qemu.img.c: Use error_report() instead of own error() implementation
[qemu.git] / exec.c
bloba3384958c739c5804eaab76ca8a9a7a80e02e204
1 /*
2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "exec-all.h"
30 #include "tcg.h"
31 #include "hw/hw.h"
32 #include "hw/qdev.h"
33 #include "osdep.h"
34 #include "kvm.h"
35 #include "qemu-timer.h"
36 #if defined(CONFIG_USER_ONLY)
37 #include <qemu.h>
38 #include <signal.h>
39 #if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
40 #include <sys/param.h>
41 #if __FreeBSD_version >= 700104
42 #define HAVE_KINFO_GETVMMAP
43 #define sigqueue sigqueue_freebsd /* avoid redefinition */
44 #include <sys/time.h>
45 #include <sys/proc.h>
46 #include <machine/profile.h>
47 #define _KERNEL
48 #include <sys/user.h>
49 #undef _KERNEL
50 #undef sigqueue
51 #include <libutil.h>
52 #endif
53 #endif
54 #endif
56 //#define DEBUG_TB_INVALIDATE
57 //#define DEBUG_FLUSH
58 //#define DEBUG_TLB
59 //#define DEBUG_UNASSIGNED
61 /* make various TB consistency checks */
62 //#define DEBUG_TB_CHECK
63 //#define DEBUG_TLB_CHECK
65 //#define DEBUG_IOPORT
66 //#define DEBUG_SUBPAGE
68 #if !defined(CONFIG_USER_ONLY)
69 /* TB consistency checks only implemented for usermode emulation. */
70 #undef DEBUG_TB_CHECK
71 #endif
73 #define SMC_BITMAP_USE_THRESHOLD 10
75 static TranslationBlock *tbs;
76 static int code_gen_max_blocks;
77 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
78 static int nb_tbs;
79 /* any access to the tbs or the page table must use this lock */
80 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
82 #if defined(__arm__) || defined(__sparc_v9__)
83 /* The prologue must be reachable with a direct jump. ARM and Sparc64
84 have limited branch ranges (possibly also PPC) so place it in a
85 section close to code segment. */
86 #define code_gen_section \
87 __attribute__((__section__(".gen_code"))) \
88 __attribute__((aligned (32)))
89 #elif defined(_WIN32)
90 /* Maximum alignment for Win32 is 16. */
91 #define code_gen_section \
92 __attribute__((aligned (16)))
93 #else
94 #define code_gen_section \
95 __attribute__((aligned (32)))
96 #endif
98 uint8_t code_gen_prologue[1024] code_gen_section;
99 static uint8_t *code_gen_buffer;
100 static unsigned long code_gen_buffer_size;
101 /* threshold to flush the translated code buffer */
102 static unsigned long code_gen_buffer_max_size;
103 static uint8_t *code_gen_ptr;
105 #if !defined(CONFIG_USER_ONLY)
106 int phys_ram_fd;
107 static int in_migration;
109 RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list) };
110 #endif
112 CPUState *first_cpu;
113 /* current CPU in the current thread. It is only valid inside
114 cpu_exec() */
115 CPUState *cpu_single_env;
116 /* 0 = Do not count executed instructions.
117 1 = Precise instruction counting.
118 2 = Adaptive rate instruction counting. */
119 int use_icount = 0;
120 /* Current instruction counter. While executing translated code this may
121 include some instructions that have not yet been executed. */
122 int64_t qemu_icount;
124 typedef struct PageDesc {
125 /* list of TBs intersecting this ram page */
126 TranslationBlock *first_tb;
127 /* in order to optimize self modifying code, we count the number
128 of lookups we do to a given page to use a bitmap */
129 unsigned int code_write_count;
130 uint8_t *code_bitmap;
131 #if defined(CONFIG_USER_ONLY)
132 unsigned long flags;
133 #endif
134 } PageDesc;
136 /* In system mode we want L1_MAP to be based on ram offsets,
137 while in user mode we want it to be based on virtual addresses. */
138 #if !defined(CONFIG_USER_ONLY)
139 #if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
140 # define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
141 #else
142 # define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
143 #endif
144 #else
145 # define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
146 #endif
148 /* Size of the L2 (and L3, etc) page tables. */
149 #define L2_BITS 10
150 #define L2_SIZE (1 << L2_BITS)
152 /* The bits remaining after N lower levels of page tables. */
153 #define P_L1_BITS_REM \
154 ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
155 #define V_L1_BITS_REM \
156 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
158 /* Size of the L1 page table. Avoid silly small sizes. */
159 #if P_L1_BITS_REM < 4
160 #define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
161 #else
162 #define P_L1_BITS P_L1_BITS_REM
163 #endif
165 #if V_L1_BITS_REM < 4
166 #define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
167 #else
168 #define V_L1_BITS V_L1_BITS_REM
169 #endif
171 #define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
172 #define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
174 #define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
175 #define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
177 unsigned long qemu_real_host_page_size;
178 unsigned long qemu_host_page_bits;
179 unsigned long qemu_host_page_size;
180 unsigned long qemu_host_page_mask;
182 /* This is a multi-level map on the virtual address space.
183 The bottom level has pointers to PageDesc. */
184 static void *l1_map[V_L1_SIZE];
186 #if !defined(CONFIG_USER_ONLY)
187 typedef struct PhysPageDesc {
188 /* offset in host memory of the page + io_index in the low bits */
189 ram_addr_t phys_offset;
190 ram_addr_t region_offset;
191 } PhysPageDesc;
193 /* This is a multi-level map on the physical address space.
194 The bottom level has pointers to PhysPageDesc. */
195 static void *l1_phys_map[P_L1_SIZE];
197 static void io_mem_init(void);
199 /* io memory support */
200 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
201 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
202 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
203 static char io_mem_used[IO_MEM_NB_ENTRIES];
204 static int io_mem_watch;
205 #endif
207 /* log support */
208 #ifdef WIN32
209 static const char *logfilename = "qemu.log";
210 #else
211 static const char *logfilename = "/tmp/qemu.log";
212 #endif
213 FILE *logfile;
214 int loglevel;
215 static int log_append = 0;
217 /* statistics */
218 #if !defined(CONFIG_USER_ONLY)
219 static int tlb_flush_count;
220 #endif
221 static int tb_flush_count;
222 static int tb_phys_invalidate_count;
224 #ifdef _WIN32
225 static void map_exec(void *addr, long size)
227 DWORD old_protect;
228 VirtualProtect(addr, size,
229 PAGE_EXECUTE_READWRITE, &old_protect);
232 #else
233 static void map_exec(void *addr, long size)
235 unsigned long start, end, page_size;
237 page_size = getpagesize();
238 start = (unsigned long)addr;
239 start &= ~(page_size - 1);
241 end = (unsigned long)addr + size;
242 end += page_size - 1;
243 end &= ~(page_size - 1);
245 mprotect((void *)start, end - start,
246 PROT_READ | PROT_WRITE | PROT_EXEC);
248 #endif
250 static void page_init(void)
252 /* NOTE: we can always suppose that qemu_host_page_size >=
253 TARGET_PAGE_SIZE */
254 #ifdef _WIN32
256 SYSTEM_INFO system_info;
258 GetSystemInfo(&system_info);
259 qemu_real_host_page_size = system_info.dwPageSize;
261 #else
262 qemu_real_host_page_size = getpagesize();
263 #endif
264 if (qemu_host_page_size == 0)
265 qemu_host_page_size = qemu_real_host_page_size;
266 if (qemu_host_page_size < TARGET_PAGE_SIZE)
267 qemu_host_page_size = TARGET_PAGE_SIZE;
268 qemu_host_page_bits = 0;
269 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
270 qemu_host_page_bits++;
271 qemu_host_page_mask = ~(qemu_host_page_size - 1);
273 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
275 #ifdef HAVE_KINFO_GETVMMAP
276 struct kinfo_vmentry *freep;
277 int i, cnt;
279 freep = kinfo_getvmmap(getpid(), &cnt);
280 if (freep) {
281 mmap_lock();
282 for (i = 0; i < cnt; i++) {
283 unsigned long startaddr, endaddr;
285 startaddr = freep[i].kve_start;
286 endaddr = freep[i].kve_end;
287 if (h2g_valid(startaddr)) {
288 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
290 if (h2g_valid(endaddr)) {
291 endaddr = h2g(endaddr);
292 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
293 } else {
294 #if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
295 endaddr = ~0ul;
296 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
297 #endif
301 free(freep);
302 mmap_unlock();
304 #else
305 FILE *f;
307 last_brk = (unsigned long)sbrk(0);
309 f = fopen("/compat/linux/proc/self/maps", "r");
310 if (f) {
311 mmap_lock();
313 do {
314 unsigned long startaddr, endaddr;
315 int n;
317 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
319 if (n == 2 && h2g_valid(startaddr)) {
320 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
322 if (h2g_valid(endaddr)) {
323 endaddr = h2g(endaddr);
324 } else {
325 endaddr = ~0ul;
327 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
329 } while (!feof(f));
331 fclose(f);
332 mmap_unlock();
334 #endif
336 #endif
339 static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
341 PageDesc *pd;
342 void **lp;
343 int i;
345 #if defined(CONFIG_USER_ONLY)
346 /* We can't use qemu_malloc because it may recurse into a locked mutex. */
347 # define ALLOC(P, SIZE) \
348 do { \
349 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
350 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
351 } while (0)
352 #else
353 # define ALLOC(P, SIZE) \
354 do { P = qemu_mallocz(SIZE); } while (0)
355 #endif
357 /* Level 1. Always allocated. */
358 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
360 /* Level 2..N-1. */
361 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
362 void **p = *lp;
364 if (p == NULL) {
365 if (!alloc) {
366 return NULL;
368 ALLOC(p, sizeof(void *) * L2_SIZE);
369 *lp = p;
372 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
375 pd = *lp;
376 if (pd == NULL) {
377 if (!alloc) {
378 return NULL;
380 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
381 *lp = pd;
384 #undef ALLOC
386 return pd + (index & (L2_SIZE - 1));
389 static inline PageDesc *page_find(tb_page_addr_t index)
391 return page_find_alloc(index, 0);
394 #if !defined(CONFIG_USER_ONLY)
395 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
397 PhysPageDesc *pd;
398 void **lp;
399 int i;
401 /* Level 1. Always allocated. */
402 lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
404 /* Level 2..N-1. */
405 for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
406 void **p = *lp;
407 if (p == NULL) {
408 if (!alloc) {
409 return NULL;
411 *lp = p = qemu_mallocz(sizeof(void *) * L2_SIZE);
413 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
416 pd = *lp;
417 if (pd == NULL) {
418 int i;
420 if (!alloc) {
421 return NULL;
424 *lp = pd = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
426 for (i = 0; i < L2_SIZE; i++) {
427 pd[i].phys_offset = IO_MEM_UNASSIGNED;
428 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
432 return pd + (index & (L2_SIZE - 1));
435 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
437 return phys_page_find_alloc(index, 0);
440 static void tlb_protect_code(ram_addr_t ram_addr);
441 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
442 target_ulong vaddr);
443 #define mmap_lock() do { } while(0)
444 #define mmap_unlock() do { } while(0)
445 #endif
447 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
449 #if defined(CONFIG_USER_ONLY)
450 /* Currently it is not recommended to allocate big chunks of data in
451 user mode. It will change when a dedicated libc will be used */
452 #define USE_STATIC_CODE_GEN_BUFFER
453 #endif
455 #ifdef USE_STATIC_CODE_GEN_BUFFER
456 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
457 __attribute__((aligned (CODE_GEN_ALIGN)));
458 #endif
460 static void code_gen_alloc(unsigned long tb_size)
462 #ifdef USE_STATIC_CODE_GEN_BUFFER
463 code_gen_buffer = static_code_gen_buffer;
464 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
465 map_exec(code_gen_buffer, code_gen_buffer_size);
466 #else
467 code_gen_buffer_size = tb_size;
468 if (code_gen_buffer_size == 0) {
469 #if defined(CONFIG_USER_ONLY)
470 /* in user mode, phys_ram_size is not meaningful */
471 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
472 #else
473 /* XXX: needs adjustments */
474 code_gen_buffer_size = (unsigned long)(ram_size / 4);
475 #endif
477 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
478 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
479 /* The code gen buffer location may have constraints depending on
480 the host cpu and OS */
481 #if defined(__linux__)
483 int flags;
484 void *start = NULL;
486 flags = MAP_PRIVATE | MAP_ANONYMOUS;
487 #if defined(__x86_64__)
488 flags |= MAP_32BIT;
489 /* Cannot map more than that */
490 if (code_gen_buffer_size > (800 * 1024 * 1024))
491 code_gen_buffer_size = (800 * 1024 * 1024);
492 #elif defined(__sparc_v9__)
493 // Map the buffer below 2G, so we can use direct calls and branches
494 flags |= MAP_FIXED;
495 start = (void *) 0x60000000UL;
496 if (code_gen_buffer_size > (512 * 1024 * 1024))
497 code_gen_buffer_size = (512 * 1024 * 1024);
498 #elif defined(__arm__)
499 /* Map the buffer below 32M, so we can use direct calls and branches */
500 flags |= MAP_FIXED;
501 start = (void *) 0x01000000UL;
502 if (code_gen_buffer_size > 16 * 1024 * 1024)
503 code_gen_buffer_size = 16 * 1024 * 1024;
504 #elif defined(__s390x__)
505 /* Map the buffer so that we can use direct calls and branches. */
506 /* We have a +- 4GB range on the branches; leave some slop. */
507 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
508 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
510 start = (void *)0x90000000UL;
511 #endif
512 code_gen_buffer = mmap(start, code_gen_buffer_size,
513 PROT_WRITE | PROT_READ | PROT_EXEC,
514 flags, -1, 0);
515 if (code_gen_buffer == MAP_FAILED) {
516 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
517 exit(1);
520 #elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) || defined(__DragonFly__)
522 int flags;
523 void *addr = NULL;
524 flags = MAP_PRIVATE | MAP_ANONYMOUS;
525 #if defined(__x86_64__)
526 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
527 * 0x40000000 is free */
528 flags |= MAP_FIXED;
529 addr = (void *)0x40000000;
530 /* Cannot map more than that */
531 if (code_gen_buffer_size > (800 * 1024 * 1024))
532 code_gen_buffer_size = (800 * 1024 * 1024);
533 #endif
534 code_gen_buffer = mmap(addr, code_gen_buffer_size,
535 PROT_WRITE | PROT_READ | PROT_EXEC,
536 flags, -1, 0);
537 if (code_gen_buffer == MAP_FAILED) {
538 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
539 exit(1);
542 #else
543 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
544 map_exec(code_gen_buffer, code_gen_buffer_size);
545 #endif
546 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
547 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
548 code_gen_buffer_max_size = code_gen_buffer_size -
549 (TCG_MAX_OP_SIZE * OPC_MAX_SIZE);
550 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
551 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
554 /* Must be called before using the QEMU cpus. 'tb_size' is the size
555 (in bytes) allocated to the translation buffer. Zero means default
556 size. */
557 void cpu_exec_init_all(unsigned long tb_size)
559 cpu_gen_init();
560 code_gen_alloc(tb_size);
561 code_gen_ptr = code_gen_buffer;
562 page_init();
563 #if !defined(CONFIG_USER_ONLY)
564 io_mem_init();
565 #endif
566 #if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
567 /* There's no guest base to take into account, so go ahead and
568 initialize the prologue now. */
569 tcg_prologue_init(&tcg_ctx);
570 #endif
573 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
575 static int cpu_common_post_load(void *opaque, int version_id)
577 CPUState *env = opaque;
579 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
580 version_id is increased. */
581 env->interrupt_request &= ~0x01;
582 tlb_flush(env, 1);
584 return 0;
587 static const VMStateDescription vmstate_cpu_common = {
588 .name = "cpu_common",
589 .version_id = 1,
590 .minimum_version_id = 1,
591 .minimum_version_id_old = 1,
592 .post_load = cpu_common_post_load,
593 .fields = (VMStateField []) {
594 VMSTATE_UINT32(halted, CPUState),
595 VMSTATE_UINT32(interrupt_request, CPUState),
596 VMSTATE_END_OF_LIST()
599 #endif
601 CPUState *qemu_get_cpu(int cpu)
603 CPUState *env = first_cpu;
605 while (env) {
606 if (env->cpu_index == cpu)
607 break;
608 env = env->next_cpu;
611 return env;
614 void cpu_exec_init(CPUState *env)
616 CPUState **penv;
617 int cpu_index;
619 #if defined(CONFIG_USER_ONLY)
620 cpu_list_lock();
621 #endif
622 env->next_cpu = NULL;
623 penv = &first_cpu;
624 cpu_index = 0;
625 while (*penv != NULL) {
626 penv = &(*penv)->next_cpu;
627 cpu_index++;
629 env->cpu_index = cpu_index;
630 env->numa_node = 0;
631 QTAILQ_INIT(&env->breakpoints);
632 QTAILQ_INIT(&env->watchpoints);
633 *penv = env;
634 #if defined(CONFIG_USER_ONLY)
635 cpu_list_unlock();
636 #endif
637 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
638 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
639 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
640 cpu_save, cpu_load, env);
641 #endif
644 static inline void invalidate_page_bitmap(PageDesc *p)
646 if (p->code_bitmap) {
647 qemu_free(p->code_bitmap);
648 p->code_bitmap = NULL;
650 p->code_write_count = 0;
653 /* Set to NULL all the 'first_tb' fields in all PageDescs. */
655 static void page_flush_tb_1 (int level, void **lp)
657 int i;
659 if (*lp == NULL) {
660 return;
662 if (level == 0) {
663 PageDesc *pd = *lp;
664 for (i = 0; i < L2_SIZE; ++i) {
665 pd[i].first_tb = NULL;
666 invalidate_page_bitmap(pd + i);
668 } else {
669 void **pp = *lp;
670 for (i = 0; i < L2_SIZE; ++i) {
671 page_flush_tb_1 (level - 1, pp + i);
676 static void page_flush_tb(void)
678 int i;
679 for (i = 0; i < V_L1_SIZE; i++) {
680 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
684 /* flush all the translation blocks */
685 /* XXX: tb_flush is currently not thread safe */
686 void tb_flush(CPUState *env1)
688 CPUState *env;
689 #if defined(DEBUG_FLUSH)
690 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
691 (unsigned long)(code_gen_ptr - code_gen_buffer),
692 nb_tbs, nb_tbs > 0 ?
