TSC
, 0);
1973 env
->tsc_valid
= !runstate_is_running();
1976 #ifdef TARGET_X86_64
1977 if (lm_capable_kernel
) {
1978 kvm_msr_entry_add(cpu
, MSR_CSTAR
, 0);
1979 kvm_msr_entry_add(cpu
, MSR_KERNELGSBASE
, 0);
1980 kvm_msr_entry_add(cpu
, MSR_FMASK
, 0);
1981 kvm_msr_entry_add(cpu
, MSR_LSTAR
, 0);
1984 kvm_msr_entry_add(cpu
, MSR_KVM_SYSTEM_TIME
, 0);
1985 kvm_msr_entry_add(cpu
, MSR_KVM_WALL_CLOCK
, 0);
1986 if (has_msr_async_pf_en
) {
1987 kvm_msr_entry_add(cpu
, MSR_KVM_ASYNC_PF_EN
, 0);
1989 if (has_msr_pv_eoi_en
) {
1990 kvm_msr_entry_add(cpu
, MSR_KVM_PV_EOI_EN
, 0);
1992 if (has_msr_kvm_steal_time
) {
1993 kvm_msr_entry_add(cpu
, MSR_KVM_STEAL_TIME
, 0);
1995 if (has_msr_architectural_pmu
) {
1996 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR_CTRL
, 0);
1997 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_CTRL
, 0);
1998 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_STATUS
, 0);
1999 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_GLOBAL_OVF_CTRL
, 0);
2000 for (i
= 0; i
< MAX_FIXED_COUNTERS
; i
++) {
2001 kvm_msr_entry_add(cpu
, MSR_CORE_PERF_FIXED_CTR0
+ i
, 0);
2003 for (i
= 0; i
< num_architectural_pmu_counters
; i
++) {
2004 kvm_msr_entry_add(cpu
, MSR_P6_PERFCTR0
+ i
, 0);
2005 kvm_msr_entry_add(cpu
, MSR_P6_EVNTSEL0
+ i
, 0);
2010 kvm_msr_entry_add(cpu
, MSR_MCG_STATUS
, 0);
2011 kvm_msr_entry_add(cpu
, MSR_MCG_CTL
, 0);
2012 for (i
= 0; i
< (env
->mcg_cap
& 0xff) * 4; i
++) {
2013 kvm_msr_entry_add(cpu
, MSR_MC0_CTL
+ i
, 0);
2017 if (has_msr_hv_hypercall
) {
2018 kvm_msr_entry_add(cpu
, HV_X64_MSR_HYPERCALL
, 0);
2019 kvm_msr_entry_add(cpu
, HV_X64_MSR_GUEST_OS_ID
, 0);
2021 if (has_msr_hv_vapic
) {
2022 kvm_msr_entry_add(cpu
, HV_X64_MSR_APIC_ASSIST_PAGE
, 0);
2024 if (has_msr_hv_tsc
) {
2025 kvm_msr_entry_add(cpu
, HV_X64_MSR_REFERENCE_TSC
, 0);
2027 if (has_msr_hv_crash
) {
2030 for (j
= 0; j
< HV_X64_MSR_CRASH_PARAMS
; j
++) {
2031 kvm_msr_entry_add(cpu
, HV_X64_MSR_CRASH_P0
+ j
, 0);
2034 if (has_msr_hv_runtime
) {
2035 kvm_msr_entry_add(cpu
, HV_X64_MSR_VP_RUNTIME
, 0);
2037 if (cpu
->hyperv_synic
) {
2040 kvm_msr_entry_add(cpu
, HV_X64_MSR_SCONTROL
, 0);
2041 kvm_msr_entry_add(cpu
, HV_X64_MSR_SVERSION
, 0);
2042 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIEFP
, 0);
2043 kvm_msr_entry_add(cpu
, HV_X64_MSR_SIMP
, 0);
2044 for (msr
= HV_X64_MSR_SINT0
; msr
<= HV_X64_MSR_SINT15
; msr
++) {
2045 kvm_msr_entry_add(cpu
, msr
, 0);
2048 if (has_msr_hv_stimer
) {
2051 for (msr
= HV_X64_MSR_STIMER0_CONFIG
; msr
<= HV_X64_MSR_STIMER3_COUNT
;
2053 kvm_msr_entry_add(cpu
, msr
, 0);
2057 kvm_msr_entry_add(cpu
, MSR_MTRRdefType
, 0);
2058 kvm_msr_entry_add(cpu
, MSR_MTRRfix64K_00000
, 0);
2059 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_80000
, 0);
2060 kvm_msr_entry_add(cpu
, MSR_MTRRfix16K_A0000
, 0);
2061 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C0000
, 0);
2062 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_C8000
, 0);
2063 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D0000
, 0);
2064 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_D8000
, 0);
2065 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E0000
, 0);
2066 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_E8000
, 0);
2067 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F0000
, 0);
2068 kvm_msr_entry_add(cpu
, MSR_MTRRfix4K_F8000
, 0);
2069 for (i
= 0; i
< MSR_MTRRcap_VCNT
; i
++) {
2070 kvm_msr_entry_add(cpu
, MSR_MTRRphysBase(i
), 0);
2071 kvm_msr_entry_add(cpu
, MSR_MTRRphysMask(i
), 0);
2075 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_MSRS
, cpu
->kvm_msr_buf
);
2080 assert(ret
== cpu
->kvm_msr_buf
->nmsrs
);
2081 for (i
= 0; i
< ret
; i
++) {
2082 uint32_t index
= msrs
[i
].index
;
2084 case MSR_IA32_SYSENTER_CS
