4 * Copyright IBM, Corp. 2008
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "qemu-barrier.h"
31 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
32 #define PAGE_SIZE TARGET_PAGE_SIZE
37 #define DPRINTF(fmt, ...) \
38 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
40 #define DPRINTF(fmt, ...) \
44 typedef struct KVMSlot
46 target_phys_addr_t start_addr
;
47 ram_addr_t memory_size
;
48 ram_addr_t phys_offset
;
53 typedef struct kvm_dirty_log KVMDirtyLog
;
61 #ifdef KVM_CAP_COALESCED_MMIO
62 struct kvm_coalesced_mmio_ring
*coalesced_mmio_ring
;
64 int broken_set_mem_region
;
67 int robust_singlestep
;
69 #ifdef KVM_CAP_SET_GUEST_DEBUG
70 struct kvm_sw_breakpoint_head kvm_sw_breakpoints
;
72 int irqchip_in_kernel
;
77 static KVMState
*kvm_state
;
79 static KVMSlot
*kvm_alloc_slot(KVMState
*s
)
83 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
84 /* KVM private memory slots */
87 if (s
->slots
[i
].memory_size
== 0)
91 fprintf(stderr
, "%s: no free slot available\n", __func__
);
95 static KVMSlot
*kvm_lookup_matching_slot(KVMState
*s
,
96 target_phys_addr_t start_addr
,
97 target_phys_addr_t end_addr
)
101 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
102 KVMSlot
*mem
= &s
->slots
[i
];
104 if (start_addr
== mem
->start_addr
&&
105 end_addr
== mem
->start_addr
+ mem
->memory_size
) {
114 * Find overlapping slot with lowest start address
116 static KVMSlot
*kvm_lookup_overlapping_slot(KVMState
*s
,
117 target_phys_addr_t start_addr
,
118 target_phys_addr_t end_addr
)
120 KVMSlot
*found
= NULL
;
123 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
124 KVMSlot
*mem
= &s
->slots
[i
];
126 if (mem
->memory_size
== 0 ||
127 (found
&& found
->start_addr
< mem
->start_addr
)) {
131 if (end_addr
> mem
->start_addr
&&
132 start_addr
< mem
->start_addr
+ mem
->memory_size
) {
140 int kvm_physical_memory_addr_from_ram(KVMState
*s
, ram_addr_t ram_addr
,
141 target_phys_addr_t
*phys_addr
)
145 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
146 KVMSlot
*mem
= &s
->slots
[i
];
148 if (ram_addr
>= mem
->phys_offset
&&
149 ram_addr
< mem
->phys_offset
+ mem
->memory_size
) {
150 *phys_addr
= mem
->start_addr
+ (ram_addr
- mem
->phys_offset
);
158 static int kvm_set_user_memory_region(KVMState
*s
, KVMSlot
*slot
)
160 struct kvm_userspace_memory_region mem
;
162 mem
.slot
= slot
->slot
;
163 mem
.guest_phys_addr
= slot
->start_addr
;
164 mem
.memory_size
= slot
->memory_size
;
165 mem
.userspace_addr
= (unsigned long)qemu_safe_ram_ptr(slot
->phys_offset
);
166 mem
.flags
= slot
->flags
;
167 if (s
->migration_log
) {
168 mem
.flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
170 return kvm_vm_ioctl(s
, KVM_SET_USER_MEMORY_REGION
, &mem
);
173 static void kvm_reset_vcpu(void *opaque
)
175 CPUState
*env
= opaque
;
177 kvm_arch_reset_vcpu(env
);
180 int kvm_irqchip_in_kernel(void)
182 return kvm_state
->irqchip_in_kernel
;
185 int kvm_pit_in_kernel(void)
187 return kvm_state
->pit_in_kernel
;
191 int kvm_init_vcpu(CPUState
*env
)
193 KVMState
*s
= kvm_state
;
197 DPRINTF("kvm_init_vcpu\n");
199 ret
