2 * Copyright (c) 2011, Max Filippov, Open Source and Linux Lab.
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions are met:
7 * * Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * * Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 * * Neither the name of the Open Source and Linux Lab nor the
13 * names of its contributors may be used to endorse or promote products
14 * derived from this software without specific prior written permission.
16 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
20 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
21 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
23 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
24 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30 #include "qemu/host-utils.h"
31 #include "exec/softmmu_exec.h"
32 #include "exec/address-spaces.h"
34 static void do_unaligned_access(CPUXtensaState
*env
,
35 target_ulong addr
, int is_write
, int is_user
, uintptr_t retaddr
);
38 #define MMUSUFFIX _mmu
41 #include "exec/softmmu_template.h"
44 #include "exec/softmmu_template.h"
47 #include "exec/softmmu_template.h"
50 #include "exec/softmmu_template.h"
52 static void do_unaligned_access(CPUXtensaState
*env
,
53 target_ulong addr
, int is_write
, int is_user
, uintptr_t retaddr
)
55 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_UNALIGNED_EXCEPTION
) &&
56 !xtensa_option_enabled(env
->config
, XTENSA_OPTION_HW_ALIGNMENT
)) {
57 cpu_restore_state(env
, retaddr
);
58 HELPER(exception_cause_vaddr
)(env
,
59 env
->pc
, LOAD_STORE_ALIGNMENT_CAUSE
, addr
);
63 void tlb_fill(CPUXtensaState
*env
,
64 target_ulong vaddr
, int is_write
, int mmu_idx
, uintptr_t retaddr
)
69 int ret
= xtensa_get_physical_addr(env
, true, vaddr
, is_write
, mmu_idx
,
70 &paddr
, &page_size
, &access
);
72 qemu_log("%s(%08x, %d, %d) -> %08x, ret = %d\n", __func__
,
73 vaddr
, is_write
, mmu_idx
, paddr
, ret
);
77 vaddr
& TARGET_PAGE_MASK
,
78 paddr
& TARGET_PAGE_MASK
,
79 access
, mmu_idx
, page_size
);
81 cpu_restore_state(env
, retaddr
);
82 HELPER(exception_cause_vaddr
)(env
, env
->pc
, ret
, vaddr
);
86 static void tb_invalidate_virtual_addr(CPUXtensaState
*env
, uint32_t vaddr
)
91 int ret
= xtensa_get_physical_addr(env
, false, vaddr
, 2, 0,
92 &paddr
, &page_size
, &access
);
94 tb_invalidate_phys_addr(&address_space_memory
, paddr
);
98 void HELPER(exception
)(CPUXtensaState
*env
, uint32_t excp
)
100 env
->exception_index
= excp
;
101 if (excp
== EXCP_DEBUG
) {
102 env
->exception_taken
= 0;
107 void HELPER(exception_cause
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t cause
)
112 if (env
->sregs
[PS
] & PS_EXCM
) {
113 if (env
->config
->ndepc
) {
114 env
->sregs
[DEPC
] = pc
;
116 env
->sregs
[EPC1
] = pc
;
120 env
->sregs
[EPC1
] = pc
;
121 vector
= (env
->sregs
[PS
] & PS_UM
) ? EXC_USER
: EXC_KERNEL
;
124 env
->sregs
[EXCCAUSE
] = cause
;
125 env
->sregs
[PS
] |= PS_EXCM
;