:
2085 env
->sysenter_cs
= msrs
[i
].data
;
2087 case MSR_IA32_SYSENTER_ESP
:
2088 env
->sysenter_esp
= msrs
[i
].data
;
2090 case MSR_IA32_SYSENTER_EIP
:
2091 env
->sysenter_eip
= msrs
[i
].data
;
2094 env
->pat
= msrs
[i
].data
;
2097 env
->star
= msrs
[i
].data
;
2099 #ifdef TARGET_X86_64
2101 env
->cstar
= msrs
[i
].data
;
2103 case MSR_KERNELGSBASE
:
2104 env
->kernelgsbase
= msrs
[i
].data
;
2107 env
->fmask
= msrs
[i
].data
;
2110 env
->lstar
= msrs
[i
].data
;
2114 env
->tsc
= msrs
[i
].data
;
2117 env
->tsc_aux
= msrs
[i
].data
;
2119 case MSR_TSC_ADJUST
:
2120 env
->tsc_adjust
= msrs
[i
].data
;
2122 case MSR_IA32_TSCDEADLINE
:
2123 env
->tsc_deadline
= msrs
[i
].data
;
2125 case MSR_VM_HSAVE_PA
:
2126 env
->vm_hsave
= msrs
[i
].data
;
2128 case MSR_KVM_SYSTEM_TIME
:
2129 env
->system_time_msr
= msrs
[i
].data
;
2131 case MSR_KVM_WALL_CLOCK
:
2132 env
->wall_clock_msr
= msrs
[i
].data
;
2134 case MSR_MCG_STATUS
:
2135 env
->mcg_status
= msrs
[i
].data
;
2138 env
->mcg_ctl
= msrs
[i
].data
;
2140 case MSR_IA32_MISC_ENABLE
:
2141 env
->msr_ia32_misc_enable
= msrs
[i
].data
;
2143 case MSR_IA32_SMBASE
:
2144 env
->smbase
= msrs
[i
].data
;
2146 case MSR_IA32_FEATURE_CONTROL
:
2147 env
->msr_ia32_feature_control
= msrs
[i
].data
;
2149 case MSR_IA32_BNDCFGS
:
2150 env
->msr_bndcfgs
= msrs
[i
].data
;
2153 env
->xss
= msrs
[i
].data
;
2156 if (msrs
[i
].index
>= MSR_MC0_CTL
&&
2157 msrs
[i
].index
< MSR_MC0_CTL
+ (env
->mcg_cap
& 0xff) * 4) {
2158 env
->mce_banks
[msrs
[i
].index
- MSR_MC0_CTL
] = msrs
[i
].data
;
2161 case MSR_KVM_ASYNC_PF_EN
:
2162 env
->async_pf_en_msr
= msrs
[i
].data
;
2164 case MSR_KVM_PV_EOI_EN
:
2165 env
->pv_eoi_en_msr
= msrs
[i
].data
;
2167 case MSR_KVM_STEAL_TIME
:
2168 env
->steal_time_msr
= msrs
[i
].data
;
2170 case MSR_CORE_PERF_FIXED_CTR_CTRL
:
2171 env
->msr_fixed_ctr_ctrl
= msrs
[i
].data
;
2173 case MSR_CORE_PERF_GLOBAL_CTRL
:
2174 env
->msr_global_ctrl
= msrs
[i
].data
;
2176 case MSR_CORE_PERF_GLOBAL_STATUS
:
2177 env
->msr_global_status
= msrs
[i
].data
;
2179 case MSR_CORE_PERF_GLOBAL_OVF_CTRL
:
2180 env
->msr_global_ovf_ctrl
= msrs
[i
].data
;
2182 case MSR_CORE_PERF_FIXED_CTR0
... MSR_CORE_PERF_FIXED_CTR0
+ MAX_FIXED_COUNTERS
- 1:
2183 env
->msr_fixed_counters
[index
- MSR_CORE_PERF_FIXED_CTR0
] = msrs
[i
].data
;
2185 case MSR_P6_PERFCTR0
... MSR_P6_PERFCTR0
+ MAX_GP_COUNTERS
- 1:
2186 env
->msr_gp_counters
[index
- MSR_P6_PERFCTR0
] = msrs
[i
].data
;
2188 case MSR_P6_EVNTSEL0
... MSR_P6_EVNTSEL0
+ MAX_GP_COUNTERS
- 1:
2189 env
->msr_gp_evtsel
[index
- MSR_P6_EVNTSEL0
] = msrs
[i
].data
;
2191 case HV_X64_MSR_HYPERCALL
:
2192 env
->msr_hv_hypercall
= msrs
[i
].data
;
2194 case HV_X64_MSR_GUEST_OS_ID
:
2195 env
->msr_hv_guest_os_id
= msrs
[i
].data
;
2197 case HV_X64_MSR_APIC_ASSIST_PAGE
:
2198 env
->msr_hv_vapic
= msrs
[i
].data
;
2200 case HV_X64_MSR_REFERENCE_TSC
:
2201 env
->msr_hv_tsc
= msrs
[i
].data
;
2203 case HV_X64_MSR_CRASH_P0
... HV_X64_MSR_CRASH_P4
:
2204 env
->msr_hv_crash_params
[index
- HV_X64_MSR_CRASH_P0
] = msrs
[i
].data
;
2206 case HV_X64_MSR_VP_RUNTIME
:
2207 env
->msr_hv_runtime
= msrs
[i
].data
;
2209 case HV_X64_MSR_SCONTROL
:
2210 env
->msr_hv_synic_control
= msrs
[i
].data
;
2212 case HV_X64_MSR_SVERSION
:
2213 env
->msr_hv_synic_version
= msrs
[i
].data
;
2215 case HV_X64_MSR_SIEFP
:
2216 env
->msr_hv_synic_evt_page
= msrs
[i
].data
;
2218 case HV_X64_MSR_SIMP
:
2219 env
->msr_hv_synic_msg_page
= msrs
[i
].data
;
2221 case HV_X64_MSR_SINT0
... HV_X64_MSR_SINT15
:
2222 env
->msr_hv_synic_sint
[index
- HV_X64_MSR_SINT0
] = msrs
[i
].data
;
2224 case HV_X64_MSR_STIMER0_CONFIG
:
2225 case HV_X64_MSR_STIMER1_CONFIG
:
2226 case HV_X64_MSR_STIMER2_CONFIG
:
2227 case HV_X64_MSR_STIMER3_CONFIG
:
2228 env
->msr_hv_stimer_config
[(index
- HV_X64_MSR_STIMER0_CONFIG
)/2] =
2231 case HV_X64_MSR_STIMER0_COUNT
:
2232 case HV_X64_MSR_STIMER1_COUNT
:
2233 case HV_X64_MSR_STIMER2_COUNT
:
2234 case HV_X64_MSR_STIMER3_COUNT
:
2235 env
->msr_hv_stimer_count
[(index
- HV_X64_MSR_STIMER0_COUNT
)/2] =
2238 case MSR_MTRRdefType
:
2239 env
->mtrr_deftype
= msrs
[i
].data
;
2241 case MSR_MTRRfix64K_00000
:
2242 env
->mtrr_fixed
[0] = msrs
[i
].data
;
2244 case MSR_MTRRfix16K_80000
:
2245 env
->mtrr_fixed
[1] = msrs
[i
].data
;
2247 case MSR_MTRRfix16K_A0000
:
2248 env
->mtrr_fixed
[2] = msrs
[i
].data
;
2250 case MSR_MTRRfix4K_C0000
:
2251 env
->mtrr_fixed
[3] = msrs
[i
].data
;
2253 case MSR_MTRRfix4K_C8000
:
2254 env
->mtrr_fixed
[4] = msrs
[i
].data
;
2256 case MSR_MTRRfix4K_D0000
:
2257 env
->mtrr_fixed
[5] = msrs
[i
].data
;
2259 case MSR_MTRRfix4K_D8000
:
2260 env
->mtrr_fixed
[6] = msrs
[i
].data
;
2262 case MSR_MTRRfix4K_E0000
:
2263 env
->mtrr_fixed
[7] = msrs
[i
].data
;
2265 case MSR_MTRRfix4K_E8000
:
2266 env
->mtrr_fixed
[8] = msrs
[i
].data
;
2268 case MSR_MTRRfix4K_F0000
:
2269 env
->mtrr_fixed
[9] = msrs
[i
].data
;
2271 case MSR_MTRRfix4K_F8000
:
2272 env
->mtrr_fixed
[10] = msrs
[i
].data
;
2274 case MSR_MTRRphysBase(0) ... MSR_MTRRphysMask(MSR_MTRRcap_VCNT
- 1):
2276 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].mask
= msrs
[i
].data
;
2278 env
->mtrr_var
[MSR_MTRRphysIndex(index
)].base
= msrs
[i
].data
;
2287 static int kvm_put_mp_state(X86CPU
*cpu
)
2289 struct kvm_mp_state mp_state
= { .mp_state
= cpu
->env
.mp_state
};
2291 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_MP_STATE
, &mp_state
);
2294 static int kvm_get_mp_state(X86CPU
*cpu
)
2296 CPUState
*cs
= CPU(cpu
);
2297 CPUX86State
*env
= &cpu
->env
;
2298 struct kvm_mp_state mp_state
;
2301 ret
= kvm_vcpu_ioctl(cs
, KVM_GET_MP_STATE
, &mp_state
);
2305 env
->mp_state
= mp_state
.mp_state
;
2306 if (kvm_irqchip_in_kernel()) {
2307 cs
->halted
= (mp_state
.mp_state
== KVM_MP_STATE_HALTED
);
2312 static int kvm_get_apic(X86CPU
*cpu
)
2314 DeviceState
*apic
= cpu
->apic_state
;
2315 struct kvm_lapic_state kapic
;
2318 if (apic
&& kvm_irqchip_in_kernel()) {
2319 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_LAPIC
, &kapic
);
2324 kvm_get_apic_state(apic
, &kapic
);
2329 static int kvm_put_apic(X86CPU
*cpu
)
2331 DeviceState
*apic
= cpu
->apic_state
;
2332 struct kvm_lapic_state kapic
;
2334 if (apic
&& kvm_irqchip_in_kernel()) {
2335 kvm_put_apic_state(apic
, &kapic
);
2337 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_LAPIC
, &kapic
);
2342 static int kvm_put_vcpu_events(X86CPU
*cpu
, int level
)
2344 CPUState
*cs
= CPU(cpu
);
2345 CPUX86State
*env
= &cpu
->env
;
2346 struct kvm_vcpu_events events
= {};
2348 if (!kvm_has_vcpu_events()) {
2352 events
.exception
.injected
= (env
->exception_injected
>= 0);
2353 events
.exception
.nr
= env
->exception_injected
;
2354 events
.exception
.has_error_code
= env
->has_error_code
;
2355 events
.exception
.error_code
= env
->error_code
;
2356 events
.exception
.pad
= 0;
2358 events
.interrupt
.injected
= (env
->interrupt_injected
>= 0);
2359 events
.interrupt
.nr
= env
->interrupt_injected
;
2360 events
.interrupt
.soft
= env
->soft_interrupt
;
2362 events
.nmi
.injected
= env
->nmi_injected
;
2363 events
.nmi
.pending
= env
->nmi_pending
;
2364 events
.nmi
.masked
= !!(env
->hflags2
& HF2_NMI_MASK
);
2367 events
.sipi_vector
= env
->sipi_vector
;
2369 if (has_msr_smbase
) {
2370 events
.smi
.smm
= !!(env
->hflags
& HF_SMM_MASK
);
2371 events
.smi
.smm_inside_nmi
= !!(env
->hflags2
& HF2_SMM_INSIDE_NMI_MASK
);
2372 if (kvm_irqchip_in_kernel()) {
2373 /* As soon as these are moved to the kernel, remove them
2374 * from cs->interrupt_request.