693 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
694 #endif
695 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
696 cpu_abort(env1, "Internal error: code buffer overflow\n");
698 nb_tbs = 0;
700 for(env = first_cpu; env != NULL; env = env->next_cpu) {
701 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
704 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
705 page_flush_tb();
707 code_gen_ptr = code_gen_buffer;
708 /* XXX: flush processor icache at this point if cache flush is
709 expensive */
710 tb_flush_count++;
713 #ifdef DEBUG_TB_CHECK
715 static void tb_invalidate_check(target_ulong address)
717 TranslationBlock *tb;
718 int i;
719 address &= TARGET_PAGE_MASK;
720 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
721 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
722 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
723 address >= tb->pc + tb->size)) {
724 printf("ERROR invalidate: address=" TARGET_FMT_lx
725 " PC=%08lx size=%04x\n",
726 address, (long)tb->pc, tb->size);
732 /* verify that all the pages have correct rights for code */
733 static void tb_page_check(void)
735 TranslationBlock *tb;
736 int i, flags1, flags2;
738 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
739 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
740 flags1 = page_get_flags(tb->pc);
741 flags2 = page_get_flags(tb->pc + tb->size - 1);
742 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
743 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
744 (long)tb->pc, tb->size, flags1, flags2);
750 #endif
752 /* invalidate one TB */
753 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
754 int next_offset)
756 TranslationBlock *tb1;
757 for(;;) {
758 tb1 = *ptb;
759 if (tb1 == tb) {
760 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
761 break;
763 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
767 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
769 TranslationBlock *tb1;
770 unsigned int n1;
772 for(;;) {
773 tb1 = *ptb;
774 n1 = (long)tb1 & 3;
775 tb1 = (TranslationBlock *)((long)tb1 & ~3);
776 if (tb1 == tb) {
777 *ptb = tb1->page_next[n1];
778 break;
780 ptb = &tb1->page_next[n1];
784 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
786 TranslationBlock *tb1, **ptb;
787 unsigned int n1;
789 ptb = &tb->jmp_next[n];
790 tb1 = *ptb;
791 if (tb1) {
792 /* find tb(n) in circular list */
793 for(;;) {
794 tb1 = *ptb;
795 n1 = (long)tb1 & 3;
796 tb1 = (TranslationBlock *)((long)tb1 & ~3);
797 if (n1 == n && tb1 == tb)
798 break;
799 if (n1 == 2) {
800 ptb = &tb1->jmp_first;
801 } else {
802 ptb = &tb1->jmp_next[n1];
805 /* now we can suppress tb(n) from the list */
806 *ptb = tb->jmp_next[n];
808 tb->jmp_next[n] = NULL;
812 /* reset the jump entry 'n' of a TB so that it is not chained to
813 another TB */
814 static inline void tb_reset_jump(TranslationBlock *tb, int n)
816 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
819 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
821 CPUState *env;
822 PageDesc *p;
823 unsigned int h, n1;
824 tb_page_addr_t phys_pc;
825 TranslationBlock *tb1, *tb2;
827 /* remove the TB from the hash list */
828 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
829 h = tb_phys_hash_func(phys_pc);
830 tb_remove(&tb_phys_hash[h], tb,
831 offsetof(TranslationBlock, phys_hash_next));
833 /* remove the TB from the page list */
834 if (tb->page_addr[0] != page_addr) {
835 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
836 tb_page_remove(&p->first_tb, tb);
837 invalidate_page_bitmap(p);
839 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
840 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
841 tb_page_remove(&p->first_tb, tb);
842 invalidate_page_bitmap(p);
845 tb_invalidated_flag = 1;
847 /* remove the TB from the hash list */
848 h = tb_jmp_cache_hash_func(tb->pc);
849 for(env = first_cpu; env != NULL; env = env->next_cpu) {
850 if (env->tb_jmp_cache[h] == tb)
851 env->tb_jmp_cache[h] = NULL;
854 /* suppress this TB from the two jump lists */
855 tb_jmp_remove(tb, 0);
856 tb_jmp_remove(tb, 1);
858 /* suppress any remaining jumps to this TB */
859 tb1 = tb->jmp_first;
860 for(;;) {
861 n1 = (long)tb1 & 3;
862 if (n1 == 2)
863 break;
864 tb1 = (TranslationBlock *)((long)tb1 & ~3);
865 tb2 = tb1->jmp_next[n1];
866 tb_reset_jump(tb1, n1);
867 tb1->jmp_next[n1] = NULL;
868 tb1 = tb2;
870 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
872 tb_phys_invalidate_count++;
875 static inline void set_bits(uint8_t *tab, int start, int len)
877 int end, mask, end1;
879 end = start + len;
880 tab += start >> 3;
881 mask = 0xff << (start & 7);
882 if ((start & ~7) == (end & ~7)) {
883 if (start < end) {
884 mask &= ~(0xff << (end & 7));
885 *tab |= mask;
887 } else {
888 *tab++ |= mask;
889 start = (start + 8) & ~7;
890 end1 = end & ~7;
891 while (start < end1) {
892 *tab++ = 0xff;
893 start += 8;
895 if (start < end) {
896 mask = ~(0xff << (end & 7));
897 *tab |= mask;
902 static void build_page_bitmap(PageDesc *p)
904 int n, tb_start, tb_end;
905 TranslationBlock *tb;
907 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
909 tb = p->first_tb;
910 while (tb != NULL) {
911 n = (long)tb & 3;
912 tb = (TranslationBlock *)((long)tb & ~3);
913 /* NOTE: this is subtle as a TB may span two physical pages */
914 if (n == 0) {
915 /* NOTE: tb_end may be after the end of the page, but
916 it is not a problem */
917 tb_start = tb->pc & ~TARGET_PAGE_MASK;
918 tb_end = tb_start + tb->size;
919 if (tb_end > TARGET_PAGE_SIZE)
920 tb_end = TARGET_PAGE_SIZE;
921 } else {
922 tb_start = 0;
923 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
925 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
926 tb = tb->page_next[n];
930 TranslationBlock *tb_gen_code(CPUState *env,
931 target_ulong pc, target_ulong cs_base,
932 int flags, int cflags)
934 TranslationBlock *tb;
935 uint8_t *tc_ptr;
936 tb_page_addr_t phys_pc, phys_page2;
937 target_ulong virt_page2;
938 int code_gen_size;
940 phys_pc = get_page_addr_code(env, pc);
941 tb = tb_alloc(pc);
942 if (!tb) {
943 /* flush must be done */
944 tb_flush(env);
945 /* cannot fail at this point */
946 tb = tb_alloc(pc);
947 /* Don't forget to invalidate previous TB info. */
948 tb_invalidated_flag = 1;
950 tc_ptr = code_gen_ptr;
951 tb->tc_ptr = tc_ptr;
952 tb->cs_base = cs_base;
953 tb->flags = flags;
954 tb->cflags = cflags;
955 cpu_gen_code(env, tb, &code_gen_size);
956 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
958 /* check next page if needed */
959 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
960 phys_page2 = -1;
961 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
962 phys_page2 = get_page_addr_code(env, virt_page2);
964 tb_link_page(tb, phys_pc, phys_page2);
965 return tb;
968 /* invalidate all TBs which intersect with the target physical page
969 starting in range [start;end[. NOTE: start and end must refer to
970 the same physical page. 'is_cpu_write_access' should be true if called
971 from a real cpu write access: the virtual CPU will exit the current
972 TB if code is modified inside this TB. */
973 void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
974 int is_cpu_write_access)
976 TranslationBlock *tb, *tb_next, *saved_tb;
977 CPUState *env = cpu_single_env;
978 tb_page_addr_t tb_start, tb_end;
979 PageDesc *p;
980 int n;
981 #ifdef TARGET_HAS_PRECISE_SMC
982 int current_tb_not_found = is_cpu_write_access;
983 TranslationBlock *current_tb = NULL;
984 int current_tb_modified = 0;
985 target_ulong current_pc = 0;
986 target_ulong current_cs_base = 0;
987 int current_flags = 0;
988 #endif /* TARGET_HAS_PRECISE_SMC */
990 p = page_find(start >> TARGET_PAGE_BITS);
991 if (!p)
992 return;
993 if (!p->code_bitmap &&
994 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
995 is_cpu_write_access) {
996 /* build code bitmap */
997 build_page_bitmap(p);
1000 /* we remove all the TBs in the range [start, end[ */
1001 /* XXX: see if in some cases it could be faster to invalidate all the code */
1002 tb = p->first_tb;
1003 while (tb != NULL) {
1004 n = (long)tb & 3;
1005 tb = (TranslationBlock *)((long)tb & ~3);
1006 tb_next = tb->page_next[n];
1007 /* NOTE: this is subtle as a TB may span two physical pages */
1008 if (n == 0) {
1009 /* NOTE: tb_end may be after the end of the page, but
1010 it is not a problem */
1011 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1012 tb_end = tb_start + tb->size;
1013 } else {
1014 tb_start = tb->page_addr[1];
1015 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1017 if (!(tb_end <= start || tb_start >= end)) {
1018 #ifdef TARGET_HAS_PRECISE_SMC
1019 if (current_tb_not_found) {
1020 current_tb_not_found = 0;
1021 current_tb = NULL;
1022 if (env->mem_io_pc) {
1023 /* now we have a real cpu fault */
1024 current_tb = tb_find_pc(env->mem_io_pc);
1027 if (current_tb == tb &&
1028 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1029 /* If we are modifying the current TB, we must stop
1030 its execution. We could be more precise by checking
1031 that the modification is after the current PC, but it
1032 would require a specialized function to partially
1033 restore the CPU state */
1035 current_tb_modified = 1;
1036 cpu_restore_state(current_tb, env,
1037 env->mem_io_pc, NULL);
1038 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1039 &current_flags);
1041 #endif /* TARGET_HAS_PRECISE_SMC */
1042 /* we need to do that to handle the case where a signal
1043 occurs while doing tb_phys_invalidate() */
1044 saved_tb = NULL;
1045 if (env) {
1046 saved_tb = env->current_tb;
1047 env->current_tb = NULL;
1049 tb_phys_invalidate(tb, -1);
1050 if (env) {
1051 env->current_tb = saved_tb;
1052 if (env->interrupt_request && env->current_tb)
1053 cpu_interrupt(env, env->interrupt_request);
1056 tb = tb_next;
1058 #if !defined(CONFIG_USER_ONLY)
1059 /* if no code remaining, no need to continue to use slow writes */
1060 if (!p->first_tb) {
1061 invalidate_page_bitmap(p);
1062 if (is_cpu_write_access) {
1063 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
1066 #endif
1067 #ifdef TARGET_HAS_PRECISE_SMC
1068 if (current_tb_modified) {
1069 /* we generate a block containing just the instruction
1070 modifying the memory. It will ensure that it cannot modify
1071 itself */
1072 env->current_tb = NULL;
1073 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1074 cpu_resume_from_signal(env, NULL);
1076 #endif
1079 /* len must be <= 8 and start must be a multiple of len */
1080 static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
1082 PageDesc *p;
1083 int offset, b;
1084 #if 0
1085 if (1) {
1086 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1087 cpu_single_env->mem_io_vaddr, len,
1088 cpu_single_env->eip,
1089 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1091 #endif
1092 p = page_find(start >> TARGET_PAGE_BITS);
1093 if (!p)
1094 return;
1095 if (p->code_bitmap) {
1096 offset = start & ~TARGET_PAGE_MASK;
1097 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1098 if (b & ((1 << len) - 1))
1099 goto do_invalidate;
1100 } else {
1101 do_invalidate:
1102 tb_invalidate_phys_page_range(start, start + len, 1);
1106 #if !defined(CONFIG_SOFTMMU)
1107 static void tb_invalidate_phys_page(tb_page_addr_t addr,
1108 unsigned long pc, void *puc)
1110 TranslationBlock *tb;
1111 PageDesc *p;
1112 int n;
1113 #ifdef TARGET_HAS_PRECISE_SMC
1114 TranslationBlock *current_tb = NULL;
1115 CPUState *env = cpu_single_env;
1116 int current_tb_modified = 0;
1117 target_ulong current_pc = 0;
1118 target_ulong current_cs_base = 0;
1119 int current_flags = 0;
1120 #endif
1122 addr &= TARGET_PAGE_MASK;
1123 p = page_find(addr >> TARGET_PAGE_BITS);
1124 if (!p)
1125 return;
1126 tb = p->first_tb;
1127 #ifdef TARGET_HAS_PRECISE_SMC
1128 if (tb && pc != 0) {
1129 current_tb = tb_find_pc(pc);
1131 #endif
1132 while (tb != NULL) {
1133 n = (long)tb & 3;
1134 tb = (TranslationBlock *)((long)tb & ~3);
1135 #ifdef TARGET_HAS_PRECISE_SMC
1136 if (current_tb == tb &&
1137 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1138 /* If we are modifying the current TB, we must stop
1139 its execution. We could be more precise by checking
1140 that the modification is after the current PC, but it
1141 would require a specialized function to partially
1142 restore the CPU state */
1144 current_tb_modified = 1;
1145 cpu_restore_state(current_tb, env, pc, puc);
1146 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1147 &current_flags);
