Move generation of config-host.h to Makefile from configure
[qemu.git] / kvm-all.c
blob5ea0dd8b1ea092615817062808fb3fd8d3687df3
1 /*
2 * QEMU KVM support
4 * Copyright IBM, Corp. 2008
5 * Red Hat, Inc. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 * Glauber Costa <gcosta@redhat.com>
11 * This work is licensed under the terms of the GNU GPL, version 2 or later.
12 * See the COPYING file in the top-level directory.
16 #include <sys/types.h>
17 #include <sys/ioctl.h>
18 #include <sys/mman.h>
19 #include <stdarg.h>
21 #include <linux/kvm.h>
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "hw/hw.h"
26 #include "gdbstub.h"
27 #include "kvm.h"
29 /* KVM uses PAGE_SIZE in it's definition of COALESCED_MMIO_MAX */
30 #define PAGE_SIZE TARGET_PAGE_SIZE
32 //#define DEBUG_KVM
34 #ifdef DEBUG_KVM
35 #define dprintf(fmt, ...) \
36 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define dprintf(fmt, ...) \
39 do { } while (0)
40 #endif
42 typedef struct KVMSlot
44 target_phys_addr_t start_addr;
45 ram_addr_t memory_size;
46 ram_addr_t phys_offset;
47 int slot;
48 int flags;
49 } KVMSlot;
51 typedef struct kvm_dirty_log KVMDirtyLog;
53 int kvm_allowed = 0;
55 struct KVMState
57 KVMSlot slots[32];
58 int fd;
59 int vmfd;
60 int regs_modified;
61 int coalesced_mmio;
62 int broken_set_mem_region;
63 int migration_log;
64 #ifdef KVM_CAP_SET_GUEST_DEBUG
65 struct kvm_sw_breakpoint_head kvm_sw_breakpoints;
66 #endif
67 int irqchip_in_kernel;
68 int pit_in_kernel;
71 static KVMState *kvm_state;
73 static KVMSlot *kvm_alloc_slot(KVMState *s)
75 int i;
77 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
78 /* KVM private memory slots */
79 if (i >= 8 && i < 12)
80 continue;
81 if (s->slots[i].memory_size == 0)
82 return &s->slots[i];
85 fprintf(stderr, "%s: no free slot available\n", __func__);
86 abort();
89 static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
90 target_phys_addr_t start_addr,
91 target_phys_addr_t end_addr)
93 int i;
95 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
96 KVMSlot *mem = &s->slots[i];
98 if (start_addr == mem->start_addr &&
99 end_addr == mem->start_addr + mem->memory_size) {
100 return mem;
104 return NULL;
108 * Find overlapping slot with lowest start address
110 static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
111 target_phys_addr_t start_addr,
112 target_phys_addr_t end_addr)
114 KVMSlot *found = NULL;
115 int i;
117 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
118 KVMSlot *mem = &s->slots[i];
120 if (mem->memory_size == 0 ||
121 (found && found->start_addr < mem->start_addr)) {
122 continue;
125 if (end_addr > mem->start_addr &&
126 start_addr < mem->start_addr + mem->memory_size) {
127 found = mem;
131 return found;
134 static int kvm_set_user_memory_region(KVMState *s, KVMSlot *slot)
136 struct kvm_userspace_memory_region mem;
138 mem.slot = slot->slot;
139 mem.guest_phys_addr = slot->start_addr;
140 mem.memory_size = slot->memory_size;
141 mem.userspace_addr = (unsigned long)qemu_get_ram_ptr(slot->phys_offset);
142 mem.flags = slot->flags;
143 if (s->migration_log) {
144 mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
146 return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
149 static void kvm_reset_vcpu(void *opaque)
151 CPUState *env = opaque;
153 if (kvm_arch_put_registers(env)) {