2376 events
.smi
.pending
= cs
->interrupt_request
& CPU_INTERRUPT_SMI
;
2377 events
.smi
.latched_init
= cs
->interrupt_request
& CPU_INTERRUPT_INIT
;
2378 cs
->interrupt_request
&= ~(CPU_INTERRUPT_INIT
| CPU_INTERRUPT_SMI
);
2380 /* Keep these in cs->interrupt_request. */
2381 events
.smi
.pending
= 0;
2382 events
.smi
.latched_init
= 0;
2384 events
.flags
|= KVM_VCPUEVENT_VALID_SMM
;
2388 if (level
>= KVM_PUT_RESET_STATE
) {
2390 KVM_VCPUEVENT_VALID_NMI_PENDING
| KVM_VCPUEVENT_VALID_SIPI_VECTOR
;
2393 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_VCPU_EVENTS
, &events
);
2396 static int kvm_get_vcpu_events(X86CPU
*cpu
)
2398 CPUX86State
*env
= &cpu
->env
;
2399 struct kvm_vcpu_events events
;
2402 if (!kvm_has_vcpu_events()) {
2406 memset(&events
, 0, sizeof(events
));
2407 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_VCPU_EVENTS
, &events
);
2411 env
->exception_injected
=
2412 events
.exception
.injected
? events
.exception
.nr
: -1;
2413 env
->has_error_code
= events
.exception
.has_error_code
;
2414 env
->error_code
= events
.exception
.error_code
;
2416 env
->interrupt_injected
=
2417 events
.interrupt
.injected
? events
.interrupt
.nr
: -1;
2418 env
->soft_interrupt
= events
.interrupt
.soft
;
2420 env
->nmi_injected
= events
.nmi
.injected
;
2421 env
->nmi_pending
= events
.nmi
.pending
;
2422 if (events
.nmi
.masked
) {
2423 env
->hflags2
|= HF2_NMI_MASK
;
2425 env
->hflags2
&= ~HF2_NMI_MASK
;
2428 if (events
.flags
& KVM_VCPUEVENT_VALID_SMM
) {
2429 if (events
.smi
.smm
) {
2430 env
->hflags
|= HF_SMM_MASK
;
2432 env
->hflags
&= ~HF_SMM_MASK
;
2434 if (events
.smi
.pending
) {
2435 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
2437 cpu_reset_interrupt(CPU(cpu
), CPU_INTERRUPT_SMI
);
2439 if (events
.smi
.smm_inside_nmi
) {
2440 env
->hflags2
|= HF2_SMM_INSIDE_NMI_MASK
;
2442 env
->hflags2
&= ~HF2_SMM_INSIDE_NMI_MASK
;
2444 if (events
.smi
.latched_init
) {
2445 cpu_interrupt(CPU(cpu
), CPU_INTERRUPT_INIT
);
2447 cpu_reset_interrupt(CPU(cpu
), CPU_INTERRUPT_INIT
);
2451 env
->sipi_vector
= events
.sipi_vector
;
2456 static int kvm_guest_debug_workarounds(X86CPU
*cpu
)
2458 CPUState
*cs
= CPU(cpu
);
2459 CPUX86State
*env
= &cpu
->env
;
2461 unsigned long reinject_trap
= 0;
2463 if (!kvm_has_vcpu_events()) {
2464 if (env
->exception_injected
== 1) {
2465 reinject_trap
= KVM_GUESTDBG_INJECT_DB
;
2466 } else if (env
->exception_injected
== 3) {
2467 reinject_trap
= KVM_GUESTDBG_INJECT_BP
;
2469 env
->exception_injected
= -1;
2473 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
2474 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
2475 * by updating the debug state once again if single-stepping is on.
2476 * Another reason to call kvm_update_guest_debug here is a pending debug
2477 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
2478 * reinject them via SET_GUEST_DEBUG.
2480 if (reinject_trap
||
2481 (!kvm_has_robust_singlestep() && cs
->singlestep_enabled
)) {
2482 ret
= kvm_update_guest_debug(cs
, reinject_trap
);
2487 static int kvm_put_debugregs(X86CPU
*cpu
)
2489 CPUX86State
*env
= &cpu
->env
;
2490 struct kvm_debugregs dbgregs
;
2493 if (!kvm_has_debugregs()) {
2497 for (i
= 0; i
< 4; i
++) {
2498 dbgregs
.db
[i
] = env
->dr
[i
];
2500 dbgregs
.dr6
= env
->dr
[6];
2501 dbgregs
.dr7
= env
->dr
[7];
2504 return kvm_vcpu_ioctl(CPU(cpu
), KVM_SET_DEBUGREGS
, &dbgregs
);
2507 static int kvm_get_debugregs(X86CPU
*cpu
)
2509 CPUX86State
*env
= &cpu
->env
;
2510 struct kvm_debugregs dbgregs
;
2513 if (!kvm_has_debugregs()) {
2517 ret
= kvm_vcpu_ioctl(CPU(cpu
), KVM_GET_DEBUGREGS
, &dbgregs
);
2521 for (i
= 0; i
< 4; i
++) {
2522 env
->dr
[i
] = dbgregs
.db
[i
];
2524 env
->dr
[4] = env
->dr
[6] = dbgregs
.dr6
;
2525 env
->dr
[5] = env
->dr
[7] = dbgregs
.dr7
;
2530 int kvm_arch_put_registers(CPUState
*cpu
, int level
)
2532 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2535 assert(cpu_is_stopped(cpu
) || qemu_cpu_is_self(cpu
));
2537 if (level
>= KVM_PUT_RESET_STATE
) {
2538 ret
= kvm_put_msr_feature_control(x86_cpu
);
2544 if (level
== KVM_PUT_FULL_STATE
) {
2545 /* We don't check for kvm_arch_set_tsc_khz() errors here,
2546 * because TSC frequency mismatch shouldn't abort migration,
2547 * unless the user explicitly asked for a more strict TSC
2548 * setting (e.g. using an explicit "tsc-freq" option).
