memory: unfold memory_region_test_and_clear()
[qemu.git] / arch_init.c
blob0e8c8b5fc101b04d0679a183e2db0c8eb83d3a73
1 /*
2 * QEMU System Emulator
4 * Copyright (c) 2003-2008 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include <stdint.h>
25 #include <stdarg.h>
26 #include <stdlib.h>
27 #ifndef _WIN32
28 #include <sys/types.h>
29 #include <sys/mman.h>
30 #endif
31 #include "config.h"
32 #include "monitor/monitor.h"
33 #include "sysemu/sysemu.h"
34 #include "qemu/bitops.h"
35 #include "qemu/bitmap.h"
36 #include "sysemu/arch_init.h"
37 #include "audio/audio.h"
38 #include "hw/i386/pc.h"
39 #include "hw/pci/pci.h"
40 #include "hw/audio/audio.h"
41 #include "sysemu/kvm.h"
42 #include "migration/migration.h"
43 #include "hw/i386/smbios.h"
44 #include "exec/address-spaces.h"
45 #include "hw/audio/pcspk.h"
46 #include "migration/page_cache.h"
47 #include "qemu/config-file.h"
48 #include "qmp-commands.h"
49 #include "trace.h"
50 #include "exec/cpu-all.h"
51 #include "exec/ram_addr.h"
52 #include "hw/acpi/acpi.h"
54 #ifdef DEBUG_ARCH_INIT
55 #define DPRINTF(fmt, ...) \
56 do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0)
57 #else
58 #define DPRINTF(fmt, ...) \
59 do { } while (0)
60 #endif
62 #ifdef TARGET_SPARC
63 int graphic_width = 1024;
64 int graphic_height = 768;
65 int graphic_depth = 8;
66 #else
67 int graphic_width = 800;
68 int graphic_height = 600;
69 int graphic_depth = 32;
70 #endif
73 #if defined(TARGET_ALPHA)
74 #define QEMU_ARCH QEMU_ARCH_ALPHA
75 #elif defined(TARGET_ARM)
76 #define QEMU_ARCH QEMU_ARCH_ARM
77 #elif defined(TARGET_CRIS)
78 #define QEMU_ARCH QEMU_ARCH_CRIS
79 #elif defined(TARGET_I386)
80 #define QEMU_ARCH QEMU_ARCH_I386
81 #elif defined(TARGET_M68K)
82 #define QEMU_ARCH QEMU_ARCH_M68K
83 #elif defined(TARGET_LM32)
84 #define QEMU_ARCH QEMU_ARCH_LM32
85 #elif defined(TARGET_MICROBLAZE)
86 #define QEMU_ARCH QEMU_ARCH_MICROBLAZE
87 #elif defined(TARGET_MIPS)
88 #define QEMU_ARCH QEMU_ARCH_MIPS
89 #elif defined(TARGET_MOXIE)
90 #define QEMU_ARCH QEMU_ARCH_MOXIE
91 #elif defined(TARGET_OPENRISC)
92 #define QEMU_ARCH QEMU_ARCH_OPENRISC
93 #elif defined(TARGET_PPC)
94 #define QEMU_ARCH QEMU_ARCH_PPC
95 #elif defined(TARGET_S390X)
96 #define QEMU_ARCH QEMU_ARCH_S390X
97 #elif defined(TARGET_SH4)
98 #define QEMU_ARCH QEMU_ARCH_SH4
99 #elif defined(TARGET_SPARC)
100 #define QEMU_ARCH QEMU_ARCH_SPARC
101 #elif defined(TARGET_XTENSA)
102 #define QEMU_ARCH QEMU_ARCH_XTENSA
103 #elif defined(TARGET_UNICORE32)
104 #define QEMU_ARCH QEMU_ARCH_UNICORE32
105 #endif
107 const uint32_t arch_type = QEMU_ARCH;
108 static bool mig_throttle_on;
109 static int dirty_rate_high_cnt;
110 static void check_guest_throttling(void);
112 /***********************************************************/
113 /* ram save/restore */
115 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */
116 #define RAM_SAVE_FLAG_COMPRESS 0x02
117 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
118 #define RAM_SAVE_FLAG_PAGE 0x08
119 #define RAM_SAVE_FLAG_EOS 0x10
120 #define RAM_SAVE_FLAG_CONTINUE 0x20
121 #define RAM_SAVE_FLAG_XBZRLE 0x40
122 /* 0x80 is reserved in migration.h start with 0x100 next */
125 static struct defconfig_file {
126 const char *filename;
127 /* Indicates it is an user config file (disabled by -no-user-config) */
128 bool userconfig;
129 } default_config_files[] = {
130 { CONFIG_QEMU_CONFDIR "/qemu.conf", true },
131 { CONFIG_QEMU_CONFDIR "/target-" TARGET_NAME ".conf", true },
132 { NULL }, /* end of list */
136 int qemu_read_default_config_files(bool userconfig)
138 int ret;