= kvm_vm_ioctl(s
, KVM_CREATE_VCPU
, env
->cpu_index
);
201 DPRINTF("kvm_create_vcpu failed\n");
208 mmap_size
= kvm_ioctl(s
, KVM_GET_VCPU_MMAP_SIZE
, 0);
210 DPRINTF("KVM_GET_VCPU_MMAP_SIZE failed\n");
214 env
->kvm_run
= mmap(NULL
, mmap_size
, PROT_READ
| PROT_WRITE
, MAP_SHARED
,
216 if (env
->kvm_run
== MAP_FAILED
) {
218 DPRINTF("mmap'ing vcpu state failed\n");
222 #ifdef KVM_CAP_COALESCED_MMIO
223 if (s
->coalesced_mmio
&& !s
->coalesced_mmio_ring
)
224 s
->coalesced_mmio_ring
= (void *) env
->kvm_run
+
225 s
->coalesced_mmio
* PAGE_SIZE
;
228 ret
= kvm_arch_init_vcpu(env
);
230 qemu_register_reset(kvm_reset_vcpu
, env
);
231 kvm_arch_reset_vcpu(env
);
238 * dirty pages logging control
240 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr
,
241 ram_addr_t size
, int flags
, int mask
)
243 KVMState
*s
= kvm_state
;
244 KVMSlot
*mem
= kvm_lookup_matching_slot(s
, phys_addr
, phys_addr
+ size
);
248 fprintf(stderr
, "BUG: %s: invalid parameters " TARGET_FMT_plx
"-"
249 TARGET_FMT_plx
"\n", __func__
, phys_addr
,
250 (target_phys_addr_t
)(phys_addr
+ size
- 1));
254 old_flags
= mem
->flags
;
256 flags
= (mem
->flags
& ~mask
) | flags
;
259 /* If nothing changed effectively, no need to issue ioctl */
260 if (s
->migration_log
) {
261 flags
|= KVM_MEM_LOG_DIRTY_PAGES
;
263 if (flags
== old_flags
) {
267 return kvm_set_user_memory_region(s
, mem
);
270 int kvm_log_start(target_phys_addr_t phys_addr
, ram_addr_t size
)
272 return kvm_dirty_pages_log_change(phys_addr
, size
,
273 KVM_MEM_LOG_DIRTY_PAGES
,
274 KVM_MEM_LOG_DIRTY_PAGES
);
277 int kvm_log_stop(target_phys_addr_t phys_addr
, ram_addr_t size
)
279 return kvm_dirty_pages_log_change(phys_addr
, size
,
281 KVM_MEM_LOG_DIRTY_PAGES
);
284 static int kvm_set_migration_log(int enable
)
286 KVMState
*s
= kvm_state
;
290 s
->migration_log
= enable
;
292 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++) {
295 if (!mem
->memory_size
) {
298 if (!!(mem
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) == enable
) {
301 err
= kvm_set_user_memory_region(s
, mem
);
309 /* get kvm's dirty pages bitmap and update qemu's */
310 static int kvm_get_dirty_pages_log_range(unsigned long start_addr
,
311 unsigned long *bitmap
,
312 unsigned long offset
,
313 unsigned long mem_size
)
316 unsigned long page_number
, addr
, addr1
, c
;
318 unsigned int len
= ((mem_size
/ TARGET_PAGE_SIZE
) + HOST_LONG_BITS
- 1) /
322 * bitmap-traveling is faster than memory-traveling (for addr...)
323 * especially when most of the memory is not dirty.
325 for (i
= 0; i
< len
; i
++) {
326 if (bitmap
[i
] != 0) {
327 c
= leul_to_cpu(bitmap
[i
]);
331 page_number
= i
* HOST_LONG_BITS
+ j
;
332 addr1
= page_number
* TARGET_PAGE_SIZE
;
333 addr
= offset
+ addr1
;
334 ram_addr
= cpu_get_physical_page_desc(addr
);
335 cpu_physical_memory_set_dirty(ram_addr
);
342 #define ALIGN(x, y) (((x)+(y)-1) & ~((y)-1))
345 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
346 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
347 * This means all bits are set to dirty.
349 * @start_add: start of logged region.