2550 kvm_arch_set_tsc_khz(cpu
);
2553 ret
= kvm_getput_regs(x86_cpu
, 1);
2557 ret
= kvm_put_xsave(x86_cpu
);
2561 ret
= kvm_put_xcrs(x86_cpu
);
2565 ret
= kvm_put_sregs(x86_cpu
);
2569 /* must be before kvm_put_msrs */
2570 ret
= kvm_inject_mce_oldstyle(x86_cpu
);
2574 ret
= kvm_put_msrs(x86_cpu
, level
);
2578 if (level
>= KVM_PUT_RESET_STATE
) {
2579 ret
= kvm_put_mp_state(x86_cpu
);
2583 ret
= kvm_put_apic(x86_cpu
);
2589 ret
= kvm_put_tscdeadline_msr(x86_cpu
);
2594 ret
= kvm_put_vcpu_events(x86_cpu
, level
);
2598 ret
= kvm_put_debugregs(x86_cpu
);
2603 ret
= kvm_guest_debug_workarounds(x86_cpu
);
2610 int kvm_arch_get_registers(CPUState
*cs
)
2612 X86CPU
*cpu
= X86_CPU(cs
);
2615 assert(cpu_is_stopped(cs
) || qemu_cpu_is_self(cs
));
2617 ret
= kvm_getput_regs(cpu
, 0);
2621 ret
= kvm_get_xsave(cpu
);
2625 ret
= kvm_get_xcrs(cpu
);
2629 ret
= kvm_get_sregs(cpu
);
2633 ret
= kvm_get_msrs(cpu
);
2637 ret
= kvm_get_mp_state(cpu
);
2641 ret
= kvm_get_apic(cpu
);
2645 ret
= kvm_get_vcpu_events(cpu
);
2649 ret
= kvm_get_debugregs(cpu
);
2655 cpu_sync_bndcs_hflags(&cpu
->env
);
2659 void kvm_arch_pre_run(CPUState
*cpu
, struct kvm_run
*run
)
2661 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2662 CPUX86State
*env
= &x86_cpu
->env
;
2666 if (cpu
->interrupt_request
& (CPU_INTERRUPT_NMI
| CPU_INTERRUPT_SMI
)) {
2667 if (cpu
->interrupt_request
& CPU_INTERRUPT_NMI
) {
2668 qemu_mutex_lock_iothread();
2669 cpu
->interrupt_request
&= ~CPU_INTERRUPT_NMI
;
2670 qemu_mutex_unlock_iothread();
2671 DPRINTF("injected NMI\n");
2672 ret
= kvm_vcpu_ioctl(cpu
, KVM_NMI
);
2674 fprintf(stderr
, "KVM: injection failed, NMI lost (%s)\n",
2678 if (cpu
->interrupt_request
& CPU_INTERRUPT_SMI
) {
2679 qemu_mutex_lock_iothread();
2680 cpu
->interrupt_request
&= ~CPU_INTERRUPT_SMI
;
2681 qemu_mutex_unlock_iothread();
2682 DPRINTF("injected SMI\n");
2683 ret
= kvm_vcpu_ioctl(cpu
, KVM_SMI
);
2685 fprintf(stderr
, "KVM: injection failed, SMI lost (%s)\n",
2691 if (!kvm_pic_in_kernel()) {
2692 qemu_mutex_lock_iothread();
2695 /* Force the VCPU out of its inner loop to process any INIT requests
2696 * or (for userspace APIC, but it is cheap to combine the checks here)
2697 * pending TPR access reports.
2699 if (cpu
->interrupt_request
& (CPU_INTERRUPT_INIT
| CPU_INTERRUPT_TPR
)) {
2700 if ((cpu
->interrupt_request
& CPU_INTERRUPT_INIT
) &&
2701 !(env
->hflags
& HF_SMM_MASK
)) {
2702 cpu
->exit_request
= 1;
2704 if (cpu
->interrupt_request
& CPU_INTERRUPT_TPR
) {
2705 cpu
->exit_request
= 1;
2709 if (!kvm_pic_in_kernel()) {
2710 /* Try to inject an interrupt if the guest can accept it */
2711 if (run
->ready_for_interrupt_injection
&&
2712 (cpu
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2713 (env
->eflags
& IF_MASK
)) {
2716 cpu
->interrupt_request
&= ~CPU_INTERRUPT_HARD
;
2717 irq
= cpu_get_pic_interrupt(env
);
2719 struct kvm_interrupt intr
;
2722 DPRINTF("injected interrupt %d\n", irq
);
2723 ret
= kvm_vcpu_ioctl(cpu
, KVM_INTERRUPT
, &intr
);
2726 "KVM: injection failed, interrupt lost (%s)\n",
2732 /* If we have an interrupt but the guest is not ready to receive an
2733 * interrupt, request an interrupt window exit. This will
2734 * cause a return to userspace as soon as the guest is ready to
2735 * receive interrupts. */
2736 if ((cpu
->interrupt_request
& CPU_INTERRUPT_HARD
)) {
2737 run
->request_interrupt_window
= 1;
2739 run
->request_interrupt_window
= 0;
2742 DPRINTF("setting tpr\n");
2743 run
->cr8
= cpu_get_apic_tpr(x86_cpu
->apic_state
);
2745 qemu_mutex_unlock_iothread();
2749 MemTxAttrs
kvm_arch_post_run(CPUState
*cpu
, struct kvm_run
*run
)
2751 X86CPU
*x86_cpu
= X86_CPU(cpu
);
2752 CPUX86State
*env
= &x86_cpu
->env
;
2754 if (run
->flags
& KVM_RUN_X86_SMM
) {
2755 env
->hflags
|= HF_SMM_MASK
;
2757 env
->hflags
&= HF_SMM_MASK
;
2760 env
->eflags
|= IF_MASK
;
2762 env
->eflags
&= ~IF_MASK
;
2765 /* We need to protect the apic state against concurrent accesses from
2766 * different threads in case the userspace irqchip is used. */
2767 if (!kvm_irqchip_in_kernel()) {
2768 qemu_mutex_lock_iothread();
