cpus: Change qemu_kvm_init_cpu_signals() argument to CPUState
[qemu.git] / exec.c
blob2d02b11e1c4d950d3f4432560c3b92cb255d1900
1 /*
2 * Virtual page mapping
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 #include "config.h"
20 #ifdef _WIN32
21 #include <windows.h>
22 #else
23 #include <sys/types.h>
24 #include <sys/mman.h>
25 #endif
27 #include "qemu-common.h"
28 #include "cpu.h"
29 #include "tcg.h"
30 #include "hw/hw.h"
31 #include "hw/qdev.h"
32 #include "qemu/osdep.h"
33 #include "sysemu/kvm.h"
34 #include "hw/xen/xen.h"
35 #include "qemu/timer.h"
36 #include "qemu/config-file.h"
37 #include "exec/memory.h"
38 #include "sysemu/dma.h"
39 #include "exec/address-spaces.h"
40 #if defined(CONFIG_USER_ONLY)
41 #include <qemu.h>
42 #else /* !CONFIG_USER_ONLY */
43 #include "sysemu/xen-mapcache.h"
44 #include "trace.h"
45 #endif
46 #include "exec/cpu-all.h"
48 #include "exec/cputlb.h"
49 #include "translate-all.h"
51 #include "exec/memory-internal.h"
53 //#define DEBUG_SUBPAGE
55 #if !defined(CONFIG_USER_ONLY)
56 int phys_ram_fd;
57 static int in_migration;
59 RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
61 static MemoryRegion *system_memory;
62 static MemoryRegion *system_io;
64 AddressSpace address_space_io;
65 AddressSpace address_space_memory;
67 MemoryRegion io_mem_rom, io_mem_notdirty;
68 static MemoryRegion io_mem_unassigned;
70 #endif
72 CPUArchState *first_cpu;
73 /* current CPU in the current thread. It is only valid inside
74 cpu_exec() */
75 DEFINE_TLS(CPUArchState *,cpu_single_env);
76 /* 0 = Do not count executed instructions.
77 1 = Precise instruction counting.
78 2 = Adaptive rate instruction counting. */
79 int use_icount;
81 #if !defined(CONFIG_USER_ONLY)
83 typedef struct PhysPageEntry PhysPageEntry;
85 struct PhysPageEntry {
86 uint16_t is_leaf : 1;
87 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
88 uint16_t ptr : 15;
91 struct AddressSpaceDispatch {
92 /* This is a multi-level map on the physical address space.
93 * The bottom level has pointers to MemoryRegionSections.
95 PhysPageEntry phys_map;
96 MemoryListener listener;
97 AddressSpace *as;
100 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
101 typedef struct subpage_t {
102 MemoryRegion iomem;
103 AddressSpace *as;
104 hwaddr base;
105 uint16_t sub_section[TARGET_PAGE_SIZE];
106 } subpage_t;
108 static MemoryRegionSection *phys_sections;
109 static unsigned phys_sections_nb, phys_sections_nb_alloc;
110 static uint16_t phys_section_unassigned;
111 static uint16_t phys_section_notdirty;
112 static uint16_t phys_section_rom;
113 static uint16_t phys_section_watch;
115 /* Simple allocator for PhysPageEntry nodes */
116 static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
117 static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
119 #define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
121 static void io_mem_init(void);
122 static void memory_map_init(void);
123 static void *qemu_safe_ram_ptr(ram_addr_t addr);
125 static MemoryRegion io_mem_watch;
126 #endif
128 #if !defined(CONFIG_USER_ONLY)
130 static void phys_map_node_reserve(unsigned nodes)
132 if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
133 typedef PhysPageEntry Node[L2_SIZE];
134 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
135 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
136 phys_map_nodes_nb + nodes);
137 phys_map_nodes = g_renew(Node, phys_map_nodes,
138 phys_map_nodes_nb_alloc);
142 static uint16_t phys_map_node_alloc(void)
144 unsigned i;
145 uint16_t ret;
147 ret = phys_map_nodes_nb++;
148 assert(ret != PHYS_MAP_NODE_NIL);
149 assert(ret != phys_map_nodes_nb_alloc);
150 for (i = 0; i < L2_SIZE; ++i) {
151 phys_map_nodes[ret][i].is_leaf = 0;
152 phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
154 return ret;
157 static void phys_map_nodes_reset(void)
159 phys_map_nodes_nb = 0;
163 static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
164 hwaddr *nb, uint16_t leaf,
165 int level)
167 PhysPageEntry *p;
168 int i;
169 hwaddr step = (hwaddr)1 << (level * L2_BITS);
171 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
172 lp->ptr = phys_map_node_alloc();
173 p = phys_map_nodes[lp->ptr];
174 if (level == 0) {
175 for (i = 0; i < L2_SIZE; i++) {
176 p[i].is_leaf = 1;
177 p[i].ptr = phys_section_unassigned;
180 } else {
181 p = phys_map_nodes[lp->ptr];
183 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
185 while (*nb && lp < &p[L2_SIZE]) {
186 if ((*index & (step - 1)) == 0 && *nb >= step) {
187 lp->is_leaf = true;
188 lp->ptr = leaf;
189 *index += step;
190 *nb -= step;
191 } else {
192 phys_page_set_level(lp, index, nb, leaf, level - 1);
194 ++lp;
198 static void phys_page_set(AddressSpaceDispatch *d,
199 hwaddr index, hwaddr nb,
200 uint16_t leaf)
202 /* Wildly overreserve - it doesn't matter much. */
203 phys_map_node_reserve(3 * P_L2_LEVELS);
205 phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
208 static MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr index)
210 PhysPageEntry lp = d->phys_map;
211 PhysPageEntry *p;
212 int i;
214 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
215 if (lp.ptr == PHYS_MAP_NODE_NIL) {
216 return &phys_sections[phys_section_unassigned];
218 p = phys_map_nodes[lp.ptr];
219 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
221 return &phys_sections[lp.ptr];
224 bool memory_region_is_unassigned(MemoryRegion *mr)
226 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
227 && mr != &io_mem_watch;
230 static MemoryRegionSection *address_space_lookup_region(AddressSpace *as,
231 hwaddr addr,
232 bool resolve_subpage)
234 MemoryRegionSection *section;
235 subpage_t *subpage;
237 section = phys_page_find(as->dispatch, addr >> TARGET_PAGE_BITS);
238 if (resolve_subpage && section->mr->subpage) {
239 subpage = container_of(section->mr, subpage_t, iomem);
240 section = &phys_sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
242 return section;
245 static MemoryRegionSection *
246 address_space_translate_internal(AddressSpace *as, hwaddr addr, hwaddr *xlat,
247 hwaddr *plen, bool resolve_subpage)
249 MemoryRegionSection *section;
250 Int128 diff;
252 section = address_space_lookup_region(as, addr, resolve_subpage);
253 /* Compute offset within MemoryRegionSection */
254 addr -= section->offset_within_address_space;
256 /* Compute offset within MemoryRegion */
257 *xlat = addr + section->offset_within_region;
259 diff = int128_sub(section->mr->size, int128_make64(addr));
260 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
261 return section;
264 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
265 hwaddr *xlat, hwaddr *plen,
266 bool is_write)
268 IOMMUTLBEntry iotlb;
269 MemoryRegionSection *section;
270 MemoryRegion *mr;
271 hwaddr len = *plen;
273 for (;;) {
274 section = address_space_translate_internal(as, addr, &addr, plen, true);
275 mr = section->mr;
277 if (!mr->iommu_ops) {
278 break;
281 iotlb = mr->iommu_ops->translate(mr, addr);
282 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
283 | (addr & iotlb.addr_mask));
284 len = MIN(len, (addr | iotlb.addr_mask) - addr + 1);
285 if (!(iotlb.perm & (1 << is_write))) {
286 mr = &io_mem_unassigned;
287 break;
290 as = iotlb.target_as;
293 *plen = len;
294 *xlat = addr;
295 return mr;
298 MemoryRegionSection *
299 address_space_translate_for_iotlb(AddressSpace *as, hwaddr addr, hwaddr *xlat,
300 hwaddr *plen)
302 MemoryRegionSection *section;
303 section = address_space_translate_internal(as, addr, xlat, plen, false);
305 assert(!section->mr->iommu_ops);
306 return section;
308 #endif
310 void cpu_exec_init_all(void)
312 #if !defined(CONFIG_USER_ONLY)
313 qemu_mutex_init(&ram_list.mutex);
314 memory_map_init();
