bitmap: Add bitmap_zero_extend operation
[qemu.git] / exec.c
blobdb369dc42f62ebf73ec36b48447010870900bc60
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "sysemu/sysemu.h"
35 #include "hw/xen/xen.h"
36 #include "qemu/timer.h"
37 #include "qemu/config-file.h"
38 #include "exec/memory.h"
39 #include "sysemu/dma.h"
40 #include "exec/address-spaces.h"
41 #if defined(CONFIG_USER_ONLY)
42 #include <qemu.h>
43 #else /* !CONFIG_USER_ONLY */
44 #include "sysemu/xen-mapcache.h"
45 #include "trace.h"
46 #endif
47 #include "exec/cpu-all.h"
49 #include "exec/cputlb.h"
50 #include "translate-all.h"
52 #include "exec/memory-internal.h"
53 #include "qemu/cache-utils.h"
55 #include "qemu/range.h"
57 //#define DEBUG_SUBPAGE
59 #if !defined(CONFIG_USER_ONLY)
60 static int in_migration;
62 RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
64 static MemoryRegion *system_memory;
65 static MemoryRegion *system_io;
67 AddressSpace address_space_io;
68 AddressSpace address_space_memory;
70 MemoryRegion io_mem_rom, io_mem_notdirty;
71 static MemoryRegion io_mem_unassigned;
73 #endif
75 struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
76 /* current CPU in the current thread. It is only valid inside
77 cpu_exec() */
78 DEFINE_TLS(CPUState *, current_cpu);
79 /* 0 = Do not count executed instructions.
80 1 = Precise instruction counting.
81 2 = Adaptive rate instruction counting. */
82 int use_icount;
84 #if !defined(CONFIG_USER_ONLY)
86 typedef struct PhysPageEntry PhysPageEntry;
88 struct PhysPageEntry {
89 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
90 uint32_t skip : 6;
91 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
92 uint32_t ptr : 26;
95 #define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
97 /* Size of the L2 (and L3, etc) page tables. */
98 #define ADDR_SPACE_BITS 64
100 #define P_L2_BITS 9
101 #define P_L2_SIZE (1 << P_L2_BITS)
103 #define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
105 typedef PhysPageEntry Node[P_L2_SIZE];
107 typedef struct PhysPageMap {
108 unsigned sections_nb;
109 unsigned sections_nb_alloc;
110 unsigned nodes_nb;
111 unsigned nodes_nb_alloc;
112 Node *nodes;
113 MemoryRegionSection *sections;
114 } PhysPageMap;
116 struct AddressSpaceDispatch {
117 /* This is a multi-level map on the physical address space.
118 * The bottom level has pointers to MemoryRegionSections.
120 PhysPageEntry phys_map;
121 PhysPageMap map;
122 AddressSpace *as;
125 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
126 typedef struct subpage_t {
127 MemoryRegion iomem;
128 AddressSpace *as;
129 hwaddr base;
130 uint16_t sub_section[TARGET_PAGE_SIZE];
131 } subpage_t;
133 #define PHYS_SECTION_UNASSIGNED 0
134 #define PHYS_SECTION_NOTDIRTY 1
135 #define PHYS_SECTION_ROM 2
136 #define PHYS_SECTION_WATCH 3
138 static void io_mem_init(void);
139 static void memory_map_init(void);
141 static MemoryRegion io_mem_watch;
142 #endif
144 #if !defined(CONFIG_USER_ONLY)
146 static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
148 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
149 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16);
150 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
151 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
155 static uint32_t phys_map_node_alloc(PhysPageMap *map)
157 unsigned i;
158 uint32_t ret;
160 ret = map->nodes_nb++;
161 assert(ret != PHYS_MAP_NODE_NIL);
162 assert(ret != map->nodes_nb_alloc);
163 for (i = 0; i < P_L2_SIZE; ++i) {
164 map->nodes[ret][i].skip = 1;
165 map->nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
167 return ret;
170 static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
171 hwaddr *index, hwaddr *nb, uint16_t leaf,
172 int level)
174 PhysPageEntry *p;
175 int i;
176 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
178 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
179 lp->ptr = phys_map_node_alloc(map);
180 p = map->nodes[lp->ptr];
181 if (level == 0) {
182 for (i = 0; i < P_L2_SIZE; i++) {
183 p[i].skip = 0;
184 p[i].ptr = PHYS_SECTION_UNASSIGNED;
187 } else {
188 p = map->nodes[lp->ptr];
190 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
192 while (*nb && lp < &p[P_L2_SIZE]) {
193 if ((*index & (step - 1)) == 0 && *nb >= step) {
194 lp->skip = 0;
195 lp->ptr = leaf;
196 *index += step;
197 *nb -= step;
198 } else {
199 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
201 ++lp;
205 static void phys_page_set(AddressSpaceDispatch *d,
206 hwaddr index, hwaddr nb,
207 uint16_t leaf)
209 /* Wildly overreserve - it doesn't matter much. */
210 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
212 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
215 /* Compact a non leaf page entry. Simply detect that the entry has a single child,
216 * and update our entry so we can skip it and go directly to the destination.
218 static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted)
220 unsigned valid_ptr = P_L2_SIZE;
221 int valid = 0;
222 PhysPageEntry *p;
223 int i;
225 if (lp->ptr == PHYS_MAP_NODE_NIL) {
226 return;
229 p = nodes[lp->ptr];
230 for (i = 0; i < P_L2_SIZE; i++) {
231 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
232 continue;
235 valid_ptr = i;
236 valid++;
237 if (p[i].skip) {
238 phys_page_compact(&p[i], nodes, compacted);
242 /* We can only compress if there's only one child. */
243 if (valid != 1) {
244 return;
247 assert(valid_ptr < P_L2_SIZE);
249 /* Don't compress if it won't fit in the # of bits we have. */
250 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
251 return;
254 lp->ptr = p[valid_ptr].ptr;
255 if (!p[valid_ptr].skip) {
256 /* If our only child is a leaf, make this a leaf. */
257 /* By design, we should have made this node a leaf to begin with so we
258 * should never reach here.
259 * But since it's so simple to handle this, let's do it just in case we
260 * change this rule.
262 lp->skip = 0;
263 } else {
264 lp->skip += p[valid_ptr].skip;
268 static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
270 DECLARE_BITMAP(compacted, nodes_nb);
272 if (d->phys_map.skip) {
273 phys_page_compact(&d->phys_map, d->map.nodes, compacted);
277 static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
278 Node *nodes, MemoryRegionSection *sections)
280 PhysPageEntry *p;
281 hwaddr index = addr >> TARGET_PAGE_BITS;
282 int i;
284 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
285 if (lp.ptr == PHYS_MAP_NODE_NIL) {
286 return &sections[PHYS_SECTION_UNASSIGNED];
288 p = nodes[lp.ptr];
289 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
292 if (sections[lp.ptr].size.hi ||
293 range_covers_byte(sections[lp.ptr].offset_within_address_space,
294 sections[lp.ptr].size.lo, addr)) {
295 return &sections[lp.ptr];
296 } else {
297 return &sections[PHYS_SECTION_UNASSIGNED];
301 bool memory_region_is_unassigned(MemoryRegion *mr)
303 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
304 && mr != &io_mem_watch;
307 static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
308 hwaddr addr,
309 bool resolve_subpage)
311 MemoryRegionSection *section;
312 subpage_t *subpage;
314 section = phys_page_find(d->phys_map, addr, d->map.nodes, d->map.sections);
315 if (resolve_subpage && section->mr->subpage) {
316 subpage = container_of(section->mr, subpage_t, iomem);
317 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
319 return section;
322 static MemoryRegionSection *
323 address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
324 hwaddr *plen, bool resolve_subpage)
326 MemoryRegionSection *section;
327 Int128 diff;
329 section = address_space_lookup_region(d, addr, resolve_subpage);
330 /* Compute offset within MemoryRegionSection */
331 addr -= section->offset_within_address_space;
333 /* Compute offset within MemoryRegion */
334 *xlat = addr + section->offset_within_region;
