memory: unfold memory_region_test_and_clear()
[qemu.git] / cputlb.c
blobb533f3f372bf8961ad2387afc3810cdffcbedef2
1 /*
2 * Common CPU TLB handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20 #include "config.h"
21 #include "cpu.h"
22 #include "exec/exec-all.h"
23 #include "exec/memory.h"
24 #include "exec/address-spaces.h"
26 #include "exec/cputlb.h"
28 #include "exec/memory-internal.h"
29 #include "exec/ram_addr.h"
31 //#define DEBUG_TLB
32 //#define DEBUG_TLB_CHECK
34 /* statistics */
35 int tlb_flush_count;
37 /* NOTE:
38 * If flush_global is true (the usual case), flush all tlb entries.
39 * If flush_global is false, flush (at least) all tlb entries not
40 * marked global.
42 * Since QEMU doesn't currently implement a global/not-global flag
43 * for tlb entries, at the moment tlb_flush() will also flush all
44 * tlb entries in the flush_global == false case. This is OK because
45 * CPU architectures generally permit an implementation to drop
46 * entries from the TLB at any time, so flushing more entries than
47 * required is only an efficiency issue, not a correctness issue.
49 void tlb_flush(CPUArchState *env, int flush_global)
51 CPUState *cpu = ENV_GET_CPU(env);
53 #if defined(DEBUG_TLB)
54 printf("tlb_flush:\n");
55 #endif
56 /* must reset current TB so that interrupts cannot modify the
57 links while we are modifying them */
58 cpu->current_tb = NULL;
60 memset(env->tlb_table, -1, sizeof(env->tlb_table));
61 memset(env->tb_jmp_cache, 0, sizeof(env->tb_jmp_cache));
63 env->tlb_flush_addr = -1;
64 env->tlb_flush_mask = 0;
65 tlb_flush_count++;
68 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
70 if (addr == (tlb_entry->addr_read &
71 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
72 addr == (tlb_entry->addr_write &
73 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
74 addr == (tlb_entry->addr_code &
75 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
76 memset(tlb_entry, -1, sizeof(*tlb_entry));
80 void tlb_flush_page(CPUArchState *env, target_ulong addr)
82 CPUState *cpu = ENV_GET_CPU(env);
83 int i;
84 int mmu_idx;
86 #if defined(DEBUG_TLB)
87 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
88 #endif
89 /* Check if we need to flush due to large pages. */
90 if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
91 #if defined(DEBUG_TLB)
92 printf("tlb_flush_page: forced full flush ("
93 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
94 env->tlb_flush_addr, env->tlb_flush_mask);
95 #endif
96 tlb_flush(env, 1);
97 return;
99 /* must reset current TB so that interrupts cannot modify the
100 links while we are modifying them */
101 cpu->current_tb = NULL;
103 addr &= TARGET_PAGE_MASK;
104 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
105 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
106 tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
109 tb_flush_jmp_cache(env, addr);
112 /* update the TLBs so that writes to code in the virtual page 'addr'
113 can be detected */
114 void tlb_protect_code(ram_addr_t ram_addr)
116 cpu_physical_memory_reset_dirty(ram_addr, TARGET_PAGE_SIZE,
117 DIRTY_MEMORY_CODE);
120 /* update the TLB so that writes in physical page 'phys_addr' are no longer
121 tested for self modifying code */
122 void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr,
123 target_ulong vaddr)
125 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
128 static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe)
130 return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0;
133 void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
134 uintptr_t length)
136 uintptr_t addr;
138 if (tlb_is_dirty_ram(tlb_entry)) {
139 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
140 if ((addr - start) < length) {
141 tlb_entry->addr_write |= TLB_NOTDIRTY;
146 static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
148 ram_addr_t ram_addr;
150 if (qemu_ram_addr_from_host(ptr, &ram_addr) == NULL) {
151 fprintf(stderr, "Bad ram pointer %p\n", ptr);
152 abort();
154 return ram_addr;
157 void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length)
159 CPUState *cpu;
160 CPUArchState *env;
162 CPU_FOREACH(cpu) {
163 int mmu_idx;
165 env = cpu->env_ptr;
166 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
167 unsigned int i;
169 for (i = 0; i < CPU_TLB_SIZE; i++) {
170 tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
171 start1, length);
177 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
179 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
180 tlb_entry->addr_write = vaddr;
184 /* update the TLB corresponding to virtual page vaddr
185 so that it is no longer dirty */
186 void tlb_set_dirty(CPUArchState *env, target_ulong vaddr)
188 int i;
189 int mmu_idx;
191 vaddr &= TARGET_PAGE_MASK;
192 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
193 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
194 tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
198 /* Our TLB does not support large pages, so remember the area covered by
199 large pages and trigger a full TLB flush if these are invalidated. */
200 static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
201 target_ulong size)
203 target_ulong mask = ~(size - 1);
205 if (env->tlb_flush_addr == (target_ulong)-1) {
206 env->tlb_flush_addr = vaddr & mask;
207 env->tlb_flush_mask = mask;
208 return;
210 /* Extend the existing region to include the new page.