139 struct defconfig_file *f;
141 for (f = default_config_files; f->filename; f++) {
142 if (!userconfig && f->userconfig) {
143 continue;
145 ret = qemu_read_config_file(f->filename);
146 if (ret < 0 && ret != -ENOENT) {
147 return ret;
151 return 0;
154 static inline bool is_zero_range(uint8_t *p, uint64_t size)
156 return buffer_find_nonzero_offset(p, size) == size;
159 /* struct contains XBZRLE cache and a static page
160 used by the compression */
161 static struct {
162 /* buffer used for XBZRLE encoding */
163 uint8_t *encoded_buf;
164 /* buffer for storing page content */
165 uint8_t *current_buf;
166 /* buffer used for XBZRLE decoding */
167 uint8_t *decoded_buf;
168 /* Cache for XBZRLE */
169 PageCache *cache;
170 } XBZRLE = {
171 .encoded_buf = NULL,
172 .current_buf = NULL,
173 .decoded_buf = NULL,
174 .cache = NULL,
178 int64_t xbzrle_cache_resize(int64_t new_size)
180 if (XBZRLE.cache != NULL) {
181 return cache_resize(XBZRLE.cache, new_size / TARGET_PAGE_SIZE) *
182 TARGET_PAGE_SIZE;
184 return pow2floor(new_size);
187 /* accounting for migration statistics */
188 typedef struct AccountingInfo {
189 uint64_t dup_pages;
190 uint64_t skipped_pages;
191 uint64_t norm_pages;
192 uint64_t iterations;
193 uint64_t xbzrle_bytes;
194 uint64_t xbzrle_pages;
195 uint64_t xbzrle_cache_miss;
196 uint64_t xbzrle_overflows;
197 } AccountingInfo;
199 static AccountingInfo acct_info;
201 static void acct_clear(void)
203 memset(&acct_info, 0, sizeof(acct_info));
206 uint64_t dup_mig_bytes_transferred(void)
208 return acct_info.dup_pages * TARGET_PAGE_SIZE;
211 uint64_t dup_mig_pages_transferred(void)
213 return acct_info.dup_pages;
216 uint64_t skipped_mig_bytes_transferred(void)
218 return acct_info.skipped_pages * TARGET_PAGE_SIZE;
221 uint64_t skipped_mig_pages_transferred(void)
223 return acct_info.skipped_pages;
226 uint64_t norm_mig_bytes_transferred(void)
228 return acct_info.norm_pages * TARGET_PAGE_SIZE;
231 uint64_t norm_mig_pages_transferred(void)
233 return acct_info.norm_pages;
236 uint64_t xbzrle_mig_bytes_transferred(void)
238 return acct_info.xbzrle_bytes;
241 uint64_t xbzrle_mig_pages_transferred(void)
243 return acct_info.xbzrle_pages;
246 uint64_t xbzrle_mig_pages_cache_miss(void)
248 return acct_info.xbzrle_cache_miss;
251 uint64_t xbzrle_mig_pages_overflow(void)
253 return acct_info.xbzrle_overflows;
256 static size_t save_block_hdr(QEMUFile *f, RAMBlock *block, ram_addr_t offset,
257 int cont, int flag)
259 size_t size;
261 qemu_put_be64(f, offset | cont | flag);
262 size = 8;
264 if (!cont) {
265 qemu_put_byte(f, strlen(block->idstr));
266 qemu_put_buffer(f, (uint8_t *)block->idstr,
267 strlen(block->idstr));
268 size += 1 + strlen(block->idstr);
270 return size;
273 #define ENCODING_FLAG_XBZRLE 0x1
275 static int save_xbzrle_page(QEMUFile *f, uint8_t *current_data,
276 ram_addr_t current_addr, RAMBlock *block,
277 ram_addr_t offset, int cont, bool last_stage)
279 int encoded_len = 0, bytes_sent = -1;
280 uint8_t *prev_cached_page;
282 if (!cache_is_cached(XBZRLE.cache, current_addr)) {
283 if (!last_stage) {
284 cache_insert(XBZRLE.cache, current_addr, current_data);
286 acct_info.xbzrle_cache_miss++;
287 return -1;
290 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
292 /* save current buffer into memory */
293 memcpy(XBZRLE.current_buf, current_data, TARGET_PAGE_SIZE);
295 /* XBZRLE encoding (if there is no overflow) */
296 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
297 TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
298 TARGET_PAGE_SIZE);
299 if (encoded_len == 0) {