336 diff = int128_sub(section->mr->size, int128_make64(addr));
337 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
338 return section;
341 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
342 hwaddr *xlat, hwaddr *plen,
343 bool is_write)
345 IOMMUTLBEntry iotlb;
346 MemoryRegionSection *section;
347 MemoryRegion *mr;
348 hwaddr len = *plen;
350 for (;;) {
351 section = address_space_translate_internal(as->dispatch, addr, &addr, plen, true);
352 mr = section->mr;
354 if (!mr->iommu_ops) {
355 break;
358 iotlb = mr->iommu_ops->translate(mr, addr);
359 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
360 | (addr & iotlb.addr_mask));
361 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
362 if (!(iotlb.perm & (1 << is_write))) {
363 mr = &io_mem_unassigned;
364 break;
367 as = iotlb.target_as;
370 *plen = len;
371 *xlat = addr;
372 return mr;
375 MemoryRegionSection *
376 address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
377 hwaddr *plen)
379 MemoryRegionSection *section;
380 section = address_space_translate_internal(as->dispatch, addr, xlat, plen, false);
382 assert(!section->mr->iommu_ops);
383 return section;
385 #endif
387 void cpu_exec_init_all(void)
389 #if !defined(CONFIG_USER_ONLY)
390 qemu_mutex_init(&ram_list.mutex);
391 memory_map_init();
392 io_mem_init();
393 #endif
396 #if !defined(CONFIG_USER_ONLY)
398 static int cpu_common_post_load(void *opaque, int version_id)
400 CPUState *cpu = opaque;
402 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
403 version_id is increased. */
404 cpu->interrupt_request &= ~0x01;
405 tlb_flush(cpu->env_ptr, 1);
407 return 0;
410 const VMStateDescription vmstate_cpu_common = {
411 .name = "cpu_common",
412 .version_id = 1,
413 .minimum_version_id = 1,
414 .minimum_version_id_old = 1,
415 .post_load = cpu_common_post_load,
416 .fields = (VMStateField []) {
417 VMSTATE_UINT32(halted, CPUState),
418 VMSTATE_UINT32(interrupt_request, CPUState),
419 VMSTATE_END_OF_LIST()
423 #endif
425 CPUState *qemu_get_cpu(int index)
427 CPUState *cpu;
429 CPU_FOREACH(cpu) {
430 if (cpu->cpu_index == index) {
431 return cpu;
435 return NULL;
438 void cpu_exec_init(CPUArchState *env)
440 CPUState *cpu = ENV_GET_CPU(env);
441 CPUClass *cc = CPU_GET_CLASS(cpu);
442 CPUState *some_cpu;
443 int cpu_index;
445 #if defined(CONFIG_USER_ONLY)
446 cpu_list_lock();
447 #endif
448 cpu_index = 0;
449 CPU_FOREACH(some_cpu) {
450 cpu_index++;
452 cpu->cpu_index = cpu_index;
453 cpu->numa_node = 0;
454 QTAILQ_INIT(&env->breakpoints);
455 QTAILQ_INIT(&env->watchpoints);
456 #ifndef CONFIG_USER_ONLY
457 cpu->thread_id = qemu_get_thread_id();
458 #endif
459 QTAILQ_INSERT_TAIL(&cpus, cpu, node);
460 #if defined(CONFIG_USER_ONLY)
461 cpu_list_unlock();
462 #endif
463 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
464 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
466 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
467 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
468 cpu_save, cpu_load, env);
469 assert(cc->vmsd == NULL);
470 assert(qdev_get_vmsd(DEVICE(cpu)) == NULL);
471 #endif
472 if (cc->vmsd != NULL) {
473 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
477 #if defined(TARGET_HAS_ICE)
478 #if defined(CONFIG_USER_ONLY)
479 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
481 tb_invalidate_phys_page_range(pc, pc + 1, 0);
483 #else
484 static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
486 hwaddr phys = cpu_get_phys_page_debug(cpu, pc);
487 if (phys != -1) {
488 tb_invalidate_phys_addr(phys | (pc & ~TARGET_PAGE_MASK));
491 #endif
492 #endif /* TARGET_HAS_ICE */
494 #if defined(CONFIG_USER_ONLY)
495 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
500 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
501 int flags, CPUWatchpoint **watchpoint)
503 return -ENOSYS;
505 #else
506 /* Add a watchpoint. */
507 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
508 int flags, CPUWatchpoint **watchpoint)
510 target_ulong len_mask = ~(len - 1);
511 CPUWatchpoint *wp;
513 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
514 if ((len & (len - 1)) || (addr & ~len_mask) ||
515 len == 0 || len > TARGET_PAGE_SIZE) {
516 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
517 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
518 return -EINVAL;
520 wp = g_malloc(sizeof(*wp));
522 wp->vaddr = addr;
523 wp->len_mask = len_mask;
524 wp->flags = flags;
526 /* keep all GDB-injected watchpoints in front */
527 if (flags & BP_GDB)
528 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
529 else
530 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
532 tlb_flush_page(env, addr);
534 if (watchpoint)
535 *watchpoint = wp;
536 return 0;
539 /* Remove a specific watchpoint. */
540 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
541 int flags)
543 target_ulong len_mask = ~(len - 1);
544 CPUWatchpoint *wp;
546 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
547 if (addr == wp->vaddr && len_mask == wp->len_mask
548 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
549 cpu_watchpoint_remove_by_ref(env, wp);
550 return 0;
553 return -ENOENT;
556 /* Remove a specific watchpoint by reference. */
557 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
559 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
561 tlb_flush_page(env, watchpoint->vaddr);
563 g_free(watchpoint);
566 /* Remove all matching watchpoints. */
567 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
569 CPUWatchpoint *wp, *next;
571 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
572 if (wp->flags & mask)
573 cpu_watchpoint_remove_by_ref(env, wp);
576 #endif
578 /* Add a breakpoint. */
579 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
580 CPUBreakpoint **breakpoint)
582 #if defined(TARGET_HAS_ICE)
583 CPUBreakpoint *bp;
585 bp = g_malloc(sizeof(*bp));
587 bp->pc = pc;
588 bp->flags = flags;
590 /* keep all GDB-injected breakpoints in front */
591 if (flags & BP_GDB) {
592 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
593 } else {
594 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
597 breakpoint_invalidate(ENV_GET_CPU(env), pc);
599 if (breakpoint) {
600 *breakpoint = bp;
602 return 0;
603 #else
604 return -ENOSYS;
605 #endif
608 /* Remove a specific breakpoint. */
609 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
611 #if defined(TARGET_HAS_ICE)
612 CPUBreakpoint *bp;
614 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
615 if (bp->pc == pc && bp->flags == flags) {
616 cpu_breakpoint_remove_by_ref(env, bp);
617 return 0;
620 return -ENOENT;
621 #else
622 return -ENOSYS;
623 #endif
626 /* Remove a specific breakpoint by reference. */
627 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
629 #if defined(TARGET_HAS_ICE)
630 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
632 breakpoint_invalidate(ENV_GET_CPU(env), breakpoint->pc);
634 g_free(breakpoint);
635 #endif
638 /* Remove all matching breakpoints. */
639 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
641 #if defined(TARGET_HAS_ICE)
642 CPUBreakpoint *bp, *next;
644 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
645 if (bp->flags & mask)
646 cpu_breakpoint_remove_by_ref(env, bp);
648 #endif
651 /* enable or disable single step mode. EXCP_DEBUG is returned by the
652 CPU loop after each instruction */
653 void cpu_single_step(CPUState *cpu, int enabled)
655 #if defined(TARGET_HAS_ICE)
656 if (cpu->singlestep_enabled != enabled) {
657 cpu->singlestep_enabled = enabled;
658 if (kvm_enabled()) {
659 kvm_update_guest_debug(cpu, 0);
660 } else {
661 /* must flush all the translated code to avoid inconsistencies */
662 /* XXX: only flush what is necessary */
663 CPUArchState *env = cpu->env_ptr;
664 tb_flush(env);
667 #endif
670 void cpu_abort(CPUArchState *env, const char *fmt, ...)
