kvm: x86: add support for KVM_CAP_SPLIT_IRQCHIP
[qemu.git] / translate-all.c
blob042a8576ac5336325c2940350037b02599e15327
1 /*
2 * Host code generation
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #ifdef _WIN32
20 #include <windows.h>
21 #else
22 #include <sys/types.h>
23 #include <sys/mman.h>
24 #endif
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #include <stdio.h>
28 #include <string.h>
29 #include <inttypes.h>
31 #include "config.h"
33 #include "qemu-common.h"
34 #define NO_CPU_IO_DEFS
35 #include "cpu.h"
36 #include "trace.h"
37 #include "disas/disas.h"
38 #include "tcg.h"
39 #if defined(CONFIG_USER_ONLY)
40 #include "qemu.h"
41 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
42 #include <sys/param.h>
43 #if __FreeBSD_version >= 700104
44 #define HAVE_KINFO_GETVMMAP
45 #define sigqueue sigqueue_freebsd /* avoid redefinition */
46 #include <sys/time.h>
47 #include <sys/proc.h>
48 #include <machine/profile.h>
49 #define _KERNEL
50 #include <sys/user.h>
51 #undef _KERNEL
52 #undef sigqueue
53 #include <libutil.h>
54 #endif
55 #endif
56 #else
57 #include "exec/address-spaces.h"
58 #endif
60 #include "exec/cputlb.h"
61 #include "exec/tb-hash.h"
62 #include "translate-all.h"
63 #include "qemu/bitmap.h"
64 #include "qemu/timer.h"
66 //#define DEBUG_TB_INVALIDATE
67 //#define DEBUG_FLUSH
68 /* make various TB consistency checks */
69 //#define DEBUG_TB_CHECK
71 #if !defined(CONFIG_USER_ONLY)
72 /* TB consistency checks only implemented for usermode emulation. */
73 #undef DEBUG_TB_CHECK
74 #endif
76 #define SMC_BITMAP_USE_THRESHOLD 10
78 typedef struct PageDesc {
79 /* list of TBs intersecting this ram page */
80 TranslationBlock *first_tb;
81 /* in order to optimize self modifying code, we count the number
82 of lookups we do to a given page to use a bitmap */
83 unsigned int code_write_count;
84 unsigned long *code_bitmap;
85 #if defined(CONFIG_USER_ONLY)
86 unsigned long flags;
87 #endif
88 } PageDesc;
90 /* In system mode we want L1_MAP to be based on ram offsets,
91 while in user mode we want it to be based on virtual addresses. */
92 #if !defined(CONFIG_USER_ONLY)
93 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
94 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
95 #else
96 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
97 #endif
98 #else
99 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
100 #endif
102 /* Size of the L2 (and L3, etc) page tables. */
103 #define V_L2_BITS 10
104 #define V_L2_SIZE (1 << V_L2_BITS)
106 /* The bits remaining after N lower levels of page tables. */
107 #define V_L1_BITS_REM \
108 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % V_L2_BITS)
110 #if V_L1_BITS_REM < 4
111 #define V_L1_BITS (V_L1_BITS_REM + V_L2_BITS)
112 #else
113 #define V_L1_BITS V_L1_BITS_REM
114 #endif
116 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
118 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
120 uintptr_t qemu_host_page_size;
121 intptr_t qemu_host_page_mask;
123 /* The bottom level has pointers to PageDesc */
124 static void *l1_map[V_L1_SIZE];
126 /* code generation context */
127 TCGContext tcg_ctx;
129 /* translation block context */
130 #ifdef CONFIG_USER_ONLY
131 __thread int have_tb_lock;
132 #endif
134 void tb_lock(void)
136 #ifdef CONFIG_USER_ONLY
137 assert(!have_tb_lock);
138 qemu_mutex_lock(&tcg_ctx.tb_ctx.tb_lock);
139 have_tb_lock++;
140 #endif
143 void tb_unlock(void)
145 #ifdef CONFIG_USER_ONLY
146 assert(have_tb_lock);
147 have_tb_lock--;
148 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
149 #endif
152 void tb_lock_reset(void)
154 #ifdef CONFIG_USER_ONLY
155 if (have_tb_lock) {
156 qemu_mutex_unlock(&tcg_ctx.tb_ctx.tb_lock);
157 have_tb_lock = 0;
159 #endif
162 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
163 tb_page_addr_t phys_page2);
164 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr);
166 void cpu_gen_init(void)
168 tcg_context_init(&tcg_ctx);
171 /* Encode VAL as a signed leb128 sequence at P.
172 Return P incremented past the encoded value. */
173 static uint8_t *encode_sleb128(uint8_t *p, target_long val)
175 int more, byte;
177 do {
178 byte = val & 0x7f;
179 val >>= 7;
180 more = !((val == 0 && (byte & 0x40) == 0)
181 || (val == -1 && (byte & 0x40) != 0));
182 if (more) {
183 byte |= 0x80;
185 *p++ = byte;
186 } while (more);
188 return p;
191 /* Decode a signed leb128 sequence at *PP; increment *PP past the
192 decoded value. Return the decoded value. */
193 static target_long decode_sleb128(uint8_t **pp)
195 uint8_t *p = *pp;
196 target_long val = 0;
197 int byte, shift = 0;
199 do {
200 byte = *p++;
201 val |= (target_ulong)(byte & 0x7f) << shift;
202 shift += 7;
203 } while (byte & 0x80);
204 if (shift < TARGET_LONG_BITS && (byte & 0x40)) {
205 val |= -(target_ulong)1 << shift;
208 *pp = p;
209 return val;
212 /* Encode the data collected about the instructions while compiling TB.
213 Place the data at BLOCK, and return the number of bytes consumed.
215 The logical table consisits of TARGET_INSN_START_WORDS target_ulong's,
216 which come from the target's insn_start data, followed by a uintptr_t
217 which comes from the host pc of the end of the code implementing the insn.
219 Each line of the table is encoded as sleb128 deltas from the previous
220 line. The seed for the first line is { tb->pc, 0..., tb->tc_ptr }.