300 DPRINTF("Skipping unmodified page\n");
301 return 0;
302 } else if (encoded_len == -1) {
303 DPRINTF("Overflow\n");
304 acct_info.xbzrle_overflows++;
305 /* update data in the cache */
306 memcpy(prev_cached_page, current_data, TARGET_PAGE_SIZE);
307 return -1;
310 /* we need to update the data in the cache, in order to get the same data */
311 if (!last_stage) {
312 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
315 /* Send XBZRLE based compressed page */
316 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_XBZRLE);
317 qemu_put_byte(f, ENCODING_FLAG_XBZRLE);
318 qemu_put_be16(f, encoded_len);
319 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len);
320 bytes_sent += encoded_len + 1 + 2;
321 acct_info.xbzrle_pages++;
322 acct_info.xbzrle_bytes += bytes_sent;
324 return bytes_sent;
328 /* This is the last block that we have visited serching for dirty pages
330 static RAMBlock *last_seen_block;
331 /* This is the last block from where we have sent data */
332 static RAMBlock *last_sent_block;
333 static ram_addr_t last_offset;
334 static unsigned long *migration_bitmap;
335 static uint64_t migration_dirty_pages;
336 static uint32_t last_version;
337 static bool ram_bulk_stage;
339 static inline
340 ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr,
341 ram_addr_t start)
343 unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS;
344 unsigned long nr = base + (start >> TARGET_PAGE_BITS);
345 uint64_t mr_size = TARGET_PAGE_ALIGN(memory_region_size(mr));
346 unsigned long size = base + (mr_size >> TARGET_PAGE_BITS);
348 unsigned long next;
350 if (ram_bulk_stage && nr > base) {
351 next = nr + 1;
352 } else {
353 next = find_next_bit(migration_bitmap, size, nr);
356 if (next < size) {
357 clear_bit(next, migration_bitmap);
358 migration_dirty_pages--;
360 return (next - base) << TARGET_PAGE_BITS;
363 static inline bool migration_bitmap_set_dirty(MemoryRegion *mr,
364 ram_addr_t offset)
366 bool ret;
367 int nr = (mr->ram_addr + offset) >> TARGET_PAGE_BITS;
369 ret = test_and_set_bit(nr, migration_bitmap);
371 if (!ret) {
372 migration_dirty_pages++;
374 return ret;
377 /* Needs iothread lock! */
379 static void migration_bitmap_sync(void)
381 RAMBlock *block;
382 ram_addr_t addr;
383 uint64_t num_dirty_pages_init = migration_dirty_pages;
384 MigrationState *s = migrate_get_current();
385 static int64_t start_time;
386 static int64_t bytes_xfer_prev;
387 static int64_t num_dirty_pages_period;
388 int64_t end_time;
389 int64_t bytes_xfer_now;
391 if (!bytes_xfer_prev) {
392 bytes_xfer_prev = ram_bytes_transferred();
395 if (!start_time) {
396 start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
399 trace_migration_bitmap_sync_start();
400 address_space_sync_dirty_bitmap(&address_space_memory);
402 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
403 for (addr = 0; addr < block->length; addr += TARGET_PAGE_SIZE) {
404 if (cpu_physical_memory_get_dirty(block->mr->ram_addr + addr,
405 TARGET_PAGE_SIZE,
406 DIRTY_MEMORY_MIGRATION)) {
407 cpu_physical_memory_reset_dirty(block->mr->ram_addr + addr,
408 TARGET_PAGE_SIZE,
409 DIRTY_MEMORY_MIGRATION);
410 migration_bitmap_set_dirty(block->mr, addr);
414 trace_migration_bitmap_sync_end(migration_dirty_pages
415 - num_dirty_pages_init);
416 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init;
417 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
419 /* more than 1 second = 1000 millisecons */
420 if (end_time > start_time + 1000) {
421 if (migrate_auto_converge()) {
422 /* The following detection logic can be refined later. For now:
423 Check to see if the dirtied bytes is 50% more than the approx.
424 amount of bytes that just got transferred since the last time we
425 were in this routine. If that happens >N times (for now N==4)
426 we turn on the throttle down logic */
427 bytes_xfer_now = ram_bytes_transferred();
428 if (s->dirty_pages_rate &&
429 (num_dirty_pages_period * TARGET_PAGE_SIZE >
430 (bytes_xfer_now - bytes_xfer_prev)/2) &&
431 (dirty_rate_high_cnt++ > 4)) {
432 trace_migration_throttle();
433 mig_throttle_on = true;
434 dirty_rate_high_cnt = 0;
436 bytes_xfer_prev = bytes_xfer_now;
437 } else {
438 mig_throttle_on = false;
440 s->dirty_pages_rate = num_dirty_pages_period * 1000
441 / (end_time - start_time);
442 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE;
443 start_time = end_time;
444 num_dirty_pages_period = 0;
449 * ram_save_block: Writes a page of memory to the stream f
451 * Returns: The number of bytes written.
452 * 0 means no dirty pages
455 static int ram_save_block(QEMUFile *f, bool last_stage)
457 RAMBlock *block = last_seen_block;
458 ram_addr_t offset = last_offset;
459 bool complete_round = false;
460 int bytes_sent = 0;
461 MemoryRegion *mr;
462 ram_addr_t current_addr;
464 if (!block)
465 block = QTAILQ_FIRST(&ram_list.blocks);
467 while (true) {
468 mr = block->mr;
469 offset = migration_bitmap_find_and_reset_dirty(mr, offset);
470 if (complete_round && block == last_seen_block &&
471 offset >= last_offset) {
472 break;
474 if (offset >= block->length) {
475 offset = 0;
476 block = QTAILQ_NEXT(block, next);
477 if (!block) {
478 block = QTAILQ_FIRST(&ram_list.blocks);
479 complete_round = true;
480 ram_bulk_stage = false;
482 } else {
483 int ret;
484 uint8_t *p;
485 int cont = (block == last_sent_block) ?
486 RAM_SAVE_FLAG_CONTINUE : 0;
488 p = memory_region_get_ram_ptr(mr) + offset;
490 /* In doubt sent page as normal */
491 bytes_sent = -1;
492 ret = ram_control_save_page(f, block->offset,
493 offset, TARGET_PAGE_SIZE, &bytes_sent);
495 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) {
496 if (ret != RAM_SAVE_CONTROL_DELAYED) {
497 if (bytes_sent > 0) {
498 acct_info.norm_pages++;
499 } else if (bytes_sent == 0) {
500 acct_info.dup_pages++;
503 } else if (is_zero_range(p, TARGET_PAGE_SIZE)) {
504 acct_info.dup_pages++;
505 bytes_sent = save_block_hdr(f, block, offset, cont,
506 RAM_SAVE_FLAG_COMPRESS);
507 qemu_put_byte(f, 0);
508 bytes_sent++;
509 } else if (!ram_bulk_stage && migrate_use_xbzrle()) {
510 current_addr = block->offset + offset;
511 bytes_sent = save_xbzrle_page(f, p, current_addr, block,
512 offset, cont, last_stage);
513 if (!last_stage) {
514 p = get_cached_data(XBZRLE.cache, current_addr);
518 /* XBZRLE overflow or normal page */
519 if (bytes_sent == -1) {
520 bytes_sent = save_block_hdr(f, block, offset, cont, RAM_SAVE_FLAG_PAGE);
521 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE);
522 bytes_sent += TARGET_PAGE_SIZE;
523 acct_info.norm_pages++;
526 /* if page is unmodified, continue to the next */
527 if (bytes_sent > 0) {
528 last_sent_block = block;
529 break;
533 last_seen_block = block;
534 last_offset = offset;
536 return bytes_sent;
539 static uint64_t bytes_transferred;
541 void acct_update_position(QEMUFile *f, size_t size, bool zero)
543 uint64_t pages = size / TARGET_PAGE_SIZE;
544 if (zero) {
545 acct_info.dup_pages += pages;
546 } else {
547 acct_info.norm_pages += pages;
548 bytes_transferred += size;
549 qemu_update_position(f, size);
553 static ram_addr_t ram_save_remaining(void)
555 return migration_dirty_pages;
558 uint64_t ram_bytes_remaining(void)
560 return ram_save_remaining() * TARGET_PAGE_SIZE;