315 io_mem_init();
316 #endif
319 #if !defined(CONFIG_USER_ONLY)
321 static int cpu_common_post_load(void *opaque, int version_id)
323 CPUState *cpu = opaque;
325 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
326 version_id is increased. */
327 cpu->interrupt_request &= ~0x01;
328 tlb_flush(cpu->env_ptr, 1);
330 return 0;
333 const VMStateDescription vmstate_cpu_common = {
334 .name = "cpu_common",
335 .version_id = 1,
336 .minimum_version_id = 1,
337 .minimum_version_id_old = 1,
338 .post_load = cpu_common_post_load,
339 .fields = (VMStateField []) {
340 VMSTATE_UINT32(halted, CPUState),
341 VMSTATE_UINT32(interrupt_request, CPUState),
342 VMSTATE_END_OF_LIST()
346 #endif
348 CPUState *qemu_get_cpu(int index)
350 CPUArchState *env = first_cpu;
351 CPUState *cpu = NULL;
353 while (env) {
354 cpu = ENV_GET_CPU(env);
355 if (cpu->cpu_index == index) {
356 break;
358 env = env->next_cpu;
361 return env ? cpu : NULL;
364 void qemu_for_each_cpu(void (*func)(CPUState *cpu, void *data), void *data)
366 CPUArchState *env = first_cpu;
368 while (env) {
369 func(ENV_GET_CPU(env), data);
370 env = env->next_cpu;
374 void cpu_exec_init(CPUArchState *env)
376 CPUState *cpu = ENV_GET_CPU(env);
377 CPUClass *cc = CPU_GET_CLASS(cpu);
378 CPUArchState **penv;
379 int cpu_index;
381 #if defined(CONFIG_USER_ONLY)
382 cpu_list_lock();
383 #endif
384 env->next_cpu = NULL;
385 penv = &first_cpu;
386 cpu_index = 0;
387 while (*penv != NULL) {
388 penv = &(*penv)->next_cpu;
389 cpu_index++;
391 cpu->cpu_index = cpu_index;
392 cpu->numa_node = 0;
393 QTAILQ_INIT(&env->breakpoints);
394 QTAILQ_INIT(&env->watchpoints);
395 #ifndef CONFIG_USER_ONLY
396 cpu->thread_id = qemu_get_thread_id();
397 #endif
398 *penv = env;
399 #if defined(CONFIG_USER_ONLY)
400 cpu_list_unlock();
401 #endif
402 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, cpu);
403 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
404 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
405 cpu_save, cpu_load, env);
406 assert(cc->vmsd == NULL);
407 #endif
408 if (cc->vmsd != NULL) {
409 vmstate_register(NULL, cpu_index, cc->vmsd, cpu);
413 #if defined(TARGET_HAS_ICE)
414 #if defined(CONFIG_USER_ONLY)
415 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
417 tb_invalidate_phys_page_range(pc, pc + 1, 0);
419 #else
420 static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
422 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
423 (pc & ~TARGET_PAGE_MASK));
425 #endif
426 #endif /* TARGET_HAS_ICE */
428 #if defined(CONFIG_USER_ONLY)
429 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
434 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
435 int flags, CPUWatchpoint **watchpoint)
437 return -ENOSYS;
439 #else
440 /* Add a watchpoint. */
441 int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
442 int flags, CPUWatchpoint **watchpoint)
444 target_ulong len_mask = ~(len - 1);
445 CPUWatchpoint *wp;
447 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
448 if ((len & (len - 1)) || (addr & ~len_mask) ||
449 len == 0 || len > TARGET_PAGE_SIZE) {
450 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
451 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
452 return -EINVAL;
454 wp = g_malloc(sizeof(*wp));
456 wp->vaddr = addr;
457 wp->len_mask = len_mask;
458 wp->flags = flags;
460 /* keep all GDB-injected watchpoints in front */
461 if (flags & BP_GDB)
462 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
463 else
464 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
466 tlb_flush_page(env, addr);
468 if (watchpoint)
469 *watchpoint = wp;
470 return 0;
473 /* Remove a specific watchpoint. */
474 int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
475 int flags)
477 target_ulong len_mask = ~(len - 1);
478 CPUWatchpoint *wp;
480 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
481 if (addr == wp->vaddr && len_mask == wp->len_mask
482 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
483 cpu_watchpoint_remove_by_ref(env, wp);
484 return 0;
487 return -ENOENT;
490 /* Remove a specific watchpoint by reference. */
491 void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
493 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
495 tlb_flush_page(env, watchpoint->vaddr);
497 g_free(watchpoint);
500 /* Remove all matching watchpoints. */
501 void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
503 CPUWatchpoint *wp, *next;
505 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
506 if (wp->flags & mask)
507 cpu_watchpoint_remove_by_ref(env, wp);
510 #endif
512 /* Add a breakpoint. */
513 int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
514 CPUBreakpoint **breakpoint)
516 #if defined(TARGET_HAS_ICE)
517 CPUBreakpoint *bp;
519 bp = g_malloc(sizeof(*bp));
521 bp->pc = pc;
522 bp->flags = flags;
524 /* keep all GDB-injected breakpoints in front */
525 if (flags & BP_GDB)
526 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
527 else
528 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
530 breakpoint_invalidate(env, pc);
532 if (breakpoint)
533 *breakpoint = bp;
534 return 0;
535 #else
536 return -ENOSYS;
537 #endif
540 /* Remove a specific breakpoint. */
541 int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
543 #if defined(TARGET_HAS_ICE)
544 CPUBreakpoint *bp;
546 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
547 if (bp->pc == pc && bp->flags == flags) {
548 cpu_breakpoint_remove_by_ref(env, bp);
549 return 0;
552 return -ENOENT;
553 #else
554 return -ENOSYS;
555 #endif
558 /* Remove a specific breakpoint by reference. */
559 void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
561 #if defined(TARGET_HAS_ICE)
562 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
564 breakpoint_invalidate(env, breakpoint->pc);
566 g_free(breakpoint);
567 #endif
570 /* Remove all matching breakpoints. */
571 void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
573 #if defined(TARGET_HAS_ICE)
574 CPUBreakpoint *bp, *next;
576 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
577 if (bp->flags & mask)
578 cpu_breakpoint_remove_by_ref(env, bp);
580 #endif
583 /* enable or disable single step mode. EXCP_DEBUG is returned by the
584 CPU loop after each instruction */
585 void cpu_single_step(CPUArchState *env, int enabled)
587 #if defined(TARGET_HAS_ICE)
588 if (env->singlestep_enabled != enabled) {
589 env->singlestep_enabled = enabled;
590 if (kvm_enabled())
591 kvm_update_guest_debug(env, 0);
592 else {
593 /* must flush all the translated code to avoid inconsistencies */
594 /* XXX: only flush what is necessary */
595 tb_flush(env);
598 #endif
601 void cpu_abort(CPUArchState *env, const char *fmt, ...)
603 va_list ap;
604 va_list ap2;
606 va_start(ap, fmt);
607 va_copy(ap2, ap);
608 fprintf(stderr, "qemu: fatal: ");
609 vfprintf(stderr, fmt, ap);
610 fprintf(stderr, "\n");
611 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
612 if (qemu_log_enabled()) {
613 qemu_log("qemu: fatal: ");
614 qemu_log_vprintf(fmt, ap2);
615 qemu_log("\n");
616 log_cpu_state(env, CPU_DUMP_FPU | CPU_DUMP_CCOP);
617 qemu_log_flush();
618 qemu_log_close();
620 va_end(ap2);
621 va_end(ap);
622 #if defined(CONFIG_USER_ONLY)
624 struct sigaction act;
625 sigfillset(&act.sa_mask);
626 act.sa_handler = SIG_DFL;
627 sigaction(SIGABRT, &act, NULL);
629 #endif
630 abort();
633 CPUArchState *cpu_copy(CPUArchState *env)
635 CPUArchState *new_env = cpu_init(env->cpu_model_str);
636 CPUArchState *next_cpu = new_env->next_cpu;
637 #if defined(TARGET_HAS_ICE)
638 CPUBreakpoint *bp;
639 CPUWatchpoint *wp;
640 #endif
642 memcpy(new_env, env, sizeof(CPUArchState));
644 /* Preserve chaining. */
645 new_env->next_cpu = next_cpu;
647 /* Clone all break/watchpoints.