350 * @end_addr: end of logged region.
352 static int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
,
353 target_phys_addr_t end_addr
)
355 KVMState
*s
= kvm_state
;
356 unsigned long size
, allocated_size
= 0;
361 d
.dirty_bitmap
= NULL
;
362 while (start_addr
< end_addr
) {
363 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, end_addr
);
368 size
= ALIGN(((mem
->memory_size
) >> TARGET_PAGE_BITS
), HOST_LONG_BITS
) / 8;
369 if (!d
.dirty_bitmap
) {
370 d
.dirty_bitmap
= qemu_malloc(size
);
371 } else if (size
> allocated_size
) {
372 d
.dirty_bitmap
= qemu_realloc(d
.dirty_bitmap
, size
);
374 allocated_size
= size
;
375 memset(d
.dirty_bitmap
, 0, allocated_size
);
379 if (kvm_vm_ioctl(s
, KVM_GET_DIRTY_LOG
, &d
) == -1) {
380 DPRINTF("ioctl failed %d\n", errno
);
385 kvm_get_dirty_pages_log_range(mem
->start_addr
, d
.dirty_bitmap
,
386 mem
->start_addr
, mem
->memory_size
);
387 start_addr
= mem
->start_addr
+ mem
->memory_size
;
389 qemu_free(d
.dirty_bitmap
);
394 int kvm_coalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
397 #ifdef KVM_CAP_COALESCED_MMIO
398 KVMState
*s
= kvm_state
;
400 if (s
->coalesced_mmio
) {
401 struct kvm_coalesced_mmio_zone zone
;
406 ret
= kvm_vm_ioctl(s
, KVM_REGISTER_COALESCED_MMIO
, &zone
);
413 int kvm_uncoalesce_mmio_region(target_phys_addr_t start
, ram_addr_t size
)
416 #ifdef KVM_CAP_COALESCED_MMIO
417 KVMState
*s
= kvm_state
;
419 if (s
->coalesced_mmio
) {
420 struct kvm_coalesced_mmio_zone zone
;
425 ret
= kvm_vm_ioctl(s
, KVM_UNREGISTER_COALESCED_MMIO
, &zone
);
432 int kvm_check_extension(KVMState
*s
, unsigned int extension
)
436 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, extension
);
444 static void kvm_set_phys_mem(target_phys_addr_t start_addr
,
446 ram_addr_t phys_offset
)
448 KVMState
*s
= kvm_state
;
449 ram_addr_t flags
= phys_offset
& ~TARGET_PAGE_MASK
;
453 /* kvm works in page size chunks, but the function may be called
454 with sub-page size and unaligned start address. */
455 size
= TARGET_PAGE_ALIGN(size
);
456 start_addr
= TARGET_PAGE_ALIGN(start_addr
);
458 /* KVM does not support read-only slots */
459 phys_offset
&= ~IO_MEM_ROM
;
462 mem
= kvm_lookup_overlapping_slot(s
, start_addr
, start_addr
+ size
);
467 if (flags
< IO_MEM_UNASSIGNED
&& start_addr
>= mem
->start_addr
&&
468 (start_addr
+ size
<= mem
->start_addr
+ mem
->memory_size
) &&
469 (phys_offset
- start_addr
== mem
->phys_offset
- mem
->start_addr
)) {
470 /* The new slot fits into the existing one and comes with
471 * identical parameters - nothing to be done. */
477 /* unregister the overlapping slot */
478 mem
->memory_size
= 0;
479 err
= kvm_set_user_memory_region(s
, mem
);
481 fprintf(stderr
, "%s: error unregistering overlapping slot: %s\n",
482 __func__
, strerror(-err
));
486 /* Workaround for older KVM versions: we can't join slots, even not by
487 * unregistering the previous ones and then registering the larger
488 * slot. We have to maintain the existing fragmentation. Sigh.