1149 #endif /* TARGET_HAS_PRECISE_SMC */
1150 tb_phys_invalidate(tb, addr);
1151 tb = tb->page_next[n];
1153 p->first_tb = NULL;
1154 #ifdef TARGET_HAS_PRECISE_SMC
1155 if (current_tb_modified) {
1156 /* we generate a block containing just the instruction
1157 modifying the memory. It will ensure that it cannot modify
1158 itself */
1159 env->current_tb = NULL;
1160 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1161 cpu_resume_from_signal(env, puc);
1163 #endif
1165 #endif
1167 /* add the tb in the target page and protect it if necessary */
1168 static inline void tb_alloc_page(TranslationBlock *tb,
1169 unsigned int n, tb_page_addr_t page_addr)
1171 PageDesc *p;
1172 TranslationBlock *last_first_tb;
1174 tb->page_addr[n] = page_addr;
1175 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
1176 tb->page_next[n] = p->first_tb;
1177 last_first_tb = p->first_tb;
1178 p->first_tb = (TranslationBlock *)((long)tb | n);
1179 invalidate_page_bitmap(p);
1181 #if defined(TARGET_HAS_SMC) || 1
1183 #if defined(CONFIG_USER_ONLY)
1184 if (p->flags & PAGE_WRITE) {
1185 target_ulong addr;
1186 PageDesc *p2;
1187 int prot;
1189 /* force the host page as non writable (writes will have a
1190 page fault + mprotect overhead) */
1191 page_addr &= qemu_host_page_mask;
1192 prot = 0;
1193 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1194 addr += TARGET_PAGE_SIZE) {
1196 p2 = page_find (addr >> TARGET_PAGE_BITS);
1197 if (!p2)
1198 continue;
1199 prot |= p2->flags;
1200 p2->flags &= ~PAGE_WRITE;
1202 mprotect(g2h(page_addr), qemu_host_page_size,
1203 (prot & PAGE_BITS) & ~PAGE_WRITE);
1204 #ifdef DEBUG_TB_INVALIDATE
1205 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1206 page_addr);
1207 #endif
1209 #else
1210 /* if some code is already present, then the pages are already
1211 protected. So we handle the case where only the first TB is
1212 allocated in a physical page */
1213 if (!last_first_tb) {
1214 tlb_protect_code(page_addr);
1216 #endif
1218 #endif /* TARGET_HAS_SMC */
1221 /* Allocate a new translation block. Flush the translation buffer if
1222 too many translation blocks or too much generated code. */
1223 TranslationBlock *tb_alloc(target_ulong pc)
1225 TranslationBlock *tb;
1227 if (nb_tbs >= code_gen_max_blocks ||
1228 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1229 return NULL;
1230 tb = &tbs[nb_tbs++];
1231 tb->pc = pc;
1232 tb->cflags = 0;
1233 return tb;
1236 void tb_free(TranslationBlock *tb)
1238 /* In practice this is mostly used for single use temporary TB
1239 Ignore the hard cases and just back up if this TB happens to
1240 be the last one generated. */
1241 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1242 code_gen_ptr = tb->tc_ptr;
1243 nb_tbs--;
1247 /* add a new TB and link it to the physical page tables. phys_page2 is
1248 (-1) to indicate that only one page contains the TB. */
1249 void tb_link_page(TranslationBlock *tb,
1250 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
1252 unsigned int h;
1253 TranslationBlock **ptb;
1255 /* Grab the mmap lock to stop another thread invalidating this TB
1256 before we are done. */
1257 mmap_lock();
1258 /* add in the physical hash table */
1259 h = tb_phys_hash_func(phys_pc);
1260 ptb = &tb_phys_hash[h];
1261 tb->phys_hash_next = *ptb;
1262 *ptb = tb;
1264 /* add in the page list */
1265 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1266 if (phys_page2 != -1)
1267 tb_alloc_page(tb, 1, phys_page2);
1268 else
1269 tb->page_addr[1] = -1;
1271 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1272 tb->jmp_next[0] = NULL;
1273 tb->jmp_next[1] = NULL;
1275 /* init original jump addresses */
1276 if (tb->tb_next_offset[0] != 0xffff)
1277 tb_reset_jump(tb, 0);
1278 if (tb->tb_next_offset[1] != 0xffff)
1279 tb_reset_jump(tb, 1);
1281 #ifdef DEBUG_TB_CHECK
1282 tb_page_check();
1283 #endif
1284 mmap_unlock();
1287 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1288 tb[1].tc_ptr. Return NULL if not found */
1289 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1291 int m_min, m_max, m;
1292 unsigned long v;
1293 TranslationBlock *tb;
1295 if (nb_tbs <= 0)
1296 return NULL;
1297 if (tc_ptr < (unsigned long)code_gen_buffer ||
1298 tc_ptr >= (unsigned long)code_gen_ptr)
1299 return NULL;
1300 /* binary search (cf Knuth) */
1301 m_min = 0;
1302 m_max = nb_tbs - 1;
1303 while (m_min <= m_max) {
1304 m = (m_min + m_max) >> 1;
1305 tb = &tbs[m];
1306 v = (unsigned long)tb->tc_ptr;
1307 if (v == tc_ptr)
1308 return tb;
1309 else if (tc_ptr < v) {
1310 m_max = m - 1;
1311 } else {
1312 m_min = m + 1;
1315 return &tbs[m_max];
1318 static void tb_reset_jump_recursive(TranslationBlock *tb);
1320 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1322 TranslationBlock *tb1, *tb_next, **ptb;
1323 unsigned int n1;
1325 tb1 = tb->jmp_next[n];
1326 if (tb1 != NULL) {
1327 /* find head of list */
1328 for(;;) {
1329 n1 = (long)tb1 & 3;
1330 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1331 if (n1 == 2)
1332 break;
1333 tb1 = tb1->jmp_next[n1];
1335 /* we are now sure now that tb jumps to tb1 */
1336 tb_next = tb1;
1338 /* remove tb from the jmp_first list */
1339 ptb = &tb_next->jmp_first;
1340 for(;;) {
1341 tb1 = *ptb;
1342 n1 = (long)tb1 & 3;
1343 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1344 if (n1 == n && tb1 == tb)
1345 break;
1346 ptb = &tb1->jmp_next[n1];
1348 *ptb = tb->jmp_next[n];
1349 tb->jmp_next[n] = NULL;
1351 /* suppress the jump to next tb in generated code */
1352 tb_reset_jump(tb, n);
1354 /* suppress jumps in the tb on which we could have jumped */
1355 tb_reset_jump_recursive(tb_next);
1359 static void tb_reset_jump_recursive(TranslationBlock *tb)
1361 tb_reset_jump_recursive2(tb, 0);
1362 tb_reset_jump_recursive2(tb, 1);
1365 #if defined(TARGET_HAS_ICE)
1366 #if defined(CONFIG_USER_ONLY)
1367 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1369 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1371 #else
1372 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1374 target_phys_addr_t addr;
1375 target_ulong pd;
1376 ram_addr_t ram_addr;
1377 PhysPageDesc *p;
1379 addr = cpu_get_phys_page_debug(env, pc);
1380 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1381 if (!p) {
1382 pd = IO_MEM_UNASSIGNED;
1383 } else {
1384 pd = p->phys_offset;
1386 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1387 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1389 #endif
1390 #endif /* TARGET_HAS_ICE */
1392 #if defined(CONFIG_USER_ONLY)
1393 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1398 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1399 int flags, CPUWatchpoint **watchpoint)
1401 return -ENOSYS;
1403 #else
1404 /* Add a watchpoint. */
1405 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1406 int flags, CPUWatchpoint **watchpoint)
1408 target_ulong len_mask = ~(len - 1);
1409 CPUWatchpoint *wp;
1411 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1412 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1413 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1414 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1415 return -EINVAL;
1417 wp = qemu_malloc(sizeof(*wp));
1419 wp->vaddr = addr;
1420 wp->len_mask = len_mask;
1421 wp->flags = flags;
1423 /* keep all GDB-injected watchpoints in front */
1424 if (flags & BP_GDB)
1425 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1426 else
1427 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1429 tlb_flush_page(env, addr);
1431 if (watchpoint)
1432 *watchpoint = wp;
1433 return 0;
1436 /* Remove a specific watchpoint. */
1437 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1438 int flags)
1440 target_ulong len_mask = ~(len - 1);
1441 CPUWatchpoint *wp;
1443 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1444 if (addr == wp->vaddr && len_mask == wp->len_mask
1445 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1446 cpu_watchpoint_remove_by_ref(env, wp);
1447 return 0;
1450 return -ENOENT;
1453 /* Remove a specific watchpoint by reference. */
1454 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1456 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1458 tlb_flush_page(env, watchpoint->vaddr);
1460 qemu_free(watchpoint);
1463 /* Remove all matching watchpoints. */
1464 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1466 CPUWatchpoint *wp, *next;
1468 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1469 if (wp->flags & mask)
1470 cpu_watchpoint_remove_by_ref(env, wp);
1473 #endif
1475 /* Add a breakpoint. */
1476 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1477 CPUBreakpoint **breakpoint)
1479 #if defined(TARGET_HAS_ICE)
1480 CPUBreakpoint *bp;
1482 bp = qemu_malloc(sizeof(*bp));
1484 bp->pc = pc;
1485 bp->flags = flags;
1487 /* keep all GDB-injected breakpoints in front */
1488 if (flags & BP_GDB)
1489 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1490 else
1491 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1493 breakpoint_invalidate(env, pc);
1495 if (breakpoint)
1496 *breakpoint = bp;
1497 return 0;
1498 #else
1499 return -ENOSYS;
1500 #endif
1503 /* Remove a specific breakpoint. */
1504 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1506 #if defined(TARGET_HAS_ICE)
1507 CPUBreakpoint *bp;
1509 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1510 if (bp->pc == pc && bp->flags == flags) {
1511 cpu_breakpoint_remove_by_ref(env, bp);
1512 return 0;
1515 return -ENOENT;
1516 #else
1517 return -ENOSYS;
1518 #endif
1521 /* Remove a specific breakpoint by reference. */
1522 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1524 #if defined(TARGET_HAS_ICE)
1525 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1527 breakpoint_invalidate(env, breakpoint->pc);
1529 qemu_free(breakpoint);
1530 #endif
1533 /* Remove all matching breakpoints. */
1534 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1536 #if defined(TARGET_HAS_ICE)
1537 CPUBreakpoint *bp, *next;
1539 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1540 if (bp->flags & mask)
1541 cpu_breakpoint_remove_by_ref(env, bp);
1543 #endif
1546 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1547 CPU loop after each instruction */
1548 void cpu_single_step(CPUState *env, int enabled)
1550 #if defined(TARGET_HAS_ICE)
1551 if (env->singlestep_enabled != enabled) {
1552 env->singlestep_enabled = enabled;
1553 if (kvm_enabled())
1554 kvm_update_guest_debug(env, 0);
1555 else {
1556 /* must flush all the translated code to avoid inconsistencies */
1557 /* XXX: only flush what is necessary */
1558 tb_flush(env);
1561 #endif
1564 /* enable or disable low levels log */
1565 void cpu_set_log(int log_flags)
1567 loglevel = log_flags;
1568 if (loglevel && !logfile) {
1569 logfile = fopen(logfilename, log_append ? "a" : "w");
1570 if (!logfile) {
1571 perror(logfilename);
1572 _exit(1);
1574 #if !defined(CONFIG_SOFTMMU)
1575 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1577 static char logfile_buf[4096];
1578 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1580 #elif !defined(_WIN32)
1581 /* Win32 doesn't support line-buffering and requires size >= 2 */
1582 setvbuf(logfile, NULL, _IOLBF, 0);
1583 #endif
1584 log_append = 1;
1586 if (!loglevel && logfile) {
1587 fclose(logfile);
1588 logfile = NULL;
1592 void cpu_set_log_filename(const char *filename)
1594 logfilename = strdup(filename);
1595 if (logfile) {
1596 fclose(logfile);
1597 logfile = NULL;
1599 cpu_set_log(loglevel);
1602 static void cpu_unlink_tb(CPUState *env)
1604 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1605 problem and hope the cpu will stop of its own accord. For userspace
1606 emulation this often isn't actually as bad as it sounds. Often
1607 signals are used primarily to interrupt blocking syscalls. */
1608 TranslationBlock *tb;
1609 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1611 spin_lock(&interrupt_lock);
1612 tb = env->current_tb;
1613 /* if the cpu is currently executing code, we must unlink it and
1614 all the potentially executing TB */
1615 if (tb) {
1616 env->current_tb = NULL;
1617 tb_reset_jump_recursive(tb);
1619 spin_unlock(&interrupt_lock);
1622 /* mask must never be zero, except for A20 change call */
1623 void cpu_interrupt(CPUState *env, int mask)
1625 int old_mask;
1627 old_mask = env->interrupt_request;
1628 env->interrupt_request |= mask;
1630 #ifndef CONFIG_USER_ONLY
1632 * If called from iothread context, wake the target cpu in
1633 * case its halted.