648 Note: Once we support ptrace with hw-debug register access, make sure
649 BP_CPU break/watchpoints are handled correctly on clone. */
650 QTAILQ_INIT(&env->breakpoints);
651 QTAILQ_INIT(&env->watchpoints);
652 #if defined(TARGET_HAS_ICE)
653 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
654 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
656 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
657 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
658 wp->flags, NULL);
660 #endif
662 return new_env;
665 #if !defined(CONFIG_USER_ONLY)
666 static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
667 uintptr_t length)
669 uintptr_t start1;
671 /* we modify the TLB cache so that the dirty bit will be set again
672 when accessing the range */
673 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
674 /* Check that we don't span multiple blocks - this breaks the
675 address comparisons below. */
676 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
677 != (end - 1) - start) {
678 abort();
680 cpu_tlb_reset_dirty_all(start1, length);
684 /* Note: start and end must be within the same ram block. */
685 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
686 int dirty_flags)
688 uintptr_t length;
690 start &= TARGET_PAGE_MASK;
691 end = TARGET_PAGE_ALIGN(end);
693 length = end - start;
694 if (length == 0)
695 return;
696 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
698 if (tcg_enabled()) {
699 tlb_reset_dirty_range_all(start, end, length);
703 static int cpu_physical_memory_set_dirty_tracking(int enable)
705 int ret = 0;
706 in_migration = enable;
707 return ret;
710 hwaddr memory_region_section_get_iotlb(CPUArchState *env,
711 MemoryRegionSection *section,
712 target_ulong vaddr,
713 hwaddr paddr, hwaddr xlat,
714 int prot,
715 target_ulong *address)
717 hwaddr iotlb;
718 CPUWatchpoint *wp;
720 if (memory_region_is_ram(section->mr)) {
721 /* Normal RAM. */
722 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
723 + xlat;
724 if (!section->readonly) {
725 iotlb |= phys_section_notdirty;
726 } else {
727 iotlb |= phys_section_rom;
729 } else {
730 iotlb = section - phys_sections;
731 iotlb += xlat;
734 /* Make accesses to pages with watchpoints go via the
735 watchpoint trap routines. */
736 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
737 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
738 /* Avoid trapping reads of pages with a write breakpoint. */
739 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
740 iotlb = phys_section_watch + paddr;
741 *address |= TLB_MMIO;
742 break;
747 return iotlb;
749 #endif /* defined(CONFIG_USER_ONLY) */
751 #if !defined(CONFIG_USER_ONLY)
753 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
754 uint16_t section);
755 static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
756 static void destroy_page_desc(uint16_t section_index)
758 MemoryRegionSection *section = &phys_sections[section_index];
759 MemoryRegion *mr = section->mr;
761 if (mr->subpage) {
762 subpage_t *subpage = container_of(mr, subpage_t, iomem);
763 memory_region_destroy(&subpage->iomem);
764 g_free(subpage);
768 static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level)
770 unsigned i;
771 PhysPageEntry *p;
773 if (lp->ptr == PHYS_MAP_NODE_NIL) {
774 return;
777 p = phys_map_nodes[lp->ptr];
778 for (i = 0; i < L2_SIZE; ++i) {
779 if (!p[i].is_leaf) {
780 destroy_l2_mapping(&p[i], level - 1);
781 } else {
782 destroy_page_desc(p[i].ptr);
785 lp->is_leaf = 0;
786 lp->ptr = PHYS_MAP_NODE_NIL;
789 static void destroy_all_mappings(AddressSpaceDispatch *d)
791 destroy_l2_mapping(&d->phys_map, P_L2_LEVELS - 1);
792 phys_map_nodes_reset();
795 static uint16_t phys_section_add(MemoryRegionSection *section)
797 /* The physical section number is ORed with a page-aligned
798 * pointer to produce the iotlb entries. Thus it should
799 * never overflow into the page-aligned value.
801 assert(phys_sections_nb < TARGET_PAGE_SIZE);
803 if (phys_sections_nb == phys_sections_nb_alloc) {
804 phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
805 phys_sections = g_renew(MemoryRegionSection, phys_sections,
806 phys_sections_nb_alloc);
808 phys_sections[phys_sections_nb] = *section;
809 return phys_sections_nb++;
812 static void phys_sections_clear(void)
814 phys_sections_nb = 0;
817 static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
819 subpage_t *subpage;
820 hwaddr base = section->offset_within_address_space
821 & TARGET_PAGE_MASK;
822 MemoryRegionSection *existing = phys_page_find(d, base >> TARGET_PAGE_BITS);
823 MemoryRegionSection subsection = {
824 .offset_within_address_space = base,
825 .size = int128_make64(TARGET_PAGE_SIZE),
827 hwaddr start, end;
829 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
831 if (!(existing->mr->subpage)) {
832 subpage = subpage_init(d->as, base);
833 subsection.mr = &subpage->iomem;
834 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
835 phys_section_add(&subsection));
836 } else {
837 subpage = container_of(existing->mr, subpage_t, iomem);
839 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
840 end = start + int128_get64(section->size) - 1;
841 subpage_register(subpage, start, end, phys_section_add(section));
845 static void register_multipage(AddressSpaceDispatch *d,
846 MemoryRegionSection *section)
848 hwaddr start_addr = section->offset_within_address_space;
849 uint16_t section_index = phys_section_add(section);
850 uint64_t num_pages = int128_get64(int128_rshift(section->size,
851 TARGET_PAGE_BITS));
853 assert(num_pages);
854 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
857 static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
859 AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
860 MemoryRegionSection now = *section, remain = *section;
861 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
863 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
864 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
865 - now.offset_within_address_space;
867 now.size = int128_min(int128_make64(left), now.size);
868 register_subpage(d, &now);
869 } else {
870 now.size = int128_zero();
872 while (int128_ne(remain.size, now.size)) {
873 remain.size = int128_sub(remain.size, now.size);
874 remain.offset_within_address_space += int128_get64(now.size);
875 remain.offset_within_region += int128_get64(now.size);
876 now = remain;
877 if (int128_lt(remain.size, page_size)) {
878 register_subpage(d, &now);
879 } else if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
880 now.size = page_size;
881 register_subpage(d, &now);
882 } else {
883 now.size = int128_and(now.size, int128_neg(page_size));
884 register_multipage(d, &now);
889 void qemu_flush_coalesced_mmio_buffer(void)
891 if (kvm_enabled())
892 kvm_flush_coalesced_mmio_buffer();
895 void qemu_mutex_lock_ramlist(void)
897 qemu_mutex_lock(&ram_list.mutex);
900 void qemu_mutex_unlock_ramlist(void)
902 qemu_mutex_unlock(&ram_list.mutex);
905 #if defined(__linux__) && !defined(TARGET_S390X)
907 #include <sys/vfs.h>
909 #define HUGETLBFS_MAGIC 0x958458f6
911 static long gethugepagesize(const char *path)
913 struct statfs fs;
914 int ret;
916 do {
917 ret = statfs(path, &fs);
918 } while (ret != 0 && errno == EINTR);
920 if (ret != 0) {
921 perror(path);
922 return 0;
925 if (fs.f_type != HUGETLBFS_MAGIC)
926 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
928 return fs.f_bsize;
931 static void *file_ram_alloc(RAMBlock *block,
932 ram_addr_t memory,
933 const char *path)
935 char *filename;
936 char *sanitized_name;
937 char *c;
938 void *area;
939 int fd;
940 #ifdef MAP_POPULATE
941 int flags;
942 #endif
943 unsigned long hpagesize;
945 hpagesize = gethugepagesize(path);
946 if (!hpagesize) {
947 return NULL;
950 if (memory < hpagesize) {
951 return NULL;
954 if (kvm_enabled() && !kvm_has_sync_mmu()) {
955 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
956 return NULL;
959 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
960 sanitized_name = g_strdup(block->mr->name);
961 for (c = sanitized_name; *c != '\0'; c++) {
962 if (*c == '/')
963 *c = '_';
966 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
967 sanitized_name);
968 g_free(sanitized_name);
970 fd = mkstemp(filename);
971 if (fd < 0) {
972 perror("unable to create backing store for hugepages");
973 g_free(filename);
974 return NULL;
976 unlink(filename);
977 g_free(filename);
979 memory = (memory+hpagesize-1) & ~(hpagesize-1);
982 * ftruncate is not supported by hugetlbfs in older
983 * hosts, so don't bother bailing out on errors.
984 * If anything goes wrong with it under other filesystems,
985 * mmap will fail.
987 if (ftruncate(fd, memory))
988 perror("ftruncate");
990 #ifdef MAP_POPULATE
991 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
992 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
993 * to sidestep this quirk.