672 CPUState *cpu = ENV_GET_CPU(env);
673 va_list ap;
674 va_list ap2;
676 va_start(ap, fmt);
677 va_copy(ap2, ap);
678 fprintf(stderr, "qemu: fatal: ");
679 vfprintf(stderr, fmt, ap);
680 fprintf(stderr, "\n");
681 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
682 if (qemu_log_enabled()) {
683 qemu_log("qemu: fatal: ");
684 qemu_log_vprintf(fmt, ap2);
685 qemu_log("\n");
686 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
687 qemu_log_flush();
688 qemu_log_close();
690 va_end(ap2);
691 va_end(ap);
692 #if defined(CONFIG_USER_ONLY)
694 struct sigaction act;
695 sigfillset(&act.sa_mask);
696 act.sa_handler = SIG_DFL;
697 sigaction(SIGABRT, &act, NULL);
699 #endif
700 abort();
703 #if !defined(CONFIG_USER_ONLY)
704 static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
706 RAMBlock *block;
708 /* The list is protected by the iothread lock here. */
709 block = ram_list.mru_block;
710 if (block && addr - block->offset < block->length) {
711 goto found;
713 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
714 if (addr - block->offset < block->length) {
715 goto found;
719 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
720 abort();
722 found:
723 ram_list.mru_block = block;
724 return block;
727 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
728 uintptr_t length)
730 RAMBlock *block;
731 ram_addr_t start1;
733 block = qemu_get_ram_block(start);
734 assert(block == qemu_get_ram_block(end - 1));
735 start1 = (uintptr_t)block->host + (start - block->offset);
736 cpu_tlb_reset_dirty_all(start1, length);
739 /* Note: start and end must be within the same ram block. */
740 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
741 unsigned client)
743 uintptr_t length;
745 start &= TARGET_PAGE_MASK;
746 end = TARGET_PAGE_ALIGN(end);
748 length = end - start;
749 if (length == 0)
750 return;
751 cpu_physical_memory_mask_dirty_range(start, length, client);
753 if (tcg_enabled()) {
754 tlb_reset_dirty_range_all(start, end, length);
758 static int cpu_physical_memory_set_dirty_tracking(int enable)
760 int ret = 0;
761 in_migration = enable;
762 return ret;
765 hwaddr memory_region_section_get_iotlb(CPUArchState *env,
766 MemoryRegionSection *section,
767 target_ulong vaddr,
768 hwaddr paddr, hwaddr xlat,
769 int prot,
770 target_ulong *address)
772 hwaddr iotlb;
773 CPUWatchpoint *wp;
775 if (memory_region_is_ram(section->mr)) {
776 /* Normal RAM. */
777 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
778 + xlat;
779 if (!section->readonly) {
780 iotlb |= PHYS_SECTION_NOTDIRTY;
781 } else {
782 iotlb |= PHYS_SECTION_ROM;
784 } else {
785 iotlb = section - address_space_memory.dispatch->map.sections;
786 iotlb += xlat;
789 /* Make accesses to pages with watchpoints go via the
790 watchpoint trap routines. */
791 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
792 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
793 /* Avoid trapping reads of pages with a write breakpoint. */
794 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
795 iotlb = PHYS_SECTION_WATCH + paddr;
796 *address |= TLB_MMIO;
797 break;
802 return iotlb;
804 #endif /* defined(CONFIG_USER_ONLY) */
806 #if !defined(CONFIG_USER_ONLY)
808 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
809 uint16_t section);
810 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
812 static void *(*phys_mem_alloc)(size_t size) = qemu_anon_ram_alloc;
815 * Set a custom physical guest memory alloator.
816 * Accelerators with unusual needs may need this. Hopefully, we can
817 * get rid of it eventually.
819 void phys_mem_set_alloc(void *(*alloc)(size_t))
821 phys_mem_alloc = alloc;
824 static uint16_t phys_section_add(PhysPageMap *map,
825 MemoryRegionSection *section)
827 /* The physical section number is ORed with a page-aligned
828 * pointer to produce the iotlb entries. Thus it should
829 * never overflow into the page-aligned value.
831 assert(map->sections_nb < TARGET_PAGE_SIZE);
833 if (map->sections_nb == map->sections_nb_alloc) {
834 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
835 map->sections = g_renew(MemoryRegionSection, map->sections,
836 map->sections_nb_alloc);
838 map->sections[map->sections_nb] = *section;
839 memory_region_ref(section->mr);
840 return map->sections_nb++;
843 static void phys_section_destroy(MemoryRegion *mr)
845 memory_region_unref(mr);
847 if (mr->subpage) {
848 subpage_t *subpage = container_of(mr, subpage_t, iomem);
849 memory_region_destroy(&subpage->iomem);
850 g_free(subpage);
854 static void phys_sections_free(PhysPageMap *map)
856 while (map->sections_nb > 0) {
857 MemoryRegionSection *section = &map->sections[--map->sections_nb];
858 phys_section_destroy(section->mr);
860 g_free(map->sections);
861 g_free(map->nodes);
864 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
866 subpage_t *subpage;
867 hwaddr base = section->offset_within_address_space
868 & TARGET_PAGE_MASK;
869 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
870 d->map.nodes, d->map.sections);
871 MemoryRegionSection subsection = {
872 .offset_within_address_space = base,
873 .size = int128_make64(TARGET_PAGE_SIZE),
875 hwaddr start, end;
877 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
879 if (!(existing->mr->subpage)) {
880 subpage = subpage_init(d->as, base);
881 subsection.mr = &subpage->iomem;
882 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
883 phys_section_add(&d->map, &subsection));
884 } else {
885 subpage = container_of(existing->mr, subpage_t, iomem);
887 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
888 end = start + int128_get64(section->size) - 1;
889 subpage_register(subpage, start, end,
890 phys_section_add(&d->map, section));
894 static void register_multipage(AddressSpaceDispatch *d,
895 MemoryRegionSection *section)
897 hwaddr start_addr = section->offset_within_address_space;
898 uint16_t section_index = phys_section_add(&d->map, section);
899 uint64_t num_pages = int128_get64(int128_rshift(section->size,
900 TARGET_PAGE_BITS));
902 assert(num_pages);
903 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
906 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
908 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
909 AddressSpaceDispatch *d = as->next_dispatch;
910 MemoryRegionSection now = *section, remain = *section;
911 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
913 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
914 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
915 - now.offset_within_address_space;
917 now.size = int128_min(int128_make64(left), now.size);
918 register_subpage(d, &now);
919 } else {
920 now.size = int128_zero();
922 while (int128_ne(remain.size, now.size)) {
923 remain.size = int128_sub(remain.size, now.size);
924 remain.offset_within_address_space += int128_get64(now.size);
925 remain.offset_within_region += int128_get64(now.size);
926 now = remain;
927 if (int128_lt(remain.size, page_size)) {
928 register_subpage(d, &now);
929 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
930 now.size = page_size;
931 register_subpage(d, &now);
932 } else {
933 now.size = int128_and(now.size, int128_neg(page_size));
934 register_multipage(d, &now);
939 void qemu_flush_coalesced_mmio_buffer(void)
941 if (kvm_enabled())
942 kvm_flush_coalesced_mmio_buffer();
945 void qemu_mutex_lock_ramlist(void)
947 qemu_mutex_lock(&ram_list.mutex);
950 void qemu_mutex_unlock_ramlist(void)
952 qemu_mutex_unlock(&ram_list.mutex);
955 #ifdef __linux__
957 #include <sys/vfs.h>
959 #define HUGETLBFS_MAGIC 0x958458f6
961 static long gethugepagesize(const char *path)
963 struct statfs fs;
964 int ret;
966 do {
967 ret = statfs(path, &fs);
968 } while (ret != 0 && errno == EINTR);
970 if (ret != 0) {
971 perror(path);
972 return 0;
975 if (fs.f_type != HUGETLBFS_MAGIC)
976 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
978 return fs.f_bsize;
981 static sigjmp_buf sigjump;
983 static void sigbus_handler(int signal)
985 siglongjmp(sigjump, 1);
988 static void *file_ram_alloc(RAMBlock *block,
989 ram_addr_t memory,
990 const char *path)
992 char *filename;
993 char *sanitized_name;
994 char *c;
995 void *area;
996 int fd;
997 unsigned long hpagesize;
999 hpagesize = gethugepagesize(path);
1000 if (!hpagesize) {
1001 return NULL;
1004 if (memory < hpagesize) {
1005 return NULL;
1008 if (kvm_enabled() && !kvm_has_sync_mmu()) {
1009 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
1010 return NULL;
1013 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1014 sanitized_name = g_strdup(block->mr->name);
1015 for (c = sanitized_name; *c != '\0'; c++) {
1016 if (*c == '/')
1017 *c = '_';
1020 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1021 sanitized_name);
1022 g_free(sanitized_name);
1024 fd = mkstemp(filename);
1025 if (fd < 0) {
1026 perror("unable to create backing store for hugepages");
1027 g_free(filename);
1028 return NULL;
1030 unlink(filename);
1031 g_free(filename);
1033 memory = (memory+hpagesize-1) & ~(hpagesize-1);
1036 * ftruncate is not supported by hugetlbfs in older
1037 * hosts, so don't bother bailing out on errors.
1038 * If anything goes wrong with it under other filesystems,
1039 * mmap will fail.