2770 cpu_set_apic_tpr(x86_cpu
->apic_state
, run
->cr8
);
2771 cpu_set_apic_base(x86_cpu
->apic_state
, run
->apic_base
);
2772 if (!kvm_irqchip_in_kernel()) {
2773 qemu_mutex_unlock_iothread();
2775 return cpu_get_mem_attrs(env
);
2778 int kvm_arch_process_async_events(CPUState
*cs
)
2780 X86CPU
*cpu
= X86_CPU(cs
);
2781 CPUX86State
*env
= &cpu
->env
;
2783 if (cs
->interrupt_request
& CPU_INTERRUPT_MCE
) {
2784 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
2785 assert(env
->mcg_cap
);
2787 cs
->interrupt_request
&= ~CPU_INTERRUPT_MCE
;
2789 kvm_cpu_synchronize_state(cs
);
2791 if (env
->exception_injected
== EXCP08_DBLE
) {
2792 /* this means triple fault */
2793 qemu_system_reset_request();
2794 cs
->exit_request
= 1;
2797 env
->exception_injected
= EXCP12_MCHK
;
2798 env
->has_error_code
= 0;
2801 if (kvm_irqchip_in_kernel() && env
->mp_state
== KVM_MP_STATE_HALTED
) {
2802 env
->mp_state
= KVM_MP_STATE_RUNNABLE
;
2806 if ((cs
->interrupt_request
& CPU_INTERRUPT_INIT
) &&
2807 !(env
->hflags
& HF_SMM_MASK
)) {
2808 kvm_cpu_synchronize_state(cs
);
2812 if (kvm_irqchip_in_kernel()) {
2816 if (cs
->interrupt_request
& CPU_INTERRUPT_POLL
) {
2817 cs
->interrupt_request
&= ~CPU_INTERRUPT_POLL
;
2818 apic_poll_irq(cpu
->apic_state
);
2820 if (((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2821 (env
->eflags
& IF_MASK
)) ||
2822 (cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
2825 if (cs
->interrupt_request
& CPU_INTERRUPT_SIPI
) {
2826 kvm_cpu_synchronize_state(cs
);
2829 if (cs
->interrupt_request
& CPU_INTERRUPT_TPR
) {
2830 cs
->interrupt_request
&= ~CPU_INTERRUPT_TPR
;
2831 kvm_cpu_synchronize_state(cs
);
2832 apic_handle_tpr_access_report(cpu
->apic_state
, env
->eip
,
2833 env
->tpr_access_type
);
2839 static int kvm_handle_halt(X86CPU
*cpu
)
2841 CPUState
*cs
= CPU(cpu
);
2842 CPUX86State
*env
= &cpu
->env
;
2844 if (!((cs
->interrupt_request
& CPU_INTERRUPT_HARD
) &&
2845 (env
->eflags
& IF_MASK
)) &&
2846 !(cs
->interrupt_request
& CPU_INTERRUPT_NMI
)) {
2854 static int kvm_handle_tpr_access(X86CPU
*cpu
)
2856 CPUState
*cs
= CPU(cpu
);
2857 struct kvm_run
*run
= cs
->kvm_run
;
2859 apic_handle_tpr_access_report(cpu
->apic_state
, run
->tpr_access
.rip
,
2860 run
->tpr_access
.is_write
? TPR_ACCESS_WRITE
2865 int kvm_arch_insert_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
2867 static const uint8_t int3
= 0xcc;
2869 if (cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 0) ||
2870 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&int3
, 1, 1)) {
2876 int kvm_arch_remove_sw_breakpoint(CPUState
*cs
, struct kvm_sw_breakpoint
*bp
)
2880 if (cpu_memory_rw_debug(cs
, bp
->pc
, &int3
, 1, 0) || int3
!= 0xcc ||
2881 cpu_memory_rw_debug(cs
, bp
->pc
, (uint8_t *)&bp
->saved_insn
, 1, 1)) {
2893 static int nb_hw_breakpoint
;
2895 static int find_hw_breakpoint(target_ulong addr
, int len
, int type
)
2899 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
2900 if (hw_breakpoint
[n
].addr
== addr
&& hw_breakpoint
[n
].type
== type
&&
2901 (hw_breakpoint
[n
].len
== len
|| len
== -1)) {
2908 int kvm_arch_insert_hw_breakpoint(target_ulong addr
,
2909 target_ulong len
, int type
)
2912 case GDB_BREAKPOINT_HW
:
2915 case GDB_WATCHPOINT_WRITE
:
2916 case GDB_WATCHPOINT_ACCESS
:
2923 if (addr
& (len
- 1)) {
2935 if (nb_hw_breakpoint
== 4) {
2938 if (find_hw_breakpoint(addr
, len
, type
) >= 0) {
2941 hw_breakpoint
[nb_hw_breakpoint
].addr
= addr
;
2942 hw_breakpoint
[nb_hw_breakpoint
].len
= len
;
2943 hw_breakpoint
[nb_hw_breakpoint
].type
= type
;
2949 int kvm_arch_remove_hw_breakpoint(target_ulong addr
,
2950 target_ulong len
, int type
)
2954 n
= find_hw_breakpoint(addr
, (type
== GDB_BREAKPOINT_HW
) ? 1 : len
, type
);
2959 hw_breakpoint
[n
] = hw_breakpoint
[nb_hw_breakpoint
];
2964 void kvm_arch_remove_all_hw_breakpoints(void)
2966 nb_hw_breakpoint
= 0;
2969 static CPUWatchpoint hw_watchpoint
;
2971 static int kvm_handle_debug(X86CPU
*cpu
,
2972 struct kvm_debug_exit_arch
*arch_info
)
2974 CPUState
*cs
= CPU(cpu
);
2975 CPUX86State
*env
= &cpu
->env
;
2979 if (arch_info
->exception