995 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
996 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
997 #else
998 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
999 #endif
1000 if (area == MAP_FAILED) {
1001 perror("file_ram_alloc: can't mmap RAM pages");
1002 close(fd);
1003 return (NULL);
1005 block->fd = fd;
1006 return area;
1008 #endif
1010 static ram_addr_t find_ram_offset(ram_addr_t size)
1012 RAMBlock *block, *next_block;
1013 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
1015 assert(size != 0); /* it would hand out same offset multiple times */
1017 if (QTAILQ_EMPTY(&ram_list.blocks))
1018 return 0;
1020 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1021 ram_addr_t end, next = RAM_ADDR_MAX;
1023 end = block->offset + block->length;
1025 QTAILQ_FOREACH(next_block, &ram_list.blocks, next) {
1026 if (next_block->offset >= end) {
1027 next = MIN(next, next_block->offset);
1030 if (next - end >= size && next - end < mingap) {
1031 offset = end;
1032 mingap = next - end;
1036 if (offset == RAM_ADDR_MAX) {
1037 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1038 (uint64_t)size);
1039 abort();
1042 return offset;
1045 ram_addr_t last_ram_offset(void)
1047 RAMBlock *block;
1048 ram_addr_t last = 0;
1050 QTAILQ_FOREACH(block, &ram_list.blocks, next)
1051 last = MAX(last, block->offset + block->length);
1053 return last;
1056 static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1058 int ret;
1059 QemuOpts *machine_opts;
1061 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
1062 machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1063 if (machine_opts &&
1064 !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) {
1065 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1066 if (ret) {
1067 perror("qemu_madvise");
1068 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1069 "but dump_guest_core=off specified\n");
1074 void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
1076 RAMBlock *new_block, *block;
1078 new_block = NULL;
1079 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1080 if (block->offset == addr) {
1081 new_block = block;
1082 break;
1085 assert(new_block);
1086 assert(!new_block->idstr[0]);
1088 if (dev) {
1089 char *id = qdev_get_dev_path(dev);
1090 if (id) {
1091 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
1092 g_free(id);
1095 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1097 /* This assumes the iothread lock is taken here too. */
1098 qemu_mutex_lock_ramlist();
1099 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1100 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
1101 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1102 new_block->idstr);
1103 abort();
1106 qemu_mutex_unlock_ramlist();
1109 static int memory_try_enable_merging(void *addr, size_t len)
1111 QemuOpts *opts;
1113 opts = qemu_opts_find(qemu_find_opts("machine"), 0);
1114 if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) {
1115 /* disabled by the user */
1116 return 0;
1119 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1122 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
1123 MemoryRegion *mr)
1125 RAMBlock *block, *new_block;
1127 size = TARGET_PAGE_ALIGN(size);
1128 new_block = g_malloc0(sizeof(*new_block));
1130 /* This assumes the iothread lock is taken here too. */
1131 qemu_mutex_lock_ramlist();
1132 new_block->mr = mr;
1133 new_block->offset = find_ram_offset(size);
1134 if (host) {
1135 new_block->host = host;
1136 new_block->flags |= RAM_PREALLOC_MASK;
1137 } else {
1138 if (mem_path) {
1139 #if defined (__linux__) && !defined(TARGET_S390X)
1140 new_block->host = file_ram_alloc(new_block, size, mem_path);
1141 if (!new_block->host) {
1142 new_block->host = qemu_anon_ram_alloc(size);
1143 memory_try_enable_merging(new_block->host, size);
1145 #else
1146 fprintf(stderr, "-mem-path option unsupported\n");
1147 exit(1);
1148 #endif
1149 } else {
1150 if (xen_enabled()) {
1151 xen_ram_alloc(new_block->offset, size, mr);
1152 } else if (kvm_enabled()) {
1153 /* some s390/kvm configurations have special constraints */
1154 new_block->host = kvm_ram_alloc(size);
1155 } else {
1156 new_block->host = qemu_anon_ram_alloc(size);
1158 memory_try_enable_merging(new_block->host, size);
1161 new_block->length = size;
1163 /* Keep the list sorted from biggest to smallest block. */
1164 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1165 if (block->length < new_block->length) {
1166 break;
1169 if (block) {
1170 QTAILQ_INSERT_BEFORE(block, new_block, next);
1171 } else {
1172 QTAILQ_INSERT_TAIL(&ram_list.blocks, new_block, next);
1174 ram_list.mru_block = NULL;
1176 ram_list.version++;
1177 qemu_mutex_unlock_ramlist();
1179 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
1180 last_ram_offset() >> TARGET_PAGE_BITS);
1181 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
1182 0, size >> TARGET_PAGE_BITS);
1183 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
1185 qemu_ram_setup_dump(new_block->host, size);
1186 qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
1188 if (kvm_enabled())
1189 kvm_setup_guest_memory(new_block->host, size);
1191 return new_block->offset;
1194 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
1196 return qemu_ram_alloc_from_ptr(size, NULL, mr);
1199 void qemu_ram_free_from_ptr(ram_addr_t addr)
1201 RAMBlock *block;
1203 /* This assumes the iothread lock is taken here too. */
1204 qemu_mutex_lock_ramlist();
1205 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1206 if (addr == block->offset) {
1207 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1208 ram_list.mru_block = NULL;
1209 ram_list.version++;
1210 g_free(block);
1211 break;
1214 qemu_mutex_unlock_ramlist();
1217 void qemu_ram_free(ram_addr_t addr)
1219 RAMBlock *block;
1221 /* This assumes the iothread lock is taken here too. */
1222 qemu_mutex_lock_ramlist();
1223 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1224 if (addr == block->offset) {
1225 QTAILQ_REMOVE(&ram_list.blocks, block, next);
1226 ram_list.mru_block = NULL;
1227 ram_list.version++;
1228 if (block->flags & RAM_PREALLOC_MASK) {
1230 } else if (mem_path) {
1231 #if defined (__linux__) && !defined(TARGET_S390X)
1232 if (block->fd) {
1233 munmap(block->host, block->length);
1234 close(block->fd);
1235 } else {
1236 qemu_anon_ram_free(block->host, block->length);
1238 #else
1239 abort();
1240 #endif
1241 } else {
1242 if (xen_enabled()) {
1243 xen_invalidate_map_cache_entry(block->host);
1244 } else {
1245 qemu_anon_ram_free(block->host, block->length);
1248 g_free(block);
1249 break;
1252 qemu_mutex_unlock_ramlist();
1256 #ifndef _WIN32
1257 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1259 RAMBlock *block;
1260 ram_addr_t offset;
1261 int flags;
1262 void *area, *vaddr;
1264 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1265 offset = addr - block->offset;
1266 if (offset < block->length) {
1267 vaddr = block->host + offset;
1268 if (block->flags & RAM_PREALLOC_MASK) {
1270 } else {
1271 flags = MAP_FIXED;
1272 munmap(vaddr, length);
1273 if (mem_path) {
1274 #if defined(__linux__) && !defined(TARGET_S390X)
1275 if (block->fd) {
1276 #ifdef MAP_POPULATE
1277 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
1278 MAP_PRIVATE;
1279 #else
1280 flags |= MAP_PRIVATE;
1281 #endif
1282 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1283 flags, block->fd, offset);
1284 } else {
1285 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1286 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1287 flags, -1, 0);
1289 #else
1290 abort();
1291 #endif
1292 } else {
1293 #if defined(TARGET_S390X) && defined(CONFIG_KVM)
1294 flags |= MAP_SHARED | MAP_ANONYMOUS;
1295 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
1296 flags, -1, 0);
1297 #else
1298 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1299 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1300 flags, -1, 0);
1301 #endif
1303 if (area != vaddr) {
1304 fprintf(stderr, "Could not remap addr: "
1305 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
1306 length, addr);
1307 exit(1);
1309 memory_try_enable_merging(vaddr, length);
1310 qemu_ram_setup_dump(vaddr, length);
1312 return;
1316 #endif /* !_WIN32 */
1318 /* Return a host pointer to ram allocated with qemu_ram_alloc.
1319 With the exception of the softmmu code in this file, this should
1320 only be used for local memory (e.g. video ram) that the device owns,
1321 and knows it isn't going to access beyond the end of the block.
1323 It should not be used for general purpose DMA.
1324 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
1326 void *qemu_get_ram_ptr(ram_addr_t addr)
1328 RAMBlock *block;
1330 /* The list is protected by the iothread lock here. */
1331 block = ram_list.mru_block;
1332 if (block && addr - block->offset < block->length) {
1333 goto found;
1335 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1336 if (addr - block->offset < block->length) {
1337 goto found;
1341 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1342 abort();
1344 found:
1345 ram_list.mru_block = block;
1346 if (xen_enabled()) {
1347 /* We need to check if the requested address is in the RAM
1348 * because we don't want to map the entire memory in QEMU.
1349 * In that case just map until the end of the page.
1351 if (block->offset == 0) {
1352 return xen_map_cache(addr, 0, 0);
1353 } else if (block->host == NULL) {
1354 block->host =
1355 xen_map_cache(block->offset, block->length, 1);
1358 return block->host + (addr - block->offset);
1361 /* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
1362 * qemu_get_ram_ptr but do not touch ram_list.mru_block.
