Fix typos in comments (neccessary -> necessary)
[qemu.git] / hw / pflash_cfi02.c
blob14bbc34e16c5754b5bb67fae58e43369a5b923a0
1 /*
2 * CFI parallel flash with AMD command set emulation
4 * Copyright (c) 2005 Jocelyn Mayer
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21 * For now, this code can emulate flashes of 1, 2 or 4 bytes width.
22 * Supported commands/modes are:
23 * - flash read
24 * - flash write
25 * - flash ID read
26 * - sector erase
27 * - chip erase
28 * - unlock bypass command
29 * - CFI queries
31 * It does not support flash interleaving.
32 * It does not implement boot blocs with reduced size
33 * It does not implement software data protection as found in many real chips
34 * It does not implement erase suspend/resume commands
35 * It does not implement multiple sectors erase
38 #include "hw.h"
39 #include "flash.h"
40 #include "qemu-timer.h"
41 #include "block.h"
43 //#define PFLASH_DEBUG
44 #ifdef PFLASH_DEBUG
45 #define DPRINTF(fmt, ...) \
46 do { \
47 printf("PFLASH: " fmt , ## __VA_ARGS__); \
48 } while (0)
49 #else
50 #define DPRINTF(fmt, ...) do { } while (0)
51 #endif
53 #define PFLASH_LAZY_ROMD_THRESHOLD 42
55 struct pflash_t {
56 BlockDriverState *bs;
57 target_phys_addr_t base;
58 uint32_t sector_len;
59 uint32_t chip_len;
60 int mappings;
61 int width;
62 int wcycle; /* if 0, the flash is read normally */
63 int bypass;
64 int ro;
65 uint8_t cmd;
66 uint8_t status;
67 uint16_t ident[4];
68 uint16_t unlock_addr[2];
69 uint8_t cfi_len;
70 uint8_t cfi_table[0x52];
71 QEMUTimer *timer;
72 ram_addr_t off;
73 int fl_mem;
74 int rom_mode;
75 int read_counter; /* used for lazy switch-back to rom mode */
76 void *storage;
79 static void pflash_register_memory(pflash_t *pfl, int rom_mode)
81 unsigned long phys_offset = pfl->fl_mem;
82 int i;
84 if (rom_mode)
85 phys_offset |= pfl->off | IO_MEM_ROMD;
86 pfl->rom_mode = rom_mode;
88 for (i = 0; i < pfl->mappings; i++)
89 cpu_register_physical_memory(pfl->base + i * pfl->chip_len,
90 pfl->chip_len, phys_offset);
93 static void pflash_timer (void *opaque)
95 pflash_t *pfl = opaque;
97 DPRINTF("%s: command %02x done\n", __func__, pfl->cmd);
98 /* Reset flash */
99 pfl->status ^= 0x80;
100 if (pfl->bypass) {
101 pfl->wcycle = 2;
102 } else {
103 pflash_register_memory(pfl, 1);
104 pfl->wcycle = 0;
106 pfl->cmd = 0;
109 static uint32_t pflash_read (pflash_t *pfl, target_phys_addr_t offset,
110 int width, int be)
112 target_phys_addr_t boff;
113 uint32_t ret;
114 uint8_t *p;
116 DPRINTF("%s: offset " TARGET_FMT_plx "\n", __func__, offset);
117 ret = -1;
118 /* Lazy reset to ROMD mode after a certain amount of read accesses */
119 if (!pfl->rom_mode && pfl->wcycle == 0 &&
120 ++pfl->read_counter > PFLASH_LAZY_ROMD_THRESHOLD) {
121 pflash_register_memory(pfl, 1);
123 offset &= pfl->chip_len - 1;
124 boff = offset & 0xFF;
125 if (pfl->width == 2)
126 boff = boff >> 1;
127 else if (pfl->width == 4)
128 boff = boff >> 2;
129 switch (pfl->cmd) {
130 default:
131 /* This should never happen : reset state & treat it as a read*/
132 DPRINTF("%s: unknown command state: %x\n", __func__, pfl->cmd);