127 HELPER(exception
)(env
, vector
);
130 void HELPER(exception_cause_vaddr
)(CPUXtensaState
*env
,
131 uint32_t pc
, uint32_t cause
, uint32_t vaddr
)
133 env
->sregs
[EXCVADDR
] = vaddr
;
134 HELPER(exception_cause
)(env
, pc
, cause
);
137 void debug_exception_env(CPUXtensaState
*env
, uint32_t cause
)
139 if (xtensa_get_cintlevel(env
) < env
->config
->debug_level
) {
140 HELPER(debug_exception
)(env
, env
->pc
, cause
);
144 void HELPER(debug_exception
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t cause
)
146 unsigned level
= env
->config
->debug_level
;
149 env
->sregs
[DEBUGCAUSE
] = cause
;
150 env
->sregs
[EPC1
+ level
- 1] = pc
;
151 env
->sregs
[EPS2
+ level
- 2] = env
->sregs
[PS
];
152 env
->sregs
[PS
] = (env
->sregs
[PS
] & ~PS_INTLEVEL
) | PS_EXCM
|
153 (level
<< PS_INTLEVEL_SHIFT
);
154 HELPER(exception
)(env
, EXC_DEBUG
);
157 uint32_t HELPER(nsa
)(uint32_t v
)
159 if (v
& 0x80000000) {
162 return v
? clz32(v
) - 1 : 31;
165 uint32_t HELPER(nsau
)(uint32_t v
)
167 return v
? clz32(v
) : 32;
170 static void copy_window_from_phys(CPUXtensaState
*env
,
171 uint32_t window
, uint32_t phys
, uint32_t n
)
173 assert(phys
< env
->config
->nareg
);
174 if (phys
+ n
<= env
->config
->nareg
) {
175 memcpy(env
->regs
+ window
, env
->phys_regs
+ phys
,
176 n
* sizeof(uint32_t));
178 uint32_t n1
= env
->config
->nareg
- phys
;
179 memcpy(env
->regs
+ window
, env
->phys_regs
+ phys
,
180 n1
* sizeof(uint32_t));
181 memcpy(env
->regs
+ window
+ n1
, env
->phys_regs
,
182 (n
- n1
) * sizeof(uint32_t));
186 static void copy_phys_from_window(CPUXtensaState
*env
,
187 uint32_t phys
, uint32_t window
, uint32_t n
)
189 assert(phys
< env
->config
->nareg
);
190 if (phys
+ n
<= env
->config
->nareg
) {
191 memcpy(env
->phys_regs
+ phys
, env
->regs
+ window
,
192 n
* sizeof(uint32_t));
194 uint32_t n1
= env
->config
->nareg
- phys
;
195 memcpy(env
->phys_regs
+ phys
, env
->regs
+ window
,
196 n1
* sizeof(uint32_t));
197 memcpy(env
->phys_regs
, env
->regs
+ window
+ n1
,
198 (n
- n1
) * sizeof(uint32_t));
203 static inline unsigned windowbase_bound(unsigned a
, const CPUXtensaState
*env
)
205 return a
& (env
->config
->nareg
/ 4 - 1);
208 static inline unsigned windowstart_bit(unsigned a
, const CPUXtensaState
*env
)
210 return 1 << windowbase_bound(a
, env
);
213 void xtensa_sync_window_from_phys(CPUXtensaState
*env
)
215 copy_window_from_phys(env
, 0, env
->sregs
[WINDOW_BASE
] * 4, 16);
218 void xtensa_sync_phys_from_window(CPUXtensaState
*env
)
220 copy_phys_from_window(env
, env
->sregs
[WINDOW_BASE
] * 4, 0, 16);
223 static void rotate_window_abs(CPUXtensaState
*env
, uint32_t position
)
225 xtensa_sync_phys_from_window(env
);
226 env
->sregs
[WINDOW_BASE
] = windowbase_bound(position
, env
);
227 xtensa_sync_window_from_phys(env
);
230 static void rotate_window(CPUXtensaState
*env
, uint32_t delta
)
232 rotate_window_abs(env
, env
->sregs