1364 * ??? Is this still necessary?
1366 static void *qemu_safe_ram_ptr(ram_addr_t addr)
1368 RAMBlock *block;
1370 /* The list is protected by the iothread lock here. */
1371 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1372 if (addr - block->offset < block->length) {
1373 if (xen_enabled()) {
1374 /* We need to check if the requested address is in the RAM
1375 * because we don't want to map the entire memory in QEMU.
1376 * In that case just map until the end of the page.
1378 if (block->offset == 0) {
1379 return xen_map_cache(addr, 0, 0);
1380 } else if (block->host == NULL) {
1381 block->host =
1382 xen_map_cache(block->offset, block->length, 1);
1385 return block->host + (addr - block->offset);
1389 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1390 abort();
1392 return NULL;
1395 /* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
1396 * but takes a size argument */
1397 static void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
1399 if (*size == 0) {
1400 return NULL;
1402 if (xen_enabled()) {
1403 return xen_map_cache(addr, *size, 1);
1404 } else {
1405 RAMBlock *block;
1407 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1408 if (addr - block->offset < block->length) {
1409 if (addr - block->offset + *size > block->length)
1410 *size = block->length - addr + block->offset;
1411 return block->host + (addr - block->offset);
1415 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
1416 abort();
1420 int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
1422 RAMBlock *block;
1423 uint8_t *host = ptr;
1425 if (xen_enabled()) {
1426 *ram_addr = xen_ram_addr_from_mapcache(ptr);
1427 return 0;
1430 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
1431 /* This case append when the block is not mapped. */
1432 if (block->host == NULL) {
1433 continue;
1435 if (host - block->host < block->length) {
1436 *ram_addr = block->offset + (host - block->host);
1437 return 0;
1441 return -1;
1444 /* Some of the softmmu routines need to translate from a host pointer
1445 (typically a TLB entry) back to a ram offset. */
1446 ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
1448 ram_addr_t ram_addr;
1450 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
1451 fprintf(stderr, "Bad ram pointer %p\n", ptr);
1452 abort();
1454 return ram_addr;
1457 static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
1458 uint64_t val, unsigned size)
1460 int dirty_flags;
1461 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1462 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
1463 tb_invalidate_phys_page_fast(ram_addr, size);
1464 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
1466 switch (size) {
1467 case 1:
1468 stb_p(qemu_get_ram_ptr(ram_addr), val);
1469 break;
1470 case 2:
1471 stw_p(qemu_get_ram_ptr(ram_addr), val);
1472 break;
1473 case 4:
1474 stl_p(qemu_get_ram_ptr(ram_addr), val);
1475 break;
1476 default:
1477 abort();
1479 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
1480 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
1481 /* we remove the notdirty callback only if the code has been
1482 flushed */
1483 if (dirty_flags == 0xff)
1484 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
1487 static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1488 unsigned size, bool is_write)
1490 return is_write;
1493 static const MemoryRegionOps notdirty_mem_ops = {
1494 .write = notdirty_mem_write,
1495 .valid.accepts = notdirty_mem_accepts,
1496 .endianness = DEVICE_NATIVE_ENDIAN,
1499 /* Generate a debug exception if a watchpoint has been hit. */
1500 static void check_watchpoint(int offset, int len_mask, int flags)
1502 CPUArchState *env = cpu_single_env;
1503 target_ulong pc, cs_base;
1504 target_ulong vaddr;
1505 CPUWatchpoint *wp;
1506 int cpu_flags;
1508 if (env->watchpoint_hit) {
1509 /* We re-entered the check after replacing the TB. Now raise
1510 * the debug interrupt so that is will trigger after the
1511 * current instruction. */
1512 cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
1513 return;
1515 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
1516 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1517 if ((vaddr == (wp->vaddr & len_mask) ||
1518 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
1519 wp->flags |= BP_WATCHPOINT_HIT;
1520 if (!env->watchpoint_hit) {
1521 env->watchpoint_hit = wp;
1522 tb_check_watchpoint(env);
1523 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
1524 env->exception_index = EXCP_DEBUG;
1525 cpu_loop_exit(env);
1526 } else {
1527 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
1528 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
1529 cpu_resume_from_signal(env, NULL);
1532 } else {
1533 wp->flags &= ~BP_WATCHPOINT_HIT;
1538 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
1539 so these check for a hit then pass through to the normal out-of-line
1540 phys routines. */
1541 static uint64_t watch_mem_read(void *opaque, hwaddr addr,
1542 unsigned size)
1544 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
1545 switch (size) {
1546 case 1: return ldub_phys(addr);
1547 case 2: return lduw_phys(addr);
1548 case 4: return ldl_phys(addr);
1549 default: abort();
1553 static void watch_mem_write(void *opaque, hwaddr addr,
1554 uint64_t val, unsigned size)
1556 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
1557 switch (size) {
1558 case 1:
1559 stb_phys(addr, val);
1560 break;
1561 case 2:
1562 stw_phys(addr, val);
1563 break;
1564 case 4:
1565 stl_phys(addr, val);
1566 break;
1567 default: abort();
1571 static const MemoryRegionOps watch_mem_ops = {
1572 .read = watch_mem_read,
1573 .write = watch_mem_write,
1574 .endianness = DEVICE_NATIVE_ENDIAN,
1577 static uint64_t subpage_read(void *opaque, hwaddr addr,
1578 unsigned len)
1580 subpage_t *subpage = opaque;
1581 uint8_t buf[4];
1583 #if defined(DEBUG_SUBPAGE)
1584 printf("%s: subpage %p len %d addr " TARGET_FMT_plx "\n", __func__,
1585 subpage, len, addr);
1586 #endif
1587 address_space_read(subpage->as, addr + subpage->base, buf, len);
1588 switch (len) {
1589 case 1:
1590 return ldub_p(buf);
1591 case 2:
1592 return lduw_p(buf);
1593 case 4:
1594 return ldl_p(buf);
1595 default:
1596 abort();
1600 static void subpage_write(void *opaque, hwaddr addr,
1601 uint64_t value, unsigned len)
1603 subpage_t *subpage = opaque;
1604 uint8_t buf[4];
1606 #if defined(DEBUG_SUBPAGE)
1607 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
1608 " value %"PRIx64"\n",
1609 __func__, subpage, len, addr, value);
1610 #endif
1611 switch (len) {
1612 case 1:
1613 stb_p(buf, value);
1614 break;
1615 case 2:
1616 stw_p(buf, value);
1617 break;
1618 case 4:
1619 stl_p(buf, value);
1620 break;
1621 default:
1622 abort();
1624 address_space_write(subpage->as, addr + subpage->base, buf, len);
1627 static bool subpage_accepts(void *opaque, hwaddr addr,
1628 unsigned size, bool is_write)
1630 subpage_t *subpage = opaque;
1631 #if defined(DEBUG_SUBPAGE)
1632 printf("%s: subpage %p %c len %d addr " TARGET_FMT_plx "\n",
1633 __func__, subpage, is_write ? 'w' : 'r', len, addr);
1634 #endif
1636 return address_space_access_valid(subpage->as, addr + subpage->base,
1637 size, is_write);
1640 static const MemoryRegionOps subpage_ops = {
1641 .read = subpage_read,
1642 .write = subpage_write,
1643 .valid.accepts = subpage_accepts,
1644 .endianness = DEVICE_NATIVE_ENDIAN,
1647 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
1648 uint16_t section)
1650 int idx, eidx;
1652 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
1653 return -1;
1654 idx = SUBPAGE_IDX(start);
1655 eidx = SUBPAGE_IDX(end);
1656 #if defined(DEBUG_SUBPAGE)
1657 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
1658 mmio, start, end, idx, eidx, memory);