1635 if (!qemu_cpu_self(env)) {
1636 qemu_cpu_kick(env);
1637 return;
1639 #endif
1641 if (use_icount) {
1642 env->icount_decr.u16.high = 0xffff;
1643 #ifndef CONFIG_USER_ONLY
1644 if (!can_do_io(env)
1645 && (mask & ~old_mask) != 0) {
1646 cpu_abort(env, "Raised interrupt while not in I/O function");
1648 #endif
1649 } else {
1650 cpu_unlink_tb(env);
1654 void cpu_reset_interrupt(CPUState *env, int mask)
1656 env->interrupt_request &= ~mask;
1659 void cpu_exit(CPUState *env)
1661 env->exit_request = 1;
1662 cpu_unlink_tb(env);
1665 const CPULogItem cpu_log_items[] = {
1666 { CPU_LOG_TB_OUT_ASM, "out_asm",
1667 "show generated host assembly code for each compiled TB" },
1668 { CPU_LOG_TB_IN_ASM, "in_asm",
1669 "show target assembly code for each compiled TB" },
1670 { CPU_LOG_TB_OP, "op",
1671 "show micro ops for each compiled TB" },
1672 { CPU_LOG_TB_OP_OPT, "op_opt",
1673 "show micro ops "
1674 #ifdef TARGET_I386
1675 "before eflags optimization and "
1676 #endif
1677 "after liveness analysis" },
1678 { CPU_LOG_INT, "int",
1679 "show interrupts/exceptions in short format" },
1680 { CPU_LOG_EXEC, "exec",
1681 "show trace before each executed TB (lots of logs)" },
1682 { CPU_LOG_TB_CPU, "cpu",
1683 "show CPU state before block translation" },
1684 #ifdef TARGET_I386
1685 { CPU_LOG_PCALL, "pcall",
1686 "show protected mode far calls/returns/exceptions" },
1687 { CPU_LOG_RESET, "cpu_reset",
1688 "show CPU state before CPU resets" },
1689 #endif
1690 #ifdef DEBUG_IOPORT
1691 { CPU_LOG_IOPORT, "ioport",
1692 "show all i/o ports accesses" },
1693 #endif
1694 { 0, NULL, NULL },
1697 #ifndef CONFIG_USER_ONLY
1698 static QLIST_HEAD(memory_client_list, CPUPhysMemoryClient) memory_client_list
1699 = QLIST_HEAD_INITIALIZER(memory_client_list);
1701 static void cpu_notify_set_memory(target_phys_addr_t start_addr,
1702 ram_addr_t size,
1703 ram_addr_t phys_offset)
1705 CPUPhysMemoryClient *client;
1706 QLIST_FOREACH(client, &memory_client_list, list) {
1707 client->set_memory(client, start_addr, size, phys_offset);
1711 static int cpu_notify_sync_dirty_bitmap(target_phys_addr_t start,
1712 target_phys_addr_t end)
1714 CPUPhysMemoryClient *client;
1715 QLIST_FOREACH(client, &memory_client_list, list) {
1716 int r = client->sync_dirty_bitmap(client, start, end);
1717 if (r < 0)
1718 return r;
1720 return 0;
1723 static int cpu_notify_migration_log(int enable)
1725 CPUPhysMemoryClient *client;
1726 QLIST_FOREACH(client, &memory_client_list, list) {
1727 int r = client->migration_log(client, enable);
1728 if (r < 0)
1729 return r;
1731 return 0;
1734 static void phys_page_for_each_1(CPUPhysMemoryClient *client,
1735 int level, void **lp)
1737 int i;
1739 if (*lp == NULL) {
1740 return;
1742 if (level == 0) {
1743 PhysPageDesc *pd = *lp;
1744 for (i = 0; i < L2_SIZE; ++i) {
1745 if (pd[i].phys_offset != IO_MEM_UNASSIGNED) {
1746 client->set_memory(client, pd[i].region_offset,
1747 TARGET_PAGE_SIZE, pd[i].phys_offset);
1750 } else {
1751 void **pp = *lp;
1752 for (i = 0; i < L2_SIZE; ++i) {
1753 phys_page_for_each_1(client, level - 1, pp + i);
1758 static void phys_page_for_each(CPUPhysMemoryClient *client)
1760 int i;
1761 for (i = 0; i < P_L1_SIZE; ++i) {
1762 phys_page_for_each_1(client, P_L1_SHIFT / L2_BITS - 1,
1763 l1_phys_map + 1);
1767 void cpu_register_phys_memory_client(CPUPhysMemoryClient *client)
1769 QLIST_INSERT_HEAD(&memory_client_list, client, list);
1770 phys_page_for_each(client);
1773 void cpu_unregister_phys_memory_client(CPUPhysMemoryClient *client)
1775 QLIST_REMOVE(client, list);
1777 #endif
1779 static int cmp1(const char *s1, int n, const char *s2)
1781 if (strlen(s2) != n)
1782 return 0;
1783 return memcmp(s1, s2, n) == 0;
1786 /* takes a comma separated list of log masks. Return 0 if error. */
1787 int cpu_str_to_log_mask(const char *str)
1789 const CPULogItem *item;
1790 int mask;
1791 const char *p, *p1;
1793 p = str;
1794 mask = 0;
1795 for(;;) {
1796 p1 = strchr(p, ',');
1797 if (!p1)
1798 p1 = p + strlen(p);
1799 if(cmp1(p,p1-p,"all")) {
1800 for(item = cpu_log_items; item->mask != 0; item++) {
1801 mask |= item->mask;
1803 } else {
1804 for(item = cpu_log_items; item->mask != 0; item++) {
1805 if (cmp1(p, p1 - p, item->name))
1806 goto found;
1808 return 0;
1810 found:
1811 mask |= item->mask;
1812 if (*p1 != ',')
1813 break;
1814 p = p1 + 1;
1816 return mask;
1819 void cpu_abort(CPUState *env, const char *fmt, ...)
1821 va_list ap;
1822 va_list ap2;
1824 va_start(ap, fmt);
1825 va_copy(ap2, ap);
1826 fprintf(stderr, "qemu: fatal: ");
1827 vfprintf(stderr, fmt, ap);
1828 fprintf(stderr, "\n");
1829 #ifdef TARGET_I386
1830 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1831 #else
1832 cpu_dump_state(env, stderr, fprintf, 0);
1833 #endif
1834 if (qemu_log_enabled()) {
1835 qemu_log("qemu: fatal: ");
1836 qemu_log_vprintf(fmt, ap2);
1837 qemu_log("\n");
1838 #ifdef TARGET_I386
1839 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1840 #else
1841 log_cpu_state(env, 0);
1842 #endif
1843 qemu_log_flush();
1844 qemu_log_close();
1846 va_end(ap2);
1847 va_end(ap);
1848 #if defined(CONFIG_USER_ONLY)
1850 struct sigaction act;
1851 sigfillset(&act.sa_mask);
1852 act.sa_handler = SIG_DFL;
1853 sigaction(SIGABRT, &act, NULL);
1855 #endif
1856 abort();
1859 CPUState *cpu_copy(CPUState *env)
1861 CPUState *new_env = cpu_init(env->cpu_model_str);
1862 CPUState *next_cpu = new_env->next_cpu;
1863 int cpu_index = new_env->cpu_index;
1864 #if defined(TARGET_HAS_ICE)
1865 CPUBreakpoint *bp;
1866 CPUWatchpoint *wp;
1867 #endif
1869 memcpy(new_env, env, sizeof(CPUState));
1871 /* Preserve chaining and index. */
1872 new_env->next_cpu = next_cpu;
1873 new_env->cpu_index = cpu_index;
1875 /* Clone all break/watchpoints.
1876 Note: Once we support ptrace with hw-debug register access, make sure
1877 BP_CPU break/watchpoints are handled correctly on clone. */
1878 QTAILQ_INIT(&env->breakpoints);
1879 QTAILQ_INIT(&env->watchpoints);
1880 #if defined(TARGET_HAS_ICE)
1881 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
1882 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1884 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1885 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1886 wp->flags, NULL);
1888 #endif
1890 return new_env;
1893 #if !defined(CONFIG_USER_ONLY)
1895 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1897 unsigned int i;
1899 /* Discard jump cache entries for any tb which might potentially
1900 overlap the flushed page. */
1901 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1902 memset (&env->tb_jmp_cache[i], 0,
1903 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1905 i = tb_jmp_cache_hash_page(addr);
1906 memset (&env->tb_jmp_cache[i], 0,
1907 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1910 static CPUTLBEntry s_cputlb_empty_entry = {
1911 .addr_read = -1,
1912 .addr_write = -1,
1913 .addr_code = -1,
1914 .addend = -1,
1917 /* NOTE: if flush_global is true, also flush global entries (not
1918 implemented yet) */
1919 void tlb_flush(CPUState *env, int flush_global)
1921 int i;
1923 #if defined(DEBUG_TLB)
1924 printf("tlb_flush:\n");
1925 #endif
1926 /* must reset current TB so that interrupts cannot modify the
1927 links while we are modifying them */
1928 env->current_tb = NULL;
1930 for(i = 0; i < CPU_TLB_SIZE; i++) {
1931 int mmu_idx;
1932 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1933 env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
1937 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1939 env->tlb_flush_addr = -1;
1940 env->tlb_flush_mask = 0;
1941 tlb_flush_count++;
1944 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1946 if (addr == (tlb_entry->addr_read &
1947 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1948 addr == (tlb_entry->addr_write &
1949 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1950 addr == (tlb_entry->addr_code &
1951 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1952 *tlb_entry = s_cputlb_empty_entry;
1956 void tlb_flush_page(CPUState *env, target_ulong addr)
1958 int i;
1959 int mmu_idx;
1961 #if defined(DEBUG_TLB)
1962 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1963 #endif
1964 /* Check if we need to flush due to large pages. */
1965 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
1966 #if defined(DEBUG_TLB)
1967 printf("tlb_flush_page: forced full flush ("
1968 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
1969 env->tlb_flush_addr, env->tlb_flush_mask);
1970 #endif
1971 tlb_flush(env, 1);
1972 return;
1974 /* must reset current TB so that interrupts cannot modify the
1975 links while we are modifying them */
1976 env->current_tb = NULL;
1978 addr &= TARGET_PAGE_MASK;
1979 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1980 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
1981 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
1983 tlb_flush_jmp_cache(env, addr);
1986 /* update the TLBs so that writes to code in the virtual page 'addr'
1987 can be detected */
1988 static void tlb_protect_code(ram_addr_t ram_addr)
1990 cpu_physical_memory_reset_dirty(ram_addr,
1991 ram_addr + TARGET_PAGE_SIZE,
1992 CODE_DIRTY_FLAG);
1995 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1996 tested for self modifying code */
1997 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1998 target_ulong vaddr)
2000 cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
2003 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
2004 unsigned long start, unsigned long length)
2006 unsigned long addr;
2007 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2008 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
2009 if ((addr - start) < length) {
2010 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
2015 /* Note: start and end must be within the same ram block. */
2016 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
2017 int dirty_flags)
2019 CPUState *env;
2020 unsigned long length, start1;
2021 int i;
2023 start &= TARGET_PAGE_MASK;
2024 end = TARGET_PAGE_ALIGN(end);
2026 length = end - start;
2027 if (length == 0)
2028 return;
2029 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
2031 /* we modify the TLB cache so that the dirty bit will be set again
2032 when accessing the range */
2033 start1 = (unsigned long)qemu_safe_ram_ptr(start);
2034 /* Chek that we don't span multiple blocks - this breaks the
2035 address comparisons below. */
2036 if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
2037 != (end - 1) - start) {
2038 abort();
2041 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2042 int mmu_idx;
2043 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2044 for(i = 0; i < CPU_TLB_SIZE; i++)
2045 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
2046 start1, length);
2051 int cpu_physical_memory_set_dirty_tracking(int enable)
2053 int ret = 0;
2054 in_migration = enable;
2055 ret = cpu_notify_migration_log(!!enable);
2056 return ret;
2059 int cpu_physical_memory_get_dirty_tracking(void)
2061 return in_migration;
2064 int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
2065 target_phys_addr_t end_addr)
2067 int ret;
2069 ret = cpu_notify_sync_dirty_bitmap(start_addr, end_addr);
2070 return ret;
2073 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
2075 ram_addr_t ram_addr;
2076 void *p;
2078 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
2079 p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
2080 + tlb_entry->addend);
2081 ram_addr = qemu_ram_addr_from_host_nofail(p);
2082 if (!cpu_physical_memory_is_dirty(ram_addr)) {
2083 tlb_entry->addr_write |= TLB_NOTDIRTY;
2088 /* update the TLB according to the current state of the dirty bits */
2089 void cpu_tlb_update_dirty(CPUState *env)
2091 int i;
2092 int mmu_idx;
2093 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
2094 for(i = 0; i < CPU_TLB_SIZE; i++)
2095 tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
2099 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
2101 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
2102 tlb_entry->addr_write = vaddr;
2105 /* update the TLB corresponding to virtual page vaddr
2106 so that it is no longer dirty */
2107 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
2109 int i;
2110 int mmu_idx;
2112 vaddr &= TARGET_PAGE_MASK;
2113 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2114 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
2115 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
2118 /* Our TLB does not support large pages, so remember the area covered by
2119 large pages and trigger a full TLB flush if these are invalidated. */
2120 static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
2121 target_ulong size)
2123 target_ulong mask = ~(size - 1);
2125 if (env->tlb_flush_addr == (target_ulong)-1) {
2126 env->tlb_flush_addr = vaddr & mask;
2127 env->tlb_flush_mask = mask;
2128 return;
2130 /* Extend the existing region to include the new page.
