xen: Prepare xendev qtail to be shared with frontends
[qemu.git] / cputlb.c
blobcc4da4d7ebc943752b214c72a493f5b25f96ed17
1 /*
2 * Common CPU TLB handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "qemu/osdep.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "exec/memory.h"
24 #include "exec/address-spaces.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/cputlb.h"
27 #include "exec/memory-internal.h"
28 #include "exec/ram_addr.h"
29 #include "exec/exec-all.h"
30 #include "tcg/tcg.h"
31 #include "qemu/error-report.h"
32 #include "exec/log.h"
33 #include "exec/helper-proto.h"
34 #include "qemu/atomic.h"
36 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
37 /* #define DEBUG_TLB */
38 /* #define DEBUG_TLB_LOG */
40 #ifdef DEBUG_TLB
41 # define DEBUG_TLB_GATE 1
42 # ifdef DEBUG_TLB_LOG
43 # define DEBUG_TLB_LOG_GATE 1
44 # else
45 # define DEBUG_TLB_LOG_GATE 0
46 # endif
47 #else
48 # define DEBUG_TLB_GATE 0
49 # define DEBUG_TLB_LOG_GATE 0
50 #endif
52 #define tlb_debug(fmt, ...) do { \
53 if (DEBUG_TLB_LOG_GATE) { \
54 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
55 ## __VA_ARGS__); \
56 } else if (DEBUG_TLB_GATE) { \
57 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
58 } \
59 } while (0)
61 /* statistics */
62 int tlb_flush_count;
64 /* NOTE:
65 * If flush_global is true (the usual case), flush all tlb entries.
66 * If flush_global is false, flush (at least) all tlb entries not
67 * marked global.
69 * Since QEMU doesn't currently implement a global/not-global flag
70 * for tlb entries, at the moment tlb_flush() will also flush all
71 * tlb entries in the flush_global == false case. This is OK because
72 * CPU architectures generally permit an implementation to drop
73 * entries from the TLB at any time, so flushing more entries than
74 * required is only an efficiency issue, not a correctness issue.
76 void tlb_flush(CPUState *cpu, int flush_global)
78 CPUArchState *env = cpu->env_ptr;
80 tlb_debug("(%d)\n", flush_global);
82 memset(env->tlb_table, -1, sizeof(env->tlb_table));
83 memset(env->tlb_v_table, -1, sizeof(env->tlb_v_table));
84 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
86 env->vtlb_index = 0;
87 env->tlb_flush_addr = -1;
88 env->tlb_flush_mask = 0;
89 tlb_flush_count++;
92 static inline void v_tlb_flush_by_mmuidx(CPUState *cpu, va_list argp)
94 CPUArchState *env = cpu->env_ptr;
96 tlb_debug("start\n");
98 for (;;) {
99 int mmu_idx = va_arg(argp, int);
101 if (mmu_idx < 0) {
102 break;
105 tlb_debug("%d\n", mmu_idx);
107 memset(env->tlb_table[mmu_idx], -1, sizeof(env->tlb_table[0]));
108 memset(env->tlb_v_table[mmu_idx], -1, sizeof(env->tlb_v_table[0]));
111 memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
114 void tlb_flush_by_mmuidx(CPUState *cpu, ...)
116 va_list argp;
117 va_start(argp, cpu);
118 v_tlb_flush_by_mmuidx(cpu, argp);
119 va_end(argp);
122 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
124 if (addr == (tlb_entry->addr_read &
125 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
126 addr == (tlb_entry->addr_write &
127 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
128 addr == (tlb_entry->addr_code &
129 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
130 memset(tlb_entry, -1, sizeof(*tlb_entry));
134 void tlb_flush_page(CPUState *cpu, target_ulong addr)
136 CPUArchState *env = cpu->env_ptr;
137 int i;
138 int mmu_idx;
140 tlb_debug("page :" TARGET_FMT_lx "\n", addr);
142 /* Check if we need to flush due to large pages. */
143 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
144 tlb_debug("forcing full flush ("
145 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
146 env->tlb_flush_addr, env->tlb_flush_mask);
148 tlb_flush(cpu, 1);
149 return;
152 addr &= TARGET_PAGE_MASK;
153 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
154 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
155 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
158 /* check whether there are entries that need to be flushed in the vtlb */
159 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
160 int k;
161 for (k = 0; k < CPU_VTLB_SIZE; k++) {
162 tlb_flush_entry(&env->tlb_v_table[mmu_idx][k], addr);
166 tb_flush_jmp_cache(cpu, addr);
169 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, ...)
