kvm: Rework dirty bitmap synchronization
[qemu.git] / hw / musicpal.c
blobfe065866e242ac8ab9e896fbed8e28a3f37766a8
1 /*
2 * Marvell MV88W8618 / Freecom MusicPal emulation.
4 * Copyright (c) 2008 Jan Kiszka
6 * This code is licenced under the GNU GPL v2.
7 */
9 #include "sysbus.h"
10 #include "arm-misc.h"
11 #include "devices.h"
12 #include "net.h"
13 #include "sysemu.h"
14 #include "boards.h"
15 #include "pc.h"
16 #include "qemu-timer.h"
17 #include "block.h"
18 #include "flash.h"
19 #include "console.h"
20 #include "audio/audio.h"
21 #include "i2c.h"
23 #define MP_MISC_BASE 0x80002000
24 #define MP_MISC_SIZE 0x00001000
26 #define MP_ETH_BASE 0x80008000
27 #define MP_ETH_SIZE 0x00001000
29 #define MP_WLAN_BASE 0x8000C000
30 #define MP_WLAN_SIZE 0x00000800
32 #define MP_UART1_BASE 0x8000C840
33 #define MP_UART2_BASE 0x8000C940
35 #define MP_GPIO_BASE 0x8000D000
36 #define MP_GPIO_SIZE 0x00001000
38 #define MP_FLASHCFG_BASE 0x90006000
39 #define MP_FLASHCFG_SIZE 0x00001000
41 #define MP_AUDIO_BASE 0x90007000
42 #define MP_AUDIO_SIZE 0x00001000
44 #define MP_PIC_BASE 0x90008000
45 #define MP_PIC_SIZE 0x00001000
47 #define MP_PIT_BASE 0x90009000
48 #define MP_PIT_SIZE 0x00001000
50 #define MP_LCD_BASE 0x9000c000
51 #define MP_LCD_SIZE 0x00001000
53 #define MP_SRAM_BASE 0xC0000000
54 #define MP_SRAM_SIZE 0x00020000
56 #define MP_RAM_DEFAULT_SIZE 32*1024*1024
57 #define MP_FLASH_SIZE_MAX 32*1024*1024
59 #define MP_TIMER1_IRQ 4
60 #define MP_TIMER2_IRQ 5
61 #define MP_TIMER3_IRQ 6
62 #define MP_TIMER4_IRQ 7
63 #define MP_EHCI_IRQ 8
64 #define MP_ETH_IRQ 9
65 #define MP_UART1_IRQ 11
66 #define MP_UART2_IRQ 11
67 #define MP_GPIO_IRQ 12
68 #define MP_RTC_IRQ 28
69 #define MP_AUDIO_IRQ 30
71 static uint32_t gpio_in_state = 0xffffffff;
72 static uint32_t gpio_isr;
73 static uint32_t gpio_out_state;
74 static ram_addr_t sram_off;
76 typedef enum i2c_state {
77 STOPPED = 0,
78 INITIALIZING,
79 SENDING_BIT7,
80 SENDING_BIT6,
81 SENDING_BIT5,
82 SENDING_BIT4,
83 SENDING_BIT3,
84 SENDING_BIT2,
85 SENDING_BIT1,
86 SENDING_BIT0,
87 WAITING_FOR_ACK,
88 RECEIVING_BIT7,
89 RECEIVING_BIT6,
90 RECEIVING_BIT5,
91 RECEIVING_BIT4,
92 RECEIVING_BIT3,
93 RECEIVING_BIT2,
94 RECEIVING_BIT1,
95 RECEIVING_BIT0,
96 SENDING_ACK
97 } i2c_state;
99 typedef struct i2c_interface {
100 i2c_bus *bus;
101 i2c_state state;
102 int last_data;
103 int last_clock;
104 uint8_t buffer;
105 int current_addr;
106 } i2c_interface;
108 static void i2c_enter_stop(i2c_interface *i2c)
110 if (i2c->current_addr >= 0)
111 i2c_end_transfer(i2c->bus);
112 i2c->current_addr = -1;
113 i2c->state = STOPPED;
116 static void i2c_state_update(i2c_interface *i2c, int data, int clock)
118 if (!i2c)
119 return;
121 switch (i2c->state) {
122 case STOPPED:
123 if (data == 0 && i2c->last_data == 1 && clock == 1)
124 i2c->state = INITIALIZING;
125 break;
127 case INITIALIZING:
128 if (clock == 0 && i2c->last_clock == 1 && data == 0)
129 i2c->state = SENDING_BIT7;
130 else
131 i2c_enter_stop(i2c);
132 break;
134 case SENDING_BIT7 ... SENDING_BIT0:
135 if (clock == 0 && i2c->last_clock == 1) {
136 i2c->buffer = (i2c->buffer << 1) | data;
137 i2c->state++; /* will end up in WAITING_FOR_ACK */
138 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
139 i2c_enter_stop(i2c);
140 break;
142 case WAITING_FOR_ACK:
143 if (clock == 0 && i2c->last_clock == 1) {
144 if (i2c->current_addr < 0) {
145 i2c->current_addr = i2c->buffer;
146 i2c_start_transfer(i2c->bus, i2c->current_addr & 0xfe,
147 i2c->buffer & 1);
148 } else
149 i2c_send(i2c->bus, i2c->buffer);
150 if (i2c->current_addr & 1) {
151 i2c->state = RECEIVING_BIT7;
152 i2c->buffer = i2c_recv(i2c->bus);
153 } else
154 i2c->state = SENDING_BIT7;
155 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
156 i2c_enter_stop(i2c);
157 break;
159 case RECEIVING_BIT7 ... RECEIVING_BIT0:
160 if (clock == 0 && i2c->last_clock == 1) {
161 i2c->state++; /* will end up in SENDING_ACK */
162 i2c->buffer <<= 1;
163 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
164 i2c_enter_stop(i2c);
165 break;
167 case SENDING_ACK:
168 if (clock == 0 && i2c->last_clock == 1) {
169 i2c->state = RECEIVING_BIT7;
170 if (data == 0)
171 i2c->buffer = i2c_recv(i2c->bus);
172 else
173 i2c_nack(i2c->bus);
174 } else if (data == 1 && i2c->last_data == 0 && clock == 1)
175 i2c_enter_stop(i2c);
176 break;
179 i2c->last_data = data;
180 i2c->last_clock = clock;
183 static int i2c_get_data(i2c_interface *i2c)
185 if (!i2c)
186 return 0;
188 switch (i2c->state) {
189 case RECEIVING_BIT7 ... RECEIVING_BIT0:
190 return (i2c->buffer >> 7);
192 case WAITING_FOR_ACK:
193 default:
194 return 0;
198 static i2c_interface *mixer_i2c;
200 #ifdef HAS_AUDIO
202 /* Audio register offsets */
203 #define MP_AUDIO_PLAYBACK_MODE 0x00
204 #define MP_AUDIO_CLOCK_DIV 0x18
205 #define MP_AUDIO_IRQ_STATUS 0x20
206 #define MP_AUDIO_IRQ_ENABLE 0x24
207 #define MP_AUDIO_TX_START_LO 0x28
208 #define MP_AUDIO_TX_THRESHOLD 0x2C
209 #define MP_AUDIO_TX_STATUS 0x38
210 #define MP_AUDIO_TX_START_HI 0x40
212 /* Status register and IRQ enable bits */
213 #define MP_AUDIO_TX_HALF (1 << 6)
214 #define MP_AUDIO_TX_FULL (1 << 7)
216 /* Playback mode bits */
217 #define MP_AUDIO_16BIT_SAMPLE (1 << 0)
218 #define MP_AUDIO_PLAYBACK_EN (1 << 7)
219 #define MP_AUDIO_CLOCK_24MHZ (1 << 9)