[WINDOW_BASE
] + delta
);
235 void HELPER(wsr_windowbase
)(CPUXtensaState
*env
, uint32_t v
)
237 rotate_window_abs(env
, v
);
240 void HELPER(entry
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t s
, uint32_t imm
)
242 int callinc
= (env
->sregs
[PS
] & PS_CALLINC
) >> PS_CALLINC_SHIFT
;
243 if (s
> 3 || ((env
->sregs
[PS
] & (PS_WOE
| PS_EXCM
)) ^ PS_WOE
) != 0) {
244 qemu_log("Illegal entry instruction(pc = %08x), PS = %08x\n",
246 HELPER(exception_cause
)(env
, pc
, ILLEGAL_INSTRUCTION_CAUSE
);
248 env
->regs
[(callinc
<< 2) | (s
& 3)] = env
->regs
[s
] - (imm
<< 3);
249 rotate_window(env
, callinc
);
250 env
->sregs
[WINDOW_START
] |=
251 windowstart_bit(env
->sregs
[WINDOW_BASE
], env
);
255 void HELPER(window_check
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t w
)
257 uint32_t windowbase
= windowbase_bound(env
->sregs
[WINDOW_BASE
], env
);
258 uint32_t windowstart
= env
->sregs
[WINDOW_START
];
261 if ((env
->sregs
[PS
] & (PS_WOE
| PS_EXCM
)) ^ PS_WOE
) {
269 if (windowstart
& windowstart_bit(windowbase
+ n
, env
)) {
274 m
= windowbase_bound(windowbase
+ n
, env
);
275 rotate_window(env
, n
);
276 env
->sregs
[PS
] = (env
->sregs
[PS
] & ~PS_OWB
) |
277 (windowbase
<< PS_OWB_SHIFT
) | PS_EXCM
;
278 env
->sregs
[EPC1
] = env
->pc
= pc
;
280 if (windowstart
& windowstart_bit(m
+ 1, env
)) {
281 HELPER(exception
)(env
, EXC_WINDOW_OVERFLOW4
);
282 } else if (windowstart
& windowstart_bit(m
+ 2, env
)) {
283 HELPER(exception
)(env
, EXC_WINDOW_OVERFLOW8
);
285 HELPER(exception
)(env
, EXC_WINDOW_OVERFLOW12
);
289 uint32_t HELPER(retw
)(CPUXtensaState
*env
, uint32_t pc
)
291 int n
= (env
->regs
[0] >> 30) & 0x3;
293 uint32_t windowbase
= windowbase_bound(env
->sregs
[WINDOW_BASE
], env
);
294 uint32_t windowstart
= env
->sregs
[WINDOW_START
];
297 if (windowstart
& windowstart_bit(windowbase
- 1, env
)) {
299 } else if (windowstart
& windowstart_bit(windowbase
- 2, env
)) {
301 } else if (windowstart
& windowstart_bit(windowbase
- 3, env
)) {
305 if (n
== 0 || (m
!= 0 && m
!= n
) ||
306 ((env
->sregs
[PS
] & (PS_WOE
| PS_EXCM
)) ^ PS_WOE
) != 0) {
307 qemu_log("Illegal retw instruction(pc = %08x), "
308 "PS = %08x, m = %d, n = %d\n",
309 pc
, env
->sregs
[PS
], m
, n
);
310 HELPER(exception_cause
)(env
, pc
, ILLEGAL_INSTRUCTION_CAUSE
);
312 int owb
= windowbase
;
314 ret_pc
= (pc
& 0xc0000000) | (env
->regs
[0] & 0x3fffffff);
316 rotate_window(env
, -n
);
317 if (windowstart
& windowstart_bit(env
->sregs
[WINDOW_BASE
], env
)) {
318 env
->sregs
[WINDOW_START
] &= ~windowstart_bit(owb
, env
);
320 /* window underflow */
321 env
->sregs
[PS
] = (env
->sregs
[PS
] & ~PS_OWB
) |
322 (windowbase
<< PS_OWB_SHIFT
) | PS_EXCM
;
323 env
->sregs
[EPC1
] = env
->pc
= pc
;
326 HELPER(exception
)(env
, EXC_WINDOW_UNDERFLOW4
);
328 HELPER(exception
)(env
, EXC_WINDOW_UNDERFLOW8
);
330 HELPER(exception
)(env
, EXC_WINDOW_UNDERFLOW12
);
337 void HELPER(rotw