154 fprintf(stderr, "Fatal: kvm vcpu reset failed\n");
155 abort();
159 int kvm_irqchip_in_kernel(void)
161 return kvm_state->irqchip_in_kernel;
164 int kvm_pit_in_kernel(void)
166 return kvm_state->pit_in_kernel;
170 int kvm_init_vcpu(CPUState *env)
172 KVMState *s = kvm_state;
173 long mmap_size;
174 int ret;
176 dprintf("kvm_init_vcpu\n");
178 ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
179 if (ret < 0) {
180 dprintf("kvm_create_vcpu failed\n");
181 goto err;
184 env->kvm_fd = ret;
185 env->kvm_state = s;
187 mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
188 if (mmap_size < 0) {
189 dprintf("KVM_GET_VCPU_MMAP_SIZE failed\n");
190 goto err;
193 env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
194 env->kvm_fd, 0);
195 if (env->kvm_run == MAP_FAILED) {
196 ret = -errno;
197 dprintf("mmap'ing vcpu state failed\n");
198 goto err;
201 ret = kvm_arch_init_vcpu(env);
202 if (ret == 0) {
203 qemu_register_reset(kvm_reset_vcpu, env);
204 ret = kvm_arch_put_registers(env);
206 err:
207 return ret;
210 int kvm_put_mp_state(CPUState *env)
212 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
214 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
217 int kvm_get_mp_state(CPUState *env)
219 struct kvm_mp_state mp_state;
220 int ret;
222 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
223 if (ret < 0) {
224 return ret;
226 env->mp_state = mp_state.mp_state;
227 return 0;
231 * dirty pages logging control
233 static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
234 ram_addr_t size, int flags, int mask)
236 KVMState *s = kvm_state;
237 KVMSlot *mem = kvm_lookup_matching_slot(s, phys_addr, phys_addr + size);
238 int old_flags;
240 if (mem == NULL) {
241 fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
242 TARGET_FMT_plx "\n", __func__, phys_addr,
243 (target_phys_addr_t)(phys_addr + size - 1));
244 return -EINVAL;
247 old_flags = mem->flags;
249 flags = (mem->flags & ~mask) | flags;
250 mem->flags = flags;
252 /* If nothing changed effectively, no need to issue ioctl */
253 if (s->migration_log) {
254 flags |= KVM_MEM_LOG_DIRTY_PAGES;
256 if (flags == old_flags) {
257 return 0;
260 return kvm_set_user_memory_region(s, mem);
263 int kvm_log_start(target_phys_addr_t phys_addr, ram_addr_t size)
265 return kvm_dirty_pages_log_change(phys_addr, size,
266 KVM_MEM_LOG_DIRTY_PAGES,
267 KVM_MEM_LOG_DIRTY_PAGES);
270 int kvm_log_stop(target_phys_addr_t phys_addr, ram_addr_t size)
272 return kvm_dirty_pages_log_change(phys_addr, size,
274 KVM_MEM_LOG_DIRTY_PAGES);
277 int kvm_set_migration_log(int enable)
279 KVMState *s = kvm_state;
280 KVMSlot *mem;
281 int i, err;
283 s->migration_log = enable;
285 for (i = 0; i < ARRAY_SIZE(s->slots); i++) {
286 mem = &s->slots[i];
288 if (!!(mem->flags & KVM_MEM_LOG_DIRTY_PAGES) == enable) {
289 continue;
291 err = kvm_set_user_memory_region(s, mem);
292 if (err) {
293 return err;
296 return 0;
299 static int test_le_bit(unsigned long nr, unsigned char *addr)
301 return (addr[nr >> 3] >> (nr & 7)) & 1;
305 * kvm_physical_sync_dirty_bitmap - Grab dirty bitmap from kernel space
306 * This function updates qemu's dirty bitmap using cpu_physical_memory_set_dirty().
307 * This means all bits are set to dirty.
309 * @start_add: start of logged region.
310 * @end_addr: end of logged region.