== 1) {
2980 if (arch_info
->dr6
& (1 << 14)) {
2981 if (cs
->singlestep_enabled
) {
2985 for (n
= 0; n
< 4; n
++) {
2986 if (arch_info
->dr6
& (1 << n
)) {
2987 switch ((arch_info
->dr7
>> (16 + n
*4)) & 0x3) {
2993 cs
->watchpoint_hit
= &hw_watchpoint
;
2994 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
2995 hw_watchpoint
.flags
= BP_MEM_WRITE
;
2999 cs
->watchpoint_hit
= &hw_watchpoint
;
3000 hw_watchpoint
.vaddr
= hw_breakpoint
[n
].addr
;
3001 hw_watchpoint
.flags
= BP_MEM_ACCESS
;
3007 } else if (kvm_find_sw_breakpoint(cs
, arch_info
->pc
)) {
3011 cpu_synchronize_state(cs
);
3012 assert(env
->exception_injected
== -1);
3015 env
->exception_injected
= arch_info
->exception
;
3016 env
->has_error_code
= 0;
3022 void kvm_arch_update_guest_debug(CPUState
*cpu
, struct kvm_guest_debug
*dbg
)
3024 const uint8_t type_code
[] = {
3025 [GDB_BREAKPOINT_HW
] = 0x0,
3026 [GDB_WATCHPOINT_WRITE
] = 0x1,
3027 [GDB_WATCHPOINT_ACCESS
] = 0x3
3029 const uint8_t len_code
[] = {
3030 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
3034 if (kvm_sw_breakpoints_active(cpu
)) {
3035 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_SW_BP
;
3037 if (nb_hw_breakpoint
> 0) {
3038 dbg
->control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_USE_HW_BP
;
3039 dbg
->arch
.debugreg
[7] = 0x0600;
3040 for (n
= 0; n
< nb_hw_breakpoint
; n
++) {
3041 dbg
->arch
.debugreg
[n
] = hw_breakpoint
[n
].addr
;
3042 dbg
->arch
.debugreg
[7] |= (2 << (n
* 2)) |
3043 (type_code
[hw_breakpoint
[n
].type
] << (16 + n
*4)) |
3044 ((uint32_t)len_code
[hw_breakpoint
[n
].len
] << (18 + n
*4));
3049 static bool host_supports_vmx(void)
3051 uint32_t ecx
, unused
;
3053 host_cpuid(1, 0, &unused
, &unused
, &ecx
, &unused
);
3054 return ecx
& CPUID_EXT_VMX
;
3057 #define VMX_INVALID_GUEST_STATE 0x80000021
3059 int kvm_arch_handle_exit(CPUState
*cs
, struct kvm_run
*run
)
3061 X86CPU
*cpu
= X86_CPU(cs
);
3065 switch (run
->exit_reason
) {
3067 DPRINTF("handle_hlt\n");
3068 qemu_mutex_lock_iothread();
3069 ret
= kvm_handle_halt(cpu
);
3070 qemu_mutex_unlock_iothread();
3072 case KVM_EXIT_SET_TPR
:
3075 case KVM_EXIT_TPR_ACCESS
:
3076 qemu_mutex_lock_iothread();
3077 ret
= kvm_handle_tpr_access(cpu
);
3078 qemu_mutex_unlock_iothread();
3080 case KVM_EXIT_FAIL_ENTRY
:
3081 code
= run
->fail_entry
.hardware_entry_failure_reason
;
3082 fprintf(stderr
, "KVM: entry failed, hardware error 0x%" PRIx64
"\n",
3084 if (host_supports_vmx() && code
== VMX_INVALID_GUEST_STATE
) {
3086 "\nIf you're running a guest on an Intel machine without "
3087 "unrestricted mode\n"
3088 "support, the failure can be most likely due to the guest "
3089 "entering an invalid\n"
3090 "state for Intel VT. For example, the guest maybe running "
3091 "in big real mode\n"
3092 "which is not supported on less recent Intel processors."
3097 case KVM_EXIT_EXCEPTION
:
3098 fprintf(stderr
, "KVM: exception %d exit (error code 0x%x)\n",
3099 run
->ex
.exception
, run
->ex
.error_code
);
3102 case KVM_EXIT_DEBUG
:
3103 DPRINTF("kvm_exit_debug\n");
3104 qemu_mutex_lock_iothread();
3105 ret
= kvm_handle_debug(cpu
, &run
->debug
.arch
);
3106 qemu_mutex_unlock_iothread();
3108 case KVM_EXIT_HYPERV
:
3109 ret
= kvm_hv_handle_exit(cpu
, &run
->hyperv
);
3111 case KVM_EXIT_IOAPIC_EOI
:
3112 ioapic_eoi_broadcast(run
->eoi
.vector
);
3116 fprintf(stderr
, "KVM: unknown exit reason %d\n", run
->exit_reason
);
3124 bool kvm_arch_stop_on_emulation_error(CPUState
*cs
)
3126 X86CPU
*cpu
= X86_CPU(cs
);
3127 CPUX86State
*env
= &cpu
->env
;
3129 kvm_cpu_synchronize_state(cs
);
3130 return !(env
->cr
[0] & CR0_PE_MASK
) ||
3131 ((env
->segs
[R_CS
].selector
& 3) != 3);
3134 void kvm_arch_init_irq_routing(KVMState
*s
)
3136 if (!kvm_check_extension(s
, KVM_CAP_IRQ_ROUTING
)) {
3137 /* If kernel can't do irq routing, interrupt source
3138 * override 0->2 cannot be set up as required by HPET.
3139 * So we have to disable it.
3143 /* We know at this point that we're using the in-kernel
3144 * irqchip, so we can use irqfds, and on x86 we know
3145 * we can use msi via irqfd and GSI routing.