)(CPUXtensaState
*env
, uint32_t imm4
)
339 rotate_window(env
, imm4
);
342 void HELPER(restore_owb
)(CPUXtensaState
*env
)
344 rotate_window_abs(env
, (env
->sregs
[PS
] & PS_OWB
) >> PS_OWB_SHIFT
);
347 void HELPER(movsp
)(CPUXtensaState
*env
, uint32_t pc
)
349 if ((env
->sregs
[WINDOW_START
] &
350 (windowstart_bit(env
->sregs
[WINDOW_BASE
] - 3, env
) |
351 windowstart_bit(env
->sregs
[WINDOW_BASE
] - 2, env
) |
352 windowstart_bit(env
->sregs
[WINDOW_BASE
] - 1, env
))) == 0) {
353 HELPER(exception_cause
)(env
, pc
, ALLOCA_CAUSE
);
357 void HELPER(wsr_lbeg
)(CPUXtensaState
*env
, uint32_t v
)
359 if (env
->sregs
[LBEG
] != v
) {
360 tb_invalidate_virtual_addr(env
, env
->sregs
[LEND
] - 1);
361 env
->sregs
[LBEG
] = v
;
365 void HELPER(wsr_lend
)(CPUXtensaState
*env
, uint32_t v
)
367 if (env
->sregs
[LEND
] != v
) {
368 tb_invalidate_virtual_addr(env
, env
->sregs
[LEND
] - 1);
369 env
->sregs
[LEND
] = v
;
370 tb_invalidate_virtual_addr(env
, env
->sregs
[LEND
] - 1);
374 void HELPER(dump_state
)(CPUXtensaState
*env
)
376 XtensaCPU
*cpu
= xtensa_env_get_cpu(env
);
378 cpu_dump_state(CPU(cpu
), stderr
, fprintf
, 0);
381 void HELPER(waiti
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t intlevel
)
386 env
->sregs
[PS
] = (env
->sregs
[PS
] & ~PS_INTLEVEL
) |
387 (intlevel
<< PS_INTLEVEL_SHIFT
);
388 check_interrupts(env
);
389 if (env
->pending_irq_level
) {
394 cpu
= CPU(xtensa_env_get_cpu(env
));
395 env
->halt_clock
= qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL
);
397 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_TIMER_INTERRUPT
)) {
398 xtensa_rearm_ccompare_timer(env
);
400 HELPER(exception
)(env
, EXCP_HLT
);
403 void HELPER(timer_irq
)(CPUXtensaState
*env
, uint32_t id
, uint32_t active
)
405 xtensa_timer_irq(env
, id
, active
);
408 void HELPER(advance_ccount
)(CPUXtensaState
*env
, uint32_t d
)
410 xtensa_advance_ccount(env
, d
);
413 void HELPER(check_interrupts
)(CPUXtensaState
*env
)
415 check_interrupts(env
);
419 * Check vaddr accessibility/cache attributes and raise an exception if
420 * specified by the ATOMCTL SR.
422 * Note: local memory exclusion is not implemented
424 void HELPER(check_atomctl
)(CPUXtensaState
*env
, uint32_t pc
, uint32_t vaddr
)
426 uint32_t paddr
, page_size
, access
;
427 uint32_t atomctl
= env
->sregs
[ATOMCTL
];
428 int rc
= xtensa_get_physical_addr(env
, true, vaddr
, 1,
429 xtensa_get_cring(env
), &paddr
, &page_size
, &access
);
432 * s32c1i never causes LOAD_PROHIBITED_CAUSE exceptions,
433 * see opcode description in the ISA
436 (access
& (PAGE_READ
| PAGE_WRITE
)) != (PAGE_READ
| PAGE_WRITE
)) {
437 rc
= STORE_PROHIBITED_CAUSE
;
441 HELPER(exception_cause_vaddr
)(env
, pc
, rc
, vaddr
);
445 * When data cache is not configured use ATOMCTL bypass field.
446 * See ISA, 4.3.12.4 The Atomic Operation Control Register (ATOMCTL)
447 * under the Conditional Store Option.
