2 * QEMU ARM CPU -- internal functions and types
4 * Copyright (c) 2014 Linaro Ltd
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version 2
9 * of the License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, see
18 * <http://www.gnu.org/licenses/gpl-2.0.html>
20 * This header defines functions, types, etc which need to be shared
21 * between different source files within target-arm/ but which are
22 * private to it and not required by the rest of QEMU.
25 #ifndef TARGET_ARM_INTERNALS_H
26 #define TARGET_ARM_INTERNALS_H
28 static inline bool excp_is_internal(int excp
)
30 /* Return true if this exception number represents a QEMU-internal
31 * exception that will not be passed to the guest.
33 return excp
== EXCP_INTERRUPT
36 || excp
== EXCP_HALTED
37 || excp
== EXCP_EXCEPTION_EXIT
38 || excp
== EXCP_KERNEL_TRAP
39 || excp
== EXCP_STREX
;
42 /* Exception names for debug logging; note that not all of these
43 * precisely correspond to architectural exceptions.
45 static const char * const excnames
[] = {
46 [EXCP_UDEF
] = "Undefined Instruction",
48 [EXCP_PREFETCH_ABORT
] = "Prefetch Abort",
49 [EXCP_DATA_ABORT
] = "Data Abort",
52 [EXCP_BKPT
] = "Breakpoint",
53 [EXCP_EXCEPTION_EXIT
] = "QEMU v7M exception exit",
54 [EXCP_KERNEL_TRAP
] = "QEMU intercept of kernel commpage",
55 [EXCP_STREX
] = "QEMU intercept of STREX",
56 [EXCP_HVC
] = "Hypervisor Call",
57 [EXCP_HYP_TRAP
] = "Hypervisor Trap",
58 [EXCP_SMC
] = "Secure Monitor Call",
59 [EXCP_VIRQ
] = "Virtual IRQ",
60 [EXCP_VFIQ
] = "Virtual FIQ",
63 static inline void arm_log_exception(int idx
)
65 if (qemu_loglevel_mask(CPU_LOG_INT
)) {
66 const char *exc
= NULL
;
68 if (idx
>= 0 && idx
< ARRAY_SIZE(excnames
)) {
74 qemu_log_mask(CPU_LOG_INT
, "Taking exception %d [%s]\n", idx
, exc
);
78 /* Scale factor for generic timers, ie number of ns per tick.
79 * This gives a 62.5MHz timer.
81 #define GTIMER_SCALE 16
84 * For AArch64, map a given EL to an index in the banked_spsr array.
85 * Note that this mapping and the AArch32 mapping defined in bank_number()
86 * must agree such that the AArch64<->AArch32 SPSRs have the architecturally
87 * mandated mapping between each other.
89 static inline unsigned int aarch64_banked_spsr_index(unsigned int el
)
91 static const unsigned int map
[4] = {
96 assert(el
>= 1 && el
<= 3);
100 int bank_number(int mode
);
101 void switch_mode(CPUARMState
*, int);
102 void arm_cpu_register_gdb_regs_for_features(ARMCPU
*cpu
);
103 void arm_translate_init(void);
105 enum arm_fprounding
{
114 int arm_rmode_to_sf(int rmode
);
116 static inline void aarch64_save_sp(CPUARMState
*env
, int el
)
118 if (env
->pstate
& PSTATE_SP
) {
119 env
->sp_el
[el
] = env
->xregs
[31];
121 env
->sp_el
[0] = env
->xregs
[31];
125 static inline void aarch64_restore_sp(CPUARMState
*env
, int el
)
127 if (env
->pstate
& PSTATE_SP
) {
128 env
->xregs
[31] = env
->sp_el
[el
];
130 env
->xregs
[31] = env
->sp_el
[0];
134 static inline void update_spsel(CPUARMState
*env
, uint32_t imm
)
136 unsigned int cur_el
= arm_current_el(env
);
137 /* Update PSTATE SPSel bit; this requires us to update the
138 * working stack pointer in xregs[31].