1659 #endif
1660 for (; idx <= eidx; idx++) {
1661 mmio->sub_section[idx] = section;
1664 return 0;
1667 static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
1669 subpage_t *mmio;
1671 mmio = g_malloc0(sizeof(subpage_t));
1673 mmio->as = as;
1674 mmio->base = base;
1675 memory_region_init_io(&mmio->iomem, &subpage_ops, mmio,
1676 "subpage", TARGET_PAGE_SIZE);
1677 mmio->iomem.subpage = true;
1678 #if defined(DEBUG_SUBPAGE)
1679 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
1680 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
1681 #endif
1682 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
1684 return mmio;
1687 static uint16_t dummy_section(MemoryRegion *mr)
1689 MemoryRegionSection section = {
1690 .mr = mr,
1691 .offset_within_address_space = 0,
1692 .offset_within_region = 0,
1693 .size = int128_2_64(),
1696 return phys_section_add(&section);
1699 MemoryRegion *iotlb_to_region(hwaddr index)
1701 return phys_sections[index & ~TARGET_PAGE_MASK].mr;
1704 static void io_mem_init(void)
1706 memory_region_init_io(&io_mem_rom, &unassigned_mem_ops, NULL, "rom", UINT64_MAX);
1707 memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
1708 "unassigned", UINT64_MAX);
1709 memory_region_init_io(&io_mem_notdirty, &notdirty_mem_ops, NULL,
1710 "notdirty", UINT64_MAX);
1711 memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL,
1712 "watch", UINT64_MAX);
1715 static void mem_begin(MemoryListener *listener)
1717 AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
1719 destroy_all_mappings(d);
1720 d->phys_map.ptr = PHYS_MAP_NODE_NIL;
1723 static void core_begin(MemoryListener *listener)
1725 phys_sections_clear();
1726 phys_section_unassigned = dummy_section(&io_mem_unassigned);
1727 phys_section_notdirty = dummy_section(&io_mem_notdirty);
1728 phys_section_rom = dummy_section(&io_mem_rom);
1729 phys_section_watch = dummy_section(&io_mem_watch);
1732 static void tcg_commit(MemoryListener *listener)
1734 CPUArchState *env;
1736 /* since each CPU stores ram addresses in its TLB cache, we must
1737 reset the modified entries */
1738 /* XXX: slow ! */
1739 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1740 tlb_flush(env, 1);
1744 static void core_log_global_start(MemoryListener *listener)
1746 cpu_physical_memory_set_dirty_tracking(1);
1749 static void core_log_global_stop(MemoryListener *listener)
1751 cpu_physical_memory_set_dirty_tracking(0);
1754 static void io_region_add(MemoryListener *listener,
1755 MemoryRegionSection *section)
1757 MemoryRegionIORange *mrio = g_new(MemoryRegionIORange, 1);
1759 mrio->mr = section->mr;
1760 mrio->offset = section->offset_within_region;
1761 iorange_init(&mrio->iorange, &memory_region_iorange_ops,
1762 section->offset_within_address_space,
1763 int128_get64(section->size));
1764 ioport_register(&mrio->iorange);
1767 static void io_region_del(MemoryListener *listener,
1768 MemoryRegionSection *section)
1770 isa_unassign_ioport(section->offset_within_address_space,
1771 int128_get64(section->size));
1774 static MemoryListener core_memory_listener = {
1775 .begin = core_begin,
1776 .log_global_start = core_log_global_start,
1777 .log_global_stop = core_log_global_stop,
1778 .priority = 1,
1781 static MemoryListener io_memory_listener = {
1782 .region_add = io_region_add,
1783 .region_del = io_region_del,
1784 .priority = 0,
1787 static MemoryListener tcg_memory_listener = {
1788 .commit = tcg_commit,
1791 void address_space_init_dispatch(AddressSpace *as)
1793 AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
1795 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
1796 d->listener = (MemoryListener) {
1797 .begin = mem_begin,
1798 .region_add = mem_add,
1799 .region_nop = mem_add,
1800 .priority = 0,
1802 d->as = as;
1803 as->dispatch = d;
1804 memory_listener_register(&d->listener, as);
1807 void address_space_destroy_dispatch(AddressSpace *as)
1809 AddressSpaceDispatch *d = as->dispatch;
1811 memory_listener_unregister(&d->listener);
1812 destroy_l2_mapping(&d->phys_map, P_L2_LEVELS - 1);
1813 g_free(d);
1814 as->dispatch = NULL;
1817 static void memory_map_init(void)
1819 system_memory = g_malloc(sizeof(*system_memory));
1820 memory_region_init(system_memory, "system", INT64_MAX);
1821 address_space_init(&address_space_memory, system_memory, "memory");
1823 system_io = g_malloc(sizeof(*system_io));
1824 memory_region_init(system_io, "io", 65536);
1825 address_space_init(&address_space_io, system_io, "I/O");
1827 memory_listener_register(&core_memory_listener, &address_space_memory);
1828 memory_listener_register(&io_memory_listener, &address_space_io);
1829 memory_listener_register(&tcg_memory_listener, &address_space_memory);
1832 MemoryRegion *get_system_memory(void)
1834 return system_memory;
1837 MemoryRegion *get_system_io(void)
1839 return system_io;
1842 #endif /* !defined(CONFIG_USER_ONLY) */
1844 /* physical memory access (slow version, mainly for debug) */
1845 #if defined(CONFIG_USER_ONLY)
1846 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
1847 uint8_t *buf, int len, int is_write)
1849 int l, flags;
1850 target_ulong page;
1851 void * p;
1853 while (len > 0) {
1854 page = addr & TARGET_PAGE_MASK;
1855 l = (page + TARGET_PAGE_SIZE) - addr;
1856 if (l > len)
1857 l = len;
1858 flags = page_get_flags(page);
1859 if (!(flags & PAGE_VALID))
1860 return -1;
1861 if (is_write) {
1862 if (!(flags & PAGE_WRITE))
1863 return -1;
1864 /* XXX: this code should not depend on lock_user */
1865 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
1866 return -1;
1867 memcpy(p, buf, l);
1868 unlock_user(p, addr, l);
1869 } else {
1870 if (!(flags & PAGE_READ))
1871 return -1;
1872 /* XXX: this code should not depend on lock_user */
1873 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
1874 return -1;
1875 memcpy(buf, p, l);
1876 unlock_user(p, addr, 0);
1878 len -= l;
1879 buf += l;
1880 addr += l;
1882 return 0;
1885 #else
1887 static void invalidate_and_set_dirty(hwaddr addr,
1888 hwaddr length)
1890 if (!cpu_physical_memory_is_dirty(addr)) {
1891 /* invalidate code */
1892 tb_invalidate_phys_page_range(addr, addr + length, 0);
1893 /* set dirty bit */
1894 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
1896 xen_modified_memory(addr, length);
1899 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1901 if (memory_region_is_ram(mr)) {
1902 return !(is_write && mr->readonly);
1904 if (memory_region_is_romd(mr)) {
1905 return !is_write;
1908 return false;
1911 static inline int memory_access_size(MemoryRegion *mr, int l, hwaddr addr)
1913 if (l >= 4 && (((addr & 3) == 0 || mr->ops->impl.unaligned))) {
1914 return 4;
1916 if (l >= 2 && (((addr & 1) == 0) || mr->ops->impl.unaligned)) {
1917 return 2;
1919 return 1;
1922 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1923 int len, bool is_write)
1925 hwaddr l;
1926 uint8_t *ptr;
1927 uint64_t val;
1928 hwaddr addr1;
1929 MemoryRegion *mr;
1930 bool error = false;
1932 while (len > 0) {
1933 l = len;
1934 mr = address_space_translate(as, addr, &addr1, &l, is_write);
1936 if (is_write) {
1937 if (!memory_access_is_direct(mr, is_write)) {
1938 l = memory_access_size(mr, l, addr1);
1939 /* XXX: could force cpu_single_env to NULL to avoid
1940 potential bugs */
1941 if (l == 4) {
1942 /* 32 bit write access */
1943 val = ldl_p(buf);
1944 error |= io_mem_write(mr, addr1, val, 4);
1945 } else if (l == 2) {
1946 /* 16 bit write access */
1947 val = lduw_p(buf);
1948 error |= io_mem_write(mr, addr1, val, 2);
1949 } else {
1950 /* 8 bit write access */
1951 val = ldub_p(buf);
1952 error |= io_mem_write(mr, addr1, val, 1);
1954 } else {
1955 addr1 += memory_region_get_ram_addr(mr);
1956 /* RAM case */
1957 ptr = qemu_get_ram_ptr(addr1);
1958 memcpy(ptr, buf, l);