133 pfl->wcycle = 0;
134 pfl->cmd = 0;
135 case 0x80:
136 /* We accept reads during second unlock sequence... */
137 case 0x00:
138 flash_read:
139 /* Flash area read */
140 p = pfl->storage;
141 switch (width) {
142 case 1:
143 ret = p[offset];
144 // DPRINTF("%s: data offset %08x %02x\n", __func__, offset, ret);
145 break;
146 case 2:
147 if (be) {
148 ret = p[offset] << 8;
149 ret |= p[offset + 1];
150 } else {
151 ret = p[offset];
152 ret |= p[offset + 1] << 8;
154 // DPRINTF("%s: data offset %08x %04x\n", __func__, offset, ret);
155 break;
156 case 4:
157 if (be) {
158 ret = p[offset] << 24;
159 ret |= p[offset + 1] << 16;
160 ret |= p[offset + 2] << 8;
161 ret |= p[offset + 3];
162 } else {
163 ret = p[offset];
164 ret |= p[offset + 1] << 8;
165 ret |= p[offset + 2] << 16;
166 ret |= p[offset + 3] << 24;
168 // DPRINTF("%s: data offset %08x %08x\n", __func__, offset, ret);
169 break;
171 break;
172 case 0x90:
173 /* flash ID read */
174 switch (boff) {
175 case 0x00:
176 case 0x01:
177 ret = pfl->ident[boff & 0x01];
178 break;
179 case 0x02:
180 ret = 0x00; /* Pretend all sectors are unprotected */
181 break;
182 case 0x0E:
183 case 0x0F:
184 if (pfl->ident[2 + (boff & 0x01)] == (uint8_t)-1)
185 goto flash_read;
186 ret = pfl->ident[2 + (boff & 0x01)];
187 break;
188 default:
189 goto flash_read;
191 DPRINTF("%s: ID " TARGET_FMT_pld " %x\n", __func__, boff, ret);
192 break;
193 case 0xA0:
194 case 0x10:
195 case 0x30:
196 /* Status register read */
197 ret = pfl->status;
198 DPRINTF("%s: status %x\n", __func__, ret);
199 /* Toggle bit 6 */
200 pfl->status ^= 0x40;
201 break;
202 case 0x98:
203 /* CFI query mode */
204 if (boff > pfl->cfi_len)
205 ret = 0;
206 else
207 ret = pfl->cfi_table[boff];
208 break;
211 return ret;
214 /* update flash content on disk */
215 static void pflash_update(pflash_t *pfl, int offset,
216 int size)
218 int offset_end;
219 if (pfl->bs) {
220 offset_end = offset + size;
221 /* round to sectors */
222 offset = offset >> 9;
223 offset_end = (offset_end + 511) >> 9;
224 bdrv_write(pfl->bs, offset, pfl->storage + (offset << 9),
225 offset_end - offset);
229 static void pflash_write (pflash_t *pfl, target_phys_addr_t offset,
230 uint32_t value, int width, int be)
232 target_phys_addr_t boff;
233 uint8_t *p;
234 uint8_t cmd;
236 cmd = value;
237 if (pfl->cmd != 0xA0 && cmd == 0xF0) {
238 #if 0
239 DPRINTF("%s: flash reset asked (%02x %02x)\n",
240 __func__, pfl->cmd, cmd);
241 #endif
242 goto reset_flash;
244 DPRINTF("%s: offset " TARGET_FMT_plx " %08x %d %d\n", __func__,
245 offset, value, width, pfl->wcycle);
246 offset &= pfl->chip_len - 1;
248 DPRINTF("%s: offset " TARGET_FMT_plx " %08x %d\n", __func__,
249 offset, value, width);
250 boff = offset & (pfl->sector_len - 1);
251 if (pfl->width == 2)
252 boff = boff >> 1;
253 else if (pfl->width == 4)
254 boff = boff >> 2;
255 switch (pfl->wcycle) {
256 case 0:
257 /* Set the device in I/O access mode if required */
258 if (pfl->rom_mode)
259 pflash_register_memory(pfl, 0);
260 pfl->read_counter = 0;
261 /* We're in read mode */