490 * This workaround assumes that the new slot starts at the same
491 * address as the first existing one. If not or if some overlapping
492 * slot comes around later, we will fail (not seen in practice so far)
493 * - and actually require a recent KVM version. */
494 if (s
->broken_set_mem_region
&&
495 old
.start_addr
== start_addr
&& old
.memory_size
< size
&&
496 flags
< IO_MEM_UNASSIGNED
) {
497 mem
= kvm_alloc_slot(s
);
498 mem
->memory_size
= old
.memory_size
;
499 mem
->start_addr
= old
.start_addr
;
500 mem
->phys_offset
= old
.phys_offset
;
503 err
= kvm_set_user_memory_region(s
, mem
);
505 fprintf(stderr
, "%s: error updating slot: %s\n", __func__
,
510 start_addr
+= old
.memory_size
;
511 phys_offset
+= old
.memory_size
;
512 size
-= old
.memory_size
;
516 /* register prefix slot */
517 if (old
.start_addr
< start_addr
) {
518 mem
= kvm_alloc_slot(s
);
519 mem
->memory_size
= start_addr
- old
.start_addr
;
520 mem
->start_addr
= old
.start_addr
;
521 mem
->phys_offset
= old
.phys_offset
;
524 err
= kvm_set_user_memory_region(s
, mem
);
526 fprintf(stderr
, "%s: error registering prefix slot: %s\n",
527 __func__
, strerror(-err
));
532 /* register suffix slot */
533 if (old
.start_addr
+ old
.memory_size
> start_addr
+ size
) {
534 ram_addr_t size_delta
;
536 mem
= kvm_alloc_slot(s
);
537 mem
->start_addr
= start_addr
+ size
;
538 size_delta
= mem
->start_addr
- old
.start_addr
;
539 mem
->memory_size
= old
.memory_size
- size_delta
;
540 mem
->phys_offset
= old
.phys_offset
+ size_delta
;
543 err
= kvm_set_user_memory_region(s
, mem
);
545 fprintf(stderr
, "%s: error registering suffix slot: %s\n",
546 __func__
, strerror(-err
));
552 /* in case the KVM bug workaround already "consumed" the new slot */
556 /* KVM does not need to know about this memory */
557 if (flags
>= IO_MEM_UNASSIGNED
)
560 mem
= kvm_alloc_slot(s
);
561 mem
->memory_size
= size
;
562 mem
->start_addr
= start_addr
;
563 mem
->phys_offset
= phys_offset
;
566 err
= kvm_set_user_memory_region(s
, mem
);
568 fprintf(stderr
, "%s: error registering slot: %s\n", __func__
,
574 static void kvm_client_set_memory(struct CPUPhysMemoryClient
*client
,
575 target_phys_addr_t start_addr
,
577 ram_addr_t phys_offset
)
579 kvm_set_phys_mem(start_addr
, size
, phys_offset
);
582 static int kvm_client_sync_dirty_bitmap(struct CPUPhysMemoryClient
*client
,
583 target_phys_addr_t start_addr
,
584 target_phys_addr_t end_addr
)
586 return kvm_physical_sync_dirty_bitmap(start_addr
, end_addr
);
589 static int kvm_client_migration_log(struct CPUPhysMemoryClient
*client
,
592 return kvm_set_migration_log(enable
);
595 static CPUPhysMemoryClient kvm_cpu_phys_memory_client
= {
596 .set_memory
= kvm_client_set_memory
,
597 .sync_dirty_bitmap
= kvm_client_sync_dirty_bitmap
,
598 .migration_log
= kvm_client_migration_log
,
601 int kvm_init(int smp_cpus
)
603 static const char upgrade_note
[] =
604 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
605 "(see http://sourceforge.net/projects/kvm).\n";
610 s
= qemu_mallocz(sizeof(KVMState
));
612 #ifdef KVM_CAP_SET_GUEST_DEBUG
613 QTAILQ_INIT(&s
->kvm_sw_breakpoints
);
615 for (i
= 0; i
< ARRAY_SIZE(s
->slots
); i
++)
616 s
->slots
[i
].slot
= i
;
619 s
->fd
= qemu_open("/dev/kvm", O_RDWR
);
621 fprintf(stderr
, "Could not access KVM kernel module: %m\n");
626 ret
= kvm_ioctl(s
, KVM_GET_API_VERSION
, 0);
627 if (ret
< KVM_API_VERSION
) {
630 fprintf(stderr
, "kvm version too old\n");
634 if (ret
> KVM_API_VERSION
) {
636 fprintf(stderr
, "kvm version not supported\n");
640 s
->vmfd
= kvm_ioctl(s
, KVM_CREATE_VM
, 0);
643 fprintf(stderr
, "Please add the 'switch_amode' kernel parameter to "
644 "your host kernel command line\n");
649 /* initially, KVM allocated its own memory and we had to jump through
650 * hooks to make phys_ram_base point to this. Modern versions of KVM
651 * just use a user allocated buffer so we can use regular pages
652 * unmodified. Make sure we have a sufficiently modern version of KVM.