312 int kvm_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
313 target_phys_addr_t end_addr)
315 KVMState *s = kvm_state;
316 unsigned long size, allocated_size = 0;
317 target_phys_addr_t phys_addr;
318 ram_addr_t addr;
319 KVMDirtyLog d;
320 KVMSlot *mem;
321 int ret = 0;
323 d.dirty_bitmap = NULL;
324 while (start_addr < end_addr) {
325 mem = kvm_lookup_overlapping_slot(s, start_addr, end_addr);
326 if (mem == NULL) {
327 break;
330 size = ((mem->memory_size >> TARGET_PAGE_BITS) + 7) / 8;
331 if (!d.dirty_bitmap) {
332 d.dirty_bitmap = qemu_malloc(size);
333 } else if (size > allocated_size) {
334 d.dirty_bitmap = qemu_realloc(d.dirty_bitmap, size);
336 allocated_size = size;
337 memset(d.dirty_bitmap, 0, allocated_size);
339 d.slot = mem->slot;
341 if (kvm_vm_ioctl(s, KVM_GET_DIRTY_LOG, &d) == -1) {
342 dprintf("ioctl failed %d\n", errno);
343 ret = -1;
344 break;
347 for (phys_addr = mem->start_addr, addr = mem->phys_offset;
348 phys_addr < mem->start_addr + mem->memory_size;
349 phys_addr += TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
350 unsigned char *bitmap = (unsigned char *)d.dirty_bitmap;
351 unsigned nr = (phys_addr - mem->start_addr) >> TARGET_PAGE_BITS;
353 if (test_le_bit(nr, bitmap)) {
354 cpu_physical_memory_set_dirty(addr);
357 start_addr = phys_addr;
359 qemu_free(d.dirty_bitmap);
361 return ret;
364 int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
366 int ret = -ENOSYS;
367 #ifdef KVM_CAP_COALESCED_MMIO
368 KVMState *s = kvm_state;
370 if (s->coalesced_mmio) {
371 struct kvm_coalesced_mmio_zone zone;
373 zone.addr = start;
374 zone.size = size;
376 ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
378 #endif
380 return ret;
383 int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
385 int ret = -ENOSYS;
386 #ifdef KVM_CAP_COALESCED_MMIO
387 KVMState *s = kvm_state;
389 if (s->coalesced_mmio) {
390 struct kvm_coalesced_mmio_zone zone;
392 zone.addr = start;
393 zone.size = size;
395 ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
397 #endif
399 return ret;
402 int kvm_check_extension(KVMState *s, unsigned int extension)
404 int ret;
406 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, extension);
407 if (ret < 0) {
408 ret = 0;
411 return ret;
414 int kvm_init(int smp_cpus)
416 static const char upgrade_note[] =
417 "Please upgrade to at least kernel 2.6.29 or recent kvm-kmod\n"
418 "(see http://sourceforge.net/projects/kvm).\n";
419 KVMState *s;
420 int ret;
421 int i;
423 if (smp_cpus > 1) {
424 fprintf(stderr, "No SMP KVM support, use '-smp 1'\n");
425 return -EINVAL;
428 s = qemu_mallocz(sizeof(KVMState));
430 #ifdef KVM_CAP_SET_GUEST_DEBUG
431 QTAILQ_INIT(&s->kvm_sw_breakpoints);
432 #endif
433 for (i = 0; i < ARRAY_SIZE(s->slots); i++)
434 s->slots[i].slot = i;
436 s->vmfd = -1;
437 s->fd = open("/dev/kvm", O_RDWR);
438 if (s->fd == -1) {
439 fprintf(stderr, "Could not access KVM kernel module: %m\n");
440 ret = -errno;
441 goto err;
444 ret = kvm_ioctl(s, KVM_GET_API_VERSION, 0);
445 if (ret < KVM_API_VERSION) {
446 if (ret > 0)
447 ret = -EINVAL;
448 fprintf(stderr, "kvm version too old\n");
449 goto err;
452 if (ret > KVM_API_VERSION) {
453 ret = -EINVAL;
454 fprintf(stderr, "kvm version not supported\n");
455 goto err;
458 s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
459 if (s->vmfd < 0)
460 goto err;
462 /* initially, KVM allocated its own memory and we had to jump through
463 * hooks to make phys_ram_base point to this. Modern versions of KVM
464 * just use a user allocated buffer so we can use regular pages
465 * unmodified. Make sure we have a sufficiently modern version of KVM.