1959 invalidate_and_set_dirty(addr1, l);
1961 } else {
1962 if (!memory_access_is_direct(mr, is_write)) {
1963 /* I/O case */
1964 l = memory_access_size(mr, l, addr1);
1965 if (l == 4) {
1966 /* 32 bit read access */
1967 error |= io_mem_read(mr, addr1, &val, 4);
1968 stl_p(buf, val);
1969 } else if (l == 2) {
1970 /* 16 bit read access */
1971 error |= io_mem_read(mr, addr1, &val, 2);
1972 stw_p(buf, val);
1973 } else {
1974 /* 8 bit read access */
1975 error |= io_mem_read(mr, addr1, &val, 1);
1976 stb_p(buf, val);
1978 } else {
1979 /* RAM case */
1980 ptr = qemu_get_ram_ptr(mr->ram_addr + addr1);
1981 memcpy(buf, ptr, l);
1984 len -= l;
1985 buf += l;
1986 addr += l;
1989 return error;
1992 bool address_space_write(AddressSpace *as, hwaddr addr,
1993 const uint8_t *buf, int len)
1995 return address_space_rw(as, addr, (uint8_t *)buf, len, true);
1998 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
2000 return address_space_rw(as, addr, buf, len, false);
2004 void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
2005 int len, int is_write)
2007 address_space_rw(&address_space_memory, addr, buf, len, is_write);
2010 /* used for ROM loading : can write in RAM and ROM */
2011 void cpu_physical_memory_write_rom(hwaddr addr,
2012 const uint8_t *buf, int len)
2014 hwaddr l;
2015 uint8_t *ptr;
2016 hwaddr addr1;
2017 MemoryRegion *mr;
2019 while (len > 0) {
2020 l = len;
2021 mr = address_space_translate(&address_space_memory,
2022 addr, &addr1, &l, true);
2024 if (!(memory_region_is_ram(mr) ||
2025 memory_region_is_romd(mr))) {
2026 /* do nothing */
2027 } else {
2028 addr1 += memory_region_get_ram_addr(mr);
2029 /* ROM/RAM case */
2030 ptr = qemu_get_ram_ptr(addr1);
2031 memcpy(ptr, buf, l);
2032 invalidate_and_set_dirty(addr1, l);
2034 len -= l;
2035 buf += l;
2036 addr += l;
2040 typedef struct {
2041 void *buffer;
2042 hwaddr addr;
2043 hwaddr len;
2044 } BounceBuffer;
2046 static BounceBuffer bounce;
2048 typedef struct MapClient {
2049 void *opaque;
2050 void (*callback)(void *opaque);
2051 QLIST_ENTRY(MapClient) link;
2052 } MapClient;
2054 static QLIST_HEAD(map_client_list, MapClient) map_client_list
2055 = QLIST_HEAD_INITIALIZER(map_client_list);
2057 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
2059 MapClient *client = g_malloc(sizeof(*client));
2061 client->opaque = opaque;
2062 client->callback = callback;
2063 QLIST_INSERT_HEAD(&map_client_list, client, link);
2064 return client;
2067 static void cpu_unregister_map_client(void *_client)
2069 MapClient *client = (MapClient *)_client;
2071 QLIST_REMOVE(client, link);
2072 g_free(client);
2075 static void cpu_notify_map_clients(void)
2077 MapClient *client;
2079 while (!QLIST_EMPTY(&map_client_list)) {
2080 client = QLIST_FIRST(&map_client_list);
2081 client->callback(client->opaque);
2082 cpu_unregister_map_client(client);
2086 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2088 MemoryRegion *mr;
2089 hwaddr l, xlat;
2091 while (len > 0) {
2092 l = len;
2093 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2094 if (!memory_access_is_direct(mr, is_write)) {
2095 l = memory_access_size(mr, l, addr);
2096 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
2097 return false;
2101 len -= l;
2102 addr += l;
2104 return true;
2107 /* Map a physical memory region into a host virtual address.
2108 * May map a subset of the requested range, given by and returned in *plen.
2109 * May return NULL if resources needed to perform the mapping are exhausted.
2110 * Use only for reads OR writes - not for read-modify-write operations.
2111 * Use cpu_register_map_client() to know when retrying the map operation is
2112 * likely to succeed.
2114 void *address_space_map(AddressSpace *as,
2115 hwaddr addr,
2116 hwaddr *plen,
2117 bool is_write)
2119 hwaddr len = *plen;
2120 hwaddr todo = 0;
2121 hwaddr l, xlat;
2122 MemoryRegion *mr;
2123 ram_addr_t raddr = RAM_ADDR_MAX;
2124 ram_addr_t rlen;
2125 void *ret;
2127 while (len > 0) {
2128 l = len;
2129 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2131 if (!memory_access_is_direct(mr, is_write)) {
2132 if (todo || bounce.buffer) {
2133 break;
2135 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
2136 bounce.addr = addr;
2137 bounce.len = l;
2138 if (!is_write) {
2139 address_space_read(as, addr, bounce.buffer, l);
2142 *plen = l;
2143 return bounce.buffer;
2145 if (!todo) {
2146 raddr = memory_region_get_ram_addr(mr) + xlat;
2147 } else {
2148 if (memory_region_get_ram_addr(mr) + xlat != raddr + todo) {
2149 break;
2153 len -= l;
2154 addr += l;
2155 todo += l;
2157 rlen = todo;
2158 ret = qemu_ram_ptr_length(raddr, &rlen);
2159 *plen = rlen;
2160 return ret;
2163 /* Unmaps a memory region previously mapped by address_space_map().
2164 * Will also mark the memory as dirty if is_write == 1. access_len gives
2165 * the amount of memory that was actually read or written by the caller.
2167 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2168 int is_write, hwaddr access_len)
2170 if (buffer != bounce.buffer) {
2171 if (is_write) {
2172 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
2173 while (access_len) {
2174 unsigned l;
2175 l = TARGET_PAGE_SIZE;
2176 if (l > access_len)
2177 l = access_len;
2178 invalidate_and_set_dirty(addr1, l);
2179 addr1 += l;
2180 access_len -= l;
2183 if (xen_enabled()) {
2184 xen_invalidate_map_cache_entry(buffer);
2186 return;
2188 if (is_write) {
2189 address_space_write(as, bounce.addr, bounce.buffer, access_len);
2191 qemu_vfree(bounce.buffer);
2192 bounce.buffer = NULL;
2193 cpu_notify_map_clients();
2196 void *cpu_physical_memory_map(hwaddr addr,
2197 hwaddr *plen,
2198 int is_write)
2200 return address_space_map(&address_space_memory, addr, plen, is_write);
2203 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2204 int is_write, hwaddr access_len)
2206 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2209 /* warning: addr must be aligned */
2210 static inline uint32_t ldl_phys_internal(hwaddr addr,
2211 enum device_endian endian)
2213 uint8_t *ptr;
2214 uint64_t val;
2215 MemoryRegion *mr;
2216 hwaddr l = 4;
2217 hwaddr addr1;
2219 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2220 false);
2221 if (l < 4 || !memory_access_is_direct(mr, false)) {
2222 /* I/O case */
2223 io_mem_read(mr, addr1, &val, 4);
2224 #if defined(TARGET_WORDS_BIGENDIAN)
2225 if (endian == DEVICE_LITTLE_ENDIAN) {
2226 val = bswap32(val);
2228 #else
2229 if (endian == DEVICE_BIG_ENDIAN) {
2230 val = bswap32(val);
2232 #endif
2233 } else {
2234 /* RAM case */
2235 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2236 & TARGET_PAGE_MASK)
2237 + addr1);
2238 switch (endian) {
2239 case DEVICE_LITTLE_ENDIAN:
2240 val = ldl_le_p(ptr);
2241 break;
2242 case DEVICE_BIG_ENDIAN:
2243 val = ldl_be_p(ptr);
2244 break;
2245 default:
2246 val = ldl_p(ptr);
2247 break;
2250 return val;
2253 uint32_t ldl_phys(hwaddr addr)
2255 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2258 uint32_t ldl_le_phys(hwaddr addr)
2260 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2263 uint32_t ldl_be_phys(hwaddr addr)
2265 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
2268 /* warning: addr must be aligned */
2269 static inline uint64_t ldq_phys_internal(hwaddr addr,
2270 enum device_endian endian)
2272 uint8_t *ptr;
2273 uint64_t val;
2274 MemoryRegion *mr;
2275 hwaddr l = 8;
2276 hwaddr addr1;
2278 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2279 false);
2280 if (l < 8 || !memory_access_is_direct(mr, false)) {
2281 /* I/O case */
2282 io_mem_read(mr, addr1, &val, 8);
2283 #if defined(TARGET_WORDS_BIGENDIAN)
2284 if (endian == DEVICE_LITTLE_ENDIAN) {
2285 val = bswap64(val);
2287 #else
2288 if (endian == DEVICE_BIG_ENDIAN) {
2289 val = bswap64(val);