211 This is a compromise between unnecessary flushes and the cost
212 of maintaining a full variable size TLB. */
213 mask &= env->tlb_flush_mask;
214 while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
215 mask <<= 1;
217 env->tlb_flush_addr &= mask;
218 env->tlb_flush_mask = mask;
221 /* Add a new TLB entry. At most one entry for a given virtual address
222 is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
223 supplied size is only used by tlb_flush_page. */
224 void tlb_set_page(CPUArchState *env, target_ulong vaddr,
225 hwaddr paddr, int prot,
226 int mmu_idx, target_ulong size)
228 MemoryRegionSection *section;
229 unsigned int index;
230 target_ulong address;
231 target_ulong code_address;
232 uintptr_t addend;
233 CPUTLBEntry *te;
234 hwaddr iotlb, xlat, sz;
236 assert(size >= TARGET_PAGE_SIZE);
237 if (size != TARGET_PAGE_SIZE) {
238 tlb_add_large_page(env, vaddr, size);
241 sz = size;
242 section = address_space_translate_for_iotlb(&address_space_memory, paddr,
243 &xlat, &sz);
244 assert(sz >= TARGET_PAGE_SIZE);
246 #if defined(DEBUG_TLB)
247 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
248 " prot=%x idx=%d\n",
249 vaddr, paddr, prot, mmu_idx);
250 #endif
252 address = vaddr;
253 if (!memory_region_is_ram(section->mr) && !memory_region_is_romd(section->mr)) {
254 /* IO memory case */
255 address |= TLB_MMIO;
256 addend = 0;
257 } else {
258 /* TLB_MMIO for rom/romd handled below */
259 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
262 code_address = address;
263 iotlb = memory_region_section_get_iotlb(env, section, vaddr, paddr, xlat,
264 prot, &address);
266 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
267 env->iotlb[mmu_idx][index] = iotlb - vaddr;
268 te = &env->tlb_table[mmu_idx][index];
269 te->addend = addend - vaddr;
270 if (prot & PAGE_READ) {
271 te->addr_read = address;
272 } else {
273 te->addr_read = -1;
276 if (prot & PAGE_EXEC) {
277 te->addr_code = code_address;
278 } else {
279 te->addr_code = -1;
281 if (prot & PAGE_WRITE) {
282 if ((memory_region_is_ram(section->mr) && section->readonly)
283 || memory_region_is_romd(section->mr)) {
284 /* Write access calls the I/O callback. */
285 te->addr_write = address | TLB_MMIO;
286 } else if (memory_region_is_ram(section->mr)
287 && cpu_physical_memory_is_clean(section->mr->ram_addr
288 + xlat)) {
289 te->addr_write = address | TLB_NOTDIRTY;
290 } else {
291 te->addr_write = address;
293 } else {
294 te->addr_write = -1;
298 /* NOTE: this function can trigger an exception */
299 /* NOTE2: the returned address is not exactly the physical address: it
300 * is actually a ram_addr_t (in system mode; the user mode emulation
301 * version of this function returns a guest virtual address).
303 tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
305 int mmu_idx, page_index, pd;
306 void *p;
307 MemoryRegion *mr;
309 page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
310 mmu_idx = cpu_mmu_index(env1);
311 if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
312 (addr & TARGET_PAGE_MASK))) {
313 cpu_ldub_code(env1, addr);
315 pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK;
316 mr = iotlb_to_region(pd);
317 if (memory_region_is_unassigned(mr)) {
318 CPUState *cpu = ENV_GET_CPU(env1);
319 CPUClass *cc = CPU_GET_CLASS(cpu);
321 if (cc->do_unassigned_access) {
322 cc->do_unassigned_access(cpu, addr, false, true, 0, 4);
323 } else {
324 cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x"
325 TARGET_FMT_lx "\n", addr);
328 p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
329 return qemu_ram_addr_from_host_nofail(p);
332 #define MMUSUFFIX _cmmu
333 #undef GETPC
334 #define GETPC() ((uintptr_t)0)
335 #define SOFTMMU_CODE_ACCESS
337 #define SHIFT 0
338 #include "exec/softmmu_template.h"
340 #define SHIFT 1
341 #include "exec/softmmu_template.h"
343 #define SHIFT 2
344 #include "exec/softmmu_template.h"
346 #define SHIFT 3
347 #include "exec/softmmu_template.h"
349 #undef env