220 #define MP_AUDIO_MONO (1 << 14)
222 /* Wolfson 8750 I2C address */
223 #define MP_WM_ADDR 0x34
225 static const char audio_name[] = "mv88w8618";
227 typedef struct musicpal_audio_state {
228 qemu_irq irq;
229 uint32_t playback_mode;
230 uint32_t status;
231 uint32_t irq_enable;
232 unsigned long phys_buf;
233 uint32_t target_buffer;
234 unsigned int threshold;
235 unsigned int play_pos;
236 unsigned int last_free;
237 uint32_t clock_div;
238 DeviceState *wm;
239 } musicpal_audio_state;
241 static void audio_callback(void *opaque, int free_out, int free_in)
243 musicpal_audio_state *s = opaque;
244 int16_t *codec_buffer;
245 int8_t buf[4096];
246 int8_t *mem_buffer;
247 int pos, block_size;
249 if (!(s->playback_mode & MP_AUDIO_PLAYBACK_EN))
250 return;
252 if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE)
253 free_out <<= 1;
255 if (!(s->playback_mode & MP_AUDIO_MONO))
256 free_out <<= 1;
258 block_size = s->threshold/2;
259 if (free_out - s->last_free < block_size)
260 return;
262 if (block_size > 4096)
263 return;
265 cpu_physical_memory_read(s->target_buffer + s->play_pos, (void *)buf,
266 block_size);
267 mem_buffer = buf;
268 if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE) {
269 if (s->playback_mode & MP_AUDIO_MONO) {
270 codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
271 for (pos = 0; pos < block_size; pos += 2) {
272 *codec_buffer++ = *(int16_t *)mem_buffer;
273 *codec_buffer++ = *(int16_t *)mem_buffer;
274 mem_buffer += 2;
276 } else
277 memcpy(wm8750_dac_buffer(s->wm, block_size >> 2),
278 (uint32_t *)mem_buffer, block_size);
279 } else {
280 if (s->playback_mode & MP_AUDIO_MONO) {
281 codec_buffer = wm8750_dac_buffer(s->wm, block_size);
282 for (pos = 0; pos < block_size; pos++) {
283 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer);
284 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
286 } else {
287 codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
288 for (pos = 0; pos < block_size; pos += 2) {
289 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
290 *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
294 wm8750_dac_commit(s->wm);
296 s->last_free = free_out - block_size;
298 if (s->play_pos == 0) {
299 s->status |= MP_AUDIO_TX_HALF;
300 s->play_pos = block_size;
301 } else {
302 s->status |= MP_AUDIO_TX_FULL;
303 s->play_pos = 0;
306 if (s->status & s->irq_enable)
307 qemu_irq_raise(s->irq);
310 static void musicpal_audio_clock_update(musicpal_audio_state *s)
312 int rate;
314 if (s->playback_mode & MP_AUDIO_CLOCK_24MHZ)
315 rate = 24576000 / 64; /* 24.576MHz */
316 else
317 rate = 11289600 / 64; /* 11.2896MHz */
319 rate /= ((s->clock_div >> 8) & 0xff) + 1;
321 wm8750_set_bclk_in(s->wm, rate);
324 static uint32_t musicpal_audio_read(void *opaque, target_phys_addr_t offset)
326 musicpal_audio_state *s = opaque;
328 switch (offset) {
329 case MP_AUDIO_PLAYBACK_MODE:
330 return s->playback_mode;
332 case MP_AUDIO_CLOCK_DIV:
333 return s->clock_div;
335 case MP_AUDIO_IRQ_STATUS:
336 return s->status;
338 case MP_AUDIO_IRQ_ENABLE:
339 return s->irq_enable;
341 case MP_AUDIO_TX_STATUS:
342 return s->play_pos >> 2;
344 default:
345 return 0;
349 static void musicpal_audio_write(void *opaque, target_phys_addr_t offset,
350 uint32_t value)
352 musicpal_audio_state *s = opaque;
354 switch (offset) {
355 case MP_AUDIO_PLAYBACK_MODE:
356 if (value & MP_AUDIO_PLAYBACK_EN &&
357 !(s->playback_mode & MP_AUDIO_PLAYBACK_EN)) {
358 s->status = 0;
359 s->last_free = 0;
360 s->play_pos = 0;
362 s->playback_mode = value;
363 musicpal_audio_clock_update(s);
364 break;
366 case MP_AUDIO_CLOCK_DIV:
367 s->clock_div = value;
368 s->last_free = 0;
369 s->play_pos = 0;
370 musicpal_audio_clock_update(s);
371 break;
373 case MP_AUDIO_IRQ_STATUS:
374 s->status &= ~value;
375 break;
377 case MP_AUDIO_IRQ_ENABLE:
378 s->irq_enable = value;
379 if (s->status & s->irq_enable)
380 qemu_irq_raise(s->irq);
381 break;
383 case MP_AUDIO_TX_START_LO:
384 s->phys_buf = (s->phys_buf & 0xFFFF0000) | (value & 0xFFFF);
385 s->target_buffer = s->phys_buf;
386 s->play_pos = 0;
387 s->last_free = 0;
388 break;
390 case MP_AUDIO_TX_THRESHOLD:
391 s->threshold = (value + 1) * 4;
392 break;
394 case MP_AUDIO_TX_START_HI:
395 s->phys_buf = (s->phys_buf & 0xFFFF) | (value << 16);
396 s->target_buffer = s->phys_buf;
397 s->play_pos = 0;
398 s->last_free = 0;
399 break;
403 static void musicpal_audio_reset(void *opaque)
405 musicpal_audio_state *s = opaque;
407 s->playback_mode = 0;
408 s->status = 0;
409 s->irq_enable = 0;
412 static CPUReadMemoryFunc *musicpal_audio_readfn[] = {
413 musicpal_audio_read,
414 musicpal_audio_read,
415 musicpal_audio_read
418 static CPUWriteMemoryFunc *musicpal_audio_writefn[] = {
419 musicpal_audio_write,
420 musicpal_audio_write,
421 musicpal_audio_write
424 static i2c_interface *musicpal_audio_init(qemu_irq irq)
426 musicpal_audio_state *s;
427 i2c_interface *i2c;
428 int iomemtype;
430 s = qemu_mallocz(sizeof(musicpal_audio_state));
431 s->irq = irq;
433 i2c = qemu_mallocz(sizeof(i2c_interface));
434 i2c->bus = i2c_init_bus();
435 i2c->current_addr = -1;
437 s->wm = i2c_create_slave(i2c->bus, "wm8750", MP_WM_ADDR);
438 wm8750_data_req_set(s->wm, audio_callback, s);
440 iomemtype = cpu_register_io_memory(0, musicpal_audio_readfn,