171 CPUArchState *env = cpu->env_ptr;
172 int i, k;
173 va_list argp;
175 va_start(argp, addr);
177 tlb_debug("addr "TARGET_FMT_lx"\n", addr);
179 /* Check if we need to flush due to large pages. */
180 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
181 tlb_debug("forced full flush ("
182 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
183 env->tlb_flush_addr, env->tlb_flush_mask);
185 v_tlb_flush_by_mmuidx(cpu, argp);
186 va_end(argp);
187 return;
190 addr &= TARGET_PAGE_MASK;
191 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
193 for (;;) {
194 int mmu_idx = va_arg(argp, int);
196 if (mmu_idx < 0) {
197 break;
200 tlb_debug("idx %d\n", mmu_idx);
202 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
204 /* check whether there are vltb entries that need to be flushed */
205 for (k = 0; k < CPU_VTLB_SIZE; k++) {
206 tlb_flush_entry(&env->tlb_v_table[mmu_idx][k], addr);
209 va_end(argp);
211 tb_flush_jmp_cache(cpu, addr);
214 /* update the TLBs so that writes to code in the virtual page 'addr'
215 can be detected */
216 void tlb_protect_code(ram_addr_t ram_addr)
218 cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE,
219 DIRTY_MEMORY_CODE);
222 /* update the TLB so that writes in physical page 'phys_addr' are no longer
223 tested for self modifying code */
224 void tlb_unprotect_code(ram_addr_t ram_addr)
226 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
229 static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe)
231 return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0;
234 void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
235 uintptr_t length)
237 uintptr_t addr;
239 if (tlb_is_dirty_ram(tlb_entry)) {
240 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
241 if ((addr - start) < length) {
242 tlb_entry->addr_write |= TLB_NOTDIRTY;
247 static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
249 ram_addr_t ram_addr;
251 ram_addr = qemu_ram_addr_from_host(ptr);
252 if (ram_addr == RAM_ADDR_INVALID) {
253 fprintf(stderr, "Bad ram pointer %p\n", ptr);
254 abort();
256 return ram_addr;
259 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
261 CPUArchState *env;
263 int mmu_idx;
265 env = cpu->env_ptr;
266 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
267 unsigned int i;
269 for (i = 0; i < CPU_TLB_SIZE; i++) {
270 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
271 start1, length);
274 for (i = 0; i < CPU_VTLB_SIZE; i++) {
275 tlb_reset_dirty_range(&env->tlb_v_table[mmu_idx][i],
276 start1, length);
281 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
283 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
284 tlb_entry->addr_write = vaddr;
288 /* update the TLB corresponding to virtual page vaddr
289 so that it is no longer dirty */
290 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
292 CPUArchState *env = cpu->env_ptr;
293 int i;
294 int mmu_idx;
296 vaddr &= TARGET_PAGE_MASK;
297 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
298 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
299 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
302 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
303 int k;
304 for (k = 0; k < CPU_VTLB_SIZE; k++) {
305 tlb_set_dirty1(&env->tlb_v_table[mmu_idx][k], vaddr);
310 /* Our TLB does not support large pages, so remember the area covered by
311 large pages and trigger a full TLB flush if these are invalidated. */
312 static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
313 target_ulong size)
315 target_ulong mask = ~(size - 1);
317 if (env->tlb_flush_addr == (target_ulong)-1) {
318 env->tlb_flush_addr = vaddr & mask;
319 env->tlb_flush_mask = mask;
320 return;
322 /* Extend the existing region to include the new page.
323 This is a compromise between unnecessary flushes and the cost
324 of maintaining a full variable size TLB. */
325 mask &= env->tlb_flush_mask;
326 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
327 mask <<= 1;
329 env->tlb_flush_addr &= mask;
330 env->tlb_flush_mask = mask;
333 /* Add a new TLB entry. At most one entry for a given virtual address
334 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
335 * supplied size is only used by tlb_flush_page.
337 * Called from TCG-generated code, which is under an RCU read-side
338 * critical section.