654 if (!kvm_check_extension(s
, KVM_CAP_USER_MEMORY
)) {
656 fprintf(stderr
, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
661 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
662 * destroyed properly. Since we rely on this capability, refuse to work
663 * with any kernel without this capability. */
664 if (!kvm_check_extension(s
, KVM_CAP_DESTROY_MEMORY_REGION_WORKS
)) {
668 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
673 s
->coalesced_mmio
= 0;
674 #ifdef KVM_CAP_COALESCED_MMIO
675 s
->coalesced_mmio
= kvm_check_extension(s
, KVM_CAP_COALESCED_MMIO
);
676 s
->coalesced_mmio_ring
= NULL
;
679 s
->broken_set_mem_region
= 1;
680 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
681 ret
= kvm_ioctl(s
, KVM_CHECK_EXTENSION
, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
);
683 s
->broken_set_mem_region
= 0;
688 #ifdef KVM_CAP_VCPU_EVENTS
689 s
->vcpu_events
= kvm_check_extension(s
, KVM_CAP_VCPU_EVENTS
);
692 s
->robust_singlestep
= 0;
693 #ifdef KVM_CAP_X86_ROBUST_SINGLESTEP
694 s
->robust_singlestep
=
695 kvm_check_extension(s
, KVM_CAP_X86_ROBUST_SINGLESTEP
);
699 #ifdef KVM_CAP_DEBUGREGS
700 s
->debugregs
= kvm_check_extension(s
, KVM_CAP_DEBUGREGS
);
705 s
->xsave
= kvm_check_extension(s
, KVM_CAP_XSAVE
);
710 s
->xcrs
= kvm_check_extension(s
, KVM_CAP_XCRS
);
713 ret
= kvm_arch_init(s
, smp_cpus
);
718 cpu_register_phys_memory_client(&kvm_cpu_phys_memory_client
);
734 static int kvm_handle_io(uint16_t port
, void *data
, int direction
, int size
,
740 for (i
= 0; i
< count
; i
++) {
741 if (direction
== KVM_EXIT_IO_IN
) {
744 stb_p(ptr
, cpu_inb(port
));
747 stw_p(ptr
, cpu_inw(port
));
750 stl_p(ptr
, cpu_inl(port
));
756 cpu_outb(port
, ldub_p(ptr
));
759 cpu_outw(port
, lduw_p(ptr
));
762 cpu_outl(port
, ldl_p(ptr
));
773 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
774 static void kvm_handle_internal_error(CPUState
*env
, struct kvm_run
*run
)
777 if (kvm_check_extension(kvm_state
, KVM_CAP_INTERNAL_ERROR_DATA
)) {
780 fprintf(stderr
, "KVM internal error. Suberror: %d\n",
781 run
->internal
.suberror
);
783 for (i
= 0; i
< run
->internal
.ndata
; ++i
) {
784 fprintf(stderr
, "extra data[%d]: %"PRIx64
"\n",
785 i
, (uint64_t)run
->internal
.data
[i
]);
788 cpu_dump_state(env
, stderr
, fprintf
, 0);
789 if (run
->internal
.suberror
== KVM_INTERNAL_ERROR_EMULATION
) {
790 fprintf(stderr
, "emulation failure\n");
791 if (!kvm_arch_stop_on_emulation_error(env
))
794 /* FIXME: Should trigger a qmp message to let management know
795 * something went wrong.