449 if (!xtensa_option_enabled(env
->config
, XTENSA_OPTION_DCACHE
)) {
450 access
= PAGE_CACHE_BYPASS
;
453 switch (access
& PAGE_CACHE_MASK
) {
460 case PAGE_CACHE_BYPASS
:
461 if ((atomctl
& 0x3) == 0) {
462 HELPER(exception_cause_vaddr
)(env
, pc
,
463 LOAD_STORE_ERROR_CAUSE
, vaddr
);
467 case PAGE_CACHE_ISOLATE
:
468 HELPER(exception_cause_vaddr
)(env
, pc
,
469 LOAD_STORE_ERROR_CAUSE
, vaddr
);
477 void HELPER(wsr_rasid
)(CPUXtensaState
*env
, uint32_t v
)
479 v
= (v
& 0xffffff00) | 0x1;
480 if (v
!= env
->sregs
[RASID
]) {
481 env
->sregs
[RASID
] = v
;
486 static uint32_t get_page_size(const CPUXtensaState
*env
, bool dtlb
, uint32_t way
)
488 uint32_t tlbcfg
= env
->sregs
[dtlb
? DTLBCFG
: ITLBCFG
];
492 return (tlbcfg
>> 16) & 0x3;
495 return (tlbcfg
>> 20) & 0x1;
498 return (tlbcfg
>> 24) & 0x1;
506 * Get bit mask for the virtual address bits translated by the TLB way
508 uint32_t xtensa_tlb_get_addr_mask(const CPUXtensaState
*env
, bool dtlb
, uint32_t way
)
510 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
511 bool varway56
= dtlb
?
512 env
->config
->dtlb
.varway56
:
513 env
->config
->itlb
.varway56
;
517 return 0xfff00000 << get_page_size(env
, dtlb
, way
) * 2;
521 return 0xf8000000 << get_page_size(env
, dtlb
, way
);
528 return 0xf0000000 << (1 - get_page_size(env
, dtlb
, way
));
537 return REGION_PAGE_MASK
;
542 * Get bit mask for the 'VPN without index' field.
543 * See ISA, 4.6.5.6, data format for RxTLB0
545 static uint32_t get_vpn_mask(const CPUXtensaState
*env
, bool dtlb
, uint32_t way
)
549 env
->config
->dtlb
.nrefillentries
:
550 env
->config
->itlb
.nrefillentries
) == 32;
551 return is32
? 0xffff8000 : 0xffffc000;
552 } else if (way
== 4) {
553 return xtensa_tlb_get_addr_mask(env
, dtlb
, way
) << 2;
554 } else if (way
<= 6) {
555 uint32_t mask
= xtensa_tlb_get_addr_mask(env
, dtlb
, way
);
556 bool varway56
= dtlb
?
557 env
->config
->dtlb
.varway56
:
558 env
->config
->itlb
.varway56
;
561 return mask
<< (way
== 5 ? 2 : 3);
571 * Split virtual address into VPN (with index) and entry index
572 * for the given TLB way
574 void split_tlb_entry_spec_way(const CPUXtensaState
*env
, uint32_t v
, bool dtlb
,
575 uint32_t *vpn
, uint32_t wi
, uint32_t *ei
)
577 bool varway56
= dtlb
?
578 env
->config
->dtlb
.varway56
:
579 env
->config
->itlb
.varway56
;
587 env
->config
->dtlb
.nrefillentries
:
588 env
->config
->itlb
.nrefillentries
) == 32;
589 *ei
= (v
>> 12) & (is32
? 0x7 : 0x3);
594 uint32_t eibase
= 20 + get_page_size(env
, dtlb
, wi
) * 2;
595 *ei
= (v
>> eibase
) & 0x3;
601 uint32_t eibase
= 27 + get_page_size(env
, dtlb
, wi
);
602 *ei
= (v
>> eibase
) & 0x3;
604 *ei
= (v
>> 27) & 0x1;
610 uint32_t eibase
= 29 - get_page_size(env
, dtlb
, wi
);
611 *ei
= (v
>> eibase
) & 0x7;
613 *ei
= (v
>> 28) & 0x1;
622 *vpn
= v
& xtensa_tlb_get_addr_mask(env
, dtlb
, wi
);
626 * Split TLB address into TLB way, entry index and VPN (with index).