262 check_unlock0:
263 if (boff == 0x55 && cmd == 0x98) {
264 enter_CFI_mode:
265 /* Enter CFI query mode */
266 pfl->wcycle = 7;
267 pfl->cmd = 0x98;
268 return;
270 if (boff != pfl->unlock_addr[0] || cmd != 0xAA) {
271 DPRINTF("%s: unlock0 failed " TARGET_FMT_plx " %02x %04x\n",
272 __func__, boff, cmd, pfl->unlock_addr[0]);
273 goto reset_flash;
275 DPRINTF("%s: unlock sequence started\n", __func__);
276 break;
277 case 1:
278 /* We started an unlock sequence */
279 check_unlock1:
280 if (boff != pfl->unlock_addr[1] || cmd != 0x55) {
281 DPRINTF("%s: unlock1 failed " TARGET_FMT_plx " %02x\n", __func__,
282 boff, cmd);
283 goto reset_flash;
285 DPRINTF("%s: unlock sequence done\n", __func__);
286 break;
287 case 2:
288 /* We finished an unlock sequence */
289 if (!pfl->bypass && boff != pfl->unlock_addr[0]) {
290 DPRINTF("%s: command failed " TARGET_FMT_plx " %02x\n", __func__,
291 boff, cmd);
292 goto reset_flash;
294 switch (cmd) {
295 case 0x20:
296 pfl->bypass = 1;
297 goto do_bypass;
298 case 0x80:
299 case 0x90:
300 case 0xA0:
301 pfl->cmd = cmd;
302 DPRINTF("%s: starting command %02x\n", __func__, cmd);
303 break;
304 default:
305 DPRINTF("%s: unknown command %02x\n", __func__, cmd);
306 goto reset_flash;
308 break;
309 case 3:
310 switch (pfl->cmd) {
311 case 0x80:
312 /* We need another unlock sequence */
313 goto check_unlock0;
314 case 0xA0:
315 DPRINTF("%s: write data offset " TARGET_FMT_plx " %08x %d\n",
316 __func__, offset, value, width);
317 p = pfl->storage;
318 switch (width) {
319 case 1:
320 p[offset] &= value;
321 pflash_update(pfl, offset, 1);
322 break;
323 case 2:
324 if (be) {
325 p[offset] &= value >> 8;
326 p[offset + 1] &= value;
327 } else {
328 p[offset] &= value;
329 p[offset + 1] &= value >> 8;
331 pflash_update(pfl, offset, 2);
332 break;
333 case 4:
334 if (be) {
335 p[offset] &= value >> 24;
336 p[offset + 1] &= value >> 16;
337 p[offset + 2] &= value >> 8;
338 p[offset + 3] &= value;
339 } else {
340 p[offset] &= value;
341 p[offset + 1] &= value >> 8;
342 p[offset + 2] &= value >> 16;
343 p[offset + 3] &= value >> 24;
345 pflash_update(pfl, offset, 4);
346 break;
348 pfl->status = 0x00 | ~(value & 0x80);
349 /* Let's pretend write is immediate */
350 if (pfl->bypass)
351 goto do_bypass;
352 goto reset_flash;
353 case 0x90:
354 if (pfl->bypass && cmd == 0x00) {
355 /* Unlock bypass reset */
356 goto reset_flash;
358 /* We can enter CFI query mode from autoselect mode */
359 if (boff == 0x55 && cmd == 0x98)
360 goto enter_CFI_mode;
361 /* No break here */
362 default:
363 DPRINTF("%s: invalid write for command %02x\n",
364 __func__, pfl->cmd);
365 goto reset_flash;
367 case 4:
368 switch (pfl->cmd) {
369 case 0xA0:
370 /* Ignore writes while flash data write is occuring */
371 /* As we suppose write is immediate, this should never happen */
372 return;
373 case 0x80:
374 goto check_unlock1;
375 default:
376 /* Should never happen */
377 DPRINTF("%s: invalid command state %02x (wc 4)\n",
378 __func__, pfl->cmd);
379 goto reset_flash;
381 break;
382 case 5:
383 switch (cmd) {
384 case 0x10:
385 if (boff != pfl->unlock_addr[0]) {
386 DPRINTF("%s: chip erase: invalid address " TARGET_FMT_plx "\n",
387 __func__, offset);
388 goto reset_flash;
390 /* Chip erase */
391 DPRINTF("%s: start chip erase\n", __func__);
392 memset(pfl->storage, 0xFF, pfl->chip_len);
393 pfl->status = 0x00;
394 pflash_update(pfl, 0, pfl->chip_len);
395 /* Let's wait 5 seconds before chip erase is done */
396 qemu_mod_timer(pfl->timer,
397 qemu_get_clock_ns(vm_clock) + (get_ticks_per_sec() * 5));
398 break;
399 case 0x30:
400 /* Sector erase */
401 p = pfl->storage;
402 offset &= ~(pfl->sector_len - 1);
403 DPRINTF("%s: start sector erase at " TARGET_FMT_plx "\n", __func__,
404 offset);
405 memset(p + offset, 0xFF, pfl->sector_len);
406 pflash_update(pfl, offset, pfl->sector_len);
407 pfl->status = 0x00;
408 /* Let's wait 1/2 second before sector erase is done */
409 qemu_mod_timer(pfl->timer,
410 qemu_get_clock_ns(vm_clock) + (get_ticks_per_sec() / 2));
411 break;
412 default:
413 DPRINTF("%s: invalid command %02x (wc 5)\n", __func__, cmd);
414 goto reset_flash;
416 pfl->cmd = cmd;
417 break;
418 case 6:
419 switch (pfl->cmd) {
420 case 0x10:
421 /* Ignore writes during chip erase */
422 return;
423 case 0x30:
424 /* Ignore writes during sector erase */
425 return;
426 default:
427 /* Should never happen */
428 DPRINTF("%s: invalid command state %02x (wc 6)\n",
429 __func__, pfl->cmd);
430 goto reset_flash;
432 break;
433 case 7: /* Special value for CFI queries */
434 DPRINTF("%s: invalid write in CFI query mode\n", __func__);
435 goto reset_flash;
436 default:
437 /* Should never happen */
438 DPRINTF("%s: invalid write state (wc 7)\n", __func__);
439 goto reset_flash;
441 pfl->wcycle++;
443 return;
445 /* Reset flash */
446 reset_flash:
447 pfl->bypass = 0;
448 pfl->wcycle = 0;
449 pfl->cmd = 0;
450 return;
452 do_bypass:
453 pfl->wcycle = 2;
454 pfl->cmd = 0;
455 return;
459 static uint32_t pflash_readb_be(void *opaque, target_phys_addr_t addr)
461 return pflash_read(opaque, addr, 1, 1);
464 static uint32_t pflash_readb_le(void *opaque, target_phys_addr_t addr)
466 return pflash_read(opaque, addr, 1, 0);
469 static uint32_t pflash_readw_be(void *opaque, target_phys_addr_t addr)
471 pflash_t *pfl = opaque;
473 return pflash_read(pfl, addr, 2, 1);
476 static uint32_t pflash_readw_le(void *opaque, target_phys_addr_t addr)
478 pflash_t *pfl = opaque;
480 return pflash_read(pfl, addr, 2, 0);
483 static uint32_t pflash_readl_be(void *opaque, target_phys_addr_t addr)
485 pflash_t *pfl = opaque;
487 return pflash_read(pfl, addr, 4, 1);
490 static uint32_t pflash_readl_le(void *opaque, target_phys_addr_t addr)
492 pflash_t *pfl = opaque;
494 return pflash_read(pfl, addr, 4, 0);
497 static void pflash_writeb_be(void *opaque, target_phys_addr_t addr,
498 uint32_t value)
500 pflash_write(opaque, addr, value, 1, 1);
503 static void pflash_writeb_le(void *opaque, target_phys_addr_t addr,
504 uint32_t value)
506 pflash_write(opaque, addr, value, 1, 0);
509 static void pflash_writew_be(void *opaque, target_phys_addr_t addr,
510 uint32_t value)
512 pflash_t *pfl = opaque;