1041 if (ftruncate(fd, memory))
1042 perror("ftruncate");
1044 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
1045 if (area == MAP_FAILED) {
1046 perror("file_ram_alloc: can't mmap RAM pages");
1047 close(fd);
1048 return (NULL);
1051 if (mem_prealloc) {
1052 int ret, i;
1053 struct sigaction act, oldact;
1054 sigset_t set, oldset;
1056 memset(&act, 0, sizeof(act));
1057 act.sa_handler = &sigbus_handler;
1058 act.sa_flags = 0;
1060 ret = sigaction(SIGBUS, &act, &oldact);
1061 if (ret) {
1062 perror("file_ram_alloc: failed to install signal handler");
1063 exit(1);
1066 /* unblock SIGBUS */
1067 sigemptyset(&set);
1068 sigaddset(&set, SIGBUS);
1069 pthread_sigmask(SIG_UNBLOCK, &set, &oldset);
1071 if (sigsetjmp(sigjump, 1)) {
1072 fprintf(stderr, "file_ram_alloc: failed to preallocate pages\n");
1073 exit(1);
1076 /* MAP_POPULATE silently ignores failures */
1077 for (i = 0; i < (memory/hpagesize)-1; i++) {
1078 memset(area + (hpagesize*i), 0, 1);
1081 ret = sigaction(SIGBUS, &oldact, NULL);
1082 if (ret) {
1083 perror("file_ram_alloc: failed to reinstall signal handler");
1084 exit(1);
1087 pthread_sigmask(SIG_SETMASK, &oldset, NULL);
1090 block->fd = fd;
1091 return area;
1093 #else
1094 static void *file_ram_alloc(RAMBlock *block,
1095 ram_addr_t memory,
1096 const char *path)
1098 fprintf(stderr, "-mem-path not supported on this host\n");
1099 exit(1);
1101 #endif
1103 static ram_addr_t find_ram_offset(ram_addr_t size)
1105 RAMBlock *block, *next_block;
1106 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1108 assert(size != 0); /* it would hand out same offset multiple times */
1110 if (QTAILQ_EMPTY(&ram_list.blocks))
1111 return 0;
1113 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1114 ram_addr_t end, next = RAM_ADDR_MAX;
1116 end = block->offset + block->length;
1118 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
1119 if (next_block->offset >= end) {
1120 next = MIN(next, next_block->offset);
1123 if (next - end >= size && next - end < mingap) {
1124 offset = end;
1125 mingap = next - end;
1129 if (offset == RAM_ADDR_MAX) {
1130 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1131 (uint64_t)size);
1132 abort();
1135 return offset;
1138 ram_addr_t last_ram_offset(void)
1140 RAMBlock *block;
1141 ram_addr_t last = 0;
1143 QTAILQ_FOREACH(block, &ram_list.blocks, next)
1144 last = MAX(last, block->offset + block->length);
1146 return last;
1149 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1151 int ret;
1153 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1154 if (!qemu_opt_get_bool(qemu_get_machine_opts(),
1155 "dump-guest-core", true)) {
1156 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1157 if (ret) {
1158 perror("qemu_madvise");
1159 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1160 "but dump_guest_core=off specified\n");
1165 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1167 RAMBlock *new_block, *block;
1169 new_block = NULL;
1170 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1171 if (block->offset == addr) {
1172 new_block = block;
1173 break;
1176 assert(new_block);
1177 assert(!new_block->idstr[0]);
1179 if (dev) {
1180 char *id = qdev_get_dev_path(dev);
1181 if (id) {
1182 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1183 g_free(id);
1186 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1188 /* This assumes the iothread lock is taken here too. */
1189 qemu_mutex_lock_ramlist();
1190 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1191 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1192 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1193 new_block->idstr);
1194 abort();
1197 qemu_mutex_unlock_ramlist();
1200 static int memory_try_enable_merging(void *addr, size_t len)
1202 if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) {
1203 /* disabled by the user */
1204 return 0;
1207 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1210 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1211 MemoryRegion *mr)
1213 RAMBlock *block, *new_block;
1214 ram_addr_t old_ram_size, new_ram_size;
1216 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1218 size = TARGET_PAGE_ALIGN(size);
1219 new_block = g_malloc0(sizeof(*new_block));
1220 new_block->fd = -1;
1222 /* This assumes the iothread lock is taken here too. */
1223 qemu_mutex_lock_ramlist();
1224 new_block->mr = mr;
1225 new_block->offset = find_ram_offset(size);
1226 if (host) {
1227 new_block->host = host;
1228 new_block->flags |= RAM_PREALLOC_MASK;
1229 } else if (xen_enabled()) {
1230 if (mem_path) {
1231 fprintf(stderr, "-mem-path not supported with Xen\n");
1232 exit(1);
1234 xen_ram_alloc(new_block->offset, size, mr);
1235 } else {
1236 if (mem_path) {
1237 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1239 * file_ram_alloc() needs to allocate just like
1240 * phys_mem_alloc, but we haven't bothered to provide
1241 * a hook there.
1243 fprintf(stderr,
1244 "-mem-path not supported with this accelerator\n");
1245 exit(1);
1247 new_block->host = file_ram_alloc(new_block, size, mem_path);
1249 if (!new_block->host) {
1250 new_block->host = phys_mem_alloc(size);
1251 if (!new_block->host) {
1252 fprintf(stderr, "Cannot set up guest memory '%s': %s\n",
1253 new_block->mr->name, strerror(errno));
1254 exit(1);
1256 memory_try_enable_merging(new_block->host, size);
1259 new_block->length = size;
1261 /* Keep the list sorted from biggest to smallest block. */
1262 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1263 if (block->length < new_block->length) {
1264 break;
1267 if (block) {
1268 QTAILQ_INSERT_BEFORE(block, new_block, next);
1269 } else {
1270 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1272 ram_list.mru_block = NULL;
1274 ram_list.version++;
1275 qemu_mutex_unlock_ramlist();
1277 new_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
1279 if (new_ram_size > old_ram_size) {
1280 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty, new_ram_size);
1281 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1282 0, size >> TARGET_PAGE_BITS);
1284 cpu_physical_memory_set_dirty_range(new_block->offset, size);
1286 qemu_ram_setup_dump(new_block->host, size);
1287 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
1288 qemu_madvise(new_block->host, size, QEMU_MADV_DONTFORK);
1290 if (kvm_enabled())
1291 kvm_setup_guest_memory(new_block->host, size);
1293 return new_block->offset;
1296 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
1298 return qemu_ram_alloc_from_ptr(size, NULL, mr);
1301 void qemu_ram_free_from_ptr(ram_addr_t addr)
1303 RAMBlock *block;
1305 /* This assumes the iothread lock is taken here too. */
1306 qemu_mutex_lock_ramlist();
1307 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1308 if (addr == block->offset) {
1309 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1310 ram_list.mru_block = NULL;
1311 ram_list.version++;
1312 g_free(block);
1313 break;
1316 qemu_mutex_unlock_ramlist();
1319 void qemu_ram_free(ram_addr_t addr)
1321 RAMBlock *block;
1323 /* This assumes the iothread lock is taken here too. */
1324 qemu_mutex_lock_ramlist();
1325 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1326 if (addr == block->offset) {
1327 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1328 ram_list.mru_block = NULL;
1329 ram_list.version++;
1330 if (block->flags & RAM_PREALLOC_MASK) {
1332 } else if (xen_enabled()) {
1333 xen_invalidate_map_cache_entry(block->host);
1334 #ifndef _WIN32
1335 } else if (block->fd >= 0) {
1336 munmap(block->host, block->length);
1337 close(block->fd);
1338 #endif
1339 } else {
1340 qemu_anon_ram_free(block->host, block->length);
1342 g_free(block);
1343 break;
1346 qemu_mutex_unlock_ramlist();
1350 #ifndef _WIN32
1351 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1353 RAMBlock *block;
1354 ram_addr_t offset;
1355 int flags;
1356 void *area, *vaddr;
1358 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1359 offset = addr - block->offset;
1360 if (offset < block->length) {
1361 vaddr = block->host + offset;
1362 if (block->flags & RAM_PREALLOC_MASK) {
1364 } else if (xen_enabled()) {
1365 abort();
1366 } else {
1367 flags = MAP_FIXED;
1368 munmap(vaddr, length);
1369 if (block->fd >= 0) {
1370 #ifdef MAP_POPULATE
1371 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1372 MAP_PRIVATE;
1373 #else
1374 flags |= MAP_PRIVATE;
1375 #endif
1376 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1377 flags, block->fd, offset);
1378 } else {
1380 * Remap needs to match alloc. Accelerators that
1381 * set phys_mem_alloc never remap. If they did,
1382 * we'd need a remap hook here.
1384 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1386 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1387 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1388 flags, -1, 0);
1390 if (area != vaddr) {
1391 fprintf(stderr, "Could not remap addr: "
1392 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1393 length, addr);
1394 exit(1);
1396 memory_try_enable_merging(vaddr, length);
1397 qemu_ram_setup_dump(vaddr, length);
1399 return;
1403 #endif /* !_WIN32 */
1405 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1406 With the exception of the softmmu code in this file, this should
1407 only be used for local memory (e.g. video ram) that the device owns,
1408 and knows it isn't going to access beyond the end of the block.
1410 It should not be used for general purpose DMA.
1411 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1413 void *qemu_get_ram_ptr(ram_addr_t addr)
1415 RAMBlock *block = qemu_get_ram_block(addr);
1417 if (xen_enabled()) {
1418 /* We need to check if the requested address is in the RAM
1419 * because we don't want to map the entire memory in QEMU.
1420 * In that case just map until the end of the page.