140 if (!((imm
^ env
->pstate
) & PSTATE_SP
)) {
143 aarch64_save_sp(env
, cur_el
);
144 env
->pstate
= deposit32(env
->pstate
, 0, 1, imm
);
146 /* We rely on illegal updates to SPsel from EL0 to get trapped
147 * at translation time.
149 assert(cur_el
>= 1 && cur_el
<= 3);
150 aarch64_restore_sp(env
, cur_el
);
153 /* Return true if extended addresses are enabled.
154 * This is always the case if our translation regime is 64 bit,
155 * but depends on TTBCR.EAE for 32 bit.
157 static inline bool extended_addresses_enabled(CPUARMState
*env
)
159 TCR
*tcr
= &env
->cp15
.tcr_el
[arm_is_secure(env
) ? 3 : 1];
160 return arm_el_is_aa64(env
, 1) ||
161 (arm_feature(env
, ARM_FEATURE_LPAE
) && (tcr
->raw_tcr
& TTBCR_EAE
));
164 /* Valid Syndrome Register EC field values */
165 enum arm_exception_class
{
166 EC_UNCATEGORIZED
= 0x00,
168 EC_CP15RTTRAP
= 0x03,
169 EC_CP15RRTTRAP
= 0x04,
170 EC_CP14RTTRAP
= 0x05,
171 EC_CP14DTTRAP
= 0x06,
172 EC_ADVSIMDFPACCESSTRAP
= 0x07,
174 EC_CP14RRTTRAP
= 0x0c,
175 EC_ILLEGALSTATE
= 0x0e,
182 EC_SYSTEMREGISTERTRAP
= 0x18,
184 EC_INSNABORT_SAME_EL
= 0x21,
185 EC_PCALIGNMENT
= 0x22,
187 EC_DATAABORT_SAME_EL
= 0x25,
188 EC_SPALIGNMENT
= 0x26,
189 EC_AA32_FPTRAP
= 0x28,
190 EC_AA64_FPTRAP
= 0x2c,
192 EC_BREAKPOINT
= 0x30,
193 EC_BREAKPOINT_SAME_EL
= 0x31,
194 EC_SOFTWARESTEP
= 0x32,
195 EC_SOFTWARESTEP_SAME_EL
= 0x33,
196 EC_WATCHPOINT
= 0x34,
197 EC_WATCHPOINT_SAME_EL
= 0x35,
199 EC_VECTORCATCH
= 0x3a,
203 #define ARM_EL_EC_SHIFT 26
204 #define ARM_EL_IL_SHIFT 25
205 #define ARM_EL_IL (1 << ARM_EL_IL_SHIFT)
207 /* Utility functions for constructing various kinds of syndrome value.
208 * Note that in general we follow the AArch64 syndrome values; in a
209 * few cases the value in HSR for exceptions taken to AArch32 Hyp
210 * mode differs slightly, so if we ever implemented Hyp mode then the
211 * syndrome value would need some massaging on exception entry.
212 * (One example of this is that AArch64 defaults to IL bit set for
213 * exceptions which don't specifically indicate information about the
214 * trapping instruction, whereas AArch32 defaults to IL bit clear.)