221 That is, the first column is seeded with the guest pc, the last column
222 with the host pc, and the middle columns with zeros. */
224 static int encode_search(TranslationBlock *tb, uint8_t *block)
226 uint8_t *highwater = tcg_ctx.code_gen_highwater;
227 uint8_t *p = block;
228 int i, j, n;
230 tb->tc_search = block;
232 for (i = 0, n = tb->icount; i < n; ++i) {
233 target_ulong prev;
235 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
236 if (i == 0) {
237 prev = (j == 0 ? tb->pc : 0);
238 } else {
239 prev = tcg_ctx.gen_insn_data[i - 1][j];
241 p = encode_sleb128(p, tcg_ctx.gen_insn_data[i][j] - prev);
243 prev = (i == 0 ? 0 : tcg_ctx.gen_insn_end_off[i - 1]);
244 p = encode_sleb128(p, tcg_ctx.gen_insn_end_off[i] - prev);
246 /* Test for (pending) buffer overflow. The assumption is that any
247 one row beginning below the high water mark cannot overrun
248 the buffer completely. Thus we can test for overflow after
249 encoding a row without having to check during encoding. */
250 if (unlikely(p > highwater)) {
251 return -1;
255 return p - block;
258 /* The cpu state corresponding to 'searched_pc' is restored. */
259 static int cpu_restore_state_from_tb(CPUState *cpu, TranslationBlock *tb,
260 uintptr_t searched_pc)
262 target_ulong data[TARGET_INSN_START_WORDS] = { tb->pc };
263 uintptr_t host_pc = (uintptr_t)tb->tc_ptr;
264 CPUArchState *env = cpu->env_ptr;
265 uint8_t *p = tb->tc_search;
266 int i, j, num_insns = tb->icount;
267 #ifdef CONFIG_PROFILER
268 int64_t ti = profile_getclock();
269 #endif
271 if (searched_pc < host_pc) {
272 return -1;
275 /* Reconstruct the stored insn data while looking for the point at
276 which the end of the insn exceeds the searched_pc. */
277 for (i = 0; i < num_insns; ++i) {
278 for (j = 0; j < TARGET_INSN_START_WORDS; ++j) {
279 data[j] += decode_sleb128(&p);
281 host_pc += decode_sleb128(&p);
282 if (host_pc > searched_pc) {
283 goto found;
286 return -1;
288 found:
289 if (tb->cflags & CF_USE_ICOUNT) {
290 assert(use_icount);
291 /* Reset the cycle counter to the start of the block. */
292 cpu->icount_decr.u16.low += num_insns;
293 /* Clear the IO flag. */
294 cpu->can_do_io = 0;
296 cpu->icount_decr.u16.low -= i;
297 restore_state_to_opc(env, tb, data);
299 #ifdef CONFIG_PROFILER
300 tcg_ctx.restore_time += profile_getclock() - ti;
301 tcg_ctx.restore_count++;
302 #endif
303 return 0;
306 bool cpu_restore_state(CPUState *cpu, uintptr_t retaddr)
308 TranslationBlock *tb;
310 tb = tb_find_pc(retaddr);
311 if (tb) {
312 cpu_restore_state_from_tb(cpu, tb, retaddr);
313 if (tb->cflags & CF_NOCACHE) {
314 /* one-shot translation, invalidate it immediately */
315 cpu->current_tb = NULL;
316 tb_phys_invalidate(tb, -1);
317 tb_free(tb);
319 return true;
321 return false;
324 void page_size_init(void)
326 /* NOTE: we can always suppose that qemu_host_page_size >=
327 TARGET_PAGE_SIZE */
328 qemu_real_host_page_size = getpagesize();
329 qemu_real_host_page_mask = -(intptr_t)qemu_real_host_page_size;
330 if (qemu_host_page_size == 0) {
331 qemu_host_page_size = qemu_real_host_page_size;
333 if (qemu_host_page_size < TARGET_PAGE_SIZE) {
334 qemu_host_page_size = TARGET_PAGE_SIZE;
336 qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
339 static void page_init(void)
341 page_size_init();
342 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
344 #ifdef HAVE_KINFO_GETVMMAP
345 struct kinfo_vmentry *freep;
346 int i, cnt;
348 freep = kinfo_getvmmap(getpid(), &cnt);
349 if (freep) {
350 mmap_lock();
351 for (i = 0; i < cnt; i++) {
352 unsigned long startaddr, endaddr;
354 startaddr = freep[i].kve_start;
355 endaddr = freep[i].kve_end;
356 if (h2g_valid(startaddr)) {
357 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
359 if (h2g_valid(endaddr)) {
360 endaddr = h2g(endaddr);
361 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
362 } else {
363 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
364 endaddr = ~0ul;
365 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
366 #endif
370 free(freep);
371 mmap_unlock();
373 #else
374 FILE *f;
376 last_brk = (unsigned long)sbrk(0);
378 f = fopen("/compat/linux/proc/self/maps", "r");
379 if (f) {
380 mmap_lock();
382 do {
383 unsigned long startaddr, endaddr;
384 int n;
386 n = fscanf(f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
388 if (n == 2 && h2g_valid(startaddr)) {
389 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
391 if (h2g_valid(endaddr)) {
392 endaddr = h2g(endaddr);
393 } else {
394 endaddr = ~0ul;
396 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
398 } while (!feof(f));
400 fclose(f);
401 mmap_unlock();
403 #endif
405 #endif
408 /* If alloc=1:
409 * Called with mmap_lock held for user-mode emulation.
411 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
413 PageDesc *pd;
414 void **lp;
415 int i;
417 /* Level 1. Always allocated. */
418 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
420 /* Level 2..N-1. */
421 for (i = V_L1_SHIFT / V_L2_BITS - 1; i > 0; i--) {
422 void **p = atomic_rcu_read(lp);
424 if (p == NULL) {
425 if (!alloc) {
426 return NULL;
428 p = g_new0(void *, V_L2_SIZE);
429 atomic_rcu_set(lp, p);
432 lp = p + ((index >> (i * V_L2_BITS)) & (V_L2_SIZE - 1));
435 pd = atomic_rcu_read(lp);
436 if (pd == NULL) {
437 if (!alloc) {
438 return NULL;
440 pd = g_new0(PageDesc, V_L2_SIZE);
441 atomic_rcu_set(lp, pd);
444 return pd + (index & (V_L2_SIZE - 1));
447 static inline PageDesc *page_find(tb_page_addr_t index)
449 return page_find_alloc(index, 0);
452 #if defined(CONFIG_USER_ONLY)
453 /* Currently it is not recommended to allocate big chunks of data in
454 user mode. It will change when a dedicated libc will be used. */
455 /* ??? 64-bit hosts ought to have no problem mmaping data outside the
456 region in which the guest needs to run. Revisit this. */
457 #define USE_STATIC_CODE_GEN_BUFFER
458 #endif
460 /* Minimum size of the code gen buffer. This number is randomly chosen,
461 but not so small that we can't have a fair number of TB's live. */
462 #define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
464 /* Maximum size of the code gen buffer we'd like to use. Unless otherwise
465 indicated, this is constrained by the range of direct branches on the
466 host cpu, as used by the TCG implementation of goto_tb. */
467 #if defined(__x86_64__)
468 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
469 #elif defined(__sparc__)
470 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
471 #elif defined(__powerpc64__)
472 # define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
473 #elif defined(__aarch64__)
474 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
475 #elif defined(__arm__)
476 # define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
477 #elif defined(__s390x__)
478 /* We have a +- 4GB range on the branches; leave some slop. */
479 # define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
480 #elif defined(__mips__)
481 /* We have a 256MB branch region, but leave room to make sure the
482 main executable is also within that region. */
483 # define MAX_CODE_GEN_BUFFER_SIZE (128ul * 1024 * 1024)
484 #else
485 # define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
486 #endif
488 #define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
490 #define DEFAULT_CODE_GEN_BUFFER_SIZE \
491 (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
492 ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
494 static inline size_t size_code_gen_buffer(size_t tb_size)
496 /* Size the buffer. */
497 if (tb_size == 0) {
498 #ifdef USE_STATIC_CODE_GEN_BUFFER
499 tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
500 #else
501 /* ??? Needs adjustments. */
502 /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
503 static buffer, we could size this on RESERVED_VA, on the text
504 segment size of the executable, or continue to use the default. */
505 tb_size = (unsigned long)(ram_size / 4);
506 #endif
508 if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
509 tb_size = MIN_CODE_GEN_BUFFER_SIZE;
511 if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
512 tb_size = MAX_CODE_GEN_BUFFER_SIZE;
514 tcg_ctx.code_gen_buffer_size = tb_size;
515 return tb_size;
518 #ifdef __mips__
519 /* In order to use J and JAL within the code_gen_buffer, we require
520 that the buffer not cross a 256MB boundary. */
521 static inline bool cross_256mb(void *addr, size_t size)
523 return ((uintptr_t)addr ^ ((uintptr_t)addr + size)) & 0xf0000000;
526 /* We weren't able to allocate a buffer without crossing that boundary,
527 so make do with the larger portion of the buffer that doesn't cross.