441 musicpal_audio_writefn, s);
442 cpu_register_physical_memory(MP_AUDIO_BASE, MP_AUDIO_SIZE, iomemtype);
444 qemu_register_reset(musicpal_audio_reset, s);
446 return i2c;
448 #else /* !HAS_AUDIO */
449 static i2c_interface *musicpal_audio_init(qemu_irq irq)
451 return NULL;
453 #endif /* !HAS_AUDIO */
455 /* Ethernet register offsets */
456 #define MP_ETH_SMIR 0x010
457 #define MP_ETH_PCXR 0x408
458 #define MP_ETH_SDCMR 0x448
459 #define MP_ETH_ICR 0x450
460 #define MP_ETH_IMR 0x458
461 #define MP_ETH_FRDP0 0x480
462 #define MP_ETH_FRDP1 0x484
463 #define MP_ETH_FRDP2 0x488
464 #define MP_ETH_FRDP3 0x48C
465 #define MP_ETH_CRDP0 0x4A0
466 #define MP_ETH_CRDP1 0x4A4
467 #define MP_ETH_CRDP2 0x4A8
468 #define MP_ETH_CRDP3 0x4AC
469 #define MP_ETH_CTDP0 0x4E0
470 #define MP_ETH_CTDP1 0x4E4
471 #define MP_ETH_CTDP2 0x4E8
472 #define MP_ETH_CTDP3 0x4EC
474 /* MII PHY access */
475 #define MP_ETH_SMIR_DATA 0x0000FFFF
476 #define MP_ETH_SMIR_ADDR 0x03FF0000
477 #define MP_ETH_SMIR_OPCODE (1 << 26) /* Read value */
478 #define MP_ETH_SMIR_RDVALID (1 << 27)
480 /* PHY registers */
481 #define MP_ETH_PHY1_BMSR 0x00210000
482 #define MP_ETH_PHY1_PHYSID1 0x00410000
483 #define MP_ETH_PHY1_PHYSID2 0x00610000
485 #define MP_PHY_BMSR_LINK 0x0004
486 #define MP_PHY_BMSR_AUTONEG 0x0008
488 #define MP_PHY_88E3015 0x01410E20
490 /* TX descriptor status */
491 #define MP_ETH_TX_OWN (1 << 31)
493 /* RX descriptor status */
494 #define MP_ETH_RX_OWN (1 << 31)
496 /* Interrupt cause/mask bits */
497 #define MP_ETH_IRQ_RX_BIT 0
498 #define MP_ETH_IRQ_RX (1 << MP_ETH_IRQ_RX_BIT)
499 #define MP_ETH_IRQ_TXHI_BIT 2
500 #define MP_ETH_IRQ_TXLO_BIT 3
502 /* Port config bits */
503 #define MP_ETH_PCXR_2BSM_BIT 28 /* 2-byte incoming suffix */
505 /* SDMA command bits */
506 #define MP_ETH_CMD_TXHI (1 << 23)
507 #define MP_ETH_CMD_TXLO (1 << 22)
509 typedef struct mv88w8618_tx_desc {
510 uint32_t cmdstat;
511 uint16_t res;
512 uint16_t bytes;
513 uint32_t buffer;
514 uint32_t next;
515 } mv88w8618_tx_desc;
517 typedef struct mv88w8618_rx_desc {
518 uint32_t cmdstat;
519 uint16_t bytes;
520 uint16_t buffer_size;
521 uint32_t buffer;
522 uint32_t next;
523 } mv88w8618_rx_desc;
525 typedef struct mv88w8618_eth_state {
526 SysBusDevice busdev;
527 qemu_irq irq;
528 uint32_t smir;
529 uint32_t icr;
530 uint32_t imr;
531 int mmio_index;
532 int vlan_header;
533 uint32_t tx_queue[2];
534 uint32_t rx_queue[4];
535 uint32_t frx_queue[4];
536 uint32_t cur_rx[4];
537 VLANClientState *vc;
538 } mv88w8618_eth_state;
540 static void eth_rx_desc_put(uint32_t addr, mv88w8618_rx_desc *desc)
542 cpu_to_le32s(&desc->cmdstat);
543 cpu_to_le16s(&desc->bytes);
544 cpu_to_le16s(&desc->buffer_size);
545 cpu_to_le32s(&desc->buffer);
546 cpu_to_le32s(&desc->next);
547 cpu_physical_memory_write(addr, (void *)desc, sizeof(*desc));
550 static void eth_rx_desc_get(uint32_t addr, mv88w8618_rx_desc *desc)
552 cpu_physical_memory_read(addr, (void *)desc, sizeof(*desc));
553 le32_to_cpus(&desc->cmdstat);
554 le16_to_cpus(&desc->bytes);
555 le16_to_cpus(&desc->buffer_size);
556 le32_to_cpus(&desc->buffer);
557 le32_to_cpus(&desc->next);
560 static int eth_can_receive(void *opaque)
562 return 1;
565 static void eth_receive(void *opaque, const uint8_t *buf, int size)
567 mv88w8618_eth_state *s = opaque;
568 uint32_t desc_addr;
569 mv88w8618_rx_desc desc;
570 int i;
572 for (i = 0; i < 4; i++) {
573 desc_addr = s->cur_rx[i];
574 if (!desc_addr)
575 continue;
576 do {
577 eth_rx_desc_get(desc_addr, &desc);
578 if ((desc.cmdstat & MP_ETH_RX_OWN) && desc.buffer_size >= size) {
579 cpu_physical_memory_write(desc.buffer + s->vlan_header,
580 buf, size);
581 desc.bytes = size + s->vlan_header;
582 desc.cmdstat &= ~MP_ETH_RX_OWN;
583 s->cur_rx[i] = desc.next;
585 s->icr |= MP_ETH_IRQ_RX;
586 if (s->icr & s->imr)
587 qemu_irq_raise(s->irq);
588 eth_rx_desc_put(desc_addr, &desc);
589 return;
591 desc_addr = desc.next;
592 } while (desc_addr != s->rx_queue[i]);
596 static void eth_tx_desc_put(uint32_t addr, mv88w8618_tx_desc *desc)
598 cpu_to_le32s(&desc->cmdstat);
599 cpu_to_le16s(&desc->res);
600 cpu_to_le16s(&desc->bytes);
601 cpu_to_le32s(&desc->buffer);
602 cpu_to_le32s(&desc->next);
603 cpu_physical_memory_write(addr, (void *)desc, sizeof(*desc));
606 static void eth_tx_desc_get(uint32_t addr, mv88w8618_tx_desc *desc)
608 cpu_physical_memory_read(addr, (void *)desc, sizeof(*desc));
609 le32_to_cpus(&desc->cmdstat);
610 le16_to_cpus(&desc->res);
611 le16_to_cpus(&desc->bytes);
612 le32_to_cpus(&desc->buffer);
613 le32_to_cpus(&desc->next);
616 static void eth_send(mv88w8618_eth_state *s, int queue_index)
618 uint32_t desc_addr = s->tx_queue[queue_index];
619 mv88w8618_tx_desc desc;
620 uint8_t buf[2048];
621 int len;
624 do {
625 eth_tx_desc_get(desc_addr, &desc);
626 if (desc.cmdstat & MP_ETH_TX_OWN) {
627 len = desc.bytes;
628 if (len < 2048) {
629 cpu_physical_memory_read(desc.buffer, buf, len);
630 qemu_send_packet(s->vc, buf, len);
632 desc.cmdstat &= ~MP_ETH_TX_OWN;
633 s->icr |= 1 << (MP_ETH_IRQ_TXLO_BIT - queue_index);
634 eth_tx_desc_put(desc_addr, &desc);
636 desc_addr = desc.next;
637 } while (desc_addr != s->tx_queue[queue_index]);
640 static uint32_t mv88w8618_eth_read(void *opaque, target_phys_addr_t offset)