801 void kvm_flush_coalesced_mmio_buffer(void)
803 #ifdef KVM_CAP_COALESCED_MMIO
804 KVMState
*s
= kvm_state
;
805 if (s
->coalesced_mmio_ring
) {
806 struct kvm_coalesced_mmio_ring
*ring
= s
->coalesced_mmio_ring
;
807 while (ring
->first
!= ring
->last
) {
808 struct kvm_coalesced_mmio
*ent
;
810 ent
= &ring
->coalesced_mmio
[ring
->first
];
812 cpu_physical_memory_write(ent
->phys_addr
, ent
->data
, ent
->len
);
814 ring
->first
= (ring
->first
+ 1) % KVM_COALESCED_MMIO_MAX
;
820 static void do_kvm_cpu_synchronize_state(void *_env
)
822 CPUState
*env
= _env
;
824 if (!env
->kvm_vcpu_dirty
) {
825 kvm_arch_get_registers(env
);
826 env
->kvm_vcpu_dirty
= 1;
830 void kvm_cpu_synchronize_state(CPUState
*env
)
832 if (!env
->kvm_vcpu_dirty
)
833 run_on_cpu(env
, do_kvm_cpu_synchronize_state
, env
);
836 void kvm_cpu_synchronize_post_reset(CPUState
*env
)
838 kvm_arch_put_registers(env
, KVM_PUT_RESET_STATE
);
839 env
->kvm_vcpu_dirty
= 0;
842 void kvm_cpu_synchronize_post_init(CPUState
*env
)
844 kvm_arch_put_registers(env
, KVM_PUT_FULL_STATE
);
845 env
->kvm_vcpu_dirty
= 0;
848 int kvm_cpu_exec(CPUState
*env
)
850 struct kvm_run
*run
= env
->kvm_run
;
853 DPRINTF("kvm_cpu_exec()\n");
856 #ifndef CONFIG_IOTHREAD
857 if (env
->exit_request
) {
858 DPRINTF("interrupt exit requested\n");
864 if (kvm_arch_process_irqchip_events(env
)) {
869 if (env
->kvm_vcpu_dirty
) {
870 kvm_arch_put_registers(env
, KVM_PUT_RUNTIME_STATE
);
871 env
->kvm_vcpu_dirty
= 0;
874 kvm_arch_pre_run(env
, run
);
875 cpu_single_env
= NULL
;
876 qemu_mutex_unlock_iothread();
877 ret
= kvm_vcpu_ioctl(env
, KVM_RUN
, 0);
878 qemu_mutex_lock_iothread();
879 cpu_single_env
= env
;
880 kvm_arch_post_run(env
, run
);
882 if (ret
== -EINTR
|| ret
== -EAGAIN
) {
884 DPRINTF("io window exit\n");
890 DPRINTF("kvm run failed %s\n", strerror(-ret
));
894 kvm_flush_coalesced_mmio_buffer();
896 ret
= 0; /* exit loop */
897 switch (run
->exit_reason
) {
899 DPRINTF("handle_io\n");
900 ret
= kvm_handle_io(run
->io
.port
,
901 (uint8_t *)run
+ run
->io
.data_offset
,
907 DPRINTF("handle_mmio\n");
908 cpu_physical_memory_rw(run
->mmio
.phys_addr
,
914 case KVM_EXIT_IRQ_WINDOW_OPEN
:
915 DPRINTF("irq_window_open\n");
917 case KVM_EXIT_SHUTDOWN
:
918 DPRINTF("shutdown\n");
919 qemu_system_reset_request();
922 case KVM_EXIT_UNKNOWN
:
923 DPRINTF("kvm_exit_unknown\n");
925 case KVM_EXIT_FAIL_ENTRY
:
926 DPRINTF("kvm_exit_fail_entry\n");
928 case KVM_EXIT_EXCEPTION
:
929 DPRINTF("kvm_exit_exception\n");
931 #ifdef KVM_CAP_INTERNAL_ERROR_DATA
932 case KVM_EXIT_INTERNAL_ERROR
:
933 kvm_handle_internal_error(env
, run
);
937 DPRINTF("kvm_exit_debug\n");
938 #ifdef KVM_CAP_SET_GUEST_DEBUG
939 if (kvm_arch_debug(&run
->debug
.arch
)) {
940 env
->exception_index
= EXCP_DEBUG
;
943 /* re-enter, this exception was guest-internal */
945 #endif /* KVM_CAP_SET_GUEST_DEBUG */
948 DPRINTF("kvm_arch_handle_exit\n");
949 ret
= kvm_arch_handle_exit(env
, run
);
954 if (env
->exit_request
) {
955 env
->exit_request
= 0;
956 env
->exception_index
= EXCP_INTERRUPT
;
962 int kvm_ioctl(KVMState
*s
, int type
, ...)