627 * See ISA, 4.6.5.5 - 4.6.5.8 for the TLB addressing format
629 static void split_tlb_entry_spec(CPUXtensaState
*env
, uint32_t v
, bool dtlb
,
630 uint32_t *vpn
, uint32_t *wi
, uint32_t *ei
)
632 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
633 *wi
= v
& (dtlb
? 0xf : 0x7);
634 split_tlb_entry_spec_way(env
, v
, dtlb
, vpn
, *wi
, ei
);
636 *vpn
= v
& REGION_PAGE_MASK
;
638 *ei
= (v
>> 29) & 0x7;
642 static xtensa_tlb_entry
*get_tlb_entry(CPUXtensaState
*env
,
643 uint32_t v
, bool dtlb
, uint32_t *pwi
)
649 split_tlb_entry_spec(env
, v
, dtlb
, &vpn
, &wi
, &ei
);
653 return xtensa_tlb_get_entry(env
, dtlb
, wi
, ei
);
656 uint32_t HELPER(rtlb0
)(CPUXtensaState
*env
, uint32_t v
, uint32_t dtlb
)
658 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
660 const xtensa_tlb_entry
*entry
= get_tlb_entry(env
, v
, dtlb
, &wi
);
661 return (entry
->vaddr
& get_vpn_mask(env
, dtlb
, wi
)) | entry
->asid
;
663 return v
& REGION_PAGE_MASK
;
667 uint32_t HELPER(rtlb1
)(CPUXtensaState
*env
, uint32_t v
, uint32_t dtlb
)
669 const xtensa_tlb_entry
*entry
= get_tlb_entry(env
, v
, dtlb
, NULL
);
670 return entry
->paddr
| entry
->attr
;
673 void HELPER(itlb
)(CPUXtensaState
*env
, uint32_t v
, uint32_t dtlb
)
675 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
677 xtensa_tlb_entry
*entry
= get_tlb_entry(env
, v
, dtlb
, &wi
);
678 if (entry
->variable
&& entry
->asid
) {
679 tlb_flush_page(env
, entry
->vaddr
);
685 uint32_t HELPER(ptlb
)(CPUXtensaState
*env
, uint32_t v
, uint32_t dtlb
)
687 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
691 int res
= xtensa_tlb_lookup(env
, v
, dtlb
, &wi
, &ei
, &ring
);
695 if (ring
>= xtensa_get_ring(env
)) {
696 return (v
& 0xfffff000) | wi
| (dtlb
? 0x10 : 0x8);
700 case INST_TLB_MULTI_HIT_CAUSE
:
701 case LOAD_STORE_TLB_MULTI_HIT_CAUSE
:
702 HELPER(exception_cause_vaddr
)(env
, env
->pc
, res
, v
);
707 return (v
& REGION_PAGE_MASK
) | 0x1;
711 void xtensa_tlb_set_entry_mmu(const CPUXtensaState
*env
,
712 xtensa_tlb_entry
*entry
, bool dtlb
,
713 unsigned wi
, unsigned ei
, uint32_t vpn
, uint32_t pte
)
716 entry
->paddr
= pte
& xtensa_tlb_get_addr_mask(env
, dtlb
, wi
);
717 entry
->asid
= (env
->sregs
[RASID
] >> ((pte
>> 1) & 0x18)) & 0xff;
718 entry
->attr
= pte
& 0xf;
721 void xtensa_tlb_set_entry(CPUXtensaState
*env
, bool dtlb
,
722 unsigned wi
, unsigned ei
, uint32_t vpn
, uint32_t pte
)
724 xtensa_tlb_entry
*entry
= xtensa_tlb_get_entry(env
, dtlb
, wi
, ei
);
726 if (xtensa_option_enabled(env
->config
, XTENSA_OPTION_MMU
)) {
727 if (entry
->variable
) {
729 tlb_flush_page(env
, entry
->vaddr
);
731 xtensa_tlb_set_entry_mmu(env
, entry
, dtlb
, wi
, ei
, vpn
, pte
);
732 tlb_flush_page(env
, entry
->vaddr
);
734 qemu_log("%s %d, %d, %d trying to set immutable entry\n",
735 __func__
, dtlb
, wi
, ei
);
738 tlb_flush_page(env
, entry
->vaddr
);
739 if (xtensa_option_enabled(env
->config
,
740 XTENSA_OPTION_REGION_TRANSLATION
)) {
741 entry
->paddr