642 mv88w8618_eth_state *s = opaque;
644 switch (offset) {
645 case MP_ETH_SMIR:
646 if (s->smir & MP_ETH_SMIR_OPCODE) {
647 switch (s->smir & MP_ETH_SMIR_ADDR) {
648 case MP_ETH_PHY1_BMSR:
649 return MP_PHY_BMSR_LINK | MP_PHY_BMSR_AUTONEG |
650 MP_ETH_SMIR_RDVALID;
651 case MP_ETH_PHY1_PHYSID1:
652 return (MP_PHY_88E3015 >> 16) | MP_ETH_SMIR_RDVALID;
653 case MP_ETH_PHY1_PHYSID2:
654 return (MP_PHY_88E3015 & 0xFFFF) | MP_ETH_SMIR_RDVALID;
655 default:
656 return MP_ETH_SMIR_RDVALID;
659 return 0;
661 case MP_ETH_ICR:
662 return s->icr;
664 case MP_ETH_IMR:
665 return s->imr;
667 case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
668 return s->frx_queue[(offset - MP_ETH_FRDP0)/4];
670 case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
671 return s->rx_queue[(offset - MP_ETH_CRDP0)/4];
673 case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
674 return s->tx_queue[(offset - MP_ETH_CTDP0)/4];
676 default:
677 return 0;
681 static void mv88w8618_eth_write(void *opaque, target_phys_addr_t offset,
682 uint32_t value)
684 mv88w8618_eth_state *s = opaque;
686 switch (offset) {
687 case MP_ETH_SMIR:
688 s->smir = value;
689 break;
691 case MP_ETH_PCXR:
692 s->vlan_header = ((value >> MP_ETH_PCXR_2BSM_BIT) & 1) * 2;
693 break;
695 case MP_ETH_SDCMR:
696 if (value & MP_ETH_CMD_TXHI)
697 eth_send(s, 1);
698 if (value & MP_ETH_CMD_TXLO)
699 eth_send(s, 0);
700 if (value & (MP_ETH_CMD_TXHI | MP_ETH_CMD_TXLO) && s->icr & s->imr)
701 qemu_irq_raise(s->irq);
702 break;
704 case MP_ETH_ICR:
705 s->icr &= value;
706 break;
708 case MP_ETH_IMR:
709 s->imr = value;
710 if (s->icr & s->imr)
711 qemu_irq_raise(s->irq);
712 break;
714 case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
715 s->frx_queue[(offset - MP_ETH_FRDP0)/4] = value;
716 break;
718 case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
719 s->rx_queue[(offset - MP_ETH_CRDP0)/4] =
720 s->cur_rx[(offset - MP_ETH_CRDP0)/4] = value;
721 break;
723 case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
724 s->tx_queue[(offset - MP_ETH_CTDP0)/4] = value;
725 break;
729 static CPUReadMemoryFunc *mv88w8618_eth_readfn[] = {
730 mv88w8618_eth_read,
731 mv88w8618_eth_read,
732 mv88w8618_eth_read
735 static CPUWriteMemoryFunc *mv88w8618_eth_writefn[] = {
736 mv88w8618_eth_write,
737 mv88w8618_eth_write,
738 mv88w8618_eth_write
741 static void eth_cleanup(VLANClientState *vc)
743 mv88w8618_eth_state *s = vc->opaque;
745 cpu_unregister_io_memory(s->mmio_index);
747 qemu_free(s);
750 static void mv88w8618_eth_init(SysBusDevice *dev)
752 mv88w8618_eth_state *s = FROM_SYSBUS(mv88w8618_eth_state, dev);
754 sysbus_init_irq(dev, &s->irq);
755 s->vc = qdev_get_vlan_client(&dev->qdev,
756 eth_receive, eth_can_receive,
757 eth_cleanup, s);
758 s->mmio_index = cpu_register_io_memory(0, mv88w8618_eth_readfn,
759 mv88w8618_eth_writefn, s);
760 sysbus_init_mmio(dev, MP_ETH_SIZE, s->mmio_index);
763 /* LCD register offsets */
764 #define MP_LCD_IRQCTRL 0x180
765 #define MP_LCD_IRQSTAT 0x184
766 #define MP_LCD_SPICTRL 0x1ac
767 #define MP_LCD_INST 0x1bc
768 #define MP_LCD_DATA 0x1c0
770 /* Mode magics */
771 #define MP_LCD_SPI_DATA 0x00100011
772 #define MP_LCD_SPI_CMD 0x00104011
773 #define MP_LCD_SPI_INVALID 0x00000000
775 /* Commmands */
776 #define MP_LCD_INST_SETPAGE0 0xB0
777 /* ... */
778 #define MP_LCD_INST_SETPAGE7 0xB7
780 #define MP_LCD_TEXTCOLOR 0xe0e0ff /* RRGGBB */
782 typedef struct musicpal_lcd_state {
783 SysBusDevice busdev;
784 uint32_t mode;
785 uint32_t irqctrl;
786 int page;
787 int page_off;
788 DisplayState *ds;
789 uint8_t video_ram[128*64/8];
790 } musicpal_lcd_state;
792 static uint32_t lcd_brightness;
794 static uint8_t scale_lcd_color(uint8_t col)
796 int tmp = col;
798 switch (lcd_brightness) {
799 case 0x00000007: /* 0 */
800 return 0;
802 case 0x00020000: /* 1 */
803 return (tmp * 1) / 7;
805 case 0x00020001: /* 2 */
806 return (tmp * 2) / 7;
808 case 0x00040000: /* 3 */
809 return (tmp * 3) / 7;
811 case 0x00010006: /* 4 */
812 return (tmp * 4) / 7;
814 case 0x00020005: /* 5 */
815 return (tmp * 5) / 7;
817 case 0x00040003: /* 6 */
818 return (tmp * 6) / 7;
820 case 0x00030004: /* 7 */
821 default:
822 return col;
826 #define SET_LCD_PIXEL(depth, type) \
827 static inline void glue(set_lcd_pixel, depth) \
828 (musicpal_lcd_state *s, int x, int y, type col) \
830 int dx, dy; \
831 type *pixel = &((type *) ds_get_data(s->ds))[(y * 128 * 3 + x) * 3]; \
833 for (dy = 0; dy < 3; dy++, pixel += 127 * 3) \
834 for (dx = 0; dx < 3; dx++, pixel++) \
835 *pixel = col; \
837 SET_LCD_PIXEL(8, uint8_t)
838 SET_LCD_PIXEL(16, uint16_t)
839 SET_LCD_PIXEL(32, uint32_t)
841 #include "pixel_ops.h"
843 static void lcd_refresh(void *opaque)
845 musicpal_lcd_state *s = opaque;
846 int x, y, col;
848 switch (ds_get_bits_per_pixel(s->ds)) {
849 case 0:
850 return;
851 #define LCD_REFRESH(depth, func) \
852 case depth: \
853 col = func(scale_lcd_color((MP_LCD_TEXTCOLOR >> 16) & 0xff), \
854 scale_lcd_color((MP_LCD_TEXTCOLOR >> 8) & 0xff), \
855 scale_lcd_color(MP_LCD_TEXTCOLOR & 0xff)); \
856 for (x = 0; x < 128; x++) \
857 for (y = 0; y < 64; y++) \
858 if (s->video_ram[x + (y/8)*128] & (1 << (y % 8))) \
859 glue(set_lcd_pixel, depth)(s, x, y, col); \
860 else \
861 glue(set_lcd_pixel, depth)(s, x, y, 0); \
862 break;