969 arg
= va_arg(ap
, void *);
972 ret
= ioctl(s
->fd
, type
, arg
);
979 int kvm_vm_ioctl(KVMState
*s
, int type
, ...)
986 arg
= va_arg(ap
, void *);
989 ret
= ioctl(s
->vmfd
, type
, arg
);
996 int kvm_vcpu_ioctl(CPUState
*env
, int type
, ...)
1003 arg
= va_arg(ap
, void *);
1006 ret
= ioctl(env
->kvm_fd
, type
, arg
);
1013 int kvm_has_sync_mmu(void)
1015 #ifdef KVM_CAP_SYNC_MMU
1016 KVMState
*s
= kvm_state
;
1018 return kvm_check_extension(s
, KVM_CAP_SYNC_MMU
);
1024 int kvm_has_vcpu_events(void)
1026 return kvm_state
->vcpu_events
;
1029 int kvm_has_robust_singlestep(void)
1031 return kvm_state
->robust_singlestep
;
1034 int kvm_has_debugregs(void)
1036 return kvm_state
->debugregs
;
1039 int kvm_has_xsave(void)
1041 return kvm_state
->xsave
;
1044 int kvm_has_xcrs(void)
1046 return kvm_state
->xcrs
;
1049 void kvm_setup_guest_memory(void *start
, size_t size
)
1051 if (!kvm_has_sync_mmu()) {
1052 int ret
= qemu_madvise(start
, size
, QEMU_MADV_DONTFORK
);
1055 perror("qemu_madvise");
1057 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
1063 #ifdef KVM_CAP_SET_GUEST_DEBUG
1064 struct kvm_sw_breakpoint
*kvm_find_sw_breakpoint(CPUState
*env
,
1067 struct kvm_sw_breakpoint
*bp
;
1069 QTAILQ_FOREACH(bp
, &env
->kvm_state
->kvm_sw_breakpoints
, entry
) {
1076 int kvm_sw_breakpoints_active(CPUState
*env
)
1078 return !QTAILQ_EMPTY(&env
->kvm_state
->kvm_sw_breakpoints
);
1081 struct kvm_set_guest_debug_data
{
1082 struct kvm_guest_debug dbg
;
1087 static void kvm_invoke_set_guest_debug(void *data
)
1089 struct kvm_set_guest_debug_data
*dbg_data
= data
;
1090 CPUState
*env
= dbg_data
->env
;
1092 dbg_data
->err
= kvm_vcpu_ioctl(env
, KVM_SET_GUEST_DEBUG
, &dbg_data
->dbg
);
1095 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
1097 struct kvm_set_guest_debug_data data
;
1099 data
.dbg
.control
= reinject_trap
;
1101 if (env
->singlestep_enabled
) {
1102 data
.dbg
.control
|= KVM_GUESTDBG_ENABLE
| KVM_GUESTDBG_SINGLESTEP
;
1104 kvm_arch_update_guest_debug(env
, &data
.dbg
);
1107 run_on_cpu(env
, kvm_invoke_set_guest_debug
, &data
);
1111 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
1112 target_ulong len
, int type
)
1114 struct kvm_sw_breakpoint
*bp
;
1118 if (type
== GDB_BREAKPOINT_SW
) {
1119 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
1125 bp
= qemu_malloc(sizeof(struct kvm_sw_breakpoint
));
1131 err
= kvm_arch_insert_sw_breakpoint(current_env
, bp
);
1137 QTAILQ_INSERT_HEAD(¤t_env
->kvm_state
->kvm_sw_breakpoints
,
1140 err
= kvm_arch_insert_hw_breakpoint(addr
, len
, type
);
1145 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1146 err
= kvm_update_guest_debug(env
, 0);