528 Returns the new base of the buffer, and adjusts code_gen_buffer_size. */
529 static inline void *split_cross_256mb(void *buf1, size_t size1)
531 void *buf2 = (void *)(((uintptr_t)buf1 + size1) & 0xf0000000);
532 size_t size2 = buf1 + size1 - buf2;
534 size1 = buf2 - buf1;
535 if (size1 < size2) {
536 size1 = size2;
537 buf1 = buf2;
540 tcg_ctx.code_gen_buffer_size = size1;
541 return buf1;
543 #endif
545 #ifdef USE_STATIC_CODE_GEN_BUFFER
546 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
547 __attribute__((aligned(CODE_GEN_ALIGN)));
549 # ifdef _WIN32
550 static inline void do_protect(void *addr, long size, int prot)
552 DWORD old_protect;
553 VirtualProtect(addr, size, prot, &old_protect);
556 static inline void map_exec(void *addr, long size)
558 do_protect(addr, size, PAGE_EXECUTE_READWRITE);
561 static inline void map_none(void *addr, long size)
563 do_protect(addr, size, PAGE_NOACCESS);
565 # else
566 static inline void do_protect(void *addr, long size, int prot)
568 uintptr_t start, end;
570 start = (uintptr_t)addr;
571 start &= qemu_real_host_page_mask;
573 end = (uintptr_t)addr + size;
574 end = ROUND_UP(end, qemu_real_host_page_size);
576 mprotect((void *)start, end - start, prot);
579 static inline void map_exec(void *addr, long size)
581 do_protect(addr, size, PROT_READ | PROT_WRITE | PROT_EXEC);
584 static inline void map_none(void *addr, long size)
586 do_protect(addr, size, PROT_NONE);
588 # endif /* WIN32 */
590 static inline void *alloc_code_gen_buffer(void)
592 void *buf = static_code_gen_buffer;
593 size_t full_size, size;
595 /* The size of the buffer, rounded down to end on a page boundary. */
596 full_size = (((uintptr_t)buf + sizeof(static_code_gen_buffer))
597 & qemu_real_host_page_mask) - (uintptr_t)buf;
599 /* Reserve a guard page. */
600 size = full_size - qemu_real_host_page_size;
602 /* Honor a command-line option limiting the size of the buffer. */
603 if (size > tcg_ctx.code_gen_buffer_size) {
604 size = (((uintptr_t)buf + tcg_ctx.code_gen_buffer_size)
605 & qemu_real_host_page_mask) - (uintptr_t)buf;
607 tcg_ctx.code_gen_buffer_size = size;
609 #ifdef __mips__
610 if (cross_256mb(buf, size)) {
611 buf = split_cross_256mb(buf, size);
612 size = tcg_ctx.code_gen_buffer_size;
614 #endif
616 map_exec(buf, size);
617 map_none(buf + size, qemu_real_host_page_size);
618 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
620 return buf;
622 #elif defined(_WIN32)
623 static inline void *alloc_code_gen_buffer(void)
625 size_t size = tcg_ctx.code_gen_buffer_size;
626 void *buf1, *buf2;
628 /* Perform the allocation in two steps, so that the guard page
629 is reserved but uncommitted. */
630 buf1 = VirtualAlloc(NULL, size + qemu_real_host_page_size,
631 MEM_RESERVE, PAGE_NOACCESS);
632 if (buf1 != NULL) {
633 buf2 = VirtualAlloc(buf1, size, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
634 assert(buf1 == buf2);
637 return buf1;
639 #else
640 static inline void *alloc_code_gen_buffer(void)
642 int flags = MAP_PRIVATE | MAP_ANONYMOUS;
643 uintptr_t start = 0;
644 size_t size = tcg_ctx.code_gen_buffer_size;
645 void *buf;
647 /* Constrain the position of the buffer based on the host cpu.
648 Note that these addresses are chosen in concert with the
649 addresses assigned in the relevant linker script file. */
650 # if defined(__PIE__) || defined(__PIC__)
651 /* Don't bother setting a preferred location if we're building
652 a position-independent executable. We're more likely to get
653 an address near the main executable if we let the kernel
654 choose the address. */
655 # elif defined(__x86_64__) && defined(MAP_32BIT)
656 /* Force the memory down into low memory with the executable.
657 Leave the choice of exact location with the kernel. */
658 flags |= MAP_32BIT;
659 /* Cannot expect to map more than 800MB in low memory. */
660 if (size > 800u * 1024 * 1024) {
661 tcg_ctx.code_gen_buffer_size = size = 800u * 1024 * 1024;
663 # elif defined(__sparc__)
664 start = 0x40000000ul;
665 # elif defined(__s390x__)
666 start = 0x90000000ul;
667 # elif defined(__mips__)
668 # if _MIPS_SIM == _ABI64
669 start = 0x128000000ul;
670 # else
671 start = 0x08000000ul;
672 # endif
673 # endif
675 buf = mmap((void *)start, size + qemu_real_host_page_size,
676 PROT_NONE, flags, -1, 0);
677 if (buf == MAP_FAILED) {
678 return NULL;
681 #ifdef __mips__
682 if (cross_256mb(buf, size)) {
683 /* Try again, with the original still mapped, to avoid re-acquiring
684 that 256mb crossing. This time don't specify an address. */
685 size_t size2;
686 void *buf2 = mmap(NULL, size + qemu_real_host_page_size,
687 PROT_NONE, flags, -1, 0);
688 switch (buf2 != MAP_FAILED) {
689 case 1:
690 if (!cross_256mb(buf2, size)) {
691 /* Success! Use the new buffer. */
692 munmap(buf, size);
693 break;
695 /* Failure. Work with what we had. */
696 munmap(buf2, size);
697 /* fallthru */
698 default:
699 /* Split the original buffer. Free the smaller half. */
700 buf2 = split_cross_256mb(buf, size);
701 size2 = tcg_ctx.code_gen_buffer_size;
702 if (buf == buf2) {
703 munmap(buf + size2 + qemu_real_host_page_size, size - size2);
704 } else {
705 munmap(buf, size - size2);
707 size = size2;
708 break;
710 buf = buf2;
712 #endif
714 /* Make the final buffer accessible. The guard page at the end
715 will remain inaccessible with PROT_NONE. */
716 mprotect(buf, size, PROT_WRITE | PROT_READ | PROT_EXEC);
718 /* Request large pages for the buffer. */
719 qemu_madvise(buf, size, QEMU_MADV_HUGEPAGE);
721 return buf;
723 #endif /* USE_STATIC_CODE_GEN_BUFFER, WIN32, POSIX */
725 static inline void code_gen_alloc(size_t tb_size)
727 tcg_ctx.code_gen_buffer_size = size_code_gen_buffer(tb_size);
728 tcg_ctx.code_gen_buffer = alloc_code_gen_buffer();
729 if (tcg_ctx.code_gen_buffer == NULL) {
730 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
731 exit(1);
734 /* Estimate a good size for the number of TBs we can support. We
735 still haven't deducted the prologue from the buffer size here,
736 but that's minimal and won't affect the estimate much. */
737 tcg_ctx.code_gen_max_blocks
738 = tcg_ctx.code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
739 tcg_ctx.tb_ctx.tbs = g_new(TranslationBlock, tcg_ctx.code_gen_max_blocks);
741 qemu_mutex_init(&tcg_ctx.tb_ctx.tb_lock);
744 /* Must be called before using the QEMU cpus. 'tb_size' is the size
745 (in bytes) allocated to the translation buffer. Zero means default
746 size. */
747 void tcg_exec_init(unsigned long tb_size)
749 cpu_gen_init();
750 page_init();
751 code_gen_alloc(tb_size);
752 #if defined(CONFIG_SOFTMMU)
753 /* There's no guest base to take into account, so go ahead and
754 initialize the prologue now. */
755 tcg_prologue_init(&tcg_ctx);
756 #endif
759 bool tcg_enabled(void)
761 return tcg_ctx.code_gen_buffer != NULL;
764 /* Allocate a new translation block. Flush the translation buffer if
765 too many translation blocks or too much generated code. */
766 static TranslationBlock *tb_alloc(target_ulong pc)
768 TranslationBlock *tb;
770 if (tcg_ctx.tb_ctx.nb_tbs >= tcg_ctx.code_gen_max_blocks) {
771 return NULL;
773 tb = &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs++];
774 tb->pc = pc;
775 tb->cflags = 0;
776 return tb;
779 void tb_free(TranslationBlock *tb)
781 /* In practice this is mostly used for single use temporary TB
782 Ignore the hard cases and just back up if this TB happens to
783 be the last one generated. */
784 if (tcg_ctx.tb_ctx.nb_tbs > 0 &&
785 tb == &tcg_ctx.tb_ctx.tbs[tcg_ctx.tb_ctx.nb_tbs - 1]) {
786 tcg_ctx.code_gen_ptr = tb->tc_ptr;
787 tcg_ctx.tb_ctx.nb_tbs--;
791 static inline void invalidate_page_bitmap(PageDesc *p)
793 g_free(p->code_bitmap);
794 p->code_bitmap = NULL;
795 p->code_write_count = 0;
798 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
799 static void page_flush_tb_1(int level, void **lp)
801 int i;
803 if (*lp == NULL) {
804 return;
806 if (level == 0) {
807 PageDesc *pd = *lp;
809 for (i = 0; i < V_L2_SIZE; ++i) {
810 pd[i].first_tb = NULL;
811 invalidate_page_bitmap(pd + i);
813 } else {
814 void **pp = *lp;
816 for (i = 0; i < V_L2_SIZE; ++i) {
817 page_flush_tb_1(level - 1, pp + i);
822 static void page_flush_tb(void)
824 int i;
826 for (i = 0; i < V_L1_SIZE; i++) {
827 page_flush_tb_1(V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
831 /* flush all the translation blocks */
832 /* XXX: tb_flush is currently not thread safe */
833 void tb_flush(CPUState *cpu)
835 #if defined(DEBUG_FLUSH)
836 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
837 (unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer),
838 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.tb_ctx.nb_tbs > 0 ?