563 uint64_t ram_bytes_transferred(void)
565 return bytes_transferred;
568 uint64_t ram_bytes_total(void)
570 RAMBlock *block;
571 uint64_t total = 0;
573 QTAILQ_FOREACH(block, &ram_list.blocks, next)
574 total += block->length;
576 return total;
579 static void migration_end(void)
581 if (migration_bitmap) {
582 memory_global_dirty_log_stop();
583 g_free(migration_bitmap);
584 migration_bitmap = NULL;
587 if (XBZRLE.cache) {
588 cache_fini(XBZRLE.cache);
589 g_free(XBZRLE.cache);
590 g_free(XBZRLE.encoded_buf);
591 g_free(XBZRLE.current_buf);
592 g_free(XBZRLE.decoded_buf);
593 XBZRLE.cache = NULL;
597 static void ram_migration_cancel(void *opaque)
599 migration_end();
602 static void reset_ram_globals(void)
604 last_seen_block = NULL;
605 last_sent_block = NULL;
606 last_offset = 0;
607 last_version = ram_list.version;
608 ram_bulk_stage = true;
611 #define MAX_WAIT 50 /* ms, half buffered_file limit */
613 static int ram_save_setup(QEMUFile *f, void *opaque)
615 RAMBlock *block;
616 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS;
618 migration_bitmap = bitmap_new(ram_pages);
619 bitmap_set(migration_bitmap, 0, ram_pages);
620 migration_dirty_pages = ram_pages;
621 mig_throttle_on = false;
622 dirty_rate_high_cnt = 0;
624 if (migrate_use_xbzrle()) {
625 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() /
626 TARGET_PAGE_SIZE,
627 TARGET_PAGE_SIZE);
628 if (!XBZRLE.cache) {
629 DPRINTF("Error creating cache\n");
630 return -1;
632 XBZRLE.encoded_buf = g_malloc0(TARGET_PAGE_SIZE);
633 XBZRLE.current_buf = g_malloc(TARGET_PAGE_SIZE);
634 acct_clear();
637 qemu_mutex_lock_iothread();
638 qemu_mutex_lock_ramlist();
639 bytes_transferred = 0;
640 reset_ram_globals();
642 memory_global_dirty_log_start();
643 migration_bitmap_sync();
644 qemu_mutex_unlock_iothread();
646 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE);
648 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
649 qemu_put_byte(f, strlen(block->idstr));
650 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
651 qemu_put_be64(f, block->length);
654 qemu_mutex_unlock_ramlist();
656 ram_control_before_iterate(f, RAM_CONTROL_SETUP);
657 ram_control_after_iterate(f, RAM_CONTROL_SETUP);
659 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
661 return 0;
664 static int ram_save_iterate(QEMUFile *f, void *opaque)
666 int ret;
667 int i;
668 int64_t t0;
669 int total_sent = 0;
671 qemu_mutex_lock_ramlist();
673 if (ram_list.version != last_version) {
674 reset_ram_globals();
677 ram_control_before_iterate(f, RAM_CONTROL_ROUND);
679 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
680 i = 0;
681 while ((ret = qemu_file_rate_limit(f)) == 0) {
682 int bytes_sent;
684 bytes_sent = ram_save_block(f, false);
685 /* no more blocks to sent */
686 if (bytes_sent == 0) {
687 break;
689 total_sent += bytes_sent;
690 acct_info.iterations++;
691 check_guest_throttling();
692 /* we want to check in the 1st loop, just in case it was the 1st time
693 and we had to sync the dirty bitmap.
694 qemu_get_clock_ns() is a bit expensive, so we only check each some
695 iterations
697 if ((i & 63) == 0) {
698 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000;
699 if (t1 > MAX_WAIT) {
700 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n",
701 t1, i);
702 break;
705 i++;
708 qemu_mutex_unlock_ramlist();
711 * Must occur before EOS (or any QEMUFile operation)
712 * because of RDMA protocol.
714 ram_control_after_iterate(f, RAM_CONTROL_ROUND);
716 bytes_transferred += total_sent;
719 * Do not count these 8 bytes into total_sent, so that we can
720 * return 0 if no page had been dirtied.