2131 This is a compromise between unnecessary flushes and the cost
2132 of maintaining a full variable size TLB. */
2133 mask &= env->tlb_flush_mask;
2134 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
2135 mask <<= 1;
2137 env->tlb_flush_addr &= mask;
2138 env->tlb_flush_mask = mask;
2141 /* Add a new TLB entry. At most one entry for a given virtual address
2142 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
2143 supplied size is only used by tlb_flush_page. */
2144 void tlb_set_page(CPUState *env, target_ulong vaddr,
2145 target_phys_addr_t paddr, int prot,
2146 int mmu_idx, target_ulong size)
2148 PhysPageDesc *p;
2149 unsigned long pd;
2150 unsigned int index;
2151 target_ulong address;
2152 target_ulong code_address;
2153 unsigned long addend;
2154 CPUTLBEntry *te;
2155 CPUWatchpoint *wp;
2156 target_phys_addr_t iotlb;
2158 assert(size >= TARGET_PAGE_SIZE);
2159 if (size != TARGET_PAGE_SIZE) {
2160 tlb_add_large_page(env, vaddr, size);
2162 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
2163 if (!p) {
2164 pd = IO_MEM_UNASSIGNED;
2165 } else {
2166 pd = p->phys_offset;
2168 #if defined(DEBUG_TLB)
2169 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
2170 " prot=%x idx=%d pd=0x%08lx\n",
2171 vaddr, paddr, prot, mmu_idx, pd);
2172 #endif
2174 address = vaddr;
2175 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
2176 /* IO memory case (romd handled later) */
2177 address |= TLB_MMIO;
2179 addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
2180 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
2181 /* Normal RAM. */
2182 iotlb = pd & TARGET_PAGE_MASK;
2183 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
2184 iotlb |= IO_MEM_NOTDIRTY;
2185 else
2186 iotlb |= IO_MEM_ROM;
2187 } else {
2188 /* IO handlers are currently passed a physical address.
2189 It would be nice to pass an offset from the base address
2190 of that region. This would avoid having to special case RAM,
2191 and avoid full address decoding in every device.
2192 We can't use the high bits of pd for this because
2193 IO_MEM_ROMD uses these as a ram address. */
2194 iotlb = (pd & ~TARGET_PAGE_MASK);
2195 if (p) {
2196 iotlb += p->region_offset;
2197 } else {
2198 iotlb += paddr;
2202 code_address = address;
2203 /* Make accesses to pages with watchpoints go via the
2204 watchpoint trap routines. */
2205 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
2206 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2207 /* Avoid trapping reads of pages with a write breakpoint. */
2208 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
2209 iotlb = io_mem_watch + paddr;
2210 address |= TLB_MMIO;
2211 break;
2216 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2217 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2218 te = &env->tlb_table[mmu_idx][index];
2219 te->addend = addend - vaddr;
2220 if (prot & PAGE_READ) {
2221 te->addr_read = address;
2222 } else {
2223 te->addr_read = -1;
2226 if (prot & PAGE_EXEC) {
2227 te->addr_code = code_address;
2228 } else {
2229 te->addr_code = -1;
2231 if (prot & PAGE_WRITE) {
2232 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2233 (pd & IO_MEM_ROMD)) {
2234 /* Write access calls the I/O callback. */
2235 te->addr_write = address | TLB_MMIO;
2236 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2237 !cpu_physical_memory_is_dirty(pd)) {
2238 te->addr_write = address | TLB_NOTDIRTY;
2239 } else {
2240 te->addr_write = address;
2242 } else {
2243 te->addr_write = -1;
2247 #else
2249 void tlb_flush(CPUState *env, int flush_global)
2253 void tlb_flush_page(CPUState *env, target_ulong addr)
2258 * Walks guest process memory "regions" one by one
2259 * and calls callback function 'fn' for each region.
2262 struct walk_memory_regions_data
2264 walk_memory_regions_fn fn;
2265 void *priv;
2266 unsigned long start;
2267 int prot;
2270 static int walk_memory_regions_end(struct walk_memory_regions_data *data,
2271 abi_ulong end, int new_prot)
2273 if (data->start != -1ul) {
2274 int rc = data->fn(data->priv, data->start, end, data->prot);
2275 if (rc != 0) {
2276 return rc;
2280 data->start = (new_prot ? end : -1ul);
2281 data->prot = new_prot;
2283 return 0;
2286 static int walk_memory_regions_1(struct walk_memory_regions_data *data,
2287 abi_ulong base, int level, void **lp)
2289 abi_ulong pa;
2290 int i, rc;
2292 if (*lp == NULL) {
2293 return walk_memory_regions_end(data, base, 0);
2296 if (level == 0) {
2297 PageDesc *pd = *lp;
2298 for (i = 0; i < L2_SIZE; ++i) {
2299 int prot = pd[i].flags;
2301 pa = base | (i << TARGET_PAGE_BITS);
2302 if (prot != data->prot) {
2303 rc = walk_memory_regions_end(data, pa, prot);
2304 if (rc != 0) {
2305 return rc;
2309 } else {
2310 void **pp = *lp;
2311 for (i = 0; i < L2_SIZE; ++i) {
2312 pa = base | ((abi_ulong)i <<
2313 (TARGET_PAGE_BITS + L2_BITS * level));
2314 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
2315 if (rc != 0) {
2316 return rc;
2321 return 0;
2324 int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
2326 struct walk_memory_regions_data data;
2327 unsigned long i;
2329 data.fn = fn;
2330 data.priv = priv;
2331 data.start = -1ul;
2332 data.prot = 0;
2334 for (i = 0; i < V_L1_SIZE; i++) {
2335 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
2336 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
2337 if (rc != 0) {
2338 return rc;
2342 return walk_memory_regions_end(&data, 0, 0);
2345 static int dump_region(void *priv, abi_ulong start,
2346 abi_ulong end, unsigned long prot)
2348 FILE *f = (FILE *)priv;
2350 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2351 " "TARGET_ABI_FMT_lx" %c%c%c\n",
2352 start, end, end - start,
2353 ((prot & PAGE_READ) ? 'r' : '-'),
2354 ((prot & PAGE_WRITE) ? 'w' : '-'),
2355 ((prot & PAGE_EXEC) ? 'x' : '-'));
2357 return (0);
2360 /* dump memory mappings */
2361 void page_dump(FILE *f)
2363 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2364 "start", "end", "size", "prot");
2365 walk_memory_regions(f, dump_region);
2368 int page_get_flags(target_ulong address)
2370 PageDesc *p;
2372 p = page_find(address >> TARGET_PAGE_BITS);
2373 if (!p)
2374 return 0;
2375 return p->flags;
2378 /* Modify the flags of a page and invalidate the code if necessary.
2379 The flag PAGE_WRITE_ORG is positioned automatically depending
2380 on PAGE_WRITE. The mmap_lock should already be held. */
2381 void page_set_flags(target_ulong start, target_ulong end, int flags)
2383 target_ulong addr, len;
2385 /* This function should never be called with addresses outside the
2386 guest address space. If this assert fires, it probably indicates
2387 a missing call to h2g_valid. */
2388 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2389 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2390 #endif
2391 assert(start < end);
2393 start = start & TARGET_PAGE_MASK;
2394 end = TARGET_PAGE_ALIGN(end);
2396 if (flags & PAGE_WRITE) {
2397 flags |= PAGE_WRITE_ORG;
2400 for (addr = start, len = end - start;
2401 len != 0;
2402 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2403 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2405 /* If the write protection bit is set, then we invalidate
2406 the code inside. */
2407 if (!(p->flags & PAGE_WRITE) &&
2408 (flags & PAGE_WRITE) &&
2409 p->first_tb) {
2410 tb_invalidate_phys_page(addr, 0, NULL);
2412 p->flags = flags;
2416 int page_check_range(target_ulong start, target_ulong len, int flags)
2418 PageDesc *p;
2419 target_ulong end;
2420 target_ulong addr;
2422 /* This function should never be called with addresses outside the
2423 guest address space. If this assert fires, it probably indicates
2424 a missing call to h2g_valid. */
2425 #if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2426 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
2427 #endif
2429 if (len == 0) {
2430 return 0;
2432 if (start + len - 1 < start) {
2433 /* We've wrapped around. */
2434 return -1;
2437 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2438 start = start & TARGET_PAGE_MASK;
2440 for (addr = start, len = end - start;
2441 len != 0;
2442 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2443 p = page_find(addr >> TARGET_PAGE_BITS);
2444 if( !p )
2445 return -1;
2446 if( !(p->flags & PAGE_VALID) )
2447 return -1;
2449 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2450 return -1;
2451 if (flags & PAGE_WRITE) {
2452 if (!(p->flags & PAGE_WRITE_ORG))
2453 return -1;
2454 /* unprotect the page if it was put read-only because it
2455 contains translated code */
2456 if (!(p->flags & PAGE_WRITE)) {
2457 if (!page_unprotect(addr, 0, NULL))
2458 return -1;
2460 return 0;
2463 return 0;
2466 /* called from signal handler: invalidate the code and unprotect the
2467 page. Return TRUE if the fault was successfully handled. */
2468 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2470 unsigned int prot;
2471 PageDesc *p;
2472 target_ulong host_start, host_end, addr;
2474 /* Technically this isn't safe inside a signal handler. However we
2475 know this only ever happens in a synchronous SEGV handler, so in
2476 practice it seems to be ok. */
2477 mmap_lock();
2479 p = page_find(address >> TARGET_PAGE_BITS);
2480 if (!p) {
2481 mmap_unlock();
2482 return 0;
2485 /* if the page was really writable, then we change its
2486 protection back to writable */
2487 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2488 host_start = address & qemu_host_page_mask;
2489 host_end = host_start + qemu_host_page_size;
2491 prot = 0;
2492 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2493 p = page_find(addr >> TARGET_PAGE_BITS);
2494 p->flags |= PAGE_WRITE;
2495 prot |= p->flags;
2497 /* and since the content will be modified, we must invalidate
2498 the corresponding translated code. */
2499 tb_invalidate_phys_page(addr, pc, puc);
2500 #ifdef DEBUG_TB_CHECK
2501 tb_invalidate_check(addr);
2502 #endif
2504 mprotect((void *)g2h(host_start), qemu_host_page_size,
2505 prot & PAGE_BITS);
2507 mmap_unlock();
2508 return 1;
2510 mmap_unlock();
2511 return 0;
2514 static inline void tlb_set_dirty(CPUState *env,
2515 unsigned long addr, target_ulong vaddr)
2518 #endif /* defined(CONFIG_USER_ONLY) */
2520 #if !defined(CONFIG_USER_ONLY)
2522 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2523 typedef struct subpage_t {
2524 target_phys_addr_t base;
2525 ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
2526 ram_addr_t region_offset[TARGET_PAGE_SIZE];
2527 } subpage_t;
2529 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2530 ram_addr_t memory, ram_addr_t region_offset);
2531 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2532 ram_addr_t orig_memory,
2533 ram_addr_t region_offset);
2534 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2535 need_subpage) \
2536 do { \
2537 if (addr > start_addr) \
2538 start_addr2 = 0; \
2539 else { \
2540 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2541 if (start_addr2 > 0) \
2542 need_subpage = 1; \
2545 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2546 end_addr2 = TARGET_PAGE_SIZE - 1; \
2547 else { \
2548 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2549 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2550 need_subpage = 1; \
2552 } while (0)
2554 /* register physical memory.
2555 For RAM, 'size' must be a multiple of the target page size.
2556 If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2557 io memory page. The address used when calling the IO function is
2558 the offset from the start of the region, plus region_offset. Both
2559 start_addr and region_offset are rounded down to a page boundary
2560 before calculating this offset. This should not be a problem unless
2561 the low bits of start_addr and region_offset differ. */
2562 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2563 ram_addr_t size,
2564 ram_addr_t phys_offset,
2565 ram_addr_t region_offset)
2567 target_phys_addr_t addr, end_addr;
2568 PhysPageDesc *p;
2569 CPUState *env;
2570 ram_addr_t orig_size = size;
2571 subpage_t *subpage;
2573 cpu_notify_set_memory(start_addr, size, phys_offset);
2575 if (phys_offset == IO_MEM_UNASSIGNED) {
2576 region_offset = start_addr;
2578 region_offset &= TARGET_PAGE_MASK;
2579 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2580 end_addr = start_addr + (target_phys_addr_t)size;
2581 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2582 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2583 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2584 ram_addr_t orig_memory = p->phys_offset;
2585 target_phys_addr_t start_addr2, end_addr2;
2586 int need_subpage = 0;
2588 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2589 need_subpage);
2590 if (need_subpage) {
2591 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2592 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2593 &p->phys_offset, orig_memory,
2594 p->region_offset);
2595 } else {
2596 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2597 >> IO_MEM_SHIFT];
2599 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2600 region_offset);
2601 p->region_offset = 0;
2602 } else {
2603 p->phys_offset = phys_offset;
2604 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2605 (phys_offset & IO_MEM_ROMD))
2606 phys_offset += TARGET_PAGE_SIZE;
2608 } else {
2609 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2610 p->phys_offset = phys_offset;
2611 p->region_offset = region_offset;
2612 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2613 (phys_offset & IO_MEM_ROMD)) {
2614 phys_offset += TARGET_PAGE_SIZE;
2615 } else {
2616 target_phys_addr_t start_addr2, end_addr2;
2617 int need_subpage = 0;
2619 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2620 end_addr2, need_subpage);
2622 if (need_subpage) {
2623 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2624 &p->phys_offset, IO_MEM_UNASSIGNED,
2625 addr & TARGET_PAGE_MASK);
2626 subpage_register(subpage, start_addr2, end_addr2,
2627 phys_offset, region_offset);
2628 p->region_offset = 0;
2632 region_offset += TARGET_PAGE_SIZE;
2635 /* since each CPU stores ram addresses in its TLB cache, we must
2636 reset the modified entries */
2637 /* XXX: slow ! */
2638 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2639 tlb_flush(env, 1);
2643 /* XXX: temporary until new memory mapping API */
2644 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2646 PhysPageDesc *p;
2648 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2649 if (!p)
2650 return IO_MEM_UNASSIGNED;
2651 return p->phys_offset;
2654 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2656 if (kvm_enabled())
2657 kvm_coalesce_mmio_region(addr, size);
2660 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2662 if (kvm_enabled())
2663 kvm_uncoalesce_mmio_region(addr, size);
2666 void qemu_flush_coalesced_mmio_buffer(void)
2668 if (kvm_enabled())
2669 kvm_flush_coalesced_mmio_buffer();
2672 #if defined(__linux__) && !defined(TARGET_S390X)
2674 #include <sys/vfs.h>
2676 #define HUGETLBFS_MAGIC 0x958458f6
2678 static long gethugepagesize(const char *path)
2680 struct statfs fs;
2681 int ret;
2683 do {
2684 ret = statfs(path, &fs);
2685 } while (ret != 0 && errno == EINTR);
2687 if (ret != 0) {
2688 perror(path);
2689 return 0;
2692 if (fs.f_type != HUGETLBFS_MAGIC)
2693 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
2695 return fs.f_bsize;
2698 static void *file_ram_alloc(RAMBlock *block,
2699 ram_addr_t memory,
2700 const char *path)
2702 char *filename;
2703 void *area;
2704 int fd;
2705 #ifdef MAP_POPULATE
2706 int flags;
2707 #endif
2708 unsigned long hpagesize;
2710 hpagesize = gethugepagesize(path);
2711 if (!hpagesize) {
2712 return NULL;
2715 if (memory < hpagesize) {
2716 return NULL;
2719 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2720 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2721 return NULL;
2724 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
2725 return NULL;
2728 fd = mkstemp(filename);
2729 if (fd < 0) {
2730 perror("unable to create backing store for hugepages");
2731 free(filename);
2732 return NULL;
2734 unlink(filename);
2735 free(filename);
2737 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2740 * ftruncate is not supported by hugetlbfs in older
2741 * hosts, so don't bother bailing out on errors.