839 ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)) /
840 tcg_ctx.tb_ctx.nb_tbs : 0);
841 #endif
842 if ((unsigned long)(tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer)
843 > tcg_ctx.code_gen_buffer_size) {
844 cpu_abort(cpu, "Internal error: code buffer overflow\n");
846 tcg_ctx.tb_ctx.nb_tbs = 0;
848 CPU_FOREACH(cpu) {
849 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
852 memset(tcg_ctx.tb_ctx.tb_phys_hash, 0, sizeof(tcg_ctx.tb_ctx.tb_phys_hash));
853 page_flush_tb();
855 tcg_ctx.code_gen_ptr = tcg_ctx.code_gen_buffer;
856 /* XXX: flush processor icache at this point if cache flush is
857 expensive */
858 tcg_ctx.tb_ctx.tb_flush_count++;
861 #ifdef DEBUG_TB_CHECK
863 static void tb_invalidate_check(target_ulong address)
865 TranslationBlock *tb;
866 int i;
868 address &= TARGET_PAGE_MASK;
869 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
870 for (tb = tb_ctx.tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
871 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
872 address >= tb->pc + tb->size)) {
873 printf("ERROR invalidate: address=" TARGET_FMT_lx
874 " PC=%08lx size=%04x\n",
875 address, (long)tb->pc, tb->size);
881 /* verify that all the pages have correct rights for code */
882 static void tb_page_check(void)
884 TranslationBlock *tb;
885 int i, flags1, flags2;
887 for (i = 0; i < CODE_GEN_PHYS_HASH_SIZE; i++) {
888 for (tb = tcg_ctx.tb_ctx.tb_phys_hash[i]; tb != NULL;
889 tb = tb->phys_hash_next) {
890 flags1 = page_get_flags(tb->pc);
891 flags2 = page_get_flags(tb->pc + tb->size - 1);
892 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
893 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
894 (long)tb->pc, tb->size, flags1, flags2);
900 #endif
902 static inline void tb_hash_remove(TranslationBlock **ptb, TranslationBlock *tb)
904 TranslationBlock *tb1;
906 for (;;) {
907 tb1 = *ptb;
908 if (tb1 == tb) {
909 *ptb = tb1->phys_hash_next;
910 break;
912 ptb = &tb1->phys_hash_next;
916 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
918 TranslationBlock *tb1;
919 unsigned int n1;
921 for (;;) {
922 tb1 = *ptb;
923 n1 = (uintptr_t)tb1 & 3;
924 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
925 if (tb1 == tb) {
926 *ptb = tb1->page_next[n1];
927 break;
929 ptb = &tb1->page_next[n1];
933 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
935 TranslationBlock *tb1, **ptb;
936 unsigned int n1;
938 ptb = &tb->jmp_next[n];
939 tb1 = *ptb;
940 if (tb1) {
941 /* find tb(n) in circular list */
942 for (;;) {
943 tb1 = *ptb;
944 n1 = (uintptr_t)tb1 & 3;
945 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
946 if (n1 == n && tb1 == tb) {
947 break;
949 if (n1 == 2) {
950 ptb = &tb1->jmp_first;
951 } else {
952 ptb = &tb1->jmp_next[n1];
955 /* now we can suppress tb(n) from the list */
956 *ptb = tb->jmp_next[n];
958 tb->jmp_next[n] = NULL;
962 /* reset the jump entry 'n' of a TB so that it is not chained to
963 another TB */
964 static inline void tb_reset_jump(TranslationBlock *tb, int n)
966 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
969 /* invalidate one TB */
970 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
972 CPUState *cpu;
973 PageDesc *p;
974 unsigned int h, n1;
975 tb_page_addr_t phys_pc;
976 TranslationBlock *tb1, *tb2;
978 /* remove the TB from the hash list */
979 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
980 h = tb_phys_hash_func(phys_pc);
981 tb_hash_remove(&tcg_ctx.tb_ctx.tb_phys_hash[h], tb);
983 /* remove the TB from the page list */
984 if (tb->page_addr[0] != page_addr) {
985 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
986 tb_page_remove(&p->first_tb, tb);
987 invalidate_page_bitmap(p);
989 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
990 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
991 tb_page_remove(&p->first_tb, tb);
992 invalidate_page_bitmap(p);
995 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
997 /* remove the TB from the hash list */
998 h = tb_jmp_cache_hash_func(tb->pc);
999 CPU_FOREACH(cpu) {
1000 if (cpu->tb_jmp_cache[h] == tb) {
1001 cpu->tb_jmp_cache[h] = NULL;
1005 /* suppress this TB from the two jump lists */
1006 tb_jmp_remove(tb, 0);
1007 tb_jmp_remove(tb, 1);
1009 /* suppress any remaining jumps to this TB */
1010 tb1 = tb->jmp_first;
1011 for (;;) {
1012 n1 = (uintptr_t)tb1 & 3;
1013 if (n1 == 2) {
1014 break;
1016 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
1017 tb2 = tb1->jmp_next[n1];
1018 tb_reset_jump(tb1, n1);
1019 tb1->jmp_next[n1] = NULL;
1020 tb1 = tb2;
1022 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
1024 tcg_ctx.tb_ctx.tb_phys_invalidate_count++;
1027 static void build_page_bitmap(PageDesc *p)
1029 int n, tb_start, tb_end;
1030 TranslationBlock *tb;
1032 p->code_bitmap = bitmap_new(TARGET_PAGE_SIZE);
1034 tb = p->first_tb;
1035 while (tb != NULL) {
1036 n = (uintptr_t)tb & 3;
1037 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1038 /* NOTE: this is subtle as a TB may span two physical pages */
1039 if (n == 0) {
1040 /* NOTE: tb_end may be after the end of the page, but
1041 it is not a problem */
1042 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1043 tb_end = tb_start + tb->size;
1044 if (tb_end > TARGET_PAGE_SIZE) {
1045 tb_end = TARGET_PAGE_SIZE;
1047 } else {
1048 tb_start = 0;
1049 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1051 bitmap_set(p->code_bitmap, tb_start, tb_end - tb_start);
1052 tb = tb->page_next[n];
1056 /* Called with mmap_lock held for user mode emulation. */
1057 TranslationBlock *tb_gen_code(CPUState *cpu,
1058 target_ulong pc, target_ulong cs_base,
1059 int flags, int cflags)
1061 CPUArchState *env = cpu->env_ptr;
1062 TranslationBlock *tb;
1063 tb_page_addr_t phys_pc, phys_page2;
1064 target_ulong virt_page2;
1065 tcg_insn_unit *gen_code_buf;
1066 int gen_code_size, search_size;
1067 #ifdef CONFIG_PROFILER
1068 int64_t ti;
1069 #endif
1071 phys_pc = get_page_addr_code(env, pc);