722 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
723 bytes_transferred += 8;
725 ret = qemu_file_get_error(f);
726 if (ret < 0) {
727 return ret;
730 return total_sent;
733 static int ram_save_complete(QEMUFile *f, void *opaque)
735 qemu_mutex_lock_ramlist();
736 migration_bitmap_sync();
738 ram_control_before_iterate(f, RAM_CONTROL_FINISH);
740 /* try transferring iterative blocks of memory */
742 /* flush all remaining blocks regardless of rate limiting */
743 while (true) {
744 int bytes_sent;
746 bytes_sent = ram_save_block(f, true);
747 /* no more blocks to sent */
748 if (bytes_sent == 0) {
749 break;
751 bytes_transferred += bytes_sent;
754 ram_control_after_iterate(f, RAM_CONTROL_FINISH);
755 migration_end();
757 qemu_mutex_unlock_ramlist();
758 qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
760 return 0;
763 static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size)
765 uint64_t remaining_size;
767 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
769 if (remaining_size < max_size) {
770 qemu_mutex_lock_iothread();
771 migration_bitmap_sync();
772 qemu_mutex_unlock_iothread();
773 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE;
775 return remaining_size;
778 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
780 int ret, rc = 0;
781 unsigned int xh_len;
782 int xh_flags;
784 if (!XBZRLE.decoded_buf) {
785 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
788 /* extract RLE header */
789 xh_flags = qemu_get_byte(f);
790 xh_len = qemu_get_be16(f);
792 if (xh_flags != ENCODING_FLAG_XBZRLE) {
793 fprintf(stderr, "Failed to load XBZRLE page - wrong compression!\n");
794 return -1;
797 if (xh_len > TARGET_PAGE_SIZE) {
798 fprintf(stderr, "Failed to load XBZRLE page - len overflow!\n");
799 return -1;
801 /* load data and decode */
802 qemu_get_buffer(f, XBZRLE.decoded_buf, xh_len);
804 /* decode RLE */
805 ret = xbzrle_decode_buffer(XBZRLE.decoded_buf, xh_len, host,
806 TARGET_PAGE_SIZE);
807 if (ret == -1) {
808 fprintf(stderr, "Failed to load XBZRLE page - decode error!\n");
809 rc = -1;
810 } else if (ret > TARGET_PAGE_SIZE) {
811 fprintf(stderr, "Failed to load XBZRLE page - size %d exceeds %d!\n",
812 ret, TARGET_PAGE_SIZE);
813 abort();
816 return rc;
819 static inline void *host_from_stream_offset(QEMUFile *f,
820 ram_addr_t offset,
821 int flags)
823 static RAMBlock *block = NULL;
824 char id[256];
825 uint8_t len;
827 if (flags & RAM_SAVE_FLAG_CONTINUE) {
828 if (!block) {
829 fprintf(stderr, "Ack, bad migration stream!\n");
830 return NULL;
833 return memory_region_get_ram_ptr(block->mr) + offset;
836 len = qemu_get_byte(f);
837 qemu_get_buffer(f, (uint8_t *)id, len);
838 id[len] = 0;
840 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
841 if (!strncmp(id, block->idstr, sizeof(id)))
842 return memory_region_get_ram_ptr(block->mr) + offset;
845 fprintf(stderr, "Can't find block %s!\n", id);
846 return NULL;
850 * If a page (or a whole RDMA chunk) has been
851 * determined to be zero, then zap it.