1153 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1154 target_ulong len
, int type
)
1156 struct kvm_sw_breakpoint
*bp
;
1160 if (type
== GDB_BREAKPOINT_SW
) {
1161 bp
= kvm_find_sw_breakpoint(current_env
, addr
);
1165 if (bp
->use_count
> 1) {
1170 err
= kvm_arch_remove_sw_breakpoint(current_env
, bp
);
1174 QTAILQ_REMOVE(¤t_env
->kvm_state
->kvm_sw_breakpoints
, bp
, entry
);
1177 err
= kvm_arch_remove_hw_breakpoint(addr
, len
, type
);
1182 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1183 err
= kvm_update_guest_debug(env
, 0);
1190 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1192 struct kvm_sw_breakpoint
*bp
, *next
;
1193 KVMState
*s
= current_env
->kvm_state
;
1196 QTAILQ_FOREACH_SAFE(bp
, &s
->kvm_sw_breakpoints
, entry
, next
) {
1197 if (kvm_arch_remove_sw_breakpoint(current_env
, bp
) != 0) {
1198 /* Try harder to find a CPU that currently sees the breakpoint. */
1199 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1200 if (kvm_arch_remove_sw_breakpoint(env
, bp
) == 0)
1205 kvm_arch_remove_all_hw_breakpoints();
1207 for (env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
)
1208 kvm_update_guest_debug(env
, 0);
1211 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1213 int kvm_update_guest_debug(CPUState
*env
, unsigned long reinject_trap
)
1218 int kvm_insert_breakpoint(CPUState
*current_env
, target_ulong addr
,
1219 target_ulong len
, int type
)
1224 int kvm_remove_breakpoint(CPUState
*current_env
, target_ulong addr
,
1225 target_ulong len
, int type
)
1230 void kvm_remove_all_breakpoints(CPUState
*current_env
)
1233 #endif /* !KVM_CAP_SET_GUEST_DEBUG */
1235 int kvm_set_signal_mask(CPUState
*env
, const sigset_t
*sigset
)
1237 struct kvm_signal_mask
*sigmask
;
1241 return kvm_vcpu_ioctl(env
, KVM_SET_SIGNAL_MASK
, NULL
);
1243 sigmask
= qemu_malloc(sizeof(*sigmask
) + sizeof(*sigset
));
1246 memcpy(sigmask
->sigset
, sigset
, sizeof(*sigset
));
1247 r
= kvm_vcpu_ioctl(env
, KVM_SET_SIGNAL_MASK
, sigmask
);
1253 int kvm_set_ioeventfd_mmio_long(int fd
, uint32_t addr
, uint32_t val
, bool assign
)
1255 #ifdef KVM_IOEVENTFD
1257 struct kvm_ioeventfd iofd
;
1259 iofd
.datamatch
= val
;
1262 iofd
.flags
= KVM_IOEVENTFD_FLAG_DATAMATCH
;
1265 if (!kvm_enabled()) {
1270 iofd
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
1273 ret
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &iofd
);
1285 int kvm_set_ioeventfd_pio_word(int fd
, uint16_t addr
, uint16_t val
, bool assign
)
1287 #ifdef KVM_IOEVENTFD
1288 struct kvm_ioeventfd kick
= {
1292 .flags
= KVM_IOEVENTFD_FLAG_DATAMATCH
| KVM_IOEVENTFD_FLAG_PIO
,
1299 kick
.flags
|= KVM_IOEVENTFD_FLAG_DEASSIGN
;
1300 r
= kvm_vm_ioctl(kvm_state
, KVM_IOEVENTFD
, &kick
);