340 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
341 hwaddr paddr, MemTxAttrs attrs, int prot,
342 int mmu_idx, target_ulong size)
344 CPUArchState *env = cpu->env_ptr;
345 MemoryRegionSection *section;
346 unsigned int index;
347 target_ulong address;
348 target_ulong code_address;
349 uintptr_t addend;
350 CPUTLBEntry *te;
351 hwaddr iotlb, xlat, sz;
352 unsigned vidx = env->vtlb_index++ % CPU_VTLB_SIZE;
353 int asidx = cpu_asidx_from_attrs(cpu, attrs);
355 assert(size >= TARGET_PAGE_SIZE);
356 if (size != TARGET_PAGE_SIZE) {
357 tlb_add_large_page(env, vaddr, size);
360 sz = size;
361 section = address_space_translate_for_iotlb(cpu, asidx, paddr, &xlat, &sz);
362 assert(sz >= TARGET_PAGE_SIZE);
364 tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
365 " prot=%x idx=%d\n",
366 vaddr, paddr, prot, mmu_idx);
368 address = vaddr;
369 if (!memory_region_is_ram(section->mr) && !memory_region_is_romd(section->mr)) {
370 /* IO memory case */
371 address |= TLB_MMIO;
372 addend = 0;
373 } else {
374 /* TLB_MMIO for rom/romd handled below */
375 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
378 code_address = address;
379 iotlb = memory_region_section_get_iotlb(cpu, section, vaddr, paddr, xlat,
380 prot, &address);
382 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
383 te = &env->tlb_table[mmu_idx][index];
385 /* do not discard the translation in te, evict it into a victim tlb */
386 env->tlb_v_table[mmu_idx][vidx] = *te;
387 env->iotlb_v[mmu_idx][vidx] = env->iotlb[mmu_idx][index];
389 /* refill the tlb */
390 env->iotlb[mmu_idx][index].addr = iotlb - vaddr;
391 env->iotlb[mmu_idx][index].attrs = attrs;
392 te->addend = addend - vaddr;
393 if (prot & PAGE_READ) {
394 te->addr_read = address;
395 } else {
396 te->addr_read = -1;
399 if (prot & PAGE_EXEC) {
400 te->addr_code = code_address;
401 } else {
402 te->addr_code = -1;
404 if (prot & PAGE_WRITE) {
405 if ((memory_region_is_ram(section->mr) && section->readonly)
406 || memory_region_is_romd(section->mr)) {
407 /* Write access calls the I/O callback. */
408 te->addr_write = address | TLB_MMIO;
409 } else if (memory_region_is_ram(section->mr)
410 && cpu_physical_memory_is_clean(
411 memory_region_get_ram_addr(section->mr) + xlat)) {
412 te->addr_write = address | TLB_NOTDIRTY;
413 } else {
414 te->addr_write = address;
416 } else {
417 te->addr_write = -1;
421 /* Add a new TLB entry, but without specifying the memory
422 * transaction attributes to be used.
424 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
425 hwaddr paddr, int prot,
426 int mmu_idx, target_ulong size)
428 tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
429 prot, mmu_idx, size);
432 static void report_bad_exec(CPUState *cpu, target_ulong addr)
434 /* Accidentally executing outside RAM or ROM is quite common for
435 * several user-error situations, so report it in a way that
436 * makes it clear that this isn't a QEMU bug and provide suggestions
437 * about what a user could do to fix things.
439 error_report("Trying to execute code outside RAM or ROM at 0x"
440 TARGET_FMT_lx, addr);
441 error_printf("This usually means one of the following happened:\n\n"
442 "(1) You told QEMU to execute a kernel for the wrong machine "
443 "type, and it crashed on startup (eg trying to run a "
444 "raspberry pi kernel on a versatilepb QEMU machine)\n"
445 "(2) You didn't give QEMU a kernel or BIOS filename at all, "
446 "and QEMU executed a ROM full of no-op instructions until "
447 "it fell off the end\n"
448 "(3) Your guest kernel has a bug and crashed by jumping "
449 "off into nowhere\n\n"
450 "This is almost always one of the first two, so check your "
451 "command line and that you are using the right type of kernel "
452 "for this machine.\n"
453 "If you think option (3) is likely then you can try debugging "
454 "your guest with the -d debug options; in particular "
455 "-d guest_errors will cause the log to include a dump of the "
456 "guest register state at this point.\n\n"
457 "Execution cannot continue; stopping here.\n\n");
459 /* Report also to the logs, with more detail including register dump */
460 qemu_log_mask(LOG_GUEST_ERROR, "qemu: fatal: Trying to execute code "
461 "outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
462 log_cpu_state_mask(LOG_GUEST_ERROR, cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
465 /* NOTE: this function can trigger an exception */
466 /* NOTE2: the returned address is not exactly the physical address: it
467 * is actually a ram_addr_t (in system mode; the user mode emulation
468 * version of this function returns a guest virtual address).