1072 if (use_icount && !(cflags & CF_IGNORE_ICOUNT)) {
1073 cflags |= CF_USE_ICOUNT;
1076 tb = tb_alloc(pc);
1077 if (unlikely(!tb)) {
1078 buffer_overflow:
1079 /* flush must be done */
1080 tb_flush(cpu);
1081 /* cannot fail at this point */
1082 tb = tb_alloc(pc);
1083 assert(tb != NULL);
1084 /* Don't forget to invalidate previous TB info. */
1085 tcg_ctx.tb_ctx.tb_invalidated_flag = 1;
1088 gen_code_buf = tcg_ctx.code_gen_ptr;
1089 tb->tc_ptr = gen_code_buf;
1090 tb->cs_base = cs_base;
1091 tb->flags = flags;
1092 tb->cflags = cflags;
1094 #ifdef CONFIG_PROFILER
1095 tcg_ctx.tb_count1++; /* includes aborted translations because of
1096 exceptions */
1097 ti = profile_getclock();
1098 #endif
1100 tcg_func_start(&tcg_ctx);
1102 gen_intermediate_code(env, tb);
1104 trace_translate_block(tb, tb->pc, tb->tc_ptr);
1106 /* generate machine code */
1107 tb->tb_next_offset[0] = 0xffff;
1108 tb->tb_next_offset[1] = 0xffff;
1109 tcg_ctx.tb_next_offset = tb->tb_next_offset;
1110 #ifdef USE_DIRECT_JUMP
1111 tcg_ctx.tb_jmp_offset = tb->tb_jmp_offset;
1112 tcg_ctx.tb_next = NULL;
1113 #else
1114 tcg_ctx.tb_jmp_offset = NULL;
1115 tcg_ctx.tb_next = tb->tb_next;
1116 #endif
1118 #ifdef CONFIG_PROFILER
1119 tcg_ctx.tb_count++;
1120 tcg_ctx.interm_time += profile_getclock() - ti;
1121 tcg_ctx.code_time -= profile_getclock();
1122 #endif
1124 /* ??? Overflow could be handled better here. In particular, we
1125 don't need to re-do gen_intermediate_code, nor should we re-do
1126 the tcg optimization currently hidden inside tcg_gen_code. All
1127 that should be required is to flush the TBs, allocate a new TB,
1128 re-initialize it per above, and re-do the actual code generation. */
1129 gen_code_size = tcg_gen_code(&tcg_ctx, gen_code_buf);
1130 if (unlikely(gen_code_size < 0)) {
1131 goto buffer_overflow;
1133 search_size = encode_search(tb, (void *)gen_code_buf + gen_code_size);
1134 if (unlikely(search_size < 0)) {
1135 goto buffer_overflow;
1138 #ifdef CONFIG_PROFILER
1139 tcg_ctx.code_time += profile_getclock();
1140 tcg_ctx.code_in_len += tb->size;
1141 tcg_ctx.code_out_len += gen_code_size;
1142 tcg_ctx.search_out_len += search_size;
1143 #endif
1145 #ifdef DEBUG_DISAS
1146 if (qemu_loglevel_mask(CPU_LOG_TB_OUT_ASM)) {
1147 qemu_log("OUT: [size=%d]\n", gen_code_size);
1148 log_disas(tb->tc_ptr, gen_code_size);
1149 qemu_log("\n");
1150 qemu_log_flush();
1152 #endif
1154 tcg_ctx.code_gen_ptr = (void *)
1155 ROUND_UP((uintptr_t)gen_code_buf + gen_code_size + search_size,
1156 CODE_GEN_ALIGN);
1158 /* check next page if needed */
1159 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
1160 phys_page2 = -1;
1161 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
1162 phys_page2 = get_page_addr_code(env, virt_page2);
1164 tb_link_page(tb, phys_pc, phys_page2);
1165 return tb;
1169 * Invalidate all TBs which intersect with the target physical address range
1170 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1171 * 'is_cpu_write_access' should be true if called from a real cpu write
1172 * access: the virtual CPU will exit the current TB if code is modified inside
1173 * this TB.
1175 * Called with mmap_lock held for user-mode emulation
1177 void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end)
1179 while (start < end) {
1180 tb_invalidate_phys_page_range(start, end, 0);
1181 start &= TARGET_PAGE_MASK;
1182 start += TARGET_PAGE_SIZE;
1187 * Invalidate all TBs which intersect with the target physical address range
1188 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1189 * 'is_cpu_write_access' should be true if called from a real cpu write
1190 * access: the virtual CPU will exit the current TB if code is modified inside
1191 * this TB.
1193 * Called with mmap_lock held for user-mode emulation
1195 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
1196 int is_cpu_write_access)
1198 TranslationBlock *tb, *tb_next, *saved_tb;
1199 CPUState *cpu = current_cpu;
1200 #if defined(TARGET_HAS_PRECISE_SMC)
1201 CPUArchState *env = NULL;
1202 #endif
1203 tb_page_addr_t tb_start, tb_end;
1204 PageDesc *p;
1205 int n;
1206 #ifdef TARGET_HAS_PRECISE_SMC
1207 int current_tb_not_found = is_cpu_write_access;
1208 TranslationBlock *current_tb = NULL;
1209 int current_tb_modified = 0;
1210 target_ulong current_pc = 0;
1211 target_ulong current_cs_base = 0;
1212 int current_flags = 0;
1213 #endif /* TARGET_HAS_PRECISE_SMC */
1215 p = page_find(start >> TARGET_PAGE_BITS);
1216 if (!p) {
1217 return;
1219 #if defined(TARGET_HAS_PRECISE_SMC)
1220 if (cpu != NULL) {
1221 env = cpu->env_ptr;
1223 #endif
1225 /* we remove all the TBs in the range [start, end[ */
1226 /* XXX: see if in some cases it could be faster to invalidate all
1227 the code */
1228 tb = p->first_tb;
1229 while (tb != NULL) {
1230 n = (uintptr_t)tb & 3;
1231 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1232 tb_next = tb->page_next[n];
1233 /* NOTE: this is subtle as a TB may span two physical pages */
1234 if (n == 0) {
1235 /* NOTE: tb_end may be after the end of the page, but
1236 it is not a problem */
1237 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1238 tb_end = tb_start + tb->size;
1239 } else {
1240 tb_start = tb->page_addr[1];
1241 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1243 if (!(tb_end <= start || tb_start >= end)) {
1244 #ifdef TARGET_HAS_PRECISE_SMC
1245 if (current_tb_not_found) {
1246 current_tb_not_found = 0;
1247 current_tb = NULL;
1248 if (cpu->mem_io_pc) {
1249 /* now we have a real cpu fault */
1250 current_tb = tb_find_pc(cpu->mem_io_pc);
1253 if (current_tb == tb &&
1254 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1255 /* If we are modifying the current TB, we must stop
1256 its execution. We could be more precise by checking
1257 that the modification is after the current PC, but it
1258 would require a specialized function to partially
1259 restore the CPU state */
1261 current_tb_modified = 1;