467 if (!kvm_check_extension(s, KVM_CAP_USER_MEMORY)) {
468 ret = -EINVAL;
469 fprintf(stderr, "kvm does not support KVM_CAP_USER_MEMORY\n%s",
470 upgrade_note);
471 goto err;
474 /* There was a nasty bug in < kvm-80 that prevents memory slots from being
475 * destroyed properly. Since we rely on this capability, refuse to work
476 * with any kernel without this capability. */
477 if (!kvm_check_extension(s, KVM_CAP_DESTROY_MEMORY_REGION_WORKS)) {
478 ret = -EINVAL;
480 fprintf(stderr,
481 "KVM kernel module broken (DESTROY_MEMORY_REGION).\n%s",
482 upgrade_note);
483 goto err;
486 #ifdef KVM_CAP_COALESCED_MMIO
487 s->coalesced_mmio = kvm_check_extension(s, KVM_CAP_COALESCED_MMIO);
488 #else
489 s->coalesced_mmio = 0;
490 #endif
492 s->broken_set_mem_region = 1;
493 #ifdef KVM_CAP_JOIN_MEMORY_REGIONS_WORKS
494 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_JOIN_MEMORY_REGIONS_WORKS);
495 if (ret > 0) {
496 s->broken_set_mem_region = 0;
498 #endif
500 ret = kvm_arch_init(s, smp_cpus);
501 if (ret < 0)
502 goto err;
504 kvm_state = s;
506 return 0;
508 err:
509 if (s) {
510 if (s->vmfd != -1)
511 close(s->vmfd);
512 if (s->fd != -1)
513 close(s->fd);
515 qemu_free(s);
517 return ret;
520 static int kvm_handle_io(uint16_t port, void *data, int direction, int size,
521 uint32_t count)
523 int i;
524 uint8_t *ptr = data;
526 for (i = 0; i < count; i++) {
527 if (direction == KVM_EXIT_IO_IN) {
528 switch (size) {
529 case 1:
530 stb_p(ptr, cpu_inb(port));
531 break;
532 case 2:
533 stw_p(ptr, cpu_inw(port));
534 break;
535 case 4:
536 stl_p(ptr, cpu_inl(port));
537 break;
539 } else {
540 switch (size) {
541 case 1:
542 cpu_outb(port, ldub_p(ptr));
543 break;
544 case 2:
545 cpu_outw(port, lduw_p(ptr));
546 break;
547 case 4:
548 cpu_outl(port, ldl_p(ptr));
549 break;
553 ptr += size;
556 return 1;
559 static void kvm_run_coalesced_mmio(CPUState *env, struct kvm_run *run)
561 #ifdef KVM_CAP_COALESCED_MMIO
562 KVMState *s = kvm_state;
563 if (s->coalesced_mmio) {
564 struct kvm_coalesced_mmio_ring *ring;
566 ring = (void *)run + (s->coalesced_mmio * TARGET_PAGE_SIZE);
567 while (ring->first != ring->last) {
568 struct kvm_coalesced_mmio *ent;
570 ent = &ring->coalesced_mmio[ring->first];
572 cpu_physical_memory_write(ent->phys_addr, ent->data, ent->len);
573 /* FIXME smp_wmb() */
574 ring->first = (ring->first + 1) % KVM_COALESCED_MMIO_MAX;
577 #endif
580 void kvm_cpu_synchronize_state(CPUState *env)
582 if (!env->kvm_state->regs_modified) {
583 kvm_arch_get_registers(env);
584 env->kvm_state->regs_modified = 1;
588 int kvm_cpu_exec(CPUState *env)
590 struct kvm_run *run = env->kvm_run;
591 int ret;
593 dprintf("kvm_cpu_exec()\n");
595 do {
596 if (env->exit_request) {
597 dprintf("interrupt exit requested\n");
598 ret = 0;
599 break;
602 if (env->kvm_state->regs_modified) {
603 kvm_arch_put_registers(env);
604 env->kvm_state->regs_modified = 0;
607 kvm_arch_pre_run(env, run);
608 ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
609 kvm_arch_post_run(env, run);
611 if (ret == -EINTR || ret == -EAGAIN) {
612 dprintf("io window exit\n");
613 ret = 0;
614 break;
617 if (ret < 0) {