470 tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
472 int mmu_idx, page_index, pd;
473 void *p;
474 MemoryRegion *mr;
475 CPUState *cpu = ENV_GET_CPU(env1);
476 CPUIOTLBEntry *iotlbentry;
478 page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
479 mmu_idx = cpu_mmu_index(env1, true);
480 if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
481 (addr & TARGET_PAGE_MASK))) {
482 cpu_ldub_code(env1, addr);
484 iotlbentry = &env1->iotlb[mmu_idx][page_index];
485 pd = iotlbentry->addr & ~TARGET_PAGE_MASK;
486 mr = iotlb_to_region(cpu, pd, iotlbentry->attrs);
487 if (memory_region_is_unassigned(mr)) {
488 CPUClass *cc = CPU_GET_CLASS(cpu);
490 if (cc->do_unassigned_access) {
491 cc->do_unassigned_access(cpu, addr, false, true, 0, 4);
492 } else {
493 report_bad_exec(cpu, addr);
494 exit(1);
497 p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
498 return qemu_ram_addr_from_host_nofail(p);
501 static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
502 target_ulong addr, uintptr_t retaddr, int size)
504 CPUState *cpu = ENV_GET_CPU(env);
505 hwaddr physaddr = iotlbentry->addr;
506 MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs);
507 uint64_t val;
509 physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
510 cpu->mem_io_pc = retaddr;
511 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
512 cpu_io_recompile(cpu, retaddr);
515 cpu->mem_io_vaddr = addr;
516 memory_region_dispatch_read(mr, physaddr, &val, size, iotlbentry->attrs);
517 return val;
520 static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
521 uint64_t val, target_ulong addr,
522 uintptr_t retaddr, int size)
524 CPUState *cpu = ENV_GET_CPU(env);
525 hwaddr physaddr = iotlbentry->addr;
526 MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs);
528 physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
529 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
530 cpu_io_recompile(cpu, retaddr);
533 cpu->mem_io_vaddr = addr;
534 cpu->mem_io_pc = retaddr;
535 memory_region_dispatch_write(mr, physaddr, val, size, iotlbentry->attrs);
538 /* Return true if ADDR is present in the victim tlb, and has been copied
539 back to the main tlb. */
540 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
541 size_t elt_ofs, target_ulong page)
543 size_t vidx;
544 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
545 CPUTLBEntry *vtlb = &env->tlb_v_table[mmu_idx][vidx];
546 target_ulong cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs);
548 if (cmp == page) {
549 /* Found entry in victim tlb, swap tlb and iotlb. */
550 CPUTLBEntry tmptlb, *tlb = &env->tlb_table[mmu_idx][index];
551 CPUIOTLBEntry tmpio, *io = &env->iotlb[mmu_idx][index];
552 CPUIOTLBEntry *vio = &env->iotlb_v[mmu_idx][vidx];
554 tmptlb = *tlb; *tlb = *vtlb; *vtlb = tmptlb;
555 tmpio = *io; *io = *vio; *vio = tmpio;
556 return true;
559 return false;
562 /* Macro to call the above, with local variables from the use context. */
563 #define VICTIM_TLB_HIT(TY, ADDR) \
564 victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
565 (ADDR) & TARGET_PAGE_MASK)
567 /* Probe for whether the specified guest write access is permitted.
568 * If it is not permitted then an exception will be taken in the same
569 * way as if this were a real write access (and we will not return).
570 * Otherwise the function will return, and there will be a valid
571 * entry in the TLB for this access.
573 void probe_write(CPUArchState *env, target_ulong addr, int mmu_idx,
574 uintptr_t retaddr)
576 int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
577 target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
579 if ((addr & TARGET_PAGE_MASK)
580 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
581 /* TLB entry is for a different page */
582 if (!VICTIM_TLB_HIT(addr_write, addr)) {
583 tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
588 /* Probe for a read-modify-write atomic operation. Do not allow unaligned
589 * operations, or io operations to proceed. Return the host address. */
590 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
591 TCGMemOpIdx oi, uintptr_t retaddr)
593 size_t mmu_idx = get_mmuidx(oi);
594 size_t index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
595 CPUTLBEntry *tlbe = &env->tlb_table[mmu_idx][index];
596 target_ulong tlb_addr = tlbe->addr_write;
597 TCGMemOp mop = get_memop(oi);
598 int a_bits = get_alignment_bits(mop);
599 int s_bits = mop & MO_SIZE;
601 /* Adjust the given return address. */
602 retaddr -= GETPC_ADJ;
604 /* Enforce guest required alignment. */
605 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
606 /* ??? Maybe indicate atomic op to cpu_unaligned_access */
607 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
608 mmu_idx, retaddr);
611 /* Enforce qemu required alignment. */
612 if (unlikely(addr & ((1 << s_bits) - 1))) {
613 /* We get here if guest alignment was not requested,
614 or was not enforced by cpu_unaligned_access above.