514 pflash_write(pfl, addr, value, 2, 1);
517 static void pflash_writew_le(void *opaque, target_phys_addr_t addr,
518 uint32_t value)
520 pflash_t *pfl = opaque;
522 pflash_write(pfl, addr, value, 2, 0);
525 static void pflash_writel_be(void *opaque, target_phys_addr_t addr,
526 uint32_t value)
528 pflash_t *pfl = opaque;
530 pflash_write(pfl, addr, value, 4, 1);
533 static void pflash_writel_le(void *opaque, target_phys_addr_t addr,
534 uint32_t value)
536 pflash_t *pfl = opaque;
538 pflash_write(pfl, addr, value, 4, 0);
541 static CPUWriteMemoryFunc * const pflash_write_ops_be[] = {
542 &pflash_writeb_be,
543 &pflash_writew_be,
544 &pflash_writel_be,
547 static CPUReadMemoryFunc * const pflash_read_ops_be[] = {
548 &pflash_readb_be,
549 &pflash_readw_be,
550 &pflash_readl_be,
553 static CPUWriteMemoryFunc * const pflash_write_ops_le[] = {
554 &pflash_writeb_le,
555 &pflash_writew_le,
556 &pflash_writel_le,
559 static CPUReadMemoryFunc * const pflash_read_ops_le[] = {
560 &pflash_readb_le,
561 &pflash_readw_le,
562 &pflash_readl_le,
565 /* Count trailing zeroes of a 32 bits quantity */
566 static int ctz32 (uint32_t n)
568 int ret;
570 ret = 0;
571 if (!(n & 0xFFFF)) {
572 ret += 16;
573 n = n >> 16;
575 if (!(n & 0xFF)) {
576 ret += 8;
577 n = n >> 8;
579 if (!(n & 0xF)) {
580 ret += 4;
581 n = n >> 4;
583 if (!(n & 0x3)) {
584 ret += 2;
585 n = n >> 2;
587 if (!(n & 0x1)) {
588 ret++;
589 #if 0 /* This is not necessary as n is never 0 */
590 n = n >> 1;
591 #endif
593 #if 0 /* This is not necessary as n is never 0 */
594 if (!n)
595 ret++;
596 #endif
598 return ret;
601 pflash_t *pflash_cfi02_register(target_phys_addr_t base, ram_addr_t off,
602 BlockDriverState *bs, uint32_t sector_len,
603 int nb_blocs, int nb_mappings, int width,
604 uint16_t id0, uint16_t id1,
605 uint16_t id2, uint16_t id3,
606 uint16_t unlock_addr0, uint16_t unlock_addr1,
607 int be)
609 pflash_t *pfl;
610 int32_t chip_len;
611 int ret;
613 chip_len = sector_len * nb_blocs;
614 /* XXX: to be fixed */
615 #if 0
616 if (total_len != (8 * 1024 * 1024) && total_len != (16 * 1024 * 1024) &&
617 total_len != (32 * 1024 * 1024) && total_len != (64 * 1024 * 1024))
618 return NULL;
619 #endif
620 pfl = qemu_mallocz(sizeof(pflash_t));
621 /* FIXME: Allocate ram ourselves. */
622 pfl->storage = qemu_get_ram_ptr(off);
623 if (be) {
624 pfl->fl_mem = cpu_register_io_memory(pflash_read_ops_be,
625 pflash_write_ops_be,
626 pfl, DEVICE_NATIVE_ENDIAN);
627 } else {
628 pfl->fl_mem = cpu_register_io_memory(pflash_read_ops_le,
629 pflash_write_ops_le,
630 pfl, DEVICE_NATIVE_ENDIAN);
632 pfl->off = off;
633 pfl->base = base;
634 pfl->chip_len = chip_len;
635 pfl->mappings = nb_mappings;
636 pflash_register_memory(pfl, 1);
637 pfl->bs = bs;
638 if (pfl->bs) {
639 /* read the initial flash content */
640 ret = bdrv_read(pfl->bs, 0, pfl->storage, chip_len >> 9);
641 if (ret < 0) {
642 cpu_unregister_io_memory(pfl->fl_mem);
643 qemu_free(pfl);
644 return NULL;
647 #if 0 /* XXX: there should be a bit to set up read-only,
648 * the same way the hardware does (with WP pin).