2742 * If anything goes wrong with it under other filesystems,
2743 * mmap will fail.
2745 if (ftruncate(fd, memory))
2746 perror("ftruncate");
2748 #ifdef MAP_POPULATE
2749 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2750 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2751 * to sidestep this quirk.
2753 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2754 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2755 #else
2756 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2757 #endif
2758 if (area == MAP_FAILED) {
2759 perror("file_ram_alloc: can't mmap RAM pages");
2760 close(fd);
2761 return (NULL);
2763 block->fd = fd;
2764 return area;
2766 #endif
2768 static ram_addr_t find_ram_offset(ram_addr_t size)
2770 RAMBlock *block, *next_block;
2771 ram_addr_t offset = 0, mingap = ULONG_MAX;
2773 if (QLIST_EMPTY(&ram_list.blocks))
2774 return 0;
2776 QLIST_FOREACH(block, &ram_list.blocks, next) {
2777 ram_addr_t end, next = ULONG_MAX;
2779 end = block->offset + block->length;
2781 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2782 if (next_block->offset >= end) {
2783 next = MIN(next, next_block->offset);
2786 if (next - end >= size && next - end < mingap) {
2787 offset = end;
2788 mingap = next - end;
2791 return offset;
2794 static ram_addr_t last_ram_offset(void)
2796 RAMBlock *block;
2797 ram_addr_t last = 0;
2799 QLIST_FOREACH(block, &ram_list.blocks, next)
2800 last = MAX(last, block->offset + block->length);
2802 return last;
2805 ram_addr_t qemu_ram_alloc_from_ptr(DeviceState *dev, const char *name,
2806 ram_addr_t size, void *host)
2808 RAMBlock *new_block, *block;
2810 size = TARGET_PAGE_ALIGN(size);
2811 new_block = qemu_mallocz(sizeof(*new_block));
2813 if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
2814 char *id = dev->parent_bus->info->get_dev_path(dev);
2815 if (id) {
2816 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
2817 qemu_free(id);
2820 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2822 QLIST_FOREACH(block, &ram_list.blocks, next) {
2823 if (!strcmp(block->idstr, new_block->idstr)) {
2824 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2825 new_block->idstr);
2826 abort();
2830 if (host) {
2831 new_block->host = host;
2832 } else {
2833 if (mem_path) {
2834 #if defined (__linux__) && !defined(TARGET_S390X)
2835 new_block->host = file_ram_alloc(new_block, size, mem_path);
2836 if (!new_block->host) {
2837 new_block->host = qemu_vmalloc(size);
2838 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2840 #else
2841 fprintf(stderr, "-mem-path option unsupported\n");
2842 exit(1);
2843 #endif
2844 } else {
2845 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2846 /* XXX S390 KVM requires the topmost vma of the RAM to be < 256GB */
2847 new_block->host = mmap((void*)0x1000000, size,
2848 PROT_EXEC|PROT_READ|PROT_WRITE,
2849 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
2850 #else
2851 new_block->host = qemu_vmalloc(size);
2852 #endif
2853 qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
2857 new_block->offset = find_ram_offset(size);
2858 new_block->length = size;
2860 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
2862 ram_list.phys_dirty = qemu_realloc(ram_list.phys_dirty,
2863 last_ram_offset() >> TARGET_PAGE_BITS);
2864 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
2865 0xff, size >> TARGET_PAGE_BITS);
2867 if (kvm_enabled())
2868 kvm_setup_guest_memory(new_block->host, size);
2870 return new_block->offset;
2873 ram_addr_t qemu_ram_alloc(DeviceState *dev, const char *name, ram_addr_t size)
2875 return qemu_ram_alloc_from_ptr(dev, name, size, NULL);
2878 void qemu_ram_free(ram_addr_t addr)
2880 RAMBlock *block;
2882 QLIST_FOREACH(block, &ram_list.blocks, next) {
2883 if (addr == block->offset) {
2884 QLIST_REMOVE(block, next);
2885 if (mem_path) {
2886 #if defined (__linux__) && !defined(TARGET_S390X)
2887 if (block->fd) {
2888 munmap(block->host, block->length);
2889 close(block->fd);
2890 } else {
2891 qemu_vfree(block->host);
2893 #endif
2894 } else {
2895 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
2896 munmap(block->host, block->length);
2897 #else
2898 qemu_vfree(block->host);
2899 #endif
2901 qemu_free(block);
2902 return;
2908 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2909 With the exception of the softmmu code in this file, this should
2910 only be used for local memory (e.g. video ram) that the device owns,
2911 and knows it isn't going to access beyond the end of the block.
2913 It should not be used for general purpose DMA.
2914 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2916 void *qemu_get_ram_ptr(ram_addr_t addr)
2918 RAMBlock *block;
2920 QLIST_FOREACH(block, &ram_list.blocks, next) {
2921 if (addr - block->offset < block->length) {
2922 QLIST_REMOVE(block, next);
2923 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
2924 return block->host + (addr - block->offset);
2928 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2929 abort();
2931 return NULL;
2934 /* Return a host pointer to ram allocated with qemu_ram_alloc.
2935 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
2937 void *qemu_safe_ram_ptr(ram_addr_t addr)
2939 RAMBlock *block;
2941 QLIST_FOREACH(block, &ram_list.blocks, next) {
2942 if (addr - block->offset < block->length) {
2943 return block->host + (addr - block->offset);
2947 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2948 abort();
2950 return NULL;
2953 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
2955 RAMBlock *block;
2956 uint8_t *host = ptr;
2958 QLIST_FOREACH(block, &ram_list.blocks, next) {
2959 if (host - block->host < block->length) {
2960 *ram_addr = block->offset + (host - block->host);
2961 return 0;
2964 return -1;
2967 /* Some of the softmmu routines need to translate from a host pointer
2968 (typically a TLB entry) back to a ram offset. */
2969 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2971 ram_addr_t ram_addr;
2973 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
2974 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2975 abort();
2977 return ram_addr;
2980 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2982 #ifdef DEBUG_UNASSIGNED
2983 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2984 #endif
2985 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2986 do_unassigned_access(addr, 0, 0, 0, 1);
2987 #endif
2988 return 0;
2991 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2993 #ifdef DEBUG_UNASSIGNED
2994 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2995 #endif
2996 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
2997 do_unassigned_access(addr, 0, 0, 0, 2);
2998 #endif
2999 return 0;
3002 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
3004 #ifdef DEBUG_UNASSIGNED
3005 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
3006 #endif
3007 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3008 do_unassigned_access(addr, 0, 0, 0, 4);
3009 #endif
3010 return 0;
3013 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
3015 #ifdef DEBUG_UNASSIGNED
3016 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3017 #endif
3018 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3019 do_unassigned_access(addr, 1, 0, 0, 1);
3020 #endif
3023 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
3025 #ifdef DEBUG_UNASSIGNED
3026 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3027 #endif
3028 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3029 do_unassigned_access(addr, 1, 0, 0, 2);
3030 #endif
3033 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
3035 #ifdef DEBUG_UNASSIGNED
3036 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
3037 #endif
3038 #if defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
3039 do_unassigned_access(addr, 1, 0, 0, 4);
3040 #endif
3043 static CPUReadMemoryFunc * const unassigned_mem_read[3] = {
3044 unassigned_mem_readb,
3045 unassigned_mem_readw,
3046 unassigned_mem_readl,
3049 static CPUWriteMemoryFunc * const unassigned_mem_write[3] = {
3050 unassigned_mem_writeb,
3051 unassigned_mem_writew,
3052 unassigned_mem_writel,
3055 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
3056 uint32_t val)
3058 int dirty_flags;
3059 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3060 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3061 #if !defined(CONFIG_USER_ONLY)
3062 tb_invalidate_phys_page_fast(ram_addr, 1);
3063 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3064 #endif
3066 stb_p(qemu_get_ram_ptr(ram_addr), val);
3067 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3068 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3069 /* we remove the notdirty callback only if the code has been
3070 flushed */
3071 if (dirty_flags == 0xff)
3072 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3075 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
3076 uint32_t val)
3078 int dirty_flags;
3079 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3080 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3081 #if !defined(CONFIG_USER_ONLY)
3082 tb_invalidate_phys_page_fast(ram_addr, 2);
3083 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3084 #endif
3086 stw_p(qemu_get_ram_ptr(ram_addr), val);
3087 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3088 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3089 /* we remove the notdirty callback only if the code has been
3090 flushed */
3091 if (dirty_flags == 0xff)
3092 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3095 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
3096 uint32_t val)
3098 int dirty_flags;
3099 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3100 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
3101 #if !defined(CONFIG_USER_ONLY)
3102 tb_invalidate_phys_page_fast(ram_addr, 4);
3103 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3104 #endif
3106 stl_p(qemu_get_ram_ptr(ram_addr), val);
3107 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
3108 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
3109 /* we remove the notdirty callback only if the code has been
3110 flushed */
3111 if (dirty_flags == 0xff)
3112 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
3115 static CPUReadMemoryFunc * const error_mem_read[3] = {
3116 NULL, /* never used */
3117 NULL, /* never used */
3118 NULL, /* never used */
3121 static CPUWriteMemoryFunc * const notdirty_mem_write[3] = {
3122 notdirty_mem_writeb,
3123 notdirty_mem_writew,
3124 notdirty_mem_writel,
3127 /* Generate a debug exception if a watchpoint has been hit. */
3128 static void check_watchpoint(int offset, int len_mask, int flags)
3130 CPUState *env = cpu_single_env;
3131 target_ulong pc, cs_base;
3132 TranslationBlock *tb;
3133 target_ulong vaddr;
3134 CPUWatchpoint *wp;
3135 int cpu_flags;
3137 if (env->watchpoint_hit) {
3138 /* We re-entered the check after replacing the TB. Now raise
3139 * the debug interrupt so that is will trigger after the
3140 * current instruction. */
3141 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
3142 return;
3144 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
3145 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
3146 if ((vaddr == (wp->vaddr & len_mask) ||
3147 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
3148 wp->flags |= BP_WATCHPOINT_HIT;
3149 if (!env->watchpoint_hit) {
3150 env->watchpoint_hit = wp;
3151 tb = tb_find_pc(env->mem_io_pc);
3152 if (!tb) {
3153 cpu_abort(env, "check_watchpoint: could not find TB for "
3154 "pc=%p", (void *)env->mem_io_pc);
3156 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
3157 tb_phys_invalidate(tb, -1);
3158 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
3159 env->exception_index = EXCP_DEBUG;
3160 } else {
3161 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
3162 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
3164 cpu_resume_from_signal(env, NULL);
3166 } else {
3167 wp->flags &= ~BP_WATCHPOINT_HIT;
3172 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
3173 so these check for a hit then pass through to the normal out-of-line
3174 phys routines. */
3175 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
3177 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
3178 return ldub_phys(addr);
3181 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
3183 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
3184 return lduw_phys(addr);
3187 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
3189 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
3190 return ldl_phys(addr);
3193 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
3194 uint32_t val)
3196 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
3197 stb_phys(addr, val);
3200 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
3201 uint32_t val)
3203 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
3204 stw_phys(addr, val);
3207 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
3208 uint32_t val)
3210 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
3211 stl_phys(addr, val);
3214 static CPUReadMemoryFunc * const watch_mem_read[3] = {
3215 watch_mem_readb,
3216 watch_mem_readw,
3217 watch_mem_readl,
3220 static CPUWriteMemoryFunc * const watch_mem_write[3] = {
3221 watch_mem_writeb,
3222 watch_mem_writew,
3223 watch_mem_writel,
3226 static inline uint32_t subpage_readlen (subpage_t *mmio,
3227 target_phys_addr_t addr,
3228 unsigned int len)
3230 unsigned int idx = SUBPAGE_IDX(addr);
3231 #if defined(DEBUG_SUBPAGE)
3232 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3233 mmio, len, addr, idx);
3234 #endif
3236 addr += mmio->region_offset[idx];
3237 idx = mmio->sub_io_index[idx];
3238 return io_mem_read[idx][len](io_mem_opaque[idx], addr);
3241 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
3242 uint32_t value, unsigned int len)
3244 unsigned int idx = SUBPAGE_IDX(addr);
3245 #if defined(DEBUG_SUBPAGE)
3246 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n",
3247 __func__, mmio, len, addr, idx, value);
3248 #endif
3250 addr += mmio->region_offset[idx];
3251 idx = mmio->sub_io_index[idx];
3252 io_mem_write[idx][len](io_mem_opaque[idx], addr, value);
3255 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
3257 return subpage_readlen(opaque, addr, 0);
3260 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
3261 uint32_t value)
3263 subpage_writelen(opaque, addr, value, 0);
3266 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
3268 return subpage_readlen(opaque, addr, 1);
3271 static void subpage_writew (void *opaque, target_phys_addr_t addr,
3272 uint32_t value)
3274 subpage_writelen(opaque, addr, value, 1);
3277 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
3279 return subpage_readlen(opaque, addr, 2);
3282 static void subpage_writel (void *opaque, target_phys_addr_t addr,
3283 uint32_t value)
3285 subpage_writelen(opaque, addr, value, 2);
3288 static CPUReadMemoryFunc * const subpage_read[] = {
3289 &subpage_readb,
3290 &subpage_readw,
3291 &subpage_readl,
3294 static CPUWriteMemoryFunc * const subpage_write[] = {
3295 &subpage_writeb,
3296 &subpage_writew,
3297 &subpage_writel,
3300 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
3301 ram_addr_t memory, ram_addr_t region_offset)
3303 int idx, eidx;
3305 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3306 return -1;
3307 idx = SUBPAGE_IDX(start);
3308 eidx = SUBPAGE_IDX(end);
3309 #if defined(DEBUG_SUBPAGE)
3310 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
3311 mmio, start, end, idx, eidx, memory);
3312 #endif
3313 if ((memory & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
3314 memory = IO_MEM_UNASSIGNED;
3315 memory = (memory >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3316 for (; idx <= eidx; idx++) {
3317 mmio->sub_io_index[idx] = memory;
3318 mmio->region_offset[idx] = region_offset;
3321 return 0;
3324 static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
3325 ram_addr_t orig_memory,
3326 ram_addr_t region_offset)
3328 subpage_t *mmio;
3329 int subpage_memory;
3331 mmio = qemu_mallocz(sizeof(subpage_t));
3333 mmio->base = base;
3334 subpage_memory = cpu_register_io_memory(subpage_read, subpage_write, mmio,
3335 DEVICE_NATIVE_ENDIAN);
3336 #if defined(DEBUG_SUBPAGE)
3337 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3338 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
3339 #endif
3340 *phys = subpage_memory | IO_MEM_SUBPAGE;
3341 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
3343 return mmio;
3346 static int get_free_io_mem_idx(void)
3348 int i;
3350 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
3351 if (!io_mem_used[i]) {
3352 io_mem_used[i] = 1;
3353 return i;
3355 fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
3356 return -1;
3360 * Usually, devices operate in little endian mode. There are devices out
3361 * there that operate in big endian too. Each device gets byte swapped
3362 * mmio if plugged onto a CPU that does the other endianness.