863 LCD_REFRESH(8, rgb_to_pixel8)
864 LCD_REFRESH(16, rgb_to_pixel16)
865 LCD_REFRESH(32, (is_surface_bgr(s->ds->surface) ?
866 rgb_to_pixel32bgr : rgb_to_pixel32))
867 default:
868 hw_error("unsupported colour depth %i\n",
869 ds_get_bits_per_pixel(s->ds));
872 dpy_update(s->ds, 0, 0, 128*3, 64*3);
875 static void lcd_invalidate(void *opaque)
879 static uint32_t musicpal_lcd_read(void *opaque, target_phys_addr_t offset)
881 musicpal_lcd_state *s = opaque;
883 switch (offset) {
884 case MP_LCD_IRQCTRL:
885 return s->irqctrl;
887 default:
888 return 0;
892 static void musicpal_lcd_write(void *opaque, target_phys_addr_t offset,
893 uint32_t value)
895 musicpal_lcd_state *s = opaque;
897 switch (offset) {
898 case MP_LCD_IRQCTRL:
899 s->irqctrl = value;
900 break;
902 case MP_LCD_SPICTRL:
903 if (value == MP_LCD_SPI_DATA || value == MP_LCD_SPI_CMD)
904 s->mode = value;
905 else
906 s->mode = MP_LCD_SPI_INVALID;
907 break;
909 case MP_LCD_INST:
910 if (value >= MP_LCD_INST_SETPAGE0 && value <= MP_LCD_INST_SETPAGE7) {
911 s->page = value - MP_LCD_INST_SETPAGE0;
912 s->page_off = 0;
914 break;
916 case MP_LCD_DATA:
917 if (s->mode == MP_LCD_SPI_CMD) {
918 if (value >= MP_LCD_INST_SETPAGE0 &&
919 value <= MP_LCD_INST_SETPAGE7) {
920 s->page = value - MP_LCD_INST_SETPAGE0;
921 s->page_off = 0;
923 } else if (s->mode == MP_LCD_SPI_DATA) {
924 s->video_ram[s->page*128 + s->page_off] = value;
925 s->page_off = (s->page_off + 1) & 127;
927 break;
931 static CPUReadMemoryFunc *musicpal_lcd_readfn[] = {
932 musicpal_lcd_read,
933 musicpal_lcd_read,
934 musicpal_lcd_read
937 static CPUWriteMemoryFunc *musicpal_lcd_writefn[] = {
938 musicpal_lcd_write,
939 musicpal_lcd_write,
940 musicpal_lcd_write
943 static void musicpal_lcd_init(SysBusDevice *dev)
945 musicpal_lcd_state *s = FROM_SYSBUS(musicpal_lcd_state, dev);
946 int iomemtype;
948 iomemtype = cpu_register_io_memory(0, musicpal_lcd_readfn,
949 musicpal_lcd_writefn, s);
950 sysbus_init_mmio(dev, MP_LCD_SIZE, iomemtype);
951 cpu_register_physical_memory(MP_LCD_BASE, MP_LCD_SIZE, iomemtype);
953 s->ds = graphic_console_init(lcd_refresh, lcd_invalidate,
954 NULL, NULL, s);
955 qemu_console_resize(s->ds, 128*3, 64*3);
958 /* PIC register offsets */
959 #define MP_PIC_STATUS 0x00
960 #define MP_PIC_ENABLE_SET 0x08
961 #define MP_PIC_ENABLE_CLR 0x0C
963 typedef struct mv88w8618_pic_state
965 SysBusDevice busdev;
966 uint32_t level;
967 uint32_t enabled;
968 qemu_irq parent_irq;
969 } mv88w8618_pic_state;
971 static void mv88w8618_pic_update(mv88w8618_pic_state *s)
973 qemu_set_irq(s->parent_irq, (s->level & s->enabled));
976 static void mv88w8618_pic_set_irq(void *opaque, int irq, int level)
978 mv88w8618_pic_state *s = opaque;
980 if (level)
981 s->level |= 1 << irq;
982 else
983 s->level &= ~(1 << irq);
984 mv88w8618_pic_update(s);
987 static uint32_t mv88w8618_pic_read(void *opaque, target_phys_addr_t offset)
989 mv88w8618_pic_state *s = opaque;
991 switch (offset) {
992 case MP_PIC_STATUS:
993 return s->level & s->enabled;
995 default:
996 return 0;
1000 static void mv88w8618_pic_write(void *opaque, target_phys_addr_t offset,
1001 uint32_t value)
1003 mv88w8618_pic_state *s = opaque;
1005 switch (offset) {
1006 case MP_PIC_ENABLE_SET:
1007 s->enabled |= value;
1008 break;
1010 case MP_PIC_ENABLE_CLR:
1011 s->enabled &= ~value;
1012 s->level &= ~value;
1013 break;
1015 mv88w8618_pic_update(s);
1018 static void mv88w8618_pic_reset(void *opaque)
1020 mv88w8618_pic_state *s = opaque;
1022 s->level = 0;
1023 s->enabled = 0;
1026 static CPUReadMemoryFunc *mv88w8618_pic_readfn[] = {
1027 mv88w8618_pic_read,
1028 mv88w8618_pic_read,
1029 mv88w8618_pic_read
1032 static CPUWriteMemoryFunc *mv88w8618_pic_writefn[] = {
1033 mv88w8618_pic_write,
1034 mv88w8618_pic_write,
1035 mv88w8618_pic_write
1038 static void mv88w8618_pic_init(SysBusDevice *dev)
1040 mv88w8618_pic_state *s = FROM_SYSBUS(mv88w8618_pic_state, dev);
1041 int iomemtype;
1043 qdev_init_irq_sink(&dev->qdev, mv88w8618_pic_set_irq, 32);
1044 sysbus_init_irq(dev, &s->parent_irq);
1045 iomemtype = cpu_register_io_memory(0, mv88w8618_pic_readfn,
1046 mv88w8618_pic_writefn, s);
1047 sysbus_init_mmio(dev, MP_PIC_SIZE, iomemtype);
1049 qemu_register_reset(mv88w8618_pic_reset, s);
1052 /* PIT register offsets */
1053 #define MP_PIT_TIMER1_LENGTH 0x00
1054 /* ... */
1055 #define MP_PIT_TIMER4_LENGTH 0x0C
1056 #define MP_PIT_CONTROL 0x10
1057 #define MP_PIT_TIMER1_VALUE 0x14
1058 /* ... */
1059 #define MP_PIT_TIMER4_VALUE 0x20
1060 #define MP_BOARD_RESET 0x34
1062 /* Magic board reset value (probably some watchdog behind it) */
1063 #define MP_BOARD_RESET_MAGIC 0x10000
1065 typedef struct mv88w8618_timer_state {
1066 ptimer_state *ptimer;
1067 uint32_t limit;
1068 int freq;
1069 qemu_irq irq;
1070 } mv88w8618_timer_state;