853 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
855 if (ch != 0 || !is_zero_range(host, size)) {
856 memset(host, ch, size);
860 static int ram_load(QEMUFile *f, void *opaque, int version_id)
862 ram_addr_t addr;
863 int flags, ret = 0;
864 int error;
865 static uint64_t seq_iter;
867 seq_iter++;
869 if (version_id < 4 || version_id > 4) {
870 return -EINVAL;
873 do {
874 addr = qemu_get_be64(f);
876 flags = addr & ~TARGET_PAGE_MASK;
877 addr &= TARGET_PAGE_MASK;
879 if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
880 if (version_id == 4) {
881 /* Synchronize RAM block list */
882 char id[256];
883 ram_addr_t length;
884 ram_addr_t total_ram_bytes = addr;
886 while (total_ram_bytes) {
887 RAMBlock *block;
888 uint8_t len;
890 len = qemu_get_byte(f);
891 qemu_get_buffer(f, (uint8_t *)id, len);
892 id[len] = 0;
893 length = qemu_get_be64(f);
895 QTAILQ_FOREACH(block, &ram_list.blocks, next) {
896 if (!strncmp(id, block->idstr, sizeof(id))) {
897 if (block->length != length) {
898 fprintf(stderr,
899 "Length mismatch: %s: " RAM_ADDR_FMT
900 " in != " RAM_ADDR_FMT "\n", id, length,
901 block->length);
902 ret = -EINVAL;
903 goto done;
905 break;
909 if (!block) {
910 fprintf(stderr, "Unknown ramblock \"%s\", cannot "
911 "accept migration\n", id);
912 ret = -EINVAL;
913 goto done;
916 total_ram_bytes -= length;
921 if (flags & RAM_SAVE_FLAG_COMPRESS) {
922 void *host;
923 uint8_t ch;
925 host = host_from_stream_offset(f, addr, flags);
926 if (!host) {
927 return -EINVAL;
930 ch = qemu_get_byte(f);
931 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
932 } else if (flags & RAM_SAVE_FLAG_PAGE) {
933 void *host;
935 host = host_from_stream_offset(f, addr, flags);
936 if (!host) {
937 return -EINVAL;
940 qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
941 } else if (flags & RAM_SAVE_FLAG_XBZRLE) {
942 void *host = host_from_stream_offset(f, addr, flags);
943 if (!host) {
944 return -EINVAL;
947 if (load_xbzrle(f, addr, host) < 0) {
948 ret = -EINVAL;
949 goto done;
951 } else if (flags & RAM_SAVE_FLAG_HOOK) {
952 ram_control_load_hook(f, flags);
954 error = qemu_file_get_error(f);
955 if (error) {
956 ret = error;
957 goto done;
959 } while (!(flags & RAM_SAVE_FLAG_EOS));
961 done:
962 DPRINTF("Completed load of VM with exit code %d seq iteration "
963 "%" PRIu64 "\n", ret, seq_iter);
964 return ret;
967 SaveVMHandlers savevm_ram_handlers = {
968 .save_live_setup = ram_save_setup,
969 .save_live_iterate = ram_save_iterate,
970 .save_live_complete = ram_save_complete,
971 .save_live_pending = ram_save_pending,
972 .load_state = ram_load,
973 .cancel = ram_migration_cancel,
976 struct soundhw {
977 const char *name;
978 const char *descr;
979 int enabled;
980 int isa;
981 union {
982 int (*init_isa) (ISABus *bus);
983 int (*init_pci) (PCIBus *bus);
984 } init;
987 static struct soundhw soundhw[9];
988 static int soundhw_count;
990 void isa_register_soundhw(const char *name, const char *descr,
991 int (*init_isa)(ISABus *bus))
993 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
994 soundhw[soundhw_count].name = name;
995 soundhw[soundhw_count].descr = descr;
996 soundhw[soundhw_count].isa = 1;
997 soundhw[soundhw_count].init.init_isa = init_isa;
998 soundhw_count++;
1001 void pci_register_soundhw(const char *name, const char *descr,
1002 int (*init_pci)(PCIBus *bus))
1004 assert(soundhw_count < ARRAY_SIZE(soundhw) - 1);
1005 soundhw[soundhw_count].name = name;
1006 soundhw[soundhw_count].descr = descr;
1007 soundhw[soundhw_count].isa = 0;
1008 soundhw[soundhw_count].init.init_pci = init_pci;
1009 soundhw_count++;
1012 void select_soundhw(const char *optarg)
1014 struct soundhw *c;
1016 if (is_help_option(optarg)) {
1017 show_valid_cards:
1019 if (soundhw_count) {
1020 printf("Valid sound card names (comma separated):\n");
1021 for (c = soundhw; c->name; ++c) {
1022 printf ("%-11s %s\n", c->name, c->descr);
1024 printf("\n-soundhw all will enable all of the above\n");