3364 * CPU Device swap?
3366 * little little no
3367 * little big yes
3368 * big little yes
3369 * big big no
3372 typedef struct SwapEndianContainer {
3373 CPUReadMemoryFunc *read[3];
3374 CPUWriteMemoryFunc *write[3];
3375 void *opaque;
3376 } SwapEndianContainer;
3378 static uint32_t swapendian_mem_readb (void *opaque, target_phys_addr_t addr)
3380 uint32_t val;
3381 SwapEndianContainer *c = opaque;
3382 val = c->read[0](c->opaque, addr);
3383 return val;
3386 static uint32_t swapendian_mem_readw(void *opaque, target_phys_addr_t addr)
3388 uint32_t val;
3389 SwapEndianContainer *c = opaque;
3390 val = bswap16(c->read[1](c->opaque, addr));
3391 return val;
3394 static uint32_t swapendian_mem_readl(void *opaque, target_phys_addr_t addr)
3396 uint32_t val;
3397 SwapEndianContainer *c = opaque;
3398 val = bswap32(c->read[2](c->opaque, addr));
3399 return val;
3402 static CPUReadMemoryFunc * const swapendian_readfn[3]={
3403 swapendian_mem_readb,
3404 swapendian_mem_readw,
3405 swapendian_mem_readl
3408 static void swapendian_mem_writeb(void *opaque, target_phys_addr_t addr,
3409 uint32_t val)
3411 SwapEndianContainer *c = opaque;
3412 c->write[0](c->opaque, addr, val);
3415 static void swapendian_mem_writew(void *opaque, target_phys_addr_t addr,
3416 uint32_t val)
3418 SwapEndianContainer *c = opaque;
3419 c->write[1](c->opaque, addr, bswap16(val));
3422 static void swapendian_mem_writel(void *opaque, target_phys_addr_t addr,
3423 uint32_t val)
3425 SwapEndianContainer *c = opaque;
3426 c->write[2](c->opaque, addr, bswap32(val));
3429 static CPUWriteMemoryFunc * const swapendian_writefn[3]={
3430 swapendian_mem_writeb,
3431 swapendian_mem_writew,
3432 swapendian_mem_writel
3435 static void swapendian_init(int io_index)
3437 SwapEndianContainer *c = qemu_malloc(sizeof(SwapEndianContainer));
3438 int i;
3440 /* Swap mmio for big endian targets */
3441 c->opaque = io_mem_opaque[io_index];
3442 for (i = 0; i < 3; i++) {
3443 c->read[i] = io_mem_read[io_index][i];
3444 c->write[i] = io_mem_write[io_index][i];
3446 io_mem_read[io_index][i] = swapendian_readfn[i];
3447 io_mem_write[io_index][i] = swapendian_writefn[i];
3449 io_mem_opaque[io_index] = c;
3452 static void swapendian_del(int io_index)
3454 if (io_mem_read[io_index][0] == swapendian_readfn[0]) {
3455 qemu_free(io_mem_opaque[io_index]);
3459 /* mem_read and mem_write are arrays of functions containing the
3460 function to access byte (index 0), word (index 1) and dword (index
3461 2). Functions can be omitted with a NULL function pointer.
3462 If io_index is non zero, the corresponding io zone is
3463 modified. If it is zero, a new io zone is allocated. The return
3464 value can be used with cpu_register_physical_memory(). (-1) is
3465 returned if error. */
3466 static int cpu_register_io_memory_fixed(int io_index,
3467 CPUReadMemoryFunc * const *mem_read,
3468 CPUWriteMemoryFunc * const *mem_write,
3469 void *opaque, enum device_endian endian)
3471 int i;
3473 if (io_index <= 0) {
3474 io_index = get_free_io_mem_idx();
3475 if (io_index == -1)
3476 return io_index;
3477 } else {
3478 io_index >>= IO_MEM_SHIFT;
3479 if (io_index >= IO_MEM_NB_ENTRIES)
3480 return -1;
3483 for (i = 0; i < 3; ++i) {
3484 io_mem_read[io_index][i]
3485 = (mem_read[i] ? mem_read[i] : unassigned_mem_read[i]);
3487 for (i = 0; i < 3; ++i) {
3488 io_mem_write[io_index][i]
3489 = (mem_write[i] ? mem_write[i] : unassigned_mem_write[i]);
3491 io_mem_opaque[io_index] = opaque;
3493 switch (endian) {
3494 case DEVICE_BIG_ENDIAN:
3495 #ifndef TARGET_WORDS_BIGENDIAN
3496 swapendian_init(io_index);
3497 #endif
3498 break;
3499 case DEVICE_LITTLE_ENDIAN:
3500 #ifdef TARGET_WORDS_BIGENDIAN
3501 swapendian_init(io_index);
3502 #endif
3503 break;
3504 case DEVICE_NATIVE_ENDIAN:
3505 default:
3506 break;
3509 return (io_index << IO_MEM_SHIFT);
3512 int cpu_register_io_memory(CPUReadMemoryFunc * const *mem_read,
3513 CPUWriteMemoryFunc * const *mem_write,
3514 void *opaque, enum device_endian endian)
3516 return cpu_register_io_memory_fixed(0, mem_read, mem_write, opaque, endian);
3519 void cpu_unregister_io_memory(int io_table_address)
3521 int i;
3522 int io_index = io_table_address >> IO_MEM_SHIFT;
3524 swapendian_del(io_index);
3526 for (i=0;i < 3; i++) {
3527 io_mem_read[io_index][i] = unassigned_mem_read[i];
3528 io_mem_write[io_index][i] = unassigned_mem_write[i];
3530 io_mem_opaque[io_index] = NULL;
3531 io_mem_used[io_index] = 0;
3534 static void io_mem_init(void)
3536 int i;
3538 cpu_register_io_memory_fixed(IO_MEM_ROM, error_mem_read,
3539 unassigned_mem_write, NULL,
3540 DEVICE_NATIVE_ENDIAN);
3541 cpu_register_io_memory_fixed(IO_MEM_UNASSIGNED, unassigned_mem_read,
3542 unassigned_mem_write, NULL,
3543 DEVICE_NATIVE_ENDIAN);
3544 cpu_register_io_memory_fixed(IO_MEM_NOTDIRTY, error_mem_read,
3545 notdirty_mem_write, NULL,
3546 DEVICE_NATIVE_ENDIAN);
3547 for (i=0; i<5; i++)
3548 io_mem_used[i] = 1;
3550 io_mem_watch = cpu_register_io_memory(watch_mem_read,
3551 watch_mem_write, NULL,
3552 DEVICE_NATIVE_ENDIAN);
3555 #endif /* !defined(CONFIG_USER_ONLY) */
3557 /* physical memory access (slow version, mainly for debug) */
3558 #if defined(CONFIG_USER_ONLY)
3559 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3560 uint8_t *buf, int len, int is_write)
3562 int l, flags;
3563 target_ulong page;
3564 void * p;
3566 while (len > 0) {
3567 page = addr & TARGET_PAGE_MASK;
3568 l = (page + TARGET_PAGE_SIZE) - addr;
3569 if (l > len)
3570 l = len;
3571 flags = page_get_flags(page);
3572 if (!(flags & PAGE_VALID))
3573 return -1;
3574 if (is_write) {
3575 if (!(flags & PAGE_WRITE))
3576 return -1;
3577 /* XXX: this code should not depend on lock_user */
3578 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
3579 return -1;
3580 memcpy(p, buf, l);
3581 unlock_user(p, addr, l);
3582 } else {
3583 if (!(flags & PAGE_READ))
3584 return -1;
3585 /* XXX: this code should not depend on lock_user */
3586 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
3587 return -1;
3588 memcpy(buf, p, l);
3589 unlock_user(p, addr, 0);
3591 len -= l;
3592 buf += l;
3593 addr += l;
3595 return 0;
3598 #else
3599 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
3600 int len, int is_write)
3602 int l, io_index;
3603 uint8_t *ptr;
3604 uint32_t val;
3605 target_phys_addr_t page;
3606 unsigned long pd;
3607 PhysPageDesc *p;
3609 while (len > 0) {
3610 page = addr & TARGET_PAGE_MASK;
3611 l = (page + TARGET_PAGE_SIZE) - addr;
3612 if (l > len)
3613 l = len;
3614 p = phys_page_find(page >> TARGET_PAGE_BITS);
3615 if (!p) {
3616 pd = IO_MEM_UNASSIGNED;
3617 } else {
3618 pd = p->phys_offset;
3621 if (is_write) {
3622 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3623 target_phys_addr_t addr1 = addr;
3624 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3625 if (p)
3626 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3627 /* XXX: could force cpu_single_env to NULL to avoid
3628 potential bugs */
3629 if (l >= 4 && ((addr1 & 3) == 0)) {
3630 /* 32 bit write access */
3631 val = ldl_p(buf);
3632 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
3633 l = 4;
3634 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3635 /* 16 bit write access */
3636 val = lduw_p(buf);
3637 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
3638 l = 2;
3639 } else {
3640 /* 8 bit write access */
3641 val = ldub_p(buf);
3642 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
3643 l = 1;
3645 } else {
3646 unsigned long addr1;
3647 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3648 /* RAM case */
3649 ptr = qemu_get_ram_ptr(addr1);
3650 memcpy(ptr, buf, l);
3651 if (!cpu_physical_memory_is_dirty(addr1)) {
3652 /* invalidate code */
3653 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3654 /* set dirty bit */
3655 cpu_physical_memory_set_dirty_flags(
3656 addr1, (0xff & ~CODE_DIRTY_FLAG));
3659 } else {
3660 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3661 !(pd & IO_MEM_ROMD)) {
3662 target_phys_addr_t addr1 = addr;
3663 /* I/O case */
3664 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3665 if (p)
3666 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3667 if (l >= 4 && ((addr1 & 3) == 0)) {
3668 /* 32 bit read access */
3669 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3670 stl_p(buf, val);
3671 l = 4;
3672 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3673 /* 16 bit read access */
3674 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3675 stw_p(buf, val);
3676 l = 2;
3677 } else {
3678 /* 8 bit read access */
3679 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3680 stb_p(buf, val);
3681 l = 1;
3683 } else {
3684 /* RAM case */
3685 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3686 (addr & ~TARGET_PAGE_MASK);
3687 memcpy(buf, ptr, l);
3690 len -= l;
3691 buf += l;
3692 addr += l;
3696 /* used for ROM loading : can write in RAM and ROM */
3697 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3698 const uint8_t *buf, int len)
3700 int l;
3701 uint8_t *ptr;
3702 target_phys_addr_t page;
3703 unsigned long pd;
3704 PhysPageDesc *p;
3706 while (len > 0) {
3707 page = addr & TARGET_PAGE_MASK;
3708 l = (page + TARGET_PAGE_SIZE) - addr;
3709 if (l > len)
3710 l = len;
3711 p = phys_page_find(page >> TARGET_PAGE_BITS);
3712 if (!p) {
3713 pd = IO_MEM_UNASSIGNED;
3714 } else {
3715 pd = p->phys_offset;
3718 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3719 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3720 !(pd & IO_MEM_ROMD)) {
3721 /* do nothing */
3722 } else {
3723 unsigned long addr1;
3724 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3725 /* ROM/RAM case */
3726 ptr = qemu_get_ram_ptr(addr1);
3727 memcpy(ptr, buf, l);
3729 len -= l;
3730 buf += l;
3731 addr += l;
3735 typedef struct {
3736 void *buffer;
3737 target_phys_addr_t addr;
3738 target_phys_addr_t len;
3739 } BounceBuffer;
3741 static BounceBuffer bounce;
3743 typedef struct MapClient {
3744 void *opaque;
3745 void (*callback)(void *opaque);
3746 QLIST_ENTRY(MapClient) link;
3747 } MapClient;
3749 static QLIST_HEAD(map_client_list, MapClient) map_client_list
3750 = QLIST_HEAD_INITIALIZER(map_client_list);
3752 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3754 MapClient *client = qemu_malloc(sizeof(*client));
3756 client->opaque = opaque;
3757 client->callback = callback;
3758 QLIST_INSERT_HEAD(&map_client_list, client, link);
3759 return client;
3762 void cpu_unregister_map_client(void *_client)
3764 MapClient *client = (MapClient *)_client;
3766 QLIST_REMOVE(client, link);
3767 qemu_free(client);
3770 static void cpu_notify_map_clients(void)
3772 MapClient *client;
3774 while (!QLIST_EMPTY(&map_client_list)) {
3775 client = QLIST_FIRST(&map_client_list);
3776 client->callback(client->opaque);
3777 cpu_unregister_map_client(client);
3781 /* Map a physical memory region into a host virtual address.