1072 typedef struct mv88w8618_pit_state {
1073 SysBusDevice busdev;
1074 mv88w8618_timer_state timer[4];
1075 uint32_t control;
1076 } mv88w8618_pit_state;
1078 static void mv88w8618_timer_tick(void *opaque)
1080 mv88w8618_timer_state *s = opaque;
1082 qemu_irq_raise(s->irq);
1085 static void mv88w8618_timer_init(SysBusDevice *dev, mv88w8618_timer_state *s,
1086 uint32_t freq)
1088 QEMUBH *bh;
1090 sysbus_init_irq(dev, &s->irq);
1091 s->freq = freq;
1093 bh = qemu_bh_new(mv88w8618_timer_tick, s);
1094 s->ptimer = ptimer_init(bh);
1097 static uint32_t mv88w8618_pit_read(void *opaque, target_phys_addr_t offset)
1099 mv88w8618_pit_state *s = opaque;
1100 mv88w8618_timer_state *t;
1102 switch (offset) {
1103 case MP_PIT_TIMER1_VALUE ... MP_PIT_TIMER4_VALUE:
1104 t = &s->timer[(offset-MP_PIT_TIMER1_VALUE) >> 2];
1105 return ptimer_get_count(t->ptimer);
1107 default:
1108 return 0;
1112 static void mv88w8618_pit_write(void *opaque, target_phys_addr_t offset,
1113 uint32_t value)
1115 mv88w8618_pit_state *s = opaque;
1116 mv88w8618_timer_state *t;
1117 int i;
1119 switch (offset) {
1120 case MP_PIT_TIMER1_LENGTH ... MP_PIT_TIMER4_LENGTH:
1121 t = &s->timer[offset >> 2];
1122 t->limit = value;
1123 ptimer_set_limit(t->ptimer, t->limit, 1);
1124 break;
1126 case MP_PIT_CONTROL:
1127 for (i = 0; i < 4; i++) {
1128 if (value & 0xf) {
1129 t = &s->timer[i];
1130 ptimer_set_limit(t->ptimer, t->limit, 0);
1131 ptimer_set_freq(t->ptimer, t->freq);
1132 ptimer_run(t->ptimer, 0);
1134 value >>= 4;
1136 break;
1138 case MP_BOARD_RESET:
1139 if (value == MP_BOARD_RESET_MAGIC)
1140 qemu_system_reset_request();
1141 break;
1145 static CPUReadMemoryFunc *mv88w8618_pit_readfn[] = {
1146 mv88w8618_pit_read,
1147 mv88w8618_pit_read,
1148 mv88w8618_pit_read
1151 static CPUWriteMemoryFunc *mv88w8618_pit_writefn[] = {
1152 mv88w8618_pit_write,
1153 mv88w8618_pit_write,
1154 mv88w8618_pit_write
1157 static void mv88w8618_pit_init(SysBusDevice *dev)
1159 int iomemtype;
1160 mv88w8618_pit_state *s = FROM_SYSBUS(mv88w8618_pit_state, dev);
1161 int i;
1163 /* Letting them all run at 1 MHz is likely just a pragmatic
1164 * simplification. */
1165 for (i = 0; i < 4; i++) {
1166 mv88w8618_timer_init(dev, &s->timer[i], 1000000);
1169 iomemtype = cpu_register_io_memory(0, mv88w8618_pit_readfn,
1170 mv88w8618_pit_writefn, s);
1171 sysbus_init_mmio(dev, MP_PIT_SIZE, iomemtype);
1174 /* Flash config register offsets */
1175 #define MP_FLASHCFG_CFGR0 0x04
1177 typedef struct mv88w8618_flashcfg_state {
1178 SysBusDevice busdev;
1179 uint32_t cfgr0;
1180 } mv88w8618_flashcfg_state;
1182 static uint32_t mv88w8618_flashcfg_read(void *opaque,
1183 target_phys_addr_t offset)
1185 mv88w8618_flashcfg_state *s = opaque;
1187 switch (offset) {
1188 case MP_FLASHCFG_CFGR0:
1189 return s->cfgr0;
1191 default:
1192 return 0;
1196 static void mv88w8618_flashcfg_write(void *opaque, target_phys_addr_t offset,
1197 uint32_t value)
1199 mv88w8618_flashcfg_state *s = opaque;
1201 switch (offset) {
1202 case MP_FLASHCFG_CFGR0:
1203 s->cfgr0 = value;
1204 break;
1208 static CPUReadMemoryFunc *mv88w8618_flashcfg_readfn[] = {
1209 mv88w8618_flashcfg_read,
1210 mv88w8618_flashcfg_read,
1211 mv88w8618_flashcfg_read
1214 static CPUWriteMemoryFunc *mv88w8618_flashcfg_writefn[] = {
1215 mv88w8618_flashcfg_write,
1216 mv88w8618_flashcfg_write,
1217 mv88w8618_flashcfg_write
1220 static void mv88w8618_flashcfg_init(SysBusDevice *dev)
1222 int iomemtype;
1223 mv88w8618_flashcfg_state *s = FROM_SYSBUS(mv88w8618_flashcfg_state, dev);
1225 s->cfgr0 = 0xfffe4285; /* Default as set by U-Boot for 8 MB flash */
1226 iomemtype = cpu_register_io_memory(0, mv88w8618_flashcfg_readfn,
1227 mv88w8618_flashcfg_writefn, s);
1228 sysbus_init_mmio(dev, MP_FLASHCFG_SIZE, iomemtype);
1231 /* Misc register offsets */
1232 #define MP_MISC_BOARD_REVISION 0x18
1234 #define MP_BOARD_REVISION 0x31
1236 static uint32_t musicpal_misc_read(void *opaque, target_phys_addr_t offset)
1238 switch (offset) {
1239 case MP_MISC_BOARD_REVISION:
1240 return MP_BOARD_REVISION;
1242 default:
1243 return 0;
1247 static void musicpal_misc_write(void *opaque, target_phys_addr_t offset,
1248 uint32_t value)
1252 static CPUReadMemoryFunc *musicpal_misc_readfn[] = {
1253 musicpal_misc_read,
1254 musicpal_misc_read,
1255 musicpal_misc_read,
1258 static CPUWriteMemoryFunc *musicpal_misc_writefn[] = {
1259 musicpal_misc_write,
1260 musicpal_misc_write,
1261 musicpal_misc_write,
1264 static void musicpal_misc_init(void)
1266 int iomemtype;
1268 iomemtype = cpu_register_io_memory(0, musicpal_misc_readfn,
1269 musicpal_misc_writefn, NULL);
1270 cpu_register_physical_memory(MP_MISC_BASE, MP_MISC_SIZE, iomemtype);
1273 /* WLAN register offsets */
1274 #define MP_WLAN_MAGIC1 0x11c
1275 #define MP_WLAN_MAGIC2 0x124