216 static inline uint32_t syn_uncategorized(void)
218 return (EC_UNCATEGORIZED
<< ARM_EL_EC_SHIFT
) | ARM_EL_IL
;
221 static inline uint32_t syn_aa64_svc(uint32_t imm16
)
223 return (EC_AA64_SVC
<< ARM_EL_EC_SHIFT
) | ARM_EL_IL
| (imm16
& 0xffff);
226 static inline uint32_t syn_aa64_hvc(uint32_t imm16
)
228 return (EC_AA64_HVC
<< ARM_EL_EC_SHIFT
) | ARM_EL_IL
| (imm16
& 0xffff);
231 static inline uint32_t syn_aa64_smc(uint32_t imm16
)
233 return (EC_AA64_SMC
<< ARM_EL_EC_SHIFT
) | ARM_EL_IL
| (imm16
& 0xffff);
236 static inline uint32_t syn_aa32_svc(uint32_t imm16
, bool is_thumb
)
238 return (EC_AA32_SVC
<< ARM_EL_EC_SHIFT
) | (imm16
& 0xffff)
239 | (is_thumb
? 0 : ARM_EL_IL
);
242 static inline uint32_t syn_aa32_hvc(uint32_t imm16
)
244 return (EC_AA32_HVC
<< ARM_EL_EC_SHIFT
) | ARM_EL_IL
| (imm16
& 0xffff);
247 static inline uint32_t syn_aa32_smc(void)
249 return (EC_AA32_SMC
<< ARM_EL_EC_SHIFT
) | ARM_EL_IL
;
252 static inline uint32_t syn_aa64_bkpt(uint32_t imm16
)
254 return (EC_AA64_BKPT
<< ARM_EL_EC_SHIFT
) | ARM_EL_IL
| (imm16
& 0xffff);
257 static inline uint32_t syn_aa32_bkpt(uint32_t imm16
, bool is_thumb
)
259 return (EC_AA32_BKPT
<< ARM_EL_EC_SHIFT
) | (imm16
& 0xffff)
260 | (is_thumb
? 0 : ARM_EL_IL
);
263 static inline uint32_t syn_aa64_sysregtrap(int op0
, int op1
, int op2
,
264 int crn
, int crm
, int rt
,
267 return (EC_SYSTEMREGISTERTRAP
<< ARM_EL_EC_SHIFT
) | ARM_EL_IL
268 | (op0
<< 20) | (op2
<< 17) | (op1
<< 14) | (crn
<< 10) | (rt
<< 5)
269 | (crm
<< 1) | isread
;
272 static inline uint32_t syn_cp14_rt_trap(int cv
, int cond
, int opc1
, int opc2
,
273 int crn
, int crm
, int rt
, int isread
,
276 return (EC_CP14RTTRAP
<< ARM_EL_EC_SHIFT
)
277 | (is_thumb
? 0 : ARM_EL_IL
)
278 | (cv
<< 24) | (cond
<< 20) | (opc2
<< 17) | (opc1
<< 14)
279 | (crn
<< 10) | (rt
<< 5) | (crm
<< 1) | isread
;
282 static inline uint32_t syn_cp15_rt_trap(int cv
, int cond
, int opc1
, int opc2
,
283 int crn
, int crm
, int rt
, int isread
,
286 return (EC_CP15RTTRAP
<< ARM_EL_EC_SHIFT
)
287 | (is_thumb
? 0 : ARM_EL_IL
)
288 | (cv
<< 24) | (cond
<< 20) | (opc2
<< 17) | (opc1
<< 14)
289 | (crn
<< 10) | (rt
<< 5) | (crm
<< 1) | isread
;
292 static inline uint32_t syn_cp14_rrt_trap(int cv
, int cond
, int opc1
, int crm
,
293 int rt
, int rt2
, int isread
,
296 return (EC_CP14RRTTRAP
<< ARM_EL_EC_SHIFT
)
297 | (is_thumb
? 0 : ARM_EL_IL
)
298 | (cv
<< 24) | (cond
<< 20) | (opc1
<< 16)
299 | (rt2
<< 10) | (rt
<< 5) | (crm
<< 1) | isread
;
302 static inline uint32_t syn_cp15_rrt_trap(int cv
, int cond
, int opc1
, int crm
,
303 int rt
, int rt2
, int isread
,
306 return (EC_CP15RRTTRAP
<< ARM_EL_EC_SHIFT
)
307 | (is_thumb
? 0 : ARM_EL_IL
)
308 | (cv
<< 24) | (cond
<< 20) | (opc1
<< 16)
309 | (rt2
<< 10) | (rt
<< 5) | (crm