= pte
& REGION_PAGE_MASK
;
743 entry
->attr
= pte
& 0xf;
747 void HELPER(wtlb
)(CPUXtensaState
*env
, uint32_t p
, uint32_t v
, uint32_t dtlb
)
752 split_tlb_entry_spec(env
, v
, dtlb
, &vpn
, &wi
, &ei
);
753 xtensa_tlb_set_entry(env
, dtlb
, wi
, ei
, vpn
, p
);
757 void HELPER(wsr_ibreakenable
)(CPUXtensaState
*env
, uint32_t v
)
759 uint32_t change
= v
^ env
->sregs
[IBREAKENABLE
];
762 for (i
= 0; i
< env
->config
->nibreak
; ++i
) {
763 if (change
& (1 << i
)) {
764 tb_invalidate_virtual_addr(env
, env
->sregs
[IBREAKA
+ i
]);
767 env
->sregs
[IBREAKENABLE
] = v
& ((1 << env
->config
->nibreak
) - 1);
770 void HELPER(wsr_ibreaka
)(CPUXtensaState
*env
, uint32_t i
, uint32_t v
)
772 if (env
->sregs
[IBREAKENABLE
] & (1 << i
) && env
->sregs
[IBREAKA
+ i
] != v
) {
773 tb_invalidate_virtual_addr(env
, env
->sregs
[IBREAKA
+ i
]);
774 tb_invalidate_virtual_addr(env
, v
);
776 env
->sregs
[IBREAKA
+ i
] = v
;
779 static void set_dbreak(CPUXtensaState
*env
, unsigned i
, uint32_t dbreaka
,
782 int flags
= BP_CPU
| BP_STOP_BEFORE_ACCESS
;
783 uint32_t mask
= dbreakc
| ~DBREAKC_MASK
;
785 if (env
->cpu_watchpoint
[i
]) {
786 cpu_watchpoint_remove_by_ref(env
, env
->cpu_watchpoint
[i
]);
788 if (dbreakc
& DBREAKC_SB
) {
789 flags
|= BP_MEM_WRITE
;
791 if (dbreakc
& DBREAKC_LB
) {
792 flags
|= BP_MEM_READ
;
794 /* contiguous mask after inversion is one less than some power of 2 */
795 if ((~mask
+ 1) & ~mask
) {
796 qemu_log("DBREAKC mask is not contiguous: 0x%08x\n", dbreakc
);
797 /* cut mask after the first zero bit */
798 mask
= 0xffffffff << (32 - clo32(mask
));
800 if (cpu_watchpoint_insert(env
, dbreaka
& mask
, ~mask
+ 1,
801 flags
, &env
->cpu_watchpoint
[i
])) {
802 env
->cpu_watchpoint
[i
] = NULL
;
803 qemu_log("Failed to set data breakpoint at 0x%08x/%d\n",
804 dbreaka
& mask
, ~mask
+ 1);
808 void HELPER(wsr_dbreaka
)(CPUXtensaState
*env
, uint32_t i
, uint32_t v
)
810 uint32_t dbreakc
= env
->sregs
[DBREAKC
+ i
];
812 if ((dbreakc
& DBREAKC_SB_LB
) &&
813 env
->sregs
[DBREAKA
+ i
] != v
) {
814 set_dbreak(env
, i
, v
, dbreakc
);
816 env
->sregs
[DBREAKA
+ i
] = v
;
819 void HELPER(wsr_dbreakc
)(CPUXtensaState
*env
, uint32_t i
, uint32_t v
)
821 if ((env
->sregs
[DBREAKC
+ i
] ^ v
) & (DBREAKC_SB_LB
| DBREAKC_MASK
)) {
822 if (v
& DBREAKC_SB_LB
) {
823 set_dbreak(env
, i
, env
->sregs
[DBREAKA
+ i
], v
);
825 if (env
->cpu_watchpoint
[i
]) {
826 cpu_watchpoint_remove_by_ref(env
, env
->cpu_watchpoint
[i
]);
827 env
->cpu_watchpoint
[i
] = NULL
;
831 env
->sregs
[DBREAKC
+ i
] = v
;
834 void HELPER(wur_fcr
)(CPUXtensaState
*env
, uint32_t v
)
836 static const int rounding_mode
[] = {
837 float_round_nearest_even
,
843 env
->uregs
[FCR
] = v
& 0xfffff07f;
844 set_float_rounding_mode(rounding_mode
[v
& 3], &env
->fp_status
);
847 float32
HELPER(abs_s
)(float32 v
)
849 return float32_abs(v
);
852 float32
HELPER(neg_s
)(float32 v
)
854 return float32_chs(v
);
857 float32
HELPER(add_s
)(CPUXtensaState
*env