1277 static uint32_t mv88w8618_wlan_read(void *opaque, target_phys_addr_t offset)
1279 switch (offset) {
1280 /* Workaround to allow loading the binary-only wlandrv.ko crap
1281 * from the original Freecom firmware. */
1282 case MP_WLAN_MAGIC1:
1283 return ~3;
1284 case MP_WLAN_MAGIC2:
1285 return -1;
1287 default:
1288 return 0;
1292 static void mv88w8618_wlan_write(void *opaque, target_phys_addr_t offset,
1293 uint32_t value)
1297 static CPUReadMemoryFunc *mv88w8618_wlan_readfn[] = {
1298 mv88w8618_wlan_read,
1299 mv88w8618_wlan_read,
1300 mv88w8618_wlan_read,
1303 static CPUWriteMemoryFunc *mv88w8618_wlan_writefn[] = {
1304 mv88w8618_wlan_write,
1305 mv88w8618_wlan_write,
1306 mv88w8618_wlan_write,
1309 static void mv88w8618_wlan_init(SysBusDevice *dev)
1311 int iomemtype;
1313 iomemtype = cpu_register_io_memory(0, mv88w8618_wlan_readfn,
1314 mv88w8618_wlan_writefn, NULL);
1315 sysbus_init_mmio(dev, MP_WLAN_SIZE, iomemtype);
1318 /* GPIO register offsets */
1319 #define MP_GPIO_OE_LO 0x008
1320 #define MP_GPIO_OUT_LO 0x00c
1321 #define MP_GPIO_IN_LO 0x010
1322 #define MP_GPIO_ISR_LO 0x020
1323 #define MP_GPIO_OE_HI 0x508
1324 #define MP_GPIO_OUT_HI 0x50c
1325 #define MP_GPIO_IN_HI 0x510
1326 #define MP_GPIO_ISR_HI 0x520
1328 /* GPIO bits & masks */
1329 #define MP_GPIO_WHEEL_VOL (1 << 8)
1330 #define MP_GPIO_WHEEL_VOL_INV (1 << 9)
1331 #define MP_GPIO_WHEEL_NAV (1 << 10)
1332 #define MP_GPIO_WHEEL_NAV_INV (1 << 11)
1333 #define MP_GPIO_LCD_BRIGHTNESS 0x00070000
1334 #define MP_GPIO_BTN_FAVORITS (1 << 19)
1335 #define MP_GPIO_BTN_MENU (1 << 20)
1336 #define MP_GPIO_BTN_VOLUME (1 << 21)
1337 #define MP_GPIO_BTN_NAVIGATION (1 << 22)
1338 #define MP_GPIO_I2C_DATA_BIT 29
1339 #define MP_GPIO_I2C_DATA (1 << MP_GPIO_I2C_DATA_BIT)
1340 #define MP_GPIO_I2C_CLOCK_BIT 30
1342 /* LCD brightness bits in GPIO_OE_HI */
1343 #define MP_OE_LCD_BRIGHTNESS 0x0007
1345 static uint32_t musicpal_gpio_read(void *opaque, target_phys_addr_t offset)
1347 switch (offset) {
1348 case MP_GPIO_OE_HI: /* used for LCD brightness control */
1349 return lcd_brightness & MP_OE_LCD_BRIGHTNESS;
1351 case MP_GPIO_OUT_LO:
1352 return gpio_out_state & 0xFFFF;
1353 case MP_GPIO_OUT_HI:
1354 return gpio_out_state >> 16;
1356 case MP_GPIO_IN_LO:
1357 return gpio_in_state & 0xFFFF;
1358 case MP_GPIO_IN_HI:
1359 /* Update received I2C data */
1360 gpio_in_state = (gpio_in_state & ~MP_GPIO_I2C_DATA) |
1361 (i2c_get_data(mixer_i2c) << MP_GPIO_I2C_DATA_BIT);
1362 return gpio_in_state >> 16;
1364 case MP_GPIO_ISR_LO:
1365 return gpio_isr & 0xFFFF;
1366 case MP_GPIO_ISR_HI:
1367 return gpio_isr >> 16;
1369 default:
1370 return 0;
1374 static void musicpal_gpio_write(void *opaque, target_phys_addr_t offset,
1375 uint32_t value)
1377 switch (offset) {
1378 case MP_GPIO_OE_HI: /* used for LCD brightness control */
1379 lcd_brightness = (lcd_brightness & MP_GPIO_LCD_BRIGHTNESS) |
1380 (value & MP_OE_LCD_BRIGHTNESS);
1381 break;
1383 case MP_GPIO_OUT_LO:
1384 gpio_out_state = (gpio_out_state & 0xFFFF0000) | (value & 0xFFFF);
1385 break;
1386 case MP_GPIO_OUT_HI:
1387 gpio_out_state = (gpio_out_state & 0xFFFF) | (value << 16);
1388 lcd_brightness = (lcd_brightness & 0xFFFF) |
1389 (gpio_out_state & MP_GPIO_LCD_BRIGHTNESS);
1390 i2c_state_update(mixer_i2c,
1391 (gpio_out_state >> MP_GPIO_I2C_DATA_BIT) & 1,
1392 (gpio_out_state >> MP_GPIO_I2C_CLOCK_BIT) & 1);
1393 break;
1398 static CPUReadMemoryFunc *musicpal_gpio_readfn[] = {
1399 musicpal_gpio_read,
1400 musicpal_gpio_read,
1401 musicpal_gpio_read,
1404 static CPUWriteMemoryFunc *musicpal_gpio_writefn[] = {
1405 musicpal_gpio_write,
1406 musicpal_gpio_write,
1407 musicpal_gpio_write,
1410 static void musicpal_gpio_init(void)
1412 int iomemtype;
1414 iomemtype = cpu_register_io_memory(0, musicpal_gpio_readfn,
1415 musicpal_gpio_writefn, NULL);
1416 cpu_register_physical_memory(MP_GPIO_BASE, MP_GPIO_SIZE, iomemtype);
1419 /* Keyboard codes & masks */
1420 #define KEY_RELEASED 0x80
1421 #define KEY_CODE 0x7f
1423 #define KEYCODE_TAB 0x0f
1424 #define KEYCODE_ENTER 0x1c
1425 #define KEYCODE_F 0x21
1426 #define KEYCODE_M 0x32
1428 #define KEYCODE_EXTENDED 0xe0
1429 #define KEYCODE_UP 0x48
1430 #define KEYCODE_DOWN 0x50
1431 #define KEYCODE_LEFT 0x4b
1432 #define KEYCODE_RIGHT 0x4d
1434 static void musicpal_key_event(void *opaque, int keycode)
1436 qemu_irq irq = opaque;
1437 uint32_t event = 0;
1438 static int kbd_extended;
1440 if (keycode == KEYCODE_EXTENDED) {
1441 kbd_extended = 1;
1442 return;
1445 if (kbd_extended)
1446 switch (keycode & KEY_CODE) {
1447 case KEYCODE_UP:
1448 event = MP_GPIO_WHEEL_NAV | MP_GPIO_WHEEL_NAV_INV;
1449 break;
1451 case KEYCODE_DOWN:
1452 event = MP_GPIO_WHEEL_NAV;
1453 break;
1455 case KEYCODE_LEFT:
1456 event = MP_GPIO_WHEEL_VOL | MP_GPIO_WHEEL_VOL_INV;
1457 break;
1459 case KEYCODE_RIGHT:
1460 event = MP_GPIO_WHEEL_VOL;