3147 kvm_msi_via_irqfd_allowed
= true;
3148 kvm_gsi_routing_allowed
= true;
3150 if (kvm_irqchip_is_split()) {
3153 /* If the ioapic is in QEMU and the lapics are in KVM, reserve
3154 MSI routes for signaling interrupts to the local apics. */
3155 for (i
= 0; i
< IOAPIC_NUM_PINS
; i
++) {
3156 struct MSIMessage msg
= { 0x0, 0x0 };
3157 if (kvm_irqchip_add_msi_route(s
, msg
, NULL
) < 0) {
3158 error_report("Could not enable split IRQ mode.");
3165 int kvm_arch_irqchip_create(MachineState
*ms
, KVMState
*s
)
3168 if (machine_kernel_irqchip_split(ms
)) {
3169 ret
= kvm_vm_enable_cap(s
, KVM_CAP_SPLIT_IRQCHIP
, 0, 24);
3171 error_report("Could not enable split irqchip mode: %s\n",
3175 DPRINTF("Enabled KVM_CAP_SPLIT_IRQCHIP\n");
3176 kvm_split_irqchip
= true;
3184 /* Classic KVM device assignment interface. Will remain x86 only. */
3185 int kvm_device_pci_assign(KVMState
*s
, PCIHostDeviceAddress
*dev_addr
,
3186 uint32_t flags
, uint32_t *dev_id
)
3188 struct kvm_assigned_pci_dev dev_data
= {
3189 .segnr
= dev_addr
->domain
,
3190 .busnr
= dev_addr
->bus
,
3191 .devfn
= PCI_DEVFN(dev_addr
->slot
, dev_addr
->function
),
3196 dev_data
.assigned_dev_id
=
3197 (dev_addr
->domain
<< 16) | (dev_addr
->bus
<< 8) | dev_data
.devfn
;
3199 ret
= kvm_vm_ioctl(s
, KVM_ASSIGN_PCI_DEVICE
, &dev_data
);
3204 *dev_id
= dev_data
.assigned_dev_id
;
3209 int kvm_device_pci_deassign(KVMState
*s
, uint32_t dev_id
)
3211 struct kvm_assigned_pci_dev dev_data
= {
3212 .assigned_dev_id
= dev_id
,
3215 return kvm_vm_ioctl(s
, KVM_DEASSIGN_PCI_DEVICE
, &dev_data
);
3218 static int kvm_assign_irq_internal(KVMState
*s
, uint32_t dev_id
,
3219 uint32_t irq_type
, uint32_t guest_irq
)
3221 struct kvm_assigned_irq assigned_irq
= {
3222 .assigned_dev_id
= dev_id
,
3223 .guest_irq
= guest_irq
,
3227 if (kvm_check_extension(s
, KVM_CAP_ASSIGN_DEV_IRQ
)) {
3228 return kvm_vm_ioctl(s
, KVM_ASSIGN_DEV_IRQ
, &assigned_irq
);
3230 return kvm_vm_ioctl(s
, KVM_ASSIGN_IRQ
, &assigned_irq
);
3234 int kvm_device_intx_assign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
,
3237 uint32_t irq_type
= KVM_DEV_IRQ_GUEST_INTX
|
3238 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
);
3240 return kvm_assign_irq_internal(s
, dev_id
, irq_type
, guest_irq
);
3243 int kvm_device_intx_set_mask(KVMState
*s
, uint32_t dev_id
, bool masked
)
3245 struct kvm_assigned_pci_dev dev_data
= {
3246 .assigned_dev_id
= dev_id
,
3247 .flags
= masked
? KVM_DEV_ASSIGN_MASK_INTX
: 0,
3250 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_INTX_MASK
, &dev_data
);
3253 static int kvm_deassign_irq_internal(KVMState
*s
, uint32_t dev_id
,
3256 struct kvm_assigned_irq assigned_irq
= {
3257 .assigned_dev_id
= dev_id
,
3261 return kvm_vm_ioctl(s
, KVM_DEASSIGN_DEV_IRQ
, &assigned_irq
);
3264 int kvm_device_intx_deassign(KVMState
*s
, uint32_t dev_id
, bool use_host_msi
)
3266 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_INTX
|
3267 (use_host_msi
? KVM_DEV_IRQ_HOST_MSI
: KVM_DEV_IRQ_HOST_INTX
));
3270 int kvm_device_msi_assign(KVMState
*s
, uint32_t dev_id
, int virq
)
3272 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSI
|
3273 KVM_DEV_IRQ_GUEST_MSI
, virq
);
3276 int kvm_device_msi_deassign(KVMState
*s
, uint32_t dev_id
)
3278 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSI
|
3279 KVM_DEV_IRQ_HOST_MSI
);
3282 bool kvm_device_msix_supported(KVMState
*s
)
3284 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
3285 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
3286 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, NULL
) == -EFAULT
;
3289 int kvm_device_msix_init_vectors(KVMState
*s
, uint32_t dev_id
,
3290 uint32_t nr_vectors
)
3292 struct kvm_assigned_msix_nr msix_nr
= {
3293 .assigned_dev_id
= dev_id
,
3294 .entry_nr
= nr_vectors
,
3297 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_NR
, &msix_nr
);
3300 int kvm_device_msix_set_vector(KVMState
*s
, uint32_t dev_id
, uint32_t vector
,
3303 struct kvm_assigned_msix_entry msix_entry
= {
3304 .assigned_dev_id
= dev_id
,
3309 return kvm_vm_ioctl(s
, KVM_ASSIGN_SET_MSIX_ENTRY
, &msix_entry
);
3312 int kvm_device_msix_assign(KVMState
*s
, uint32_t dev_id
)
3314 return kvm_assign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_HOST_MSIX
|
3315 KVM_DEV_IRQ_GUEST_MSIX
, 0);
3318 int kvm_device_msix_deassign(KVMState
*s
, uint32_t dev_id
)
3320 return kvm_deassign_irq_internal(s
, dev_id
, KVM_DEV_IRQ_GUEST_MSIX
|
3321 KVM_DEV_IRQ_HOST_MSIX
);
3324 int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry
*route
,
3325 uint64_t address
, uint32_t data
, PCIDevice
*dev
)
3330 int kvm_arch_msi_data_to_gsi(uint32_t data
)