650 pfl->ro = 1;
651 #else
652 pfl->ro = 0;
653 #endif
654 pfl->timer = qemu_new_timer_ns(vm_clock, pflash_timer, pfl);
655 pfl->sector_len = sector_len;
656 pfl->width = width;
657 pfl->wcycle = 0;
658 pfl->cmd = 0;
659 pfl->status = 0;
660 pfl->ident[0] = id0;
661 pfl->ident[1] = id1;
662 pfl->ident[2] = id2;
663 pfl->ident[3] = id3;
664 pfl->unlock_addr[0] = unlock_addr0;
665 pfl->unlock_addr[1] = unlock_addr1;
666 /* Hardcoded CFI table (mostly from SG29 Spansion flash) */
667 pfl->cfi_len = 0x52;
668 /* Standard "QRY" string */
669 pfl->cfi_table[0x10] = 'Q';
670 pfl->cfi_table[0x11] = 'R';
671 pfl->cfi_table[0x12] = 'Y';
672 /* Command set (AMD/Fujitsu) */
673 pfl->cfi_table[0x13] = 0x02;
674 pfl->cfi_table[0x14] = 0x00;
675 /* Primary extended table address */
676 pfl->cfi_table[0x15] = 0x31;
677 pfl->cfi_table[0x16] = 0x00;
678 /* Alternate command set (none) */
679 pfl->cfi_table[0x17] = 0x00;
680 pfl->cfi_table[0x18] = 0x00;
681 /* Alternate extended table (none) */
682 pfl->cfi_table[0x19] = 0x00;
683 pfl->cfi_table[0x1A] = 0x00;
684 /* Vcc min */
685 pfl->cfi_table[0x1B] = 0x27;
686 /* Vcc max */
687 pfl->cfi_table[0x1C] = 0x36;
688 /* Vpp min (no Vpp pin) */
689 pfl->cfi_table[0x1D] = 0x00;
690 /* Vpp max (no Vpp pin) */
691 pfl->cfi_table[0x1E] = 0x00;
692 /* Reserved */
693 pfl->cfi_table[0x1F] = 0x07;
694 /* Timeout for min size buffer write (NA) */
695 pfl->cfi_table[0x20] = 0x00;
696 /* Typical timeout for block erase (512 ms) */
697 pfl->cfi_table[0x21] = 0x09;
698 /* Typical timeout for full chip erase (4096 ms) */
699 pfl->cfi_table[0x22] = 0x0C;
700 /* Reserved */
701 pfl->cfi_table[0x23] = 0x01;
702 /* Max timeout for buffer write (NA) */
703 pfl->cfi_table[0x24] = 0x00;
704 /* Max timeout for block erase */
705 pfl->cfi_table[0x25] = 0x0A;
706 /* Max timeout for chip erase */
707 pfl->cfi_table[0x26] = 0x0D;
708 /* Device size */
709 pfl->cfi_table[0x27] = ctz32(chip_len);
710 /* Flash device interface (8 & 16 bits) */
711 pfl->cfi_table[0x28] = 0x02;
712 pfl->cfi_table[0x29] = 0x00;
713 /* Max number of bytes in multi-bytes write */
714 /* XXX: disable buffered write as it's not supported */
715 // pfl->cfi_table[0x2A] = 0x05;
716 pfl->cfi_table[0x2A] = 0x00;
717 pfl->cfi_table[0x2B] = 0x00;
718 /* Number of erase block regions (uniform) */
719 pfl->cfi_table[0x2C] = 0x01;
720 /* Erase block region 1 */
721 pfl->cfi_table[0x2D] = nb_blocs - 1;
722 pfl->cfi_table[0x2E] = (nb_blocs - 1) >> 8;
723 pfl->cfi_table[0x2F] = sector_len >> 8;
724 pfl->cfi_table[0x30] = sector_len >> 16;
726 /* Extended */
727 pfl->cfi_table[0x31] = 'P';
728 pfl->cfi_table[0x32] = 'R';
729 pfl->cfi_table[0x33] = 'I';
731 pfl->cfi_table[0x34] = '1';
732 pfl->cfi_table[0x35] = '0';
734 pfl->cfi_table[0x36] = 0x00;
735 pfl->cfi_table[0x37] = 0x00;
736 pfl->cfi_table[0x38] = 0x00;
737 pfl->cfi_table[0x39] = 0x00;
739 pfl->cfi_table[0x3a] = 0x00;
741 pfl->cfi_table[0x3b] = 0x00;
742 pfl->cfi_table[0x3c] = 0x00;
744 return pfl;