1262 cpu_restore_state_from_tb(cpu, current_tb, cpu->mem_io_pc);
1263 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1264 &current_flags);
1266 #endif /* TARGET_HAS_PRECISE_SMC */
1267 /* we need to do that to handle the case where a signal
1268 occurs while doing tb_phys_invalidate() */
1269 saved_tb = NULL;
1270 if (cpu != NULL) {
1271 saved_tb = cpu->current_tb;
1272 cpu->current_tb = NULL;
1274 tb_phys_invalidate(tb, -1);
1275 if (cpu != NULL) {
1276 cpu->current_tb = saved_tb;
1277 if (cpu->interrupt_request && cpu->current_tb) {
1278 cpu_interrupt(cpu, cpu->interrupt_request);
1282 tb = tb_next;
1284 #if !defined(CONFIG_USER_ONLY)
1285 /* if no code remaining, no need to continue to use slow writes */
1286 if (!p->first_tb) {
1287 invalidate_page_bitmap(p);
1288 tlb_unprotect_code(start);
1290 #endif
1291 #ifdef TARGET_HAS_PRECISE_SMC
1292 if (current_tb_modified) {
1293 /* we generate a block containing just the instruction
1294 modifying the memory. It will ensure that it cannot modify
1295 itself */
1296 cpu->current_tb = NULL;
1297 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1298 cpu_resume_from_signal(cpu, NULL);
1300 #endif
1303 /* len must be <= 8 and start must be a multiple of len */
1304 void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1306 PageDesc *p;
1308 #if 0
1309 if (1) {
1310 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1311 cpu_single_env->mem_io_vaddr, len,
1312 cpu_single_env->eip,
1313 cpu_single_env->eip +
1314 (intptr_t)cpu_single_env->segs[R_CS].base);
1316 #endif
1317 p = page_find(start >> TARGET_PAGE_BITS);
1318 if (!p) {
1319 return;
1321 if (!p->code_bitmap &&
1322 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD) {
1323 /* build code bitmap */
1324 build_page_bitmap(p);
1326 if (p->code_bitmap) {
1327 unsigned int nr;
1328 unsigned long b;
1330 nr = start & ~TARGET_PAGE_MASK;
1331 b = p->code_bitmap[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG - 1));
1332 if (b & ((1 << len) - 1)) {
1333 goto do_invalidate;
1335 } else {
1336 do_invalidate:
1337 tb_invalidate_phys_page_range(start, start + len, 1);
1341 #if !defined(CONFIG_SOFTMMU)
1342 /* Called with mmap_lock held. */
1343 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1344 uintptr_t pc, void *puc,
1345 bool locked)
1347 TranslationBlock *tb;
1348 PageDesc *p;
1349 int n;
1350 #ifdef TARGET_HAS_PRECISE_SMC
1351 TranslationBlock *current_tb = NULL;
1352 CPUState *cpu = current_cpu;
1353 CPUArchState *env = NULL;
1354 int current_tb_modified = 0;
1355 target_ulong current_pc = 0;
1356 target_ulong current_cs_base = 0;
1357 int current_flags = 0;
1358 #endif
1360 addr &= TARGET_PAGE_MASK;
1361 p = page_find(addr >> TARGET_PAGE_BITS);
1362 if (!p) {
1363 return;
1365 tb = p->first_tb;
1366 #ifdef TARGET_HAS_PRECISE_SMC
1367 if (tb && pc != 0) {
1368 current_tb = tb_find_pc(pc);
1370 if (cpu != NULL) {
1371 env = cpu->env_ptr;
1373 #endif
1374 while (tb != NULL) {
1375 n = (uintptr_t)tb & 3;
1376 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
1377 #ifdef TARGET_HAS_PRECISE_SMC
1378 if (current_tb == tb &&
1379 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1380 /* If we are modifying the current TB, we must stop
1381 its execution. We could be more precise by checking
1382 that the modification is after the current PC, but it
1383 would require a specialized function to partially
1384 restore the CPU state */
1386 current_tb_modified = 1;
1387 cpu_restore_state_from_tb(cpu, current_tb, pc);
1388 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1389 &current_flags);
1391 #endif /* TARGET_HAS_PRECISE_SMC */
1392 tb_phys_invalidate(tb, addr);
1393 tb = tb->page_next[n];
1395 p->first_tb = NULL;
1396 #ifdef TARGET_HAS_PRECISE_SMC
1397 if (current_tb_modified) {
1398 /* we generate a block containing just the instruction
1399 modifying the memory. It will ensure that it cannot modify
1400 itself */
1401 cpu->current_tb = NULL;
1402 tb_gen_code(cpu, current_pc, current_cs_base, current_flags, 1);
1403 if (locked) {
1404 mmap_unlock();
1406 cpu_resume_from_signal(cpu, puc);
1408 #endif
1410 #endif
1412 /* add the tb in the target page and protect it if necessary
1414 * Called with mmap_lock held for user-mode emulation.
1416 static inline void tb_alloc_page(TranslationBlock *tb,
1417 unsigned int n, tb_page_addr_t page_addr)
1419 PageDesc *p;
1420 #ifndef CONFIG_USER_ONLY
1421 bool page_already_protected;
1422 #endif
1424 tb->page_addr[n] = page_addr;
1425 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1426 tb->page_next[n] = p->first_tb;
1427 #ifndef CONFIG_USER_ONLY
1428 page_already_protected = p->first_tb != NULL;
1429 #endif
1430 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
1431 invalidate_page_bitmap(p);
1433 #if defined(CONFIG_USER_ONLY)
1434 if (p->flags & PAGE_WRITE) {
1435 target_ulong addr;
1436 PageDesc *p2;
1437 int prot;
1439 /* force the host page as non writable (writes will have a
1440 page fault + mprotect overhead) */
1441 page_addr &= qemu_host_page_mask;
1442 prot = 0;
1443 for (addr = page_addr; addr < page_addr + qemu_host_page_size;
1444 addr += TARGET_PAGE_SIZE) {
1446 p2 = page_find(addr >> TARGET_PAGE_BITS);
1447 if (!p2) {
1448 continue;
1450 prot |= p2->flags;
1451 p2->flags &= ~PAGE_WRITE;
1453 mprotect(g2h(page_addr), qemu_host_page_size,
1454 (prot & PAGE_BITS) & ~PAGE_WRITE);
1455 #ifdef DEBUG_TB_INVALIDATE
1456 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1457 page_addr);
1458 #endif
1460 #else
1461 /* if some code is already present, then the pages are already
1462 protected. So we handle the case where only the first TB is
1463 allocated in a physical page */
1464 if (!page_already_protected) {
1465 tlb_protect_code(page_addr);
1467 #endif
1470 /* add a new TB and link it to the physical page tables. phys_page2 is
1471 * (-1) to indicate that only one page contains the TB.
1473 * Called with mmap_lock held for user-mode emulation.