618 dprintf("kvm run failed %s\n", strerror(-ret));
619 abort();
622 kvm_run_coalesced_mmio(env, run);
624 ret = 0; /* exit loop */
625 switch (run->exit_reason) {
626 case KVM_EXIT_IO:
627 dprintf("handle_io\n");
628 ret = kvm_handle_io(run->io.port,
629 (uint8_t *)run + run->io.data_offset,
630 run->io.direction,
631 run->io.size,
632 run->io.count);
633 break;
634 case KVM_EXIT_MMIO:
635 dprintf("handle_mmio\n");
636 cpu_physical_memory_rw(run->mmio.phys_addr,
637 run->mmio.data,
638 run->mmio.len,
639 run->mmio.is_write);
640 ret = 1;
641 break;
642 case KVM_EXIT_IRQ_WINDOW_OPEN:
643 dprintf("irq_window_open\n");
644 break;
645 case KVM_EXIT_SHUTDOWN:
646 dprintf("shutdown\n");
647 qemu_system_reset_request();
648 ret = 1;
649 break;
650 case KVM_EXIT_UNKNOWN:
651 dprintf("kvm_exit_unknown\n");
652 break;
653 case KVM_EXIT_FAIL_ENTRY:
654 dprintf("kvm_exit_fail_entry\n");
655 break;
656 case KVM_EXIT_EXCEPTION:
657 dprintf("kvm_exit_exception\n");
658 break;
659 case KVM_EXIT_DEBUG:
660 dprintf("kvm_exit_debug\n");
661 #ifdef KVM_CAP_SET_GUEST_DEBUG
662 if (kvm_arch_debug(&run->debug.arch)) {
663 gdb_set_stop_cpu(env);
664 vm_stop(EXCP_DEBUG);
665 env->exception_index = EXCP_DEBUG;
666 return 0;
668 /* re-enter, this exception was guest-internal */
669 ret = 1;
670 #endif /* KVM_CAP_SET_GUEST_DEBUG */
671 break;
672 default:
673 dprintf("kvm_arch_handle_exit\n");
674 ret = kvm_arch_handle_exit(env, run);
675 break;
677 } while (ret > 0);
679 if (env->exit_request) {
680 env->exit_request = 0;
681 env->exception_index = EXCP_INTERRUPT;
684 return ret;
687 void kvm_set_phys_mem(target_phys_addr_t start_addr,
688 ram_addr_t size,
689 ram_addr_t phys_offset)
691 KVMState *s = kvm_state;
692 ram_addr_t flags = phys_offset & ~TARGET_PAGE_MASK;
693 KVMSlot *mem, old;
694 int err;
696 if (start_addr & ~TARGET_PAGE_MASK) {
697 if (flags >= IO_MEM_UNASSIGNED) {
698 if (!kvm_lookup_overlapping_slot(s, start_addr,
699 start_addr + size)) {
700 return;
702 fprintf(stderr, "Unaligned split of a KVM memory slot\n");
703 } else {
704 fprintf(stderr, "Only page-aligned memory slots supported\n");
706 abort();
709 /* KVM does not support read-only slots */
710 phys_offset &= ~IO_MEM_ROM;
712 while (1) {
713 mem = kvm_lookup_overlapping_slot(s, start_addr, start_addr + size);
714 if (!mem) {
715 break;
718 if (flags < IO_MEM_UNASSIGNED && start_addr >= mem->start_addr &&
719 (start_addr + size <= mem->start_addr + mem->memory_size) &&
720 (phys_offset - start_addr == mem->phys_offset - mem->start_addr)) {
721 /* The new slot fits into the existing one and comes with
722 * identical parameters - nothing to be done. */
723 return;
726 old = *mem;
728 /* unregister the overlapping slot */
729 mem->memory_size = 0;
730 err = kvm_set_user_memory_region(s, mem);
731 if (err) {
732 fprintf(stderr, "%s: error unregistering overlapping slot: %s\n",
733 __func__, strerror(-err));
734 abort();
737 /* Workaround for older KVM versions: we can't join slots, even not by
738 * unregistering the previous ones and then registering the larger
739 * slot. We have to maintain the existing fragmentation. Sigh.