3782 * May map a subset of the requested range, given by and returned in *plen.
3783 * May return NULL if resources needed to perform the mapping are exhausted.
3784 * Use only for reads OR writes - not for read-modify-write operations.
3785 * Use cpu_register_map_client() to know when retrying the map operation is
3786 * likely to succeed.
3788 void *cpu_physical_memory_map(target_phys_addr_t addr,
3789 target_phys_addr_t *plen,
3790 int is_write)
3792 target_phys_addr_t len = *plen;
3793 target_phys_addr_t done = 0;
3794 int l;
3795 uint8_t *ret = NULL;
3796 uint8_t *ptr;
3797 target_phys_addr_t page;
3798 unsigned long pd;
3799 PhysPageDesc *p;
3800 unsigned long addr1;
3802 while (len > 0) {
3803 page = addr & TARGET_PAGE_MASK;
3804 l = (page + TARGET_PAGE_SIZE) - addr;
3805 if (l > len)
3806 l = len;
3807 p = phys_page_find(page >> TARGET_PAGE_BITS);
3808 if (!p) {
3809 pd = IO_MEM_UNASSIGNED;
3810 } else {
3811 pd = p->phys_offset;
3814 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3815 if (done || bounce.buffer) {
3816 break;
3818 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3819 bounce.addr = addr;
3820 bounce.len = l;
3821 if (!is_write) {
3822 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3824 ptr = bounce.buffer;
3825 } else {
3826 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3827 ptr = qemu_get_ram_ptr(addr1);
3829 if (!done) {
3830 ret = ptr;
3831 } else if (ret + done != ptr) {
3832 break;
3835 len -= l;
3836 addr += l;
3837 done += l;
3839 *plen = done;
3840 return ret;
3843 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3844 * Will also mark the memory as dirty if is_write == 1. access_len gives
3845 * the amount of memory that was actually read or written by the caller.
3847 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3848 int is_write, target_phys_addr_t access_len)
3850 if (buffer != bounce.buffer) {
3851 if (is_write) {
3852 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
3853 while (access_len) {
3854 unsigned l;
3855 l = TARGET_PAGE_SIZE;
3856 if (l > access_len)
3857 l = access_len;
3858 if (!cpu_physical_memory_is_dirty(addr1)) {
3859 /* invalidate code */
3860 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3861 /* set dirty bit */
3862 cpu_physical_memory_set_dirty_flags(
3863 addr1, (0xff & ~CODE_DIRTY_FLAG));
3865 addr1 += l;
3866 access_len -= l;
3869 return;
3871 if (is_write) {
3872 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3874 qemu_vfree(bounce.buffer);
3875 bounce.buffer = NULL;
3876 cpu_notify_map_clients();
3879 /* warning: addr must be aligned */
3880 uint32_t ldl_phys(target_phys_addr_t addr)
3882 int io_index;
3883 uint8_t *ptr;
3884 uint32_t val;
3885 unsigned long pd;
3886 PhysPageDesc *p;
3888 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3889 if (!p) {
3890 pd = IO_MEM_UNASSIGNED;
3891 } else {
3892 pd = p->phys_offset;
3895 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3896 !(pd & IO_MEM_ROMD)) {
3897 /* I/O case */
3898 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3899 if (p)
3900 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3901 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3902 } else {
3903 /* RAM case */
3904 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3905 (addr & ~TARGET_PAGE_MASK);
3906 val = ldl_p(ptr);
3908 return val;
3911 /* warning: addr must be aligned */
3912 uint64_t ldq_phys(target_phys_addr_t addr)
3914 int io_index;
3915 uint8_t *ptr;
3916 uint64_t val;
3917 unsigned long pd;
3918 PhysPageDesc *p;
3920 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3921 if (!p) {
3922 pd = IO_MEM_UNASSIGNED;
3923 } else {
3924 pd = p->phys_offset;
3927 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3928 !(pd & IO_MEM_ROMD)) {
3929 /* I/O case */
3930 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3931 if (p)
3932 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3933 #ifdef TARGET_WORDS_BIGENDIAN
3934 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3935 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3936 #else
3937 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3938 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3939 #endif
3940 } else {
3941 /* RAM case */
3942 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3943 (addr & ~TARGET_PAGE_MASK);
3944 val = ldq_p(ptr);
3946 return val;
3949 /* XXX: optimize */
3950 uint32_t ldub_phys(target_phys_addr_t addr)
3952 uint8_t val;
3953 cpu_physical_memory_read(addr, &val, 1);
3954 return val;
3957 /* warning: addr must be aligned */
3958 uint32_t lduw_phys(target_phys_addr_t addr)
3960 int io_index;
3961 uint8_t *ptr;
3962 uint64_t val;
3963 unsigned long pd;
3964 PhysPageDesc *p;
3966 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3967 if (!p) {
3968 pd = IO_MEM_UNASSIGNED;
3969 } else {
3970 pd = p->phys_offset;
3973 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3974 !(pd & IO_MEM_ROMD)) {
3975 /* I/O case */
3976 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3977 if (p)
3978 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3979 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
3980 } else {
3981 /* RAM case */
3982 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
3983 (addr & ~TARGET_PAGE_MASK);
3984 val = lduw_p(ptr);
3986 return val;
3989 /* warning: addr must be aligned. The ram page is not masked as dirty
3990 and the code inside is not invalidated. It is useful if the dirty
3991 bits are used to track modified PTEs */
3992 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3994 int io_index;
3995 uint8_t *ptr;
3996 unsigned long pd;
3997 PhysPageDesc *p;
3999 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4000 if (!p) {
4001 pd = IO_MEM_UNASSIGNED;
4002 } else {
4003 pd = p->phys_offset;
4006 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4007 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4008 if (p)
4009 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4010 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4011 } else {
4012 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4013 ptr = qemu_get_ram_ptr(addr1);
4014 stl_p(ptr, val);
4016 if (unlikely(in_migration)) {
4017 if (!cpu_physical_memory_is_dirty(addr1)) {
4018 /* invalidate code */
4019 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4020 /* set dirty bit */
4021 cpu_physical_memory_set_dirty_flags(
4022 addr1, (0xff & ~CODE_DIRTY_FLAG));
4028 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
4030 int io_index;
4031 uint8_t *ptr;
4032 unsigned long pd;
4033 PhysPageDesc *p;
4035 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4036 if (!p) {
4037 pd = IO_MEM_UNASSIGNED;
4038 } else {
4039 pd = p->phys_offset;
4042 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4043 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4044 if (p)
4045 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4046 #ifdef TARGET_WORDS_BIGENDIAN
4047 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
4048 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
4049 #else
4050 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4051 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
4052 #endif
4053 } else {
4054 ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
4055 (addr & ~TARGET_PAGE_MASK);
4056 stq_p(ptr, val);
4060 /* warning: addr must be aligned */
4061 void stl_phys(target_phys_addr_t addr, uint32_t val)
4063 int io_index;
4064 uint8_t *ptr;
4065 unsigned long pd;
4066 PhysPageDesc *p;
4068 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4069 if (!p) {
4070 pd = IO_MEM_UNASSIGNED;
4071 } else {
4072 pd = p->phys_offset;
4075 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4076 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4077 if (p)
4078 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4079 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
4080 } else {
4081 unsigned long addr1;
4082 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4083 /* RAM case */
4084 ptr = qemu_get_ram_ptr(addr1);
4085 stl_p(ptr, val);
4086 if (!cpu_physical_memory_is_dirty(addr1)) {
4087 /* invalidate code */
4088 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
4089 /* set dirty bit */
4090 cpu_physical_memory_set_dirty_flags(addr1,
4091 (0xff & ~CODE_DIRTY_FLAG));
4096 /* XXX: optimize */
4097 void stb_phys(target_phys_addr_t addr, uint32_t val)
4099 uint8_t v = val;
4100 cpu_physical_memory_write(addr, &v, 1);
4103 /* warning: addr must be aligned */
4104 void stw_phys(target_phys_addr_t addr, uint32_t val)
4106 int io_index;
4107 uint8_t *ptr;
4108 unsigned long pd;
4109 PhysPageDesc *p;
4111 p = phys_page_find(addr >> TARGET_PAGE_BITS);
4112 if (!p) {
4113 pd = IO_MEM_UNASSIGNED;
4114 } else {
4115 pd = p->phys_offset;
4118 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
4119 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
4120 if (p)
4121 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
4122 io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
4123 } else {
4124 unsigned long addr1;
4125 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
4126 /* RAM case */
4127 ptr = qemu_get_ram_ptr(addr1);
4128 stw_p(ptr, val);
4129 if (!cpu_physical_memory_is_dirty(addr1)) {
4130 /* invalidate code */
4131 tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
4132 /* set dirty bit */
4133 cpu_physical_memory_set_dirty_flags(addr1,
4134 (0xff & ~CODE_DIRTY_FLAG));
4139 /* XXX: optimize */
4140 void stq_phys(target_phys_addr_t addr, uint64_t val)
4142 val = tswap64(val);
4143 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
4146 /* virtual memory access for debug (includes writing to ROM) */
4147 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
4148 uint8_t *buf, int len, int is_write)
4150 int l;
4151 target_phys_addr_t phys_addr;
4152 target_ulong page;
4154 while (len > 0) {
4155 page = addr & TARGET_PAGE_MASK;
4156 phys_addr = cpu_get_phys_page_debug(env, page);
4157 /* if no physical page mapped, return an error */
4158 if (phys_addr == -1)
4159 return -1;
4160 l = (page + TARGET_PAGE_SIZE) - addr;
4161 if (l > len)
4162 l = len;
4163 phys_addr += (addr & ~TARGET_PAGE_MASK);
4164 if (is_write)
4165 cpu_physical_memory_write_rom(phys_addr, buf, l);
4166 else
4167 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
4168 len -= l;
4169 buf += l;
4170 addr += l;
4172 return 0;
4174 #endif
4176 /* in deterministic execution mode, instructions doing device I/Os
4177 must be at the end of the TB */
4178 void cpu_io_recompile(CPUState *env, void *retaddr)
4180 TranslationBlock *tb;
4181 uint32_t n, cflags;
4182 target_ulong pc, cs_base;
4183 uint64_t flags;
4185 tb = tb_find_pc((unsigned long)retaddr);
4186 if (!tb) {
4187 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
4188 retaddr);
4190 n = env->icount_decr.u16.low + tb->icount;
4191 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
4192 /* Calculate how many instructions had been executed before the fault
4193 occurred. */
4194 n = n - env->icount_decr.u16.low;
4195 /* Generate a new TB ending on the I/O insn. */
4196 n++;
4197 /* On MIPS and SH, delay slot instructions can only be restarted if
4198 they were already the first instruction in the TB. If this is not
4199 the first instruction in a TB then re-execute the preceding
4200 branch. */
4201 #if defined(TARGET_MIPS)
4202 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4203 env->active_tc.PC -= 4;
4204 env->icount_decr.u16.low++;
4205 env->hflags &= ~MIPS_HFLAG_BMASK;
4207 #elif defined(TARGET_SH4)
4208 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4209 && n > 1) {
4210 env->pc -= 2;
4211 env->icount_decr.u16.low++;
4212 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4214 #endif
4215 /* This should never happen. */
4216 if (n > CF_COUNT_MASK)
4217 cpu_abort(env, "TB too big during recompile");
4219 cflags = n | CF_LAST_IO;
4220 pc = tb->pc;
4221 cs_base = tb->cs_base;
4222 flags = tb->flags;
4223 tb_phys_invalidate(tb, -1);
4224 /* FIXME: In theory this could raise an exception. In practice
4225 we have already translated the block once so it's probably ok. */
4226 tb_gen_code(env, pc, cs_base, flags, cflags);
4227 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
4228 the first in the TB) then we end up generating a whole new TB and
4229 repeating the fault, which is horribly inefficient.
4230 Better would be to execute just this insn uncached, or generate a
4231 second new TB. */
4232 cpu_resume_from_signal(env, NULL);
4235 #if !defined(CONFIG_USER_ONLY)
4237 void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
4239 int i, target_code_size, max_target_code_size;
4240 int direct_jmp_count, direct_jmp2_count, cross_page;
4241 TranslationBlock *tb;
4243 target_code_size = 0;
4244 max_target_code_size = 0;
4245 cross_page = 0;
4246 direct_jmp_count = 0;
4247 direct_jmp2_count = 0;
4248 for(i = 0; i < nb_tbs; i++) {
4249 tb = &tbs[i];
4250 target_code_size += tb->size;
4251 if (tb->size > max_target_code_size)
4252 max_target_code_size = tb->size;
4253 if (tb->page_addr[1] != -1)
4254 cross_page++;
4255 if (tb->tb_next_offset[0] != 0xffff) {
4256 direct_jmp_count++;
4257 if (tb->tb_next_offset[1] != 0xffff) {
4258 direct_jmp2_count++;
4262 /* XXX: avoid using doubles ? */
4263 cpu_fprintf(f, "Translation buffer state:\n");
4264 cpu_fprintf(f, "gen code size %td/%ld\n",
4265 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4266 cpu_fprintf(f, "TB count %d/%d\n",
4267 nb_tbs, code_gen_max_blocks);
4268 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
4269 nb_tbs ? target_code_size / nb_tbs : 0,
4270 max_target_code_size);
4271 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
4272 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4273 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
4274 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4275 cross_page,
4276 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4277 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
4278 direct_jmp_count,
4279 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4280 direct_jmp2_count,
4281 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
4282 cpu_fprintf(f, "\nStatistics:\n");
4283 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4284 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4285 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
4286 tcg_dump_info(f, cpu_fprintf);
4289 #define MMUSUFFIX _cmmu
4290 #define GETPC() NULL
4291 #define env cpu_single_env
4292 #define SOFTMMU_CODE_ACCESS
4294 #define SHIFT 0
4295 #include "softmmu_template.h"
4297 #define SHIFT 1
4298 #include "softmmu_template.h"
4300 #define SHIFT 2
4301 #include "softmmu_template.h"
4303 #define SHIFT 3
4304 #include "softmmu_template.h"
4306 #undef env
4308 #endif