1475 static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
1476 tb_page_addr_t phys_page2)
1478 unsigned int h;
1479 TranslationBlock **ptb;
1481 /* add in the physical hash table */
1482 h = tb_phys_hash_func(phys_pc);
1483 ptb = &tcg_ctx.tb_ctx.tb_phys_hash[h];
1484 tb->phys_hash_next = *ptb;
1485 *ptb = tb;
1487 /* add in the page list */
1488 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1489 if (phys_page2 != -1) {
1490 tb_alloc_page(tb, 1, phys_page2);
1491 } else {
1492 tb->page_addr[1] = -1;
1495 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
1496 tb->jmp_next[0] = NULL;
1497 tb->jmp_next[1] = NULL;
1499 /* init original jump addresses */
1500 if (tb->tb_next_offset[0] != 0xffff) {
1501 tb_reset_jump(tb, 0);
1503 if (tb->tb_next_offset[1] != 0xffff) {
1504 tb_reset_jump(tb, 1);
1507 #ifdef DEBUG_TB_CHECK
1508 tb_page_check();
1509 #endif
1512 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1513 tb[1].tc_ptr. Return NULL if not found */
1514 static TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
1516 int m_min, m_max, m;
1517 uintptr_t v;
1518 TranslationBlock *tb;
1520 if (tcg_ctx.tb_ctx.nb_tbs <= 0) {
1521 return NULL;
1523 if (tc_ptr < (uintptr_t)tcg_ctx.code_gen_buffer ||
1524 tc_ptr >= (uintptr_t)tcg_ctx.code_gen_ptr) {
1525 return NULL;
1527 /* binary search (cf Knuth) */
1528 m_min = 0;
1529 m_max = tcg_ctx.tb_ctx.nb_tbs - 1;
1530 while (m_min <= m_max) {
1531 m = (m_min + m_max) >> 1;
1532 tb = &tcg_ctx.tb_ctx.tbs[m];
1533 v = (uintptr_t)tb->tc_ptr;
1534 if (v == tc_ptr) {
1535 return tb;
1536 } else if (tc_ptr < v) {
1537 m_max = m - 1;
1538 } else {
1539 m_min = m + 1;
1542 return &tcg_ctx.tb_ctx.tbs[m_max];
1545 #if !defined(CONFIG_USER_ONLY)
1546 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr)
1548 ram_addr_t ram_addr;
1549 MemoryRegion *mr;
1550 hwaddr l = 1;
1552 rcu_read_lock();
1553 mr = address_space_translate(as, addr, &addr, &l, false);
1554 if (!(memory_region_is_ram(mr)
1555 || memory_region_is_romd(mr))) {
1556 rcu_read_unlock();
1557 return;
1559 ram_addr = (memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK)
1560 + addr;
1561 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1562 rcu_read_unlock();
1564 #endif /* !defined(CONFIG_USER_ONLY) */
1566 void tb_check_watchpoint(CPUState *cpu)
1568 TranslationBlock *tb;
1570 tb = tb_find_pc(cpu->mem_io_pc);
1571 if (tb) {
1572 /* We can use retranslation to find the PC. */
1573 cpu_restore_state_from_tb(cpu, tb, cpu->mem_io_pc);
1574 tb_phys_invalidate(tb, -1);
1575 } else {
1576 /* The exception probably happened in a helper. The CPU state should
1577 have been saved before calling it. Fetch the PC from there. */
1578 CPUArchState *env = cpu->env_ptr;
1579 target_ulong pc, cs_base;
1580 tb_page_addr_t addr;
1581 int flags;
1583 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
1584 addr = get_page_addr_code(env, pc);
1585 tb_invalidate_phys_range(addr, addr + 1);
1589 #ifndef CONFIG_USER_ONLY
1590 /* in deterministic execution mode, instructions doing device I/Os
1591 must be at the end of the TB */
1592 void cpu_io_recompile(CPUState *cpu, uintptr_t retaddr)
1594 #if defined(TARGET_MIPS) || defined(TARGET_SH4)
1595 CPUArchState *env = cpu->env_ptr;
1596 #endif
1597 TranslationBlock *tb;
1598 uint32_t n, cflags;
1599 target_ulong pc, cs_base;
1600 uint64_t flags;
1602 tb = tb_find_pc(retaddr);
1603 if (!tb) {
1604 cpu_abort(cpu, "cpu_io_recompile: could not find TB for pc=%p",
1605 (void *)retaddr);
1607 n = cpu->icount_decr.u16.low + tb->icount;
1608 cpu_restore_state_from_tb(cpu, tb, retaddr);
1609 /* Calculate how many instructions had been executed before the fault
1610 occurred. */
1611 n = n - cpu->icount_decr.u16.low;
1612 /* Generate a new TB ending on the I/O insn. */
1613 n++;
1614 /* On MIPS and SH, delay slot instructions can only be restarted if
1615 they were already the first instruction in the TB. If this is not
1616 the first instruction in a TB then re-execute the preceding
1617 branch. */
1618 #if defined(TARGET_MIPS)
1619 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
1620 env->active_tc.PC -= (env->hflags & MIPS_HFLAG_B16 ? 2 : 4);
1621 cpu->icount_decr.u16.low++;
1622 env->hflags &= ~MIPS_HFLAG_BMASK;
1624 #elif defined(TARGET_SH4)
1625 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
1626 && n > 1) {
1627 env->pc -= 2;
1628 cpu->icount_decr.u16.low++;
1629 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
1631 #endif
1632 /* This should never happen. */
1633 if (n > CF_COUNT_MASK) {
1634 cpu_abort(cpu, "TB too big during recompile");
1637 cflags = n | CF_LAST_IO;
1638 pc = tb->pc;
1639 cs_base = tb->cs_base;
1640 flags = tb->flags;
1641 tb_phys_invalidate(tb, -1);
1642 if (tb->cflags & CF_NOCACHE) {
1643 if (tb->orig_tb) {
1644 /* Invalidate original TB if this TB was generated in
1645 * cpu_exec_nocache() */
1646 tb_phys_invalidate(tb->orig_tb, -1);
1648 tb_free(tb);
1650 /* FIXME: In theory this could raise an exception. In practice
1651 we have already translated the block once so it's probably ok. */
1652 tb_gen_code(cpu, pc, cs_base, flags, cflags);
1653 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
1654 the first in the TB) then we end up generating a whole new TB and
1655 repeating the fault, which is horribly inefficient.
1656 Better would be to execute just this insn uncached, or generate a
1657 second new TB. */
1658 cpu_resume_from_signal(cpu, NULL);
1661 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr)
1663 unsigned int i;
1665 /* Discard jump cache entries for any tb which might potentially
1666 overlap the flushed page. */
1667 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1668 memset(&cpu->tb_jmp_cache[i], 0,
1669 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1671 i = tb_jmp_cache_hash_page(addr);
1672 memset(&cpu->tb_jmp_cache[i], 0,
1673 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1676 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
1678 int i, target_code_size, max_target_code_size;
1679 int direct_jmp_count, direct_jmp2_count, cross_page;
1680 TranslationBlock *tb;
1682 target_code_size = 0;
1683 max_target_code_size = 0;
1684 cross_page = 0;
1685 direct_jmp_count = 0;
1686 direct_jmp2_count = 0;
1687 for (i = 0; i < tcg_ctx.tb_ctx.nb_tbs; i++) {
1688 tb = &tcg_ctx.tb_ctx.tbs[i];
1689 target_code_size += tb->size;
1690 if (tb->size > max_target_code_size) {
1691 max_target_code_size = tb->size;
1693 if (tb->page_addr[1] != -1) {
1694 cross_page++;
1696 if (tb->tb_next_offset[0] != 0xffff) {
1697 direct_jmp_count++;
1698 if (tb->tb_next_offset[1] != 0xffff) {
1699 direct_jmp2_count++;
1703 /* XXX: avoid using doubles ? */
1704 cpu_fprintf(f, "Translation buffer state:\n");
1705 cpu_fprintf(f, "gen code size %td/%zd\n",
1706 tcg_ctx.code_gen_ptr - tcg_ctx.code_gen_buffer,
1707 tcg_ctx.code_gen_highwater - tcg_ctx.code_gen_buffer);
1708 cpu_fprintf(f, "TB count %d/%d\n",
1709 tcg_ctx.tb_ctx.nb_tbs, tcg_ctx.code_gen_max_blocks);
1710 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
1711 tcg_ctx.tb_ctx.nb_tbs ? target_code_size /
1712 tcg_ctx.tb_ctx.nb_tbs : 0,
1713 max_target_code_size);
1714 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
1715 tcg_ctx.tb_ctx.nb_tbs ? (tcg_ctx.code_gen_ptr -
1716 tcg_ctx.code_gen_buffer) /
1717 tcg_ctx.tb_ctx.nb_tbs : 0,
1718 target_code_size ? (double) (tcg_ctx.code_gen_ptr -
1719 tcg_ctx.code_gen_buffer) /
1720 target_code_size : 0);
1721 cpu_fprintf(f, "cross page TB count %d (%d%%)\n", cross_page,
1722 tcg_ctx.tb_ctx.nb_tbs ? (cross_page * 100) /
1723 tcg_ctx.tb_ctx.nb_tbs : 0);
1724 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
1725 direct_jmp_count,
1726 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp_count * 100) /
1727 tcg_ctx.tb_ctx.nb_tbs : 0,
1728 direct_jmp2_count,
1729 tcg_ctx.tb_ctx.nb_tbs ? (direct_jmp2_count * 100) /
1730 tcg_ctx.tb_ctx.nb_tbs : 0);
1731 cpu_fprintf(f, "\nStatistics:\n");
1732 cpu_fprintf(f, "TB flush count %d\n", tcg_ctx.tb_ctx.tb_flush_count);
1733 cpu_fprintf(f, "TB invalidate count %d\n",
1734 tcg_ctx.tb_ctx.tb_phys_invalidate_count);
1735 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
1736 tcg_dump_info(f, cpu_fprintf);
1739 void dump_opcount_info(FILE *f, fprintf_function cpu_fprintf)
1741 tcg_dump_op_count(f, cpu_fprintf);
1744 #else /* CONFIG_USER_ONLY */
1746 void cpu_interrupt(CPUState *cpu, int mask)
1748 cpu->interrupt_request |= mask;
1749 cpu->tcg_exit_req = 1;
1753 * Walks guest process memory "regions" one by one
1754 * and calls callback function 'fn' for each region.