741 * This workaround assumes that the new slot starts at the same
742 * address as the first existing one. If not or if some overlapping
743 * slot comes around later, we will fail (not seen in practice so far)
744 * - and actually require a recent KVM version. */
745 if (s->broken_set_mem_region &&
746 old.start_addr == start_addr && old.memory_size < size &&
747 flags < IO_MEM_UNASSIGNED) {
748 mem = kvm_alloc_slot(s);
749 mem->memory_size = old.memory_size;
750 mem->start_addr = old.start_addr;
751 mem->phys_offset = old.phys_offset;
752 mem->flags = 0;
754 err = kvm_set_user_memory_region(s, mem);
755 if (err) {
756 fprintf(stderr, "%s: error updating slot: %s\n", __func__,
757 strerror(-err));
758 abort();
761 start_addr += old.memory_size;
762 phys_offset += old.memory_size;
763 size -= old.memory_size;
764 continue;
767 /* register prefix slot */
768 if (old.start_addr < start_addr) {
769 mem = kvm_alloc_slot(s);
770 mem->memory_size = start_addr - old.start_addr;
771 mem->start_addr = old.start_addr;
772 mem->phys_offset = old.phys_offset;
773 mem->flags = 0;
775 err = kvm_set_user_memory_region(s, mem);
776 if (err) {
777 fprintf(stderr, "%s: error registering prefix slot: %s\n",
778 __func__, strerror(-err));
779 abort();
783 /* register suffix slot */
784 if (old.start_addr + old.memory_size > start_addr + size) {
785 ram_addr_t size_delta;
787 mem = kvm_alloc_slot(s);
788 mem->start_addr = start_addr + size;
789 size_delta = mem->start_addr - old.start_addr;
790 mem->memory_size = old.memory_size - size_delta;
791 mem->phys_offset = old.phys_offset + size_delta;
792 mem->flags = 0;
794 err = kvm_set_user_memory_region(s, mem);
795 if (err) {
796 fprintf(stderr, "%s: error registering suffix slot: %s\n",
797 __func__, strerror(-err));
798 abort();
803 /* in case the KVM bug workaround already "consumed" the new slot */
804 if (!size)
805 return;
807 /* KVM does not need to know about this memory */
808 if (flags >= IO_MEM_UNASSIGNED)
809 return;
811 mem = kvm_alloc_slot(s);
812 mem->memory_size = size;
813 mem->start_addr = start_addr;
814 mem->phys_offset = phys_offset;
815 mem->flags = 0;
817 err = kvm_set_user_memory_region(s, mem);
818 if (err) {
819 fprintf(stderr, "%s: error registering slot: %s\n", __func__,
820 strerror(-err));
821 abort();
825 int kvm_ioctl(KVMState *s, int type, ...)
827 int ret;
828 void *arg;
829 va_list ap;
831 va_start(ap, type);
832 arg = va_arg(ap, void *);
833 va_end(ap);
835 ret = ioctl(s->fd, type, arg);
836 if (ret == -1)
837 ret = -errno;
839 return ret;
842 int kvm_vm_ioctl(KVMState *s, int type, ...)
844 int ret;
845 void *arg;
846 va_list ap;
848 va_start(ap, type);
849 arg = va_arg(ap, void *);
850 va_end(ap);
852 ret = ioctl(s->vmfd, type, arg);
853 if (ret == -1)
854 ret = -errno;
856 return ret;
859 int kvm_vcpu_ioctl(CPUState *env, int type, ...)
861 int ret;
862 void *arg;
863 va_list ap;
865 va_start(ap, type);
866 arg = va_arg(ap, void *);
867 va_end(ap);
869 ret = ioctl(env->kvm_fd, type, arg);
870 if (ret == -1)
871 ret = -errno;
873 return ret;
876 int kvm_has_sync_mmu(void)
878 #ifdef KVM_CAP_SYNC_MMU
879 KVMState *s = kvm_state;
881 return kvm_check_extension(s, KVM_CAP_SYNC_MMU);
882 #else
883 return 0;
884 #endif
887 void kvm_setup_guest_memory(void *start, size_t size)
889 if (!kvm_has_sync_mmu()) {
890 #ifdef MADV_DONTFORK
891 int ret = madvise(start, size, MADV_DONTFORK);
893 if (ret) {
894 perror("madvice");
895 exit(1);
897 #else
898 fprintf(stderr,
899 "Need MADV_DONTFORK in absence of synchronous KVM MMU\n");
900 exit(1);
901 #endif
905 #ifdef KVM_CAP_SET_GUEST_DEBUG
906 static void on_vcpu(CPUState *env, void (*func)(void *data), void *data)
908 #ifdef CONFIG_IOTHREAD
909 if (env == cpu_single_env) {
910 func(data);
911 return;
913 abort();
914 #else
915 func(data);
916 #endif
919 struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *env,