1422 if (block->offset == 0) {
1423 return xen_map_cache(addr, 0, 0);
1424 } else if (block->host == NULL) {
1425 block->host =
1426 xen_map_cache(block->offset, block->length, 1);
1429 return block->host + (addr - block->offset);
1432 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1433 * but takes a size argument */
1434 static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
1436 if (*size == 0) {
1437 return NULL;
1439 if (xen_enabled()) {
1440 return xen_map_cache(addr, *size, 1);
1441 } else {
1442 RAMBlock *block;
1444 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1445 if (addr - block->offset < block->length) {
1446 if (addr - block->offset + *size > block->length)
1447 *size = block->length - addr + block->offset;
1448 return block->host + (addr - block->offset);
1452 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1453 abort();
1457 /* Some of the softmmu routines need to translate from a host pointer
1458 (typically a TLB entry) back to a ram offset. */
1459 MemoryRegion *qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1461 RAMBlock *block;
1462 uint8_t *host = ptr;
1464 if (xen_enabled()) {
1465 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1466 return qemu_get_ram_block(*ram_addr)->mr;
1469 block = ram_list.mru_block;
1470 if (block && block->host && host - block->host < block->length) {
1471 goto found;
1474 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1475 /* This case append when the block is not mapped. */
1476 if (block->host == NULL) {
1477 continue;
1479 if (host - block->host < block->length) {
1480 goto found;
1484 return NULL;
1486 found:
1487 *ram_addr = block->offset + (host - block->host);
1488 return block->mr;
1491 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1492 uint64_t val, unsigned size)
1494 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1495 tb_invalidate_phys_page_fast(ram_addr, size);
1497 switch (size) {
1498 case 1:
1499 stb_p(qemu_get_ram_ptr(ram_addr), val);
1500 break;
1501 case 2:
1502 stw_p(qemu_get_ram_ptr(ram_addr), val);
1503 break;
1504 case 4:
1505 stl_p(qemu_get_ram_ptr(ram_addr), val);
1506 break;
1507 default:
1508 abort();
1510 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_MIGRATION);
1511 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_VGA);
1512 /* we remove the notdirty callback only if the code has been
1513 flushed */
1514 if (cpu_physical_memory_is_dirty(ram_addr)) {
1515 CPUArchState *env = current_cpu->env_ptr;
1516 tlb_set_dirty(env, env->mem_io_vaddr);
1520 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1521 unsigned size, bool is_write)
1523 return is_write;
1526 static const MemoryRegionOps notdirty_mem_ops = {
1527 .write = notdirty_mem_write,
1528 .valid.accepts = notdirty_mem_accepts,
1529 .endianness = DEVICE_NATIVE_ENDIAN,
1532 /* Generate a debug exception if a watchpoint has been hit. */
1533 static void check_watchpoint(int offset, int len_mask, int flags)
1535 CPUArchState *env = current_cpu->env_ptr;
1536 target_ulong pc, cs_base;
1537 target_ulong vaddr;
1538 CPUWatchpoint *wp;
1539 int cpu_flags;
1541 if (env->watchpoint_hit) {
1542 /* We re-entered the check after replacing the TB. Now raise
1543 * the debug interrupt so that is will trigger after the
1544 * current instruction. */
1545 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
1546 return;
1548 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1549 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1550 if ((vaddr == (wp->vaddr & len_mask) ||
1551 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
1552 wp->flags |= BP_WATCHPOINT_HIT;
1553 if (!env->watchpoint_hit) {
1554 env->watchpoint_hit = wp;
1555 tb_check_watchpoint(env);
1556 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1557 env->exception_index = EXCP_DEBUG;
1558 cpu_loop_exit(env);
1559 } else {
1560 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1561 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
1562 cpu_resume_from_signal(env, NULL);
1565 } else {
1566 wp->flags &= ~BP_WATCHPOINT_HIT;
1571 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1572 so these check for a hit then pass through to the normal out-of-line
1573 phys routines. */
1574 static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1575 unsigned size)
1577 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1578 switch (size) {
1579 case 1: return ldub_phys(addr);
1580 case 2: return lduw_phys(addr);
1581 case 4: return ldl_phys(addr);
1582 default: abort();
1586 static void watch_mem_write(void *opaque, hwaddr addr,
1587 uint64_t val, unsigned size)
1589 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1590 switch (size) {
1591 case 1:
1592 stb_phys(addr, val);
1593 break;
1594 case 2:
1595 stw_phys(addr, val);
1596 break;
1597 case 4:
1598 stl_phys(addr, val);
1599 break;
1600 default: abort();
1604 static const MemoryRegionOps watch_mem_ops = {
1605 .read = watch_mem_read,
1606 .write = watch_mem_write,
1607 .endianness = DEVICE_NATIVE_ENDIAN,
1610 static uint64_t subpage_read(void *opaque, hwaddr addr,
1611 unsigned len)
1613 subpage_t *subpage = opaque;
1614 uint8_t buf[4];
1616 #if defined(DEBUG_SUBPAGE)
1617 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
1618 subpage, len, addr);
1619 #endif
1620 address_space_read(subpage->as, addr + subpage->base, buf, len);
1621 switch (len) {
1622 case 1:
1623 return ldub_p(buf);
1624 case 2:
1625 return lduw_p(buf);
1626 case 4:
1627 return ldl_p(buf);
1628 default:
1629 abort();
1633 static void subpage_write(void *opaque, hwaddr addr,
1634 uint64_t value, unsigned len)
1636 subpage_t *subpage = opaque;
1637 uint8_t buf[4];
1639 #if defined(DEBUG_SUBPAGE)
1640 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
1641 " value %"PRIx64"\n",
1642 __func__, subpage, len, addr, value);
1643 #endif
1644 switch (len) {
1645 case 1:
1646 stb_p(buf, value);
1647 break;
1648 case 2:
1649 stw_p(buf, value);
1650 break;
1651 case 4:
1652 stl_p(buf, value);
1653 break;
1654 default:
1655 abort();
1657 address_space_write(subpage->as, addr + subpage->base, buf, len);
1660 static bool subpage_accepts(void *opaque, hwaddr addr,
1661 unsigned len, bool is_write)
1663 subpage_t *subpage = opaque;
1664 #if defined(DEBUG_SUBPAGE)
1665 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
1666 __func__, subpage, is_write ? 'w' : 'r', len, addr);
1667 #endif
1669 return address_space_access_valid(subpage->as, addr + subpage->base,
1670 len, is_write);
1673 static const MemoryRegionOps subpage_ops = {
1674 .read = subpage_read,
1675 .write = subpage_write,
1676 .valid.accepts = subpage_accepts,
1677 .endianness = DEVICE_NATIVE_ENDIAN,
1680 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1681 uint16_t section)
1683 int idx, eidx;
1685 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1686 return -1;
1687 idx = SUBPAGE_IDX(start);
1688 eidx = SUBPAGE_IDX(end);
1689 #if defined(DEBUG_SUBPAGE)
1690 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
1691 __func__, mmio, start, end, idx, eidx, section);
1692 #endif
1693 for (; idx <= eidx; idx++) {
1694 mmio->sub_section[idx] = section;
1697 return 0;
1700 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
1702 subpage_t *mmio;
1704 mmio = g_malloc0(sizeof(subpage_t));
1706 mmio->as = as;
1707 mmio->base = base;
1708 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
1709 "subpage", TARGET_PAGE_SIZE);
1710 mmio->iomem.subpage = true;
1711 #if defined(DEBUG_SUBPAGE)
1712 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
1713 mmio, base, TARGET_PAGE_SIZE);
1714 #endif
1715 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
1717 return mmio;
1720 static uint16_t dummy_section(PhysPageMap *map, MemoryRegion *mr)
1722 MemoryRegionSection section = {
1723 .mr = mr,
1724 .offset_within_address_space = 0,
1725 .offset_within_region = 0,
1726 .size = int128_2_64(),
1729 return phys_section_add(map, &section);
1732 MemoryRegion *iotlb_to_region(hwaddr index)
1734 return address_space_memory.dispatch->map.sections[
1735 index & ~TARGET_PAGE_MASK].mr;
1738 static void io_mem_init(void)
1740 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1741 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1742 "unassigned", UINT64_MAX);
1743 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1744 "notdirty", UINT64_MAX);
1745 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1746 "watch", UINT64_MAX);
1749 static void mem_begin(MemoryListener *listener)
1751 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1752 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
1753 uint16_t n;
1755 n = dummy_section(&d->map, &io_mem_unassigned);
1756 assert(n == PHYS_SECTION_UNASSIGNED);
1757 n = dummy_section(&d->map, &io_mem_notdirty);
1758 assert(n == PHYS_SECTION_NOTDIRTY);
1759 n = dummy_section(&d->map, &io_mem_rom);
1760 assert(n == PHYS_SECTION_ROM);