615 We might widen the access and emulate, but for now
616 mark an exception and exit the cpu loop. */
617 goto stop_the_world;
620 /* Check TLB entry and enforce page permissions. */
621 if ((addr & TARGET_PAGE_MASK)
622 != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
623 if (!VICTIM_TLB_HIT(addr_write, addr)) {
624 tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
626 tlb_addr = tlbe->addr_write;
629 /* Notice an IO access, or a notdirty page. */
630 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
631 /* There's really nothing that can be done to
632 support this apart from stop-the-world. */
633 goto stop_the_world;
636 /* Let the guest notice RMW on a write-only page. */
637 if (unlikely(tlbe->addr_read != tlb_addr)) {
638 tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_LOAD, mmu_idx, retaddr);
639 /* Since we don't support reads and writes to different addresses,
640 and we do have the proper page loaded for write, this shouldn't
641 ever return. But just in case, handle via stop-the-world. */
642 goto stop_the_world;
645 return (void *)((uintptr_t)addr + tlbe->addend);
647 stop_the_world:
648 cpu_loop_exit_atomic(ENV_GET_CPU(env), retaddr);
651 #ifdef TARGET_WORDS_BIGENDIAN
652 # define TGT_BE(X) (X)
653 # define TGT_LE(X) BSWAP(X)
654 #else
655 # define TGT_BE(X) BSWAP(X)
656 # define TGT_LE(X) (X)
657 #endif
659 #define MMUSUFFIX _mmu
661 #define DATA_SIZE 1
662 #include "softmmu_template.h"
664 #define DATA_SIZE 2
665 #include "softmmu_template.h"
667 #define DATA_SIZE 4
668 #include "softmmu_template.h"
670 #define DATA_SIZE 8
671 #include "softmmu_template.h"
673 /* First set of helpers allows passing in of OI and RETADDR. This makes
674 them callable from other helpers. */
676 #define EXTRA_ARGS , TCGMemOpIdx oi, uintptr_t retaddr
677 #define ATOMIC_NAME(X) \
678 HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu))
679 #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, retaddr)
681 #define DATA_SIZE 1
682 #include "atomic_template.h"
684 #define DATA_SIZE 2
685 #include "atomic_template.h"
687 #define DATA_SIZE 4
688 #include "atomic_template.h"
690 #ifdef CONFIG_ATOMIC64
691 #define DATA_SIZE 8
692 #include "atomic_template.h"
693 #endif
695 #ifdef CONFIG_ATOMIC128
696 #define DATA_SIZE 16
697 #include "atomic_template.h"
698 #endif
700 /* Second set of helpers are directly callable from TCG as helpers. */
702 #undef EXTRA_ARGS
703 #undef ATOMIC_NAME
704 #undef ATOMIC_MMU_LOOKUP
705 #define EXTRA_ARGS , TCGMemOpIdx oi
706 #define ATOMIC_NAME(X) HELPER(glue(glue(atomic_ ## X, SUFFIX), END))
707 #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, GETPC())
709 #define DATA_SIZE 1
710 #include "atomic_template.h"
712 #define DATA_SIZE 2
713 #include "atomic_template.h"
715 #define DATA_SIZE 4
716 #include "atomic_template.h"
718 #ifdef CONFIG_ATOMIC64
719 #define DATA_SIZE 8
720 #include "atomic_template.h"
721 #endif
723 /* Code access functions. */
725 #undef MMUSUFFIX
726 #define MMUSUFFIX _cmmu
727 #undef GETPC
728 #define GETPC() ((uintptr_t)0)
729 #define SOFTMMU_CODE_ACCESS
731 #define DATA_SIZE 1
732 #include "softmmu_template.h"
734 #define DATA_SIZE 2
735 #include "softmmu_template.h"
737 #define DATA_SIZE 4
738 #include "softmmu_template.h"
740 #define DATA_SIZE 8
741 #include "softmmu_template.h"