<< 1) | isread
;
312 static inline uint32_t syn_fp_access_trap(int cv
, int cond
, bool is_thumb
)
314 return (EC_ADVSIMDFPACCESSTRAP
<< ARM_EL_EC_SHIFT
)
315 | (is_thumb
? 0 : ARM_EL_IL
)
316 | (cv
<< 24) | (cond
<< 20);
319 static inline uint32_t syn_insn_abort(int same_el
, int ea
, int s1ptw
, int fsc
)
321 return (EC_INSNABORT
<< ARM_EL_EC_SHIFT
) | (same_el
<< ARM_EL_EC_SHIFT
)
322 | (ea
<< 9) | (s1ptw
<< 7) | fsc
;
325 static inline uint32_t syn_data_abort(int same_el
, int ea
, int cm
, int s1ptw
,
328 return (EC_DATAABORT
<< ARM_EL_EC_SHIFT
) | (same_el
<< ARM_EL_EC_SHIFT
)
329 | (ea
<< 9) | (cm
<< 8) | (s1ptw
<< 7) | (wnr
<< 6) | fsc
;
332 static inline uint32_t syn_swstep(int same_el
, int isv
, int ex
)
334 return (EC_SOFTWARESTEP
<< ARM_EL_EC_SHIFT
) | (same_el
<< ARM_EL_EC_SHIFT
)
335 | (isv
<< 24) | (ex
<< 6) | 0x22;
338 static inline uint32_t syn_watchpoint(int same_el
, int cm
, int wnr
)
340 return (EC_WATCHPOINT
<< ARM_EL_EC_SHIFT
) | (same_el
<< ARM_EL_EC_SHIFT
)
341 | (cm
<< 8) | (wnr
<< 6) | 0x22;
344 static inline uint32_t syn_breakpoint(int same_el
)
346 return (EC_BREAKPOINT
<< ARM_EL_EC_SHIFT
) | (same_el
<< ARM_EL_EC_SHIFT
)
350 static inline uint32_t syn_wfx(int cv
, int cond
, int ti
)
352 return (EC_WFX_TRAP
<< ARM_EL_EC_SHIFT
) |
353 (cv
<< 24) | (cond
<< 20) | ti
;
356 /* Update a QEMU watchpoint based on the information the guest has set in the
357 * DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
359 void hw_watchpoint_update(ARMCPU
*cpu
, int n
);
360 /* Update the QEMU watchpoints for every guest watchpoint. This does a
361 * complete delete-and-reinstate of the QEMU watchpoint list and so is
362 * suitable for use after migration or on reset.
364 void hw_watchpoint_update_all(ARMCPU
*cpu
);
365 /* Update a QEMU breakpoint based on the information the guest has set in the
366 * DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
368 void hw_breakpoint_update(ARMCPU
*cpu
, int n
);
369 /* Update the QEMU breakpoints for every guest breakpoint. This does a
370 * complete delete-and-reinstate of the QEMU breakpoint list and so is
371 * suitable for use after migration or on reset.
373 void hw_breakpoint_update_all(ARMCPU
*cpu
);
375 /* Callback function for when a watchpoint or breakpoint triggers. */
376 void arm_debug_excp_handler(CPUState
*cs
);
378 #ifdef CONFIG_USER_ONLY
379 static inline bool arm_is_psci_call(ARMCPU
*cpu
, int excp_type
)
384 /* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
385 bool arm_is_psci_call(ARMCPU
*cpu
, int excp_type
);
386 /* Actually handle a PSCI call */
387 void arm_handle_psci_call(ARMCPU
*cpu
);
390 /* Do a page table walk and add page to TLB if possible */
391 int arm_tlb_fill(CPUState
*cpu
, vaddr address
, int rw
, int mmu_idx
);