2291 #endif
2292 } else {
2293 /* RAM case */
2294 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2295 & TARGET_PAGE_MASK)
2296 + addr1);
2297 switch (endian) {
2298 case DEVICE_LITTLE_ENDIAN:
2299 val = ldq_le_p(ptr);
2300 break;
2301 case DEVICE_BIG_ENDIAN:
2302 val = ldq_be_p(ptr);
2303 break;
2304 default:
2305 val = ldq_p(ptr);
2306 break;
2309 return val;
2312 uint64_t ldq_phys(hwaddr addr)
2314 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2317 uint64_t ldq_le_phys(hwaddr addr)
2319 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2322 uint64_t ldq_be_phys(hwaddr addr)
2324 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
2327 /* XXX: optimize */
2328 uint32_t ldub_phys(hwaddr addr)
2330 uint8_t val;
2331 cpu_physical_memory_read(addr, &val, 1);
2332 return val;
2335 /* warning: addr must be aligned */
2336 static inline uint32_t lduw_phys_internal(hwaddr addr,
2337 enum device_endian endian)
2339 uint8_t *ptr;
2340 uint64_t val;
2341 MemoryRegion *mr;
2342 hwaddr l = 2;
2343 hwaddr addr1;
2345 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2346 false);
2347 if (l < 2 || !memory_access_is_direct(mr, false)) {
2348 /* I/O case */
2349 io_mem_read(mr, addr1, &val, 2);
2350 #if defined(TARGET_WORDS_BIGENDIAN)
2351 if (endian == DEVICE_LITTLE_ENDIAN) {
2352 val = bswap16(val);
2354 #else
2355 if (endian == DEVICE_BIG_ENDIAN) {
2356 val = bswap16(val);
2358 #endif
2359 } else {
2360 /* RAM case */
2361 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(mr)
2362 & TARGET_PAGE_MASK)
2363 + addr1);
2364 switch (endian) {
2365 case DEVICE_LITTLE_ENDIAN:
2366 val = lduw_le_p(ptr);
2367 break;
2368 case DEVICE_BIG_ENDIAN:
2369 val = lduw_be_p(ptr);
2370 break;
2371 default:
2372 val = lduw_p(ptr);
2373 break;
2376 return val;
2379 uint32_t lduw_phys(hwaddr addr)
2381 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
2384 uint32_t lduw_le_phys(hwaddr addr)
2386 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
2389 uint32_t lduw_be_phys(hwaddr addr)
2391 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
2394 /* warning: addr must be aligned. The ram page is not masked as dirty
2395 and the code inside is not invalidated. It is useful if the dirty
2396 bits are used to track modified PTEs */
2397 void stl_phys_notdirty(hwaddr addr, uint32_t val)
2399 uint8_t *ptr;
2400 MemoryRegion *mr;
2401 hwaddr l = 4;
2402 hwaddr addr1;
2404 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2405 true);
2406 if (l < 4 || !memory_access_is_direct(mr, true)) {
2407 io_mem_write(mr, addr1, val, 4);
2408 } else {
2409 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2410 ptr = qemu_get_ram_ptr(addr1);
2411 stl_p(ptr, val);
2413 if (unlikely(in_migration)) {
2414 if (!cpu_physical_memory_is_dirty(addr1)) {
2415 /* invalidate code */
2416 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
2417 /* set dirty bit */
2418 cpu_physical_memory_set_dirty_flags(
2419 addr1, (0xff & ~CODE_DIRTY_FLAG));
2425 /* warning: addr must be aligned */
2426 static inline void stl_phys_internal(hwaddr addr, uint32_t val,
2427 enum device_endian endian)
2429 uint8_t *ptr;
2430 MemoryRegion *mr;
2431 hwaddr l = 4;
2432 hwaddr addr1;
2434 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2435 true);
2436 if (l < 4 || !memory_access_is_direct(mr, true)) {
2437 #if defined(TARGET_WORDS_BIGENDIAN)
2438 if (endian == DEVICE_LITTLE_ENDIAN) {
2439 val = bswap32(val);
2441 #else
2442 if (endian == DEVICE_BIG_ENDIAN) {
2443 val = bswap32(val);
2445 #endif
2446 io_mem_write(mr, addr1, val, 4);
2447 } else {
2448 /* RAM case */
2449 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2450 ptr = qemu_get_ram_ptr(addr1);
2451 switch (endian) {
2452 case DEVICE_LITTLE_ENDIAN:
2453 stl_le_p(ptr, val);
2454 break;
2455 case DEVICE_BIG_ENDIAN:
2456 stl_be_p(ptr, val);
2457 break;
2458 default:
2459 stl_p(ptr, val);
2460 break;
2462 invalidate_and_set_dirty(addr1, 4);
2466 void stl_phys(hwaddr addr, uint32_t val)
2468 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2471 void stl_le_phys(hwaddr addr, uint32_t val)
2473 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2476 void stl_be_phys(hwaddr addr, uint32_t val)
2478 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2481 /* XXX: optimize */
2482 void stb_phys(hwaddr addr, uint32_t val)
2484 uint8_t v = val;
2485 cpu_physical_memory_write(addr, &v, 1);
2488 /* warning: addr must be aligned */
2489 static inline void stw_phys_internal(hwaddr addr, uint32_t val,
2490 enum device_endian endian)
2492 uint8_t *ptr;
2493 MemoryRegion *mr;
2494 hwaddr l = 2;
2495 hwaddr addr1;
2497 mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
2498 true);
2499 if (l < 2 || !memory_access_is_direct(mr, true)) {
2500 #if defined(TARGET_WORDS_BIGENDIAN)
2501 if (endian == DEVICE_LITTLE_ENDIAN) {
2502 val = bswap16(val);
2504 #else
2505 if (endian == DEVICE_BIG_ENDIAN) {
2506 val = bswap16(val);
2508 #endif
2509 io_mem_write(mr, addr1, val, 2);
2510 } else {
2511 /* RAM case */
2512 addr1 += memory_region_get_ram_addr(mr) & TARGET_PAGE_MASK;
2513 ptr = qemu_get_ram_ptr(addr1);
2514 switch (endian) {
2515 case DEVICE_LITTLE_ENDIAN:
2516 stw_le_p(ptr, val);
2517 break;
2518 case DEVICE_BIG_ENDIAN:
2519 stw_be_p(ptr, val);
2520 break;
2521 default:
2522 stw_p(ptr, val);
2523 break;
2525 invalidate_and_set_dirty(addr1, 2);
2529 void stw_phys(hwaddr addr, uint32_t val)
2531 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
2534 void stw_le_phys(hwaddr addr, uint32_t val)
2536 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
2539 void stw_be_phys(hwaddr addr, uint32_t val)
2541 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
2544 /* XXX: optimize */
2545 void stq_phys(hwaddr addr, uint64_t val)
2547 val = tswap64(val);
2548 cpu_physical_memory_write(addr, &val, 8);
2551 void stq_le_phys(hwaddr addr, uint64_t val)
2553 val = cpu_to_le64(val);
2554 cpu_physical_memory_write(addr, &val, 8);
2557 void stq_be_phys(hwaddr addr, uint64_t val)
2559 val = cpu_to_be64(val);
2560 cpu_physical_memory_write(addr, &val, 8);
2563 /* virtual memory access for debug (includes writing to ROM) */
2564 int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
2565 uint8_t *buf, int len, int is_write)
2567 int l;
2568 hwaddr phys_addr;
2569 target_ulong page;
2571 while (len > 0) {
2572 page = addr & TARGET_PAGE_MASK;
2573 phys_addr = cpu_get_phys_page_debug(env, page);
2574 /* if no physical page mapped, return an error */
2575 if (phys_addr == -1)
2576 return -1;
2577 l = (page + TARGET_PAGE_SIZE) - addr;
2578 if (l > len)
2579 l = len;
2580 phys_addr += (addr & ~TARGET_PAGE_MASK);
2581 if (is_write)
2582 cpu_physical_memory_write_rom(phys_addr, buf, l);
2583 else
2584 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
2585 len -= l;
2586 buf += l;
2587 addr += l;
2589 return 0;
2591 #endif
2593 #if !defined(CONFIG_USER_ONLY)
2596 * A helper function for the _utterly broken_ virtio device model to find out if
2597 * it's running on a big endian machine. Don't do this at home kids!
2599 bool virtio_is_big_endian(void);
2600 bool virtio_is_big_endian(void)
2602 #if defined(TARGET_WORDS_BIGENDIAN)
2603 return true;
2604 #else
2605 return false;
2606 #endif
2609 #endif
2611 #ifndef CONFIG_USER_ONLY
2612 bool cpu_physical_memory_is_io(hwaddr phys_addr)
2614 MemoryRegion*mr;
2615 hwaddr l = 1;
2617 mr = address_space_translate(&address_space_memory,
2618 phys_addr, &phys_addr, &l, false);
2620 return !(memory_region_is_ram(mr) ||
2621 memory_region_is_romd(mr));
2624 void qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
2626 RAMBlock *block;
2628 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
2629 func(block->host, block->offset, block->length, opaque);
2632 #endif