920 target_ulong pc)
922 struct kvm_sw_breakpoint *bp;
924 QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
925 if (bp->pc == pc)
926 return bp;
928 return NULL;
931 int kvm_sw_breakpoints_active(CPUState *env)
933 return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
936 struct kvm_set_guest_debug_data {
937 struct kvm_guest_debug dbg;
938 CPUState *env;
939 int err;
942 static void kvm_invoke_set_guest_debug(void *data)
944 struct kvm_set_guest_debug_data *dbg_data = data;
945 CPUState *env = dbg_data->env;
947 if (env->kvm_state->regs_modified) {
948 kvm_arch_put_registers(env);
949 env->kvm_state->regs_modified = 0;
951 dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
954 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
956 struct kvm_set_guest_debug_data data;
958 data.dbg.control = 0;
959 if (env->singlestep_enabled)
960 data.dbg.control = KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
962 kvm_arch_update_guest_debug(env, &data.dbg);
963 data.dbg.control |= reinject_trap;
964 data.env = env;
966 on_vcpu(env, kvm_invoke_set_guest_debug, &data);
967 return data.err;
970 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
971 target_ulong len, int type)
973 struct kvm_sw_breakpoint *bp;
974 CPUState *env;
975 int err;
977 if (type == GDB_BREAKPOINT_SW) {
978 bp = kvm_find_sw_breakpoint(current_env, addr);
979 if (bp) {
980 bp->use_count++;
981 return 0;
984 bp = qemu_malloc(sizeof(struct kvm_sw_breakpoint));
985 if (!bp)
986 return -ENOMEM;
988 bp->pc = addr;
989 bp->use_count = 1;
990 err = kvm_arch_insert_sw_breakpoint(current_env, bp);
991 if (err) {
992 free(bp);
993 return err;
996 QTAILQ_INSERT_HEAD(&current_env->kvm_state->kvm_sw_breakpoints,
997 bp, entry);
998 } else {
999 err = kvm_arch_insert_hw_breakpoint(addr, len, type);
1000 if (err)
1001 return err;
1004 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1005 err = kvm_update_guest_debug(env, 0);
1006 if (err)
1007 return err;
1009 return 0;
1012 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1013 target_ulong len, int type)
1015 struct kvm_sw_breakpoint *bp;
1016 CPUState *env;
1017 int err;
1019 if (type == GDB_BREAKPOINT_SW) {
1020 bp = kvm_find_sw_breakpoint(current_env, addr);
1021 if (!bp)
1022 return -ENOENT;
1024 if (bp->use_count > 1) {
1025 bp->use_count--;
1026 return 0;
1029 err = kvm_arch_remove_sw_breakpoint(current_env, bp);
1030 if (err)
1031 return err;
1033 QTAILQ_REMOVE(&current_env->kvm_state->kvm_sw_breakpoints, bp, entry);
1034 qemu_free(bp);
1035 } else {
1036 err = kvm_arch_remove_hw_breakpoint(addr, len, type);
1037 if (err)
1038 return err;
1041 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1042 err = kvm_update_guest_debug(env, 0);
1043 if (err)
1044 return err;
1046 return 0;
1049 void kvm_remove_all_breakpoints(CPUState *current_env)
1051 struct kvm_sw_breakpoint *bp, *next;
1052 KVMState *s = current_env->kvm_state;
1053 CPUState *env;
1055 QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
1056 if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
1057 /* Try harder to find a CPU that currently sees the breakpoint. */
1058 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1059 if (kvm_arch_remove_sw_breakpoint(env, bp) == 0)
1060 break;
1064 kvm_arch_remove_all_hw_breakpoints();
1066 for (env = first_cpu; env != NULL; env = env->next_cpu)
1067 kvm_update_guest_debug(env, 0);
1070 #else /* !KVM_CAP_SET_GUEST_DEBUG */
1072 int kvm_update_guest_debug(CPUState *env, unsigned long reinject_trap)
1074 return -EINVAL;
1077 int kvm_insert_breakpoint(CPUState *current_env, target_ulong addr,
1078 target_ulong len, int type)
1080 return -EINVAL;
1083 int kvm_remove_breakpoint(CPUState *current_env, target_ulong addr,
1084 target_ulong len, int type)
1086 return -EINVAL;
1089 void kvm_remove_all_breakpoints(CPUState *current_env)
1092 #endif /* !KVM_CAP_SET_GUEST_DEBUG */