1756 struct walk_memory_regions_data {
1757 walk_memory_regions_fn fn;
1758 void *priv;
1759 target_ulong start;
1760 int prot;
1763 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
1764 target_ulong end, int new_prot)
1766 if (data->start != -1u) {
1767 int rc = data->fn(data->priv, data->start, end, data->prot);
1768 if (rc != 0) {
1769 return rc;
1773 data->start = (new_prot ? end : -1u);
1774 data->prot = new_prot;
1776 return 0;
1779 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
1780 target_ulong base, int level, void **lp)
1782 target_ulong pa;
1783 int i, rc;
1785 if (*lp == NULL) {
1786 return walk_memory_regions_end(data, base, 0);
1789 if (level == 0) {
1790 PageDesc *pd = *lp;
1792 for (i = 0; i < V_L2_SIZE; ++i) {
1793 int prot = pd[i].flags;
1795 pa = base | (i << TARGET_PAGE_BITS);
1796 if (prot != data->prot) {
1797 rc = walk_memory_regions_end(data, pa, prot);
1798 if (rc != 0) {
1799 return rc;
1803 } else {
1804 void **pp = *lp;
1806 for (i = 0; i < V_L2_SIZE; ++i) {
1807 pa = base | ((target_ulong)i <<
1808 (TARGET_PAGE_BITS + V_L2_BITS * level));
1809 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1810 if (rc != 0) {
1811 return rc;
1816 return 0;
1819 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1821 struct walk_memory_regions_data data;
1822 uintptr_t i;
1824 data.fn = fn;
1825 data.priv = priv;
1826 data.start = -1u;
1827 data.prot = 0;
1829 for (i = 0; i < V_L1_SIZE; i++) {
1830 int rc = walk_memory_regions_1(&data, (target_ulong)i << (V_L1_SHIFT + TARGET_PAGE_BITS),
1831 V_L1_SHIFT / V_L2_BITS - 1, l1_map + i);
1832 if (rc != 0) {
1833 return rc;
1837 return walk_memory_regions_end(&data, 0, 0);
1840 static int dump_region(void *priv, target_ulong start,
1841 target_ulong end, unsigned long prot)
1843 FILE *f = (FILE *)priv;
1845 (void) fprintf(f, TARGET_FMT_lx"-"TARGET_FMT_lx
1846 " "TARGET_FMT_lx" %c%c%c\n",
1847 start, end, end - start,
1848 ((prot & PAGE_READ) ? 'r' : '-'),
1849 ((prot & PAGE_WRITE) ? 'w' : '-'),
1850 ((prot & PAGE_EXEC) ? 'x' : '-'));
1852 return 0;
1855 /* dump memory mappings */
1856 void page_dump(FILE *f)
1858 const int length = sizeof(target_ulong) * 2;
1859 (void) fprintf(f, "%-*s %-*s %-*s %s\n",
1860 length, "start", length, "end", length, "size", "prot");
1861 walk_memory_regions(f, dump_region);
1864 int page_get_flags(target_ulong address)
1866 PageDesc *p;
1868 p = page_find(address >> TARGET_PAGE_BITS);
1869 if (!p) {
1870 return 0;
1872 return p->flags;
1875 /* Modify the flags of a page and invalidate the code if necessary.
1876 The flag PAGE_WRITE_ORG is positioned automatically depending
1877 on PAGE_WRITE. The mmap_lock should already be held. */
1878 void page_set_flags(target_ulong start, target_ulong end, int flags)
1880 target_ulong addr, len;
1882 /* This function should never be called with addresses outside the
1883 guest address space. If this assert fires, it probably indicates
1884 a missing call to h2g_valid. */
1885 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1886 assert(end < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1887 #endif
1888 assert(start < end);
1890 start = start & TARGET_PAGE_MASK;
1891 end = TARGET_PAGE_ALIGN(end);
1893 if (flags & PAGE_WRITE) {
1894 flags |= PAGE_WRITE_ORG;
1897 for (addr = start, len = end - start;
1898 len != 0;
1899 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1900 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
1902 /* If the write protection bit is set, then we invalidate
1903 the code inside. */
1904 if (!(p->flags & PAGE_WRITE) &&
1905 (flags & PAGE_WRITE) &&
1906 p->first_tb) {
1907 tb_invalidate_phys_page(addr, 0, NULL, false);
1909 p->flags = flags;
1913 int page_check_range(target_ulong start, target_ulong len, int flags)
1915 PageDesc *p;
1916 target_ulong end;
1917 target_ulong addr;
1919 /* This function should never be called with addresses outside the
1920 guest address space. If this assert fires, it probably indicates
1921 a missing call to h2g_valid. */
1922 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
1923 assert(start < ((target_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
1924 #endif
1926 if (len == 0) {
1927 return 0;
1929 if (start + len - 1 < start) {
1930 /* We've wrapped around. */
1931 return -1;
1934 /* must do before we loose bits in the next step */
1935 end = TARGET_PAGE_ALIGN(start + len);
1936 start = start & TARGET_PAGE_MASK;
1938 for (addr = start, len = end - start;
1939 len != 0;
1940 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
1941 p = page_find(addr >> TARGET_PAGE_BITS);
1942 if (!p) {
1943 return -1;
1945 if (!(p->flags & PAGE_VALID)) {
1946 return -1;
1949 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ)) {
1950 return -1;
1952 if (flags & PAGE_WRITE) {
1953 if (!(p->flags & PAGE_WRITE_ORG)) {
1954 return -1;
1956 /* unprotect the page if it was put read-only because it
1957 contains translated code */
1958 if (!(p->flags & PAGE_WRITE)) {
1959 if (!page_unprotect(addr, 0, NULL)) {
1960 return -1;
1965 return 0;
1968 /* called from signal handler: invalidate the code and unprotect the
1969 page. Return TRUE if the fault was successfully handled. */
1970 int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
1972 unsigned int prot;
1973 PageDesc *p;
1974 target_ulong host_start, host_end, addr;
1976 /* Technically this isn't safe inside a signal handler. However we
1977 know this only ever happens in a synchronous SEGV handler, so in
1978 practice it seems to be ok. */
1979 mmap_lock();
1981 p = page_find(address >> TARGET_PAGE_BITS);
1982 if (!p) {
1983 mmap_unlock();
1984 return 0;
1987 /* if the page was really writable, then we change its
1988 protection back to writable */
1989 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
1990 host_start = address & qemu_host_page_mask;
1991 host_end = host_start + qemu_host_page_size;
1993 prot = 0;
1994 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
1995 p = page_find(addr >> TARGET_PAGE_BITS);
1996 p->flags |= PAGE_WRITE;
1997 prot |= p->flags;
1999 /* and since the content will be modified, we must invalidate
2000 the corresponding translated code. */
2001 tb_invalidate_phys_page(addr, pc, puc, true);
2002 #ifdef DEBUG_TB_CHECK
2003 tb_invalidate_check(addr);
2004 #endif
2006 mprotect((void *)g2h(host_start), qemu_host_page_size,
2007 prot & PAGE_BITS);
2009 mmap_unlock();
2010 return 1;
2012 mmap_unlock();
2013 return 0;
2015 #endif /* CONFIG_USER_ONLY */