1025 } else {
1026 printf("Machine has no user-selectable audio hardware "
1027 "(it may or may not have always-present audio hardware).\n");
1029 exit(!is_help_option(optarg));
1031 else {
1032 size_t l;
1033 const char *p;
1034 char *e;
1035 int bad_card = 0;
1037 if (!strcmp(optarg, "all")) {
1038 for (c = soundhw; c->name; ++c) {
1039 c->enabled = 1;
1041 return;
1044 p = optarg;
1045 while (*p) {
1046 e = strchr(p, ',');
1047 l = !e ? strlen(p) : (size_t) (e - p);
1049 for (c = soundhw; c->name; ++c) {
1050 if (!strncmp(c->name, p, l) && !c->name[l]) {
1051 c->enabled = 1;
1052 break;
1056 if (!c->name) {
1057 if (l > 80) {
1058 fprintf(stderr,
1059 "Unknown sound card name (too big to show)\n");
1061 else {
1062 fprintf(stderr, "Unknown sound card name `%.*s'\n",
1063 (int) l, p);
1065 bad_card = 1;
1067 p += l + (e != NULL);
1070 if (bad_card) {
1071 goto show_valid_cards;
1076 void audio_init(void)
1078 struct soundhw *c;
1079 ISABus *isa_bus = (ISABus *) object_resolve_path_type("", TYPE_ISA_BUS, NULL);
1080 PCIBus *pci_bus = (PCIBus *) object_resolve_path_type("", TYPE_PCI_BUS, NULL);
1082 for (c = soundhw; c->name; ++c) {
1083 if (c->enabled) {
1084 if (c->isa) {
1085 if (!isa_bus) {
1086 fprintf(stderr, "ISA bus not available for %s\n", c->name);
1087 exit(1);
1089 c->init.init_isa(isa_bus);
1090 } else {
1091 if (!pci_bus) {
1092 fprintf(stderr, "PCI bus not available for %s\n", c->name);
1093 exit(1);
1095 c->init.init_pci(pci_bus);
1101 int qemu_uuid_parse(const char *str, uint8_t *uuid)
1103 int ret;
1105 if (strlen(str) != 36) {
1106 return -1;
1109 ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
1110 &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
1111 &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14],
1112 &uuid[15]);
1114 if (ret != 16) {
1115 return -1;
1117 return 0;
1120 void do_acpitable_option(const QemuOpts *opts)
1122 #ifdef TARGET_I386
1123 Error *err = NULL;
1125 acpi_table_add(opts, &err);
1126 if (err) {
1127 error_report("Wrong acpi table provided: %s",
1128 error_get_pretty(err));
1129 error_free(err);
1130 exit(1);
1132 #endif
1135 void do_smbios_option(QemuOpts *opts)
1137 #ifdef TARGET_I386
1138 smbios_entry_add(opts);
1139 #endif
1142 void cpudef_init(void)
1144 #if defined(cpudef_setup)
1145 cpudef_setup(); /* parse cpu definitions in target config file */
1146 #endif
1149 int tcg_available(void)
1151 return 1;
1154 int kvm_available(void)
1156 #ifdef CONFIG_KVM
1157 return 1;
1158 #else
1159 return 0;
1160 #endif
1163 int xen_available(void)
1165 #ifdef CONFIG_XEN
1166 return 1;
1167 #else
1168 return 0;
1169 #endif
1173 TargetInfo *qmp_query_target(Error **errp)
1175 TargetInfo *info = g_malloc0(sizeof(*info));
1177 info->arch = g_strdup(TARGET_NAME);
1179 return info;
1182 /* Stub function that's gets run on the vcpu when its brought out of the
1183 VM to run inside qemu via async_run_on_cpu()*/
1184 static void mig_sleep_cpu(void *opq)
1186 qemu_mutex_unlock_iothread();
1187 g_usleep(30*1000);
1188 qemu_mutex_lock_iothread();
1191 /* To reduce the dirty rate explicitly disallow the VCPUs from spending
1192 much time in the VM. The migration thread will try to catchup.
1193 Workload will experience a performance drop.
1195 static void mig_throttle_guest_down(void)
1197 CPUState *cpu;
1199 qemu_mutex_lock_iothread();
1200 CPU_FOREACH(cpu) {
1201 async_run_on_cpu(cpu, mig_sleep_cpu, NULL);
1203 qemu_mutex_unlock_iothread();
1206 static void check_guest_throttling(void)
1208 static int64_t t0;
1209 int64_t t1;
1211 if (!mig_throttle_on) {
1212 return;
1215 if (!t0) {
1216 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1217 return;
1220 t1 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
1222 /* If it has been more than 40 ms since the last time the guest
1223 * was throttled then do it again.
1225 if (40 < (t1-t0)/1000000) {
1226 mig_throttle_guest_down();
1227 t0 = t1;