1761 n = dummy_section(&d->map, &io_mem_watch);
1762 assert(n == PHYS_SECTION_WATCH);
1764 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
1765 d->as = as;
1766 as->next_dispatch = d;
1769 static void mem_commit(MemoryListener *listener)
1771 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
1772 AddressSpaceDispatch *cur = as->dispatch;
1773 AddressSpaceDispatch *next = as->next_dispatch;
1775 phys_page_compact_all(next, next->map.nodes_nb);
1777 as->dispatch = next;
1779 if (cur) {
1780 phys_sections_free(&cur->map);
1781 g_free(cur);
1785 static void tcg_commit(MemoryListener *listener)
1787 CPUState *cpu;
1789 /* since each CPU stores ram addresses in its TLB cache, we must
1790 reset the modified entries */
1791 /* XXX: slow ! */
1792 CPU_FOREACH(cpu) {
1793 CPUArchState *env = cpu->env_ptr;
1795 tlb_flush(env, 1);
1799 static void core_log_global_start(MemoryListener *listener)
1801 cpu_physical_memory_set_dirty_tracking(1);
1804 static void core_log_global_stop(MemoryListener *listener)
1806 cpu_physical_memory_set_dirty_tracking(0);
1809 static MemoryListener core_memory_listener = {
1810 .log_global_start = core_log_global_start,
1811 .log_global_stop = core_log_global_stop,
1812 .priority = 1,
1815 static MemoryListener tcg_memory_listener = {
1816 .commit = tcg_commit,
1819 void address_space_init_dispatch(AddressSpace *as)
1821 as->dispatch = NULL;
1822 as->dispatch_listener = (MemoryListener) {
1823 .begin = mem_begin,
1824 .commit = mem_commit,
1825 .region_add = mem_add,
1826 .region_nop = mem_add,
1827 .priority = 0,
1829 memory_listener_register(&as->dispatch_listener, as);
1832 void address_space_destroy_dispatch(AddressSpace *as)
1834 AddressSpaceDispatch *d = as->dispatch;
1836 memory_listener_unregister(&as->dispatch_listener);
1837 g_free(d);
1838 as->dispatch = NULL;
1841 static void memory_map_init(void)
1843 system_memory = g_malloc(sizeof(*system_memory));
1845 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
1846 address_space_init(&address_space_memory, system_memory, "memory");
1848 system_io = g_malloc(sizeof(*system_io));
1849 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
1850 65536);
1851 address_space_init(&address_space_io, system_io, "I/O");
1853 memory_listener_register(&core_memory_listener, &address_space_memory);
1854 if (tcg_enabled()) {
1855 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1859 MemoryRegion *get_system_memory(void)
1861 return system_memory;
1864 MemoryRegion *get_system_io(void)
1866 return system_io;
1869 #endif /* !defined(CONFIG_USER_ONLY) */
1871 /* physical memory access (slow version, mainly for debug) */
1872 #if defined(CONFIG_USER_ONLY)
1873 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
1874 uint8_t *buf, int len, int is_write)
1876 int l, flags;
1877 target_ulong page;
1878 void * p;
1880 while (len > 0) {
1881 page = addr & TARGET_PAGE_MASK;
1882 l = (page + TARGET_PAGE_SIZE) - addr;
1883 if (l > len)
1884 l = len;
1885 flags = page_get_flags(page);
1886 if (!(flags & PAGE_VALID))
1887 return -1;
1888 if (is_write) {
1889 if (!(flags & PAGE_WRITE))
1890 return -1;
1891 /* XXX: this code should not depend on lock_user */
1892 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
1893 return -1;
1894 memcpy(p, buf, l);
1895 unlock_user(p, addr, l);
1896 } else {
1897 if (!(flags & PAGE_READ))
1898 return -1;
1899 /* XXX: this code should not depend on lock_user */
1900 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
1901 return -1;
1902 memcpy(buf, p, l);
1903 unlock_user(p, addr, 0);
1905 len -= l;
1906 buf += l;
1907 addr += l;
1909 return 0;
1912 #else
1914 static void invalidate_and_set_dirty(hwaddr addr,
1915 hwaddr length)
1917 if (!cpu_physical_memory_is_dirty(addr)) {
1918 /* invalidate code */
1919 tb_invalidate_phys_page_range(addr, addr + length, 0);
1920 /* set dirty bit */
1921 cpu_physical_memory_set_dirty_flag(addr, DIRTY_MEMORY_VGA);
1922 cpu_physical_memory_set_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
1924 xen_modified_memory(addr, length);
1927 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1929 if (memory_region_is_ram(mr)) {
1930 return !(is_write && mr->readonly);
1932 if (memory_region_is_romd(mr)) {
1933 return !is_write;
1936 return false;
1939 static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
1941 unsigned access_size_max = mr->ops->valid.max_access_size;
1943 /* Regions are assumed to support 1-4 byte accesses unless
1944 otherwise specified. */
1945 if (access_size_max == 0) {
1946 access_size_max = 4;
1949 /* Bound the maximum access by the alignment of the address. */
1950 if (!mr->ops->impl.unaligned) {
1951 unsigned align_size_max = addr & -addr;
1952 if (align_size_max != 0 && align_size_max < access_size_max) {
1953 access_size_max = align_size_max;
1957 /* Don't attempt accesses larger than the maximum. */
1958 if (l > access_size_max) {
1959 l = access_size_max;
1961 if (l & (l - 1)) {
1962 l = 1 << (qemu_fls(l) - 1);
1965 return l;
1968 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1969 int len, bool is_write)
1971 hwaddr l;
1972 uint8_t *ptr;
1973 uint64_t val;
1974 hwaddr addr1;
1975 MemoryRegion *mr;
1976 bool error = false;
1978 while (len > 0) {
1979 l = len;
1980 mr = address_space_translate(as, addr, &addr1, &l, is_write);
1982 if (is_write) {
1983 if (!memory_access_is_direct(mr, is_write)) {
1984 l = memory_access_size(mr, l, addr1);
1985 /* XXX: could force current_cpu to NULL to avoid
1986 potential bugs */
1987 switch (l) {
1988 case 8:
1989 /* 64 bit write access */
1990 val = ldq_p(buf);
1991 error |= io_mem_write(mr, addr1, val, 8);
1992 break;
1993 case 4:
1994 /* 32 bit write access */
1995 val = ldl_p(buf);
1996 error |= io_mem_write(mr, addr1, val, 4);
1997 break;
1998 case 2:
1999 /* 16 bit write access */
2000 val = lduw_p(buf);
2001 error |= io_mem_write(mr, addr1, val, 2);
2002 break;
2003 case 1:
2004 /* 8 bit write access */
2005 val = ldub_p(buf);
2006 error |= io_mem_write(mr, addr1, val, 1);
2007 break;
2008 default:
2009 abort();
2011 } else {
2012 addr1 += memory_region_get_ram_addr(mr);
2013 /* RAM case */
2014 ptr = qemu_get_ram_ptr(addr1);
2015 memcpy(ptr, buf, l);
2016 invalidate_and_set_dirty(addr1, l);
2018 } else {
2019 if (!memory_access_is_direct(mr, is_write)) {
2020 /* I/O case */
2021 l = memory_access_size(mr, l, addr1);
2022 switch (l) {
2023 case 8:
2024 /* 64 bit read access */
2025 error |= io_mem_read(mr, addr1, &val, 8);
2026 stq_p(buf, val);
2027 break;
2028 case 4:
2029 /* 32 bit read access */
2030 error |= io_mem_read(mr, addr1, &val, 4);
2031 stl_p(buf, val);
2032 break;
2033 case 2:
2034 /* 16 bit read access */
2035 error |= io_mem_read(mr, addr1, &val, 2);
2036 stw_p(buf, val);
2037 break;
2038 case 1:
2039 /* 8 bit read access */
2040 error |= io_mem_read(mr, addr1, &val, 1);
2041 stb_p(buf, val);
2042 break;
2043 default:
2044 abort();
2046 } else {
2047 /* RAM case */
2048 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
2049 memcpy(buf, ptr, l);
2052 len -= l;
2053 buf += l;
2054 addr += l;
2057 return error;
2060 bool address_space_write(AddressSpace *as, hwaddr addr,
2061 const uint8_t *buf, int len)
2063 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
2066 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
2068 return address_space_rw(as, addr, buf, len, false);
2072 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
2073 int len, int is_write)
2075 address_space_rw(&address_space_memory, addr, buf, len, is_write);
2078 enum write_rom_type {
2079 WRITE_DATA,
2080 FLUSH_CACHE,
2083 static inline void cpu_physical_memory_write_rom_internal(
2084 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
2086 hwaddr l;
2087 uint8_t *ptr;
2088 hwaddr addr1;
2089 MemoryRegion *mr;
2091 while (len > 0) {
2092 l = len;
2093 mr = address_space_translate(&address_space_memory,
2094 addr, &addr1, &l, true);
2096 if (!(memory_region_is_ram(mr) ||
2097 memory_region_is_romd(mr))) {
2098 /* do nothing */
2099 } else {
2100 addr1 += memory_region_get_ram_addr(mr);
2101 /* ROM/RAM case */
2102 ptr = qemu_get_ram_ptr(addr1);
2103 switch (type) {
2104 case WRITE_DATA:
2105 memcpy(ptr, buf, l);
2106 invalidate_and_set_dirty(addr1, l);
2107 break;
2108 case FLUSH_CACHE:
2109 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2110 break;
2113 len -= l;
2114 buf += l;
2115 addr += l;
2119 /* used for ROM loading : can write in RAM and ROM */
2120 void cpu_physical_memory_write_rom(hwaddr addr,
2121 const uint8_t *buf, int len)
2123 cpu_physical_memory_write_rom_internal(addr, buf, len, WRITE_DATA);
2126 void cpu_flush_icache_range(hwaddr start, int len)
2129 * This function should do the same thing as an icache flush that was
2130 * triggered from within the guest. For TCG we are always cache coherent,
2131 * so there is no need to flush anything. For KVM / Xen we need to flush
2132 * the host's instruction cache at least.