, float32 a
, float32 b
)
859 return float32_add(a
, b
, &env
->fp_status
);
862 float32
HELPER(sub_s
)(CPUXtensaState
*env
, float32 a
, float32 b
)
864 return float32_sub(a
, b
, &env
->fp_status
);
867 float32
HELPER(mul_s
)(CPUXtensaState
*env
, float32 a
, float32 b
)
869 return float32_mul(a
, b
, &env
->fp_status
);
872 float32
HELPER(madd_s
)(CPUXtensaState
*env
, float32 a
, float32 b
, float32 c
)
874 return float32_muladd(b
, c
, a
, 0,
878 float32
HELPER(msub_s
)(CPUXtensaState
*env
, float32 a
, float32 b
, float32 c
)
880 return float32_muladd(b
, c
, a
, float_muladd_negate_product
,
884 uint32_t HELPER(ftoi
)(float32 v
, uint32_t rounding_mode
, uint32_t scale
)
886 float_status fp_status
= {0};
888 set_float_rounding_mode(rounding_mode
, &fp_status
);
889 return float32_to_int32(
890 float32_scalbn(v
, scale
, &fp_status
), &fp_status
);
893 uint32_t HELPER(ftoui
)(float32 v
, uint32_t rounding_mode
, uint32_t scale
)
895 float_status fp_status
= {0};
898 set_float_rounding_mode(rounding_mode
, &fp_status
);
900 res
= float32_scalbn(v
, scale
, &fp_status
);
902 if (float32_is_neg(v
) && !float32_is_any_nan(v
)) {
903 return float32_to_int32(res
, &fp_status
);
905 return float32_to_uint32(res
, &fp_status
);
909 float32
HELPER(itof
)(CPUXtensaState
*env
, uint32_t v
, uint32_t scale
)
911 return float32_scalbn(int32_to_float32(v
, &env
->fp_status
),
912 (int32_t)scale
, &env
->fp_status
);
915 float32
HELPER(uitof
)(CPUXtensaState
*env
, uint32_t v
, uint32_t scale
)
917 return float32_scalbn(uint32_to_float32(v
, &env
->fp_status
),
918 (int32_t)scale
, &env
->fp_status
);
921 static inline void set_br(CPUXtensaState
*env
, bool v
, uint32_t br
)
924 env
->sregs
[BR
] |= br
;
926 env
->sregs
[BR
] &= ~br
;
930 void HELPER(un_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
932 set_br(env
, float32_unordered_quiet(a
, b
, &env
->fp_status
), br
);
935 void HELPER(oeq_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
937 set_br(env
, float32_eq_quiet(a
, b
, &env
->fp_status
), br
);
940 void HELPER(ueq_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
942 int v
= float32_compare_quiet(a
, b
, &env
->fp_status
);
943 set_br(env
, v
== float_relation_equal
|| v
== float_relation_unordered
, br
);
946 void HELPER(olt_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
948 set_br(env
, float32_lt_quiet(a
, b
, &env
->fp_status
), br
);
951 void HELPER(ult_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
953 int v
= float32_compare_quiet(a
, b
, &env
->fp_status
);
954 set_br(env
, v
== float_relation_less
|| v
== float_relation_unordered
, br
);
957 void HELPER(ole_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
959 set_br(env
, float32_le_quiet(a
, b
, &env
->fp_status
), br
);
962 void HELPER(ule_s
)(CPUXtensaState
*env
, uint32_t br
, float32 a
, float32 b
)
964 int v
= float32_compare_quiet(a
, b
, &env
->fp_status
);
965 set_br(env
, v
!= float_relation_greater
, br
);