1461 break;
1463 else {
1464 switch (keycode & KEY_CODE) {
1465 case KEYCODE_F:
1466 event = MP_GPIO_BTN_FAVORITS;
1467 break;
1469 case KEYCODE_TAB:
1470 event = MP_GPIO_BTN_VOLUME;
1471 break;
1473 case KEYCODE_ENTER:
1474 event = MP_GPIO_BTN_NAVIGATION;
1475 break;
1477 case KEYCODE_M:
1478 event = MP_GPIO_BTN_MENU;
1479 break;
1481 /* Do not repeat already pressed buttons */
1482 if (!(keycode & KEY_RELEASED) && !(gpio_in_state & event))
1483 event = 0;
1486 if (event) {
1487 if (keycode & KEY_RELEASED) {
1488 gpio_in_state |= event;
1489 } else {
1490 gpio_in_state &= ~event;
1491 gpio_isr = event;
1492 qemu_irq_raise(irq);
1496 kbd_extended = 0;
1499 static struct arm_boot_info musicpal_binfo = {
1500 .loader_start = 0x0,
1501 .board_id = 0x20e,
1504 static void musicpal_init(ram_addr_t ram_size,
1505 const char *boot_device,
1506 const char *kernel_filename, const char *kernel_cmdline,
1507 const char *initrd_filename, const char *cpu_model)
1509 CPUState *env;
1510 qemu_irq *cpu_pic;
1511 qemu_irq pic[32];
1512 DeviceState *dev;
1513 int i;
1514 int index;
1515 unsigned long flash_size;
1517 if (!cpu_model)
1518 cpu_model = "arm926";
1520 env = cpu_init(cpu_model);
1521 if (!env) {
1522 fprintf(stderr, "Unable to find CPU definition\n");
1523 exit(1);
1525 cpu_pic = arm_pic_init_cpu(env);
1527 /* For now we use a fixed - the original - RAM size */
1528 cpu_register_physical_memory(0, MP_RAM_DEFAULT_SIZE,
1529 qemu_ram_alloc(MP_RAM_DEFAULT_SIZE));
1531 sram_off = qemu_ram_alloc(MP_SRAM_SIZE);
1532 cpu_register_physical_memory(MP_SRAM_BASE, MP_SRAM_SIZE, sram_off);
1534 dev = sysbus_create_simple("mv88w8618_pic", MP_PIC_BASE,
1535 cpu_pic[ARM_PIC_CPU_IRQ]);
1536 for (i = 0; i < 32; i++) {
1537 pic[i] = qdev_get_irq_sink(dev, i);
1539 sysbus_create_varargs("mv88w8618_pit", MP_PIT_BASE, pic[MP_TIMER1_IRQ],
1540 pic[MP_TIMER2_IRQ], pic[MP_TIMER3_IRQ],
1541 pic[MP_TIMER4_IRQ], NULL);
1543 if (serial_hds[0])
1544 serial_mm_init(MP_UART1_BASE, 2, pic[MP_UART1_IRQ], 1825000,
1545 serial_hds[0], 1);
1546 if (serial_hds[1])
1547 serial_mm_init(MP_UART2_BASE, 2, pic[MP_UART2_IRQ], 1825000,
1548 serial_hds[1], 1);
1550 /* Register flash */
1551 index = drive_get_index(IF_PFLASH, 0, 0);
1552 if (index != -1) {
1553 flash_size = bdrv_getlength(drives_table[index].bdrv);
1554 if (flash_size != 8*1024*1024 && flash_size != 16*1024*1024 &&
1555 flash_size != 32*1024*1024) {
1556 fprintf(stderr, "Invalid flash image size\n");
1557 exit(1);
1561 * The original U-Boot accesses the flash at 0xFE000000 instead of
1562 * 0xFF800000 (if there is 8 MB flash). So remap flash access if the
1563 * image is smaller than 32 MB.
1565 pflash_cfi02_register(0-MP_FLASH_SIZE_MAX, qemu_ram_alloc(flash_size),
1566 drives_table[index].bdrv, 0x10000,
1567 (flash_size + 0xffff) >> 16,
1568 MP_FLASH_SIZE_MAX / flash_size,
1569 2, 0x00BF, 0x236D, 0x0000, 0x0000,
1570 0x5555, 0x2AAA);
1572 sysbus_create_simple("mv88w8618_flashcfg", MP_FLASHCFG_BASE, NULL);
1574 sysbus_create_simple("musicpal_lcd", MP_LCD_BASE, NULL);
1576 qemu_add_kbd_event_handler(musicpal_key_event, pic[MP_GPIO_IRQ]);
1578 qemu_check_nic_model(&nd_table[0], "mv88w8618");
1579 dev = qdev_create(NULL, "mv88w8618_eth");
1580 qdev_set_netdev(dev, &nd_table[0]);
1581 qdev_init(dev);
1582 sysbus_mmio_map(sysbus_from_qdev(dev), 0, MP_ETH_BASE);
1583 sysbus_connect_irq(sysbus_from_qdev(dev), 0, pic[MP_ETH_IRQ]);
1585 mixer_i2c = musicpal_audio_init(pic[MP_AUDIO_IRQ]);
1587 sysbus_create_simple("mv88w8618_wlan", MP_WLAN_BASE, NULL);
1589 musicpal_misc_init();
1590 musicpal_gpio_init();
1592 musicpal_binfo.ram_size = MP_RAM_DEFAULT_SIZE;
1593 musicpal_binfo.kernel_filename = kernel_filename;
1594 musicpal_binfo.kernel_cmdline = kernel_cmdline;
1595 musicpal_binfo.initrd_filename = initrd_filename;
1596 arm_load_kernel(env, &musicpal_binfo);
1599 static QEMUMachine musicpal_machine = {
1600 .name = "musicpal",
1601 .desc = "Marvell 88w8618 / MusicPal (ARM926EJ-S)",
1602 .init = musicpal_init,
1605 static void musicpal_machine_init(void)
1607 qemu_register_machine(&musicpal_machine);
1610 machine_init(musicpal_machine_init);
1612 static void musicpal_register_devices(void)
1614 sysbus_register_dev("mv88w8618_pic", sizeof(mv88w8618_pic_state),
1615 mv88w8618_pic_init);
1616 sysbus_register_dev("mv88w8618_pit", sizeof(mv88w8618_pit_state),
1617 mv88w8618_pit_init);
1618 sysbus_register_dev("mv88w8618_flashcfg", sizeof(mv88w8618_flashcfg_state),
1619 mv88w8618_flashcfg_init);
1620 sysbus_register_dev("mv88w8618_eth", sizeof(mv88w8618_eth_state),
1621 mv88w8618_eth_init);
1622 sysbus_register_dev("mv88w8618_wlan", sizeof(SysBusDevice),
1623 mv88w8618_wlan_init);
1624 sysbus_register_dev("musicpal_lcd", sizeof(musicpal_lcd_state),
1625 musicpal_lcd_init);
1628 device_init(musicpal_register_devices)