2134 if (tcg_enabled()) {
2135 return;
2138 cpu_physical_memory_write_rom_internal(start, NULL, len, FLUSH_CACHE);
2141 typedef struct {
2142 MemoryRegion *mr;
2143 void *buffer;
2144 hwaddr addr;
2145 hwaddr len;
2146 } BounceBuffer;
2148 static BounceBuffer bounce;
2150 typedef struct MapClient {
2151 void *opaque;
2152 void (*callback)(void *opaque);
2153 QLIST_ENTRY(MapClient) link;
2154 } MapClient;
2156 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2157 = QLIST_HEAD_INITIALIZER(map_client_list);
2159 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2161 MapClient *client = g_malloc(sizeof(*client));
2163 client->opaque = opaque;
2164 client->callback = callback;
2165 QLIST_INSERT_HEAD(&map_client_list, client, link);
2166 return client;
2169 static void cpu_unregister_map_client(void *_client)
2171 MapClient *client = (MapClient *)_client;
2173 QLIST_REMOVE(client, link);
2174 g_free(client);
2177 static void cpu_notify_map_clients(void)
2179 MapClient *client;
2181 while (!QLIST_EMPTY(&map_client_list)) {
2182 client = QLIST_FIRST(&map_client_list);
2183 client->callback(client->opaque);
2184 cpu_unregister_map_client(client);
2188 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2190 MemoryRegion *mr;
2191 hwaddr l, xlat;
2193 while (len > 0) {
2194 l = len;
2195 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2196 if (!memory_access_is_direct(mr, is_write)) {
2197 l = memory_access_size(mr, l, addr);
2198 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2199 return false;
2203 len -= l;
2204 addr += l;
2206 return true;
2209 /* Map a physical memory region into a host virtual address.
2210 * May map a subset of the requested range, given by and returned in *plen.
2211 * May return NULL if resources needed to perform the mapping are exhausted.
2212 * Use only for reads OR writes - not for read-modify-write operations.
2213 * Use cpu_register_map_client() to know when retrying the map operation is
2214 * likely to succeed.
2216 void *address_space_map(AddressSpace *as,
2217 hwaddr addr,
2218 hwaddr *plen,
2219 bool is_write)
2221 hwaddr len = *plen;
2222 hwaddr done = 0;
2223 hwaddr l, xlat, base;
2224 MemoryRegion *mr, *this_mr;
2225 ram_addr_t raddr;
2227 if (len == 0) {
2228 return NULL;
2231 l = len;
2232 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2233 if (!memory_access_is_direct(mr, is_write)) {
2234 if (bounce.buffer) {
2235 return NULL;
2237 /* Avoid unbounded allocations */
2238 l = MIN(l, TARGET_PAGE_SIZE);
2239 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
2240 bounce.addr = addr;
2241 bounce.len = l;
2243 memory_region_ref(mr);
2244 bounce.mr = mr;
2245 if (!is_write) {
2246 address_space_read(as, addr, bounce.buffer, l);
2249 *plen = l;
2250 return bounce.buffer;
2253 base = xlat;
2254 raddr = memory_region_get_ram_addr(mr);
2256 for (;;) {
2257 len -= l;
2258 addr += l;
2259 done += l;
2260 if (len == 0) {
2261 break;
2264 l = len;
2265 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2266 if (this_mr != mr || xlat != base + done) {
2267 break;
2271 memory_region_ref(mr);
2272 *plen = done;
2273 return qemu_ram_ptr_length(raddr + base, plen);
2276 /* Unmaps a memory region previously mapped by address_space_map().
2277 * Will also mark the memory as dirty if is_write == 1. access_len gives
2278 * the amount of memory that was actually read or written by the caller.
2280 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2281 int is_write, hwaddr access_len)
2283 if (buffer != bounce.buffer) {
2284 MemoryRegion *mr;
2285 ram_addr_t addr1;
2287 mr = qemu_ram_addr_from_host(buffer, &addr1);
2288 assert(mr != NULL);
2289 if (is_write) {
2290 while (access_len) {
2291 unsigned l;
2292 l = TARGET_PAGE_SIZE;
2293 if (l > access_len)
2294 l = access_len;
2295 invalidate_and_set_dirty(addr1, l);
2296 addr1 += l;
2297 access_len -= l;
2300 if (xen_enabled()) {
2301 xen_invalidate_map_cache_entry(buffer);
2303 memory_region_unref(mr);
2304 return;
2306 if (is_write) {
2307 address_space_write(as, bounce.addr, bounce.buffer, access_len);
2309 qemu_vfree(bounce.buffer);
2310 bounce.buffer = NULL;
2311 memory_region_unref(bounce.mr);
2312 cpu_notify_map_clients();
2315 void *cpu_physical_memory_map(hwaddr addr,
2316 hwaddr *plen,
2317 int is_write)
2319 return address_space_map(&address_space_memory, addr, plen, is_write);
2322 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2323 int is_write, hwaddr access_len)
2325 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2328 /* warning: addr must be aligned */
2329 static inline uint32_t ldl_phys_internal(hwaddr addr,
2330 enum device_endian endian)
2332 uint8_t *ptr;
2333 uint64_t val;
2334 MemoryRegion *mr;
2335 hwaddr l = 4;
2336 hwaddr addr1;
2338 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2339 false);
2340 if (l < 4 || !memory_access_is_direct(mr, false)) {
2341 /* I/O case */
2342 io_mem_read(mr, addr1, &val, 4);
2343 #if defined(TARGET_WORDS_BIGENDIAN)
2344 if (endian == DEVICE_LITTLE_ENDIAN) {
2345 val = bswap32(val);
2347 #else
2348 if (endian == DEVICE_BIG_ENDIAN) {
2349 val = bswap32(val);
2351 #endif
2352 } else {
2353 /* RAM case */
2354 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2355 & TARGET_PAGE_MASK)
2356 + addr1);
2357 switch (endian) {
2358 case DEVICE_LITTLE_ENDIAN:
2359 val = ldl_le_p(ptr);
2360 break;
2361 case DEVICE_BIG_ENDIAN:
2362 val = ldl_be_p(ptr);
2363 break;
2364 default:
2365 val = ldl_p(ptr);
2366 break;
2369 return val;
2372 uint32_t ldl_phys(hwaddr addr)
2374 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2377 uint32_t ldl_le_phys(hwaddr addr)
2379 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2382 uint32_t ldl_be_phys(hwaddr addr)
2384 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2387 /* warning: addr must be aligned */
2388 static inline uint64_t ldq_phys_internal(hwaddr addr,
2389 enum device_endian endian)
2391 uint8_t *ptr;
2392 uint64_t val;
2393 MemoryRegion *mr;
2394 hwaddr l = 8;
2395 hwaddr addr1;
2397 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2398 false);
2399 if (l < 8 || !memory_access_is_direct(mr, false)) {
2400 /* I/O case */
2401 io_mem_read(mr, addr1, &val, 8);
2402 #if defined(TARGET_WORDS_BIGENDIAN)
2403 if (endian == DEVICE_LITTLE_ENDIAN) {
2404 val = bswap64(val);
2406 #else
2407 if (endian == DEVICE_BIG_ENDIAN) {
2408 val = bswap64(val);
2410 #endif
2411 } else {
2412 /* RAM case */
2413 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2414 & TARGET_PAGE_MASK)
2415 + addr1);
2416 switch (endian) {
2417 case DEVICE_LITTLE_ENDIAN:
2418 val = ldq_le_p(ptr);
2419 break;
2420 case DEVICE_BIG_ENDIAN:
2421 val = ldq_be_p(ptr);
2422 break;
2423 default:
2424 val = ldq_p(ptr);
2425 break;
2428 return val;
2431 uint64_t ldq_phys(hwaddr addr)
2433 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2436 uint64_t ldq_le_phys(hwaddr addr)
2438 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2441 uint64_t ldq_be_phys(hwaddr addr)
2443 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2446 /* XXX: optimize */
2447 uint32_t ldub_phys(hwaddr addr)
2449 uint8_t val;
2450 cpu_physical_memory_read(addr, &val, 1);
2451 return val;
2454 /* warning: addr must be aligned */
2455 static inline uint32_t lduw_phys_internal(hwaddr addr,
2456 enum device_endian endian)
2458 uint8_t *ptr;
2459 uint64_t val;
2460 MemoryRegion *mr;
2461 hwaddr l = 2;
2462 hwaddr addr1;
2464 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2465 false);
2466 if (l < 2 || !memory_access_is_direct(mr, false)) {
2467 /* I/O case */
2468 io_mem_read(mr, addr1, &val, 2);
2469 #if defined(TARGET_WORDS_BIGENDIAN)
2470 if (endian == DEVICE_LITTLE_ENDIAN) {
2471 val = bswap16(val);
2473 #else
2474 if (endian == DEVICE_BIG_ENDIAN) {
2475 val = bswap16(val);
2477 #endif
2478 } else {
2479 /* RAM case */
2480 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2481 & TARGET_PAGE_MASK)
2482 + addr1);
2483 switch (endian) {
2484 case DEVICE_LITTLE_ENDIAN:
2485 val = lduw_le_p(ptr);
2486 break;
2487 case DEVICE_BIG_ENDIAN:
2488 val = lduw_be_p(ptr);
2489 break;
2490 default:
2491 val = lduw_p(ptr);
2492 break;
2495 return val;
2498 uint32_t lduw_phys(hwaddr addr)
2500 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2503 uint32_t lduw_le_phys(hwaddr addr)
2505 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2508 uint32_t lduw_be_phys(hwaddr addr)
2510 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2513 /* warning: addr must be aligned. The ram page is not masked as dirty
2514 and the code inside is not invalidated. It is useful if the dirty
2515 bits are used to track modified PTEs */
2516 void stl_phys_notdirty(hwaddr addr, uint32_t val)
2518 uint8_t *ptr;
2519 MemoryRegion *mr;
2520 hwaddr l = 4;
2521 hwaddr addr1;
2523 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2524 true);
2525 if (l < 4 || !memory_access_is_direct(mr, true)) {
2526 io_mem_write(mr, addr1, val, 4);
2527 } else {
2528 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2529 ptr = qemu_get_ram_ptr(addr1);
2530 stl_p(ptr, val);
2532 if (unlikely(in_migration)) {
2533 if (!cpu_physical_memory_is_dirty(addr1)) {
2534 /* invalidate code */
2535 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2536 /* set dirty bit */
2537 cpu_physical_memory_set_dirty_flag(addr1,
2538 DIRTY_MEMORY_MIGRATION);
2539 cpu_physical_memory_set_dirty_flag(addr1, DIRTY_MEMORY_VGA);
2545 /* warning: addr must be aligned */
2546 static inline void stl_phys_internal(hwaddr addr, uint32_t val,
2547 enum device_endian endian)
2549 uint8_t *ptr;
2550 MemoryRegion *mr;
2551 hwaddr l = 4;
2552 hwaddr addr1;
2554 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2555 true);
2556 if (l < 4 || !memory_access_is_direct(mr, true)) {
2557 #if defined(TARGET_WORDS_BIGENDIAN)
2558 if (endian == DEVICE_LITTLE_ENDIAN) {
2559 val = bswap32(val);
2561 #else
2562 if (endian == DEVICE_BIG_ENDIAN) {
2563 val = bswap32(val);
2565 #endif
2566 io_mem_write(mr, addr1, val, 4);
2567 } else {
2568 /* RAM case */
2569 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2570 ptr = qemu_get_ram_ptr(addr1);
2571 switch (endian) {
2572 case DEVICE_LITTLE_ENDIAN:
2573 stl_le_p(ptr, val);
2574 break;
2575 case DEVICE_BIG_ENDIAN:
2576 stl_be_p(ptr, val);
2577 break;
2578 default:
2579 stl_p(ptr, val);
2580 break;
2582 invalidate_and_set_dirty(addr1, 4);
2586 void stl_phys(hwaddr addr, uint32_t val)
2588 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2591 void stl_le_phys(hwaddr addr, uint32_t val)
2593 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2596 void stl_be_phys(hwaddr addr, uint32_t val)
2598 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2601 /* XXX: optimize */
2602 void stb_phys(hwaddr addr, uint32_t val)
2604 uint8_t v = val;
2605 cpu_physical_memory_write(addr, &v, 1);
2608 /* warning: addr must be aligned */
2609 static inline void stw_phys_internal(hwaddr addr, uint32_t val,
2610 enum device_endian endian)
2612 uint8_t *ptr;
2613 MemoryRegion *mr;
2614 hwaddr l = 2;
2615 hwaddr addr1;
2617 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2618 true);
2619 if (l < 2 || !memory_access_is_direct(mr, true)) {
2620 #if defined(TARGET_WORDS_BIGENDIAN)
2621 if (endian == DEVICE_LITTLE_ENDIAN) {
2622 val = bswap16(val);
2624 #else
2625 if (endian == DEVICE_BIG_ENDIAN) {
2626 val = bswap16(val);
2628 #endif
2629 io_mem_write(mr, addr1, val, 2);
2630 } else {
2631 /* RAM case */
2632 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2633 ptr = qemu_get_ram_ptr(addr1);
2634 switch (endian) {
2635 case DEVICE_LITTLE_ENDIAN:
2636 stw_le_p(ptr, val);
2637 break;
2638 case DEVICE_BIG_ENDIAN:
2639 stw_be_p(ptr, val);
2640 break;
2641 default:
2642 stw_p(ptr, val);
2643 break;
2645 invalidate_and_set_dirty(addr1, 2);
2649 void stw_phys(hwaddr addr, uint32_t val)
2651 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2654 void stw_le_phys(hwaddr addr, uint32_t val)
2656 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2659 void stw_be_phys(hwaddr addr, uint32_t val)
2661 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2664 /* XXX: optimize */
2665 void stq_phys(hwaddr addr, uint64_t val)
2667 val = tswap64(val);
2668 cpu_physical_memory_write(addr, &val, 8);
2671 void stq_le_phys(hwaddr addr, uint64_t val)
2673 val = cpu_to_le64(val);
2674 cpu_physical_memory_write(addr, &val, 8);
2677 void stq_be_phys(hwaddr addr, uint64_t val)
2679 val = cpu_to_be64(val);
2680 cpu_physical_memory_write(addr, &val, 8);
2683 /* virtual memory access for debug (includes writing to ROM) */
2684 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
2685 uint8_t *buf, int len, int is_write)
2687 int l;
2688 hwaddr phys_addr;
2689 target_ulong page;
2691 while (len > 0) {
2692 page = addr & TARGET_PAGE_MASK;
2693 phys_addr = cpu_get_phys_page_debug(cpu, page);
2694 /* if no physical page mapped, return an error */
2695 if (phys_addr == -1)
2696 return -1;
2697 l = (page + TARGET_PAGE_SIZE) - addr;
2698 if (l > len)
2699 l = len;
2700 phys_addr += (addr & ~TARGET_PAGE_MASK);
2701 if (is_write)
2702 cpu_physical_memory_write_rom(phys_addr, buf, l);
2703 else
2704 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
2705 len -= l;
2706 buf += l;
2707 addr += l;
2709 return 0;
2711 #endif
2713 #if !defined(CONFIG_USER_ONLY)
2716 * A helper function for the _utterly broken_ virtio device model to find out if
2717 * it's running on a big endian machine. Don't do this at home kids!
2719 bool virtio_is_big_endian(void);
2720 bool virtio_is_big_endian(void)
2722 #if defined(TARGET_WORDS_BIGENDIAN)
2723 return true;
2724 #else
2725 return false;
2726 #endif
2729 #endif
2731 #ifndef CONFIG_USER_ONLY
2732 bool cpu_physical_memory_is_io(hwaddr phys_addr)
2734 MemoryRegion*mr;
2735 hwaddr l = 1;
2737 mr = address_space_translate(&address_space_memory,
2738 phys_addr, &phys_addr, &l, false);
2740 return !(memory_region_is_ram(mr) ||
2741 memory_region_is_romd(mr));
2744 void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2746 RAMBlock *block;
2748 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2749 func(block->host, block->offset, block->